
HAL Id: hal-00012134
https://hal.science/hal-00012134

Submitted on 17 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Games with Winning Conditions of High Borel
Complexity

Olivier Serre

To cite this version:
Olivier Serre. Games with Winning Conditions of High Borel Complexity. Automata, Languages and
Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004, 2004,
Turku, Finland. pp.1150-1162. �hal-00012134�

https://hal.science/hal-00012134
https://hal.archives-ouvertes.fr

Games With Winning Conditions of High Borel

Complexity?

Olivier Serre

LIAFA, Université Paris VII, 2, place Jussieu, case 7014, F-75251 Paris Cedex 05

Abstract. We first consider infinite two-player games on pushdown
graphs. In previous work, Cachat, Duparc and Thomas [4] have pre-
sented a winning decidable condition that is Σ3-complete in the Borel
hierarchy. This was the first example of a decidable winning condition
of such Borel complexity. We extend this result by giving a family of
decidable winning conditions of arbitrary high finite Borel complexity.
From this family, we deduce a family of decidable winning conditions of
arbitrary finite Borel complexity for games played on finite graphs. The
problem of deciding the winner for these winning conditions is shown to
be non-elementary complete.

Keywords: Pushdown Automata, Two-player Games, Borel Complexity.

1 Introduction

Infinite two-player games have been intensively studied in the last few years.
One of the main motivations is the strong relation that exists with verification
questions and controller synthesis. For instance, µ-calculus model checking for
finite graphs (respectively for pushdown graphs) is polynomially equivalent to the
problem of deciding the winner in a game played on a finite graph [6] (respectively
on a pushdown graph [14]). In addition, constructing a winning strategy is the
same as synthesizing a discrete controller [1].

One important branch of game theory is developed in the framework of de-
scriptive set theory in which the central question is determinacy, that is the
existence of a winning strategy. One of the deepest results is due to Martin [9]
and states that, for Borel winning conditions, games are determined. In computer
science, the games considered are in general equipped with winning conditions of
low Borel complexity and therefore trivially determined. Nevertheless, deciding
the winner is, in many cases, a difficult problem. Since we are mostly interested
in decidable games, it is natural to ask whether there exist decidable games of
arbitrary high finite Borel complexity.

? This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.

For finite graphs and for the natural conditions appearing in verification and
model-checking, efficient algorithms are known to decide the winner and to com-
pute the associated winning strategies [11, 15, 7, 13]. These winning conditions
all belong to a low level of Borel hierarchy, namely to the boolean closure of the
Borel class Σ2.

In [12], Thomas proposes to study games with winning conditions of Borel
level larger than 2. In the paper we answer this question by exhibiting a family
of winning conditions on pushdown games that have an arbitrary high Borel
complexity while remaining decidable. As a corollary, one obtains a similar re-
sult for games on finite graphs. In addition, these games have effective winning
strategies.

The first results concerning high level Borel conditions come from pushdown
games. In this model, the game graph is the infinite graph of the configurations of
a pushdown process. Walukiewicz has shown that parity games on such graphs
can be effectively solved [14]. For this model, higher level winning conditions
exploiting the infinity of the stack become natural. In [4], Cachat, Duparc and
Thomas have considered the following condition: Eve wins a play if and only
if some configuration is infinitely often visited. They have shown that it is a
decidable winning condition belonging to Σ3. More recently, Bouquet, Serre
and Walukiewicz have considered in [2] winning conditions that are boolean
combinations of a Büchi condition with a condition called unboundedness that
requires the stack to be unbounded. These winning conditions are closely related
with the one of [4] and remain decidable [2]. A natural question was therefore
to consider higher level winning conditions.

In this paper, we give a uniform answer to the question of [12] by providing
a family of winning conditions of increasing finite Borel complexity. The main
idea is to require the stack to converge to some limit and then to have addi-
tional conditions on the limit. To solve classical conditions on pushdown games
one method consists in reducing the problem to a game on a finite graph [14,
2]. We will adapt this method and reduce the problem of deciding the winner
in a pushdown game to the problem of deciding the winner in another push-
down game, equipped with a lower winning condition. Then the proof goes by
induction.

From the proofs we also infer the effectiveness of the winning strategies.
Whereas for previously studied winning conditions on pushdown games, the set
of winning positions was regular, it is no longer the case here. The exact nature of
these sets remains open. We further show that determining the winner for these
high level Borel winning conditions is non-elementary complete. We also show
that Eve has, from a winning position, a persistent strategy, that is a strategy
using memory but such that the move given from some node is always the same
for a given play.

The paper is organized as follows. In Section 2, we start with basic definitions
on games and introduce the family of winning conditions that we will consider
in the rest of the paper. In Section 3, we precise the Borel complexity of these
winning conditions. In Section 4, we give the decidability results and construc-

tions of these games. In Section 5 we show that deciding the winner for such
winning conditions is non-elementary complete. Finally, in Section 6 we discuss
several points. Due to the page limit, the paper contains only proof sketches.

2 Definitions

Definition 1 An alphabet A is a finite or infinite set of letters. A∗ denotes the
set of finite words on A, Aω the set of infinite words on A and A∞ the set
A∗ ∪Aω. The empty word is denoted by ε. For a word u, we denote its (possibly
infinite) length by |u|.

Definition 2 (Prefix) Let u ∈ A∗ and v ∈ A∞. Then u is a prefix of v, denoted
u v v if there exists some word w ∈ A∞ such that v = u·w. For any word u ∈ A∞

there exists a unique prefix of length k for all k ≤ |u|. This prefix is denoted by
u � k.

Definition 3 (Limit of a sequence of finite words) Let (ui)i≥1 ∈ (A∗)N be
an infinite sequence of finite words. The limit lim

i≥1
ui of (ui)i≥1, is the maximal

word satisfying the following: for each j there exists an index r such that the j-th
letter of lim

i≥1
ui equals the j-th letter of up for every p ≥ r. Note that the lim

i≥1
ui

can be either finite or infinite.

We recall now some basic definitions on games. For more details and basic
results, we refer to [11, 15].

Infinite two-player game. Let G = (V, E) be a possibly infinite graph. Let
V = VE ∪ VA be a partition of the nodes among two players, Eve and Adam. A
play from some node v0 proceeds as follows: if v0 ∈ VE , Eve chooses a successor
v1 such that (v0, v1) ∈ E. Otherwise, it is Adam’s turn to choose a successor v1.
If there is no such v1, then the play ends in v0, otherwise the player to whom
v1 belongs tries to move to some v2 and so on. Therefore a play starting from
v0 is a finite or infinite sequence v0v1v2 · · · such that (vi, vi+1) ∈ E for all i. In
the case where the play is finite, we require that there is no v ∈ V such that
(vn, v) ∈ E, if vn was the last node of the play. A partial play is a prefix of a
play.

A winning condition for Eve in G is a subset Ω ⊆ V ω . An infinite play is
winning for Eve with respect to the winning condition Ω if it belongs to Ω. A
finite play is won by the player that has made the last move (in other words,
the player that cannot move looses the play). In the rest of the paper, we will
suppose that all plays are infinite as the games we consider can easily be reduced
to equivalent games where all plays are infinite. An infinite two-player game is
a tuple G = (G, VE , VA, Ω) where G = (V, E) is a graph, V = VE ∪ VA and Ω is
a winning condition for Eve in G.

Strategies, winning positions. Let G = (G, VE , VA, Ω) be an infinite two-
player game. A strategy for Eve is a partial function ϕ : V ∗VE → V such that

for any partial play λ ∈ V + ending in some node v and such that ϕ(λ) = v′, we
have (v, v′) ∈ E. In other words, a strategy is a function that associates with any
partial play a valid move in G. Eve respects a strategy ϕ in a play λ = v0v1v2 · · ·
if for all vi ∈ VE , vi+1 = ϕ(v0v1 · · · vi). A strategy ϕ is a winning strategy for
Eve from some position v0 if Eve wins all the plays starting from v0 and where
she respects ϕ. A position v is a winning position for Eve if she has a winning
strategy from it. Symmetrically one defines the strategies and winning positions
for Adam. We will denote by WE and WA the respective sets of winning positions
for Eve and Adam. Martin’s determinacy theorem [9] tells that V = WE ∪ WA

whenever Ω ⊆ V ω is a Borel set.

2.1 Games on Pushdown Graphs and the Winning Condition
ΩA1�···�An�B

Pushdown process. A pushdown process is a tuple P = (Q, Γ ,⊥, ↪→) where Q

is the finite set of states, Γ is the finite set of stack symbols, ⊥ ∈ Γ is a special
stack symbol (bottom) and ↪→ is the transition relation. A configuration of P is a
pair (q, u) with q ∈ Q and u ∈ (Γ \{⊥})∗⊥ (the top stack symbol is the leftmost
symbol of u). The bottom stack symbol ⊥ is never put nor removed from the
stack. The transition relation that can be applied to the set of configurations of
P have one of the following form (note that we push or pop only one letter at
each transition.):

– Push(q, b): (p, a) ↪→ (q, ba), where p, q ∈ Q, a ∈ Γ and b ∈ (Γ \ {⊥}).
– Pop(q): (p, a) ↪→ (q, ε), where p, q ∈ Q and a ∈ (Γ \ {⊥}).

By (p, v) → (q, w) we mean that from the configuration (p, v) the pushdown
process can go in one step to (q, w). Note that the emptiness test of the stack
corresponds to a push rule with a = ⊥. This naturally leads to associate with
any pushdown process an infinite graph as follows:

Pushdown graph. With any pushdown process P , one can associate a push-
down graph defined as the directed graph having the set of configurations of P
as nodes and the edges of which are given by the relation →.

To define a two-player game on a pushdown graph G = (V,→) associated
with a pushdown process P , we need a partition QE ∪QA of the set of states Q.
From this partition follows a partition VE ∪ VA of the nodes V of G among the
two players: the nodes of Eve are those whose control state belongs to QE and
the others are Adam’s nodes.

From now on we assume that we are given a pushdown process P = (Q, Γ,⊥,

↪→) and a partition QE ∪ QA of Q.
For a node v = (p, u) of V we define |v| to be the length of u. In a play

v1v2v3 · · · , the stack is strictly unbounded if the stack size converges to +∞.
More formally we require that for all k ≥ 0, there exists some i such that: for all
j ≥ i, |vj | > k.

If the stack in a play v1v2 . . . is strictly unbounded, we will consider its
limit u = a1a2a3 · · · , ai ∈ Γ , which is formally defined by: for all k ≥ 1, there

exists some i such that for all j ≥ i, there exists wj ∈ Γ ∗ such that vj =
(pj , wj · a1 · · · ak).

Let us now recall the classical notion of deterministic pushdown automaton:

Deterministic pushdown automaton. A deterministic pushdown automaton
with input from Σ∞ is a tuple A = (Q, Γ, Σ,⊥, qin, δ), where Q is the finite
set of states, Γ is the finite set of stack symbols, ⊥ ∈ Γ is a special stack
symbol (bottom), Σ is the input alphabet, qin ∈ Q is the initial state and
δ : Q × Γ × Σ → M is the transition function where M = {pop(q) | q ∈
Q} ∪ {push(q, a) | q ∈ Q, a ∈ Γ}. A run of A on an infinite word u = a0 · a1 · · ·
starts from the configuration (qin,⊥). A starts reading a0 and applies the rule
corresponding to δ(qin,⊥, a0) (that is the control state and the stack contents
are changed), then it reads a1 and so on. One can in addition equip such an
automaton with a classical acceptance condition, for instance a Büchi condition.

Now let us consider a collection A1, . . . ,An of deterministic pushdown au-
tomata. Let B be a deterministic pushdown automaton equipped with a Büchi
acceptance condition. We require the following properties on the input and stack
alphabets of A1, . . . ,An,B:
– A1 has Γ as input alphabet.
– For all i ≥ 1, the stack alphabet of Ai is the input alphabet of Ai+1.
– The stack alphabet of An is the input alphabet of B.

For given A1, . . . ,An,B we define the winning condition ΩA1�···�An�B as
follows. Eve wins an infinite play in a pushdown graph G associated with a
pushdown process P , if and only if the following conditions are satisfied:
– The stack of P is strictly unbounded and therefore the sequence of stack

contents converges to some limit u0 ∈ Γ ω.
– For all 1 ≤ i ≤ n, when Ai reads ui−1, its stack is strictly unbounded and

the sequence of stack contents converges to some limit ui.
– B accepts un.

In particular, Eve wins an infinite play in G with the winning condition ΩB if
and only if the stack is strictly unbounded and converges to some limit accepted
by B. For instance, if B accepts all infinite words, ΩB is the winning condition
for Adam considered in [4].

2.2 Games on Finite Graphs and the Winning Condition
ΩA1�···�An�B

We give now a version of the winning condition ΩA1�···�An�B for a game played
on a finite game graph G = (V = VE ∪ VA, E).

Let us consider a collection A1, . . . ,An of deterministic pushdown automata.
Let B be a deterministic pushdown automaton equipped with a Büchi acceptance
condition. We require the same properties on the input and stack alphabets of
A1, . . . ,An,B as in the preceding case. In addition, we require that A1 (we set
A1 = B if n = 0) has V as input alphabet.

A1, . . . ,An,B induce a winning condition on G denoted by ΩA1�···�An�B and
defined as follows. Eve wins a play in G if and only if the following conditions
are satisfied:

– The play is infinite and is therefore a word u0 ∈ V ω.
– For all 1 ≤ i ≤ n, when Ai reads ui−1, its stack is strictly unbounded and

the sequence of stack contents converges to some limit ui.
– B accepts un.

In particular, Eve wins an infinite play in G with the winning condition ΩB

if and only if the play seen as an element of V ω is accepted by B. For instance,
such a condition can require that a play in G is won if and only if any partial
play contains more nodes from VE than VA.

Let G = (VE ∪ VA, E) be a finite game graph equipped with the winning
condition ΩA1�···�An�B (with n ≥ 1). Let A1 = (Q1, V, Γ1, q

in
A1

, δ). Let us define
a pushdown process P = (Q, Γ,⊥, ↪→) where Q = V × Q1, Γ = Γ1 and ↪→ is
such that:

– ((v, q), a) ↪→ ((v′, q′), ε) if and only if (v, v′) ∈ E and δ(q, v, a) = pop(q′).

– ((v, q), a) ↪→ ((v′, q′), ba) if and only if (v, v′) ∈ E and δ(q, v, a) = push(q′, b).

Let G⊗A1 be the pushdown graph induced by P equipped with the partition
Q = QE ∪ QA where QE = VE × Q1 and QA = VA × Q1.

The following lemma reduces the game on the finite graph to a pushdown
game with a simpler winning condition:

Lemma 1. Let G = (V, E) be a finite game graph. Eve wins in G from some
position v ∈ V with the winning condition ΩA1�···�An�B if and only if she
wins in G ⊗ A1 from ((v, qin

A1
),⊥) with the winning condition ΩA2�···�An�B

(respectively Büchi if n = 0).

3 Borel Complexity

3.1 Borel Hierarchy

Let Σ be a (possibly infinite) alphabet. We consider the set Σω of infinite words
on the alphabet Σ and we equip it with the usual Cantor topology where the
open sets are those of the form W · Σω where W ⊆ Σ∗ is a language of finite
words on the alphabet Σ. The finite Borel hierarchy (Σ1, Π1), (Σ2, Π2), · · · is
inductively defined as follows:

– Σ1 = {W · Σω | W ⊆ Σ∗} is the set of open sets.
– For all n ≥ 1, Πn =

{
S | S ∈ Σn

}
consists of the complements of Σn-sets.

– For all n ≥ 1, Σn+1 =
{⋃

i∈N
Si | ∀i ∈ N, Si ∈ Πn

}
is the set of countable

union of Πn-sets.

3.2 Borel Complexity of a Winning Condition

Let Ω be a winning condition. Ω is a Σn-winning condition if and only if Ω

is a Σn-set. In the following, we may consider winning conditions given in a
more abstract way than subsets of infinite words. For instance, we may consider

a Büchi winning condition, that is a condition where we require to infinitely
visit some final nodes. Such a condition can be defined independently of the
graph (except that implicitly, a subset of final nodes has to be defined). Such
an abstract condition is a Σn-winning condition if there exists some graph for
which the set of winning plays is a Σn-set. Note also that we do not focus on
the set of effective winning plays but on the set of winning plays (some may not
be effectively possible). In the same way, one defines Πn-winning conditions.

Example 1. Consider a Büchi winning condition (Eve wins if and only if she
infinitely visits nodes belonging to some subset F ⊆ V). Such a condition is a
Π2-winning condition, as the set of winning plays for Eve is

⋂
n≥0[(V

jV ∗F)V ω].
Consider now a strict unboundedness winning condition for pushdown games.

The corresponding condition for Adam is the one considered in [4]: Adam wins
if and only if some configuration (equivalently some stack size) is infinitely re-
peated. Therefore, if one denotes by Vn the set of configurations of stack size n,
the set of winning plays for Adam is

⋃
n≥0

⋂
m≥0[(V

mV ∗Vn)V ω] Therefore, the
set of winning plays for Adam is a Σ3-set and thus the strict unboundedness
winning condition is a Π3-winning condition for Eve.

Borel sets can be equipped with a reduction notion, inducing a notion of
completeness [5]:

Definition 4 (Wadge Reduction, Complete Sets) We say that X ⊆ Σω
X

Wadge reduces to Y ⊆ Σω
Y , denoted X ≤W Y , if and only if there exists a

continuous function f : Σω
X → Σω

Y such that X = f−1(Y). If X ≤W Y and
Y ≤W X then we say that X and Y are Wadge equivalent and we denote it by
X ≡W Y . A set S ∈ Σn is Σn-complete if and only if X ≤W S for all X ∈ Σn.

Example 2. Let Σ = {a, b}. Let X ⊆ Σω be the set of infinite words that contain
infinitely many a. X is a Π2-complete set. Effectively X =

⋂
i≥0 Σ≥iaΣω: X is

a Π2 set. Let Y be a Π2 set on some alphabet Γ : Y =
⋂

i≥0 Yi for some family
(Yi)i≥0 of open sets, where Yi = ZiΓ

ω. We define a function f : Γ ω → {a, b}ω

by setting f(x) = a1 · a2 · · · , where ai = a if and only if x � i ∈ ZkΓ ∗, where k

is the number of letters a1, a2, . . . , ai−1 equals to a. We have that Y = f−1(X)
and that f is continuous.

3.3 Borel Complexity of ΩA1�···�An�B

In [5], Duparc has introduced an operation on sets that allows to define sets
of arbitrary high Borel complexity in a uniform way. Once reading some special
letter, the letter that was just before it is erased. Applying this operation to some
set, gives, under several conditions, a set having a higher Borel complexity. This
operation can be iterated and therefore allows to construct sets of arbitrary
Borel complexity. The winning conditions ΩA1�···�An�B can simulate the n-
times iterated version of the eraser operator. Intuitively, popping the top symbol
of a stack is the same that erasing in a word the last letter.

We have the two following results concerning the Borel complexity of ΩA1�···�An�B:

Theorem 1 For all n, there exists a collection of deterministic pushdown au-
tomata A1, . . . ,An and a deterministic Büchi pushdown automaton B such that
ΩA1�···�An�B is a Πn+3-complete winning condition for pushdown games.

Theorem 2 For all n, there exists a collection of deterministic pushdown au-
tomata A1, . . . ,An and a deterministic Büchi pushdown automaton B such that
ΩA1�···�An�B is a Πn+2-complete winning condition for games on finite graphs.

4 Decidability

In this section we show that pushdown games equipped with the winning con-
dition ΩA1�···�An�B are decidable.

Theorem 3 Let P = (Q, Γ,⊥, ↪→) be a pushdown process, let QE ∪ QA be a
partition of Q and let G = (V,→) be the associated pushdown graph. For any
collection A1, . . . ,An of deterministic pushdown automata, for any deterministic
Büchi pushdown automaton B, and for all q ∈ Q, it is decidable whether Eve has
a winning strategy from (q,⊥) in the pushdown game (G, VE , VA, ΩA1�···�An�B).

The proof follows from iterating the result of Proposition 1 below and finally
using the known algorithms on Büchi pushdown games [14].

Consider automataA1, . . . ,An,B inducing a winning condition ΩA1�···�An�B.
We reduce the problem of solving a game with the condition ΩA1�···�An�B to

that of solving an exponentially larger pushdown game G̃ × A equipped with
the simpler winning condition ΩA2�···�An�B if n > 0, resp. a Büchi condition if
n = 0.

We define A to be A1 if n > 0 and to be B otherwise. In addition, ΓA will
denote the stack alphabet of A, qin

A its initial state and δA its transition function.

The game G̃ ×A is presented in Figure 1.
For readability we will use the abbreviations CS and CM for Choose sets

and Choose move. We give here an intuitive meaning of this graph. Intuitively,
a node [(p, a, R), t, u] represents a position (p, av) in G, such that Eve can play
so that, if the top symbol a is eventually popped, it leads to a node (r, v) for
some r ∈ R. In addition reading vR (the mirror image of v) by A leads to the

configuration (t, u) of A.Thus, G̃ × A encodes an on-the-fly computation of A.
Such a node belongs to Eve if and only if p ∈ QE.

CS and CM nodes are for push moves: once the player to whom belongs
[(p, a, R), t, u] has decided to push b and to change the state to p′, which is
represented by the node [CS(p, a, R, p′, b), t, u], Eve, by moving to some node
[CM(p, a, R, p′, b, S), t, u)], announces the set S of states that she can ensure to
reach if b is eventually popped. Then, if Adam wants b to be popped he moves
to some state [(s, a, R), t, u] for some s ∈ S. Otherwise, if he does not want
to pop b or if he believes that S is incorrect, he moves to [(p′, b, S), t′, u′] (the
edge he follows is called a push edge). Intuitively in that case, a is fixed forever
and therefore, the on-the-fly computation of A must be updated: (t′, u′) is the

[tt, t, u]

[ff, t, u]

∃(p, a) ↪→ (p′, ε), p′ ∈ R

∃(p, a) ↪→ (p′, ε), p′ /∈ R

[(p, a, R), t, u] ∨ ∧

∨

∨

∀(p, a) ↪→ (p′, ba)

[Choose sets(p, a, R, p′, b), t, u]

∧

∧

∀S ⊆ Q

[Choose move(p, a, R, p′, b, S), t, u]

[(p′, b, S), t′, u′]

(?)
(t′, u′) = δA((t, u), a)

[(s, a, R), t, u] ∀s ∈ S

Fig. 1. eG ×A: oval nodes belong to Eve, square for Adam.

configuration reached in A from (t, u) by reading a. In the special case where
n = 0, A = B is equipped with a Büchi condition. Therefore, a push edge is
marked final (? on the figure) if and only if t′ is a final state of B.

We have the following key result:

Proposition 1 Eve wins from (q,⊥) in the game played on G with the winning
condition ΩA1�···�An�B if and only if she wins from [(q,⊥, ∅), qin

A ,⊥] in the

pushdown game G̃ × A equipped with the winning condition ΩA2�···�An�B if
n > 0 (resp., equipped with the Büchi condition if n = 0).

Sketch of proof. Let Λ be some play in the pushdown game.

Λ can be represented graphically

Fig. 2. P/B Factorization

Λ1
Λ2

Λ3

Λ4 Λ5

Λ6

Λ7

Λ8

Λ9

by the evolution of the stack during
the play. Such a representation can be
decomposed in a unique way into bumps
(from some level the stack increases
and eventually return to the level) and
push moves that leaves some level for-
ever. Such a decomposition is called a
P/B Factorization. Figure 2 gives an
example of such a factorization for a
prefix of some play.

A play in G̃×A can be considered
as a P/B factorization where in addi-
tion one performs an on-the-fly com-
putation of A on some prefix of the limit (once some push move had been made
the level will no longer be visited and therefore some prefix of the limit is known).

In the case n = 0, the strict unboundedness and the acceptance of the limit is
ensured by the fact that a final state only appears after a push move (implies
strict unboundedness) inducing a prefix leading to a final state in B. From these
remarks follows easily the direct implication. In the case n > 0, the winning
condition ΩA2�···�An�B implies unboundedness (A’s stack has to be unbounded

which implies that an infinite number of push edges were taken in G̃×A). Cas-
cade acceptance by A1, . . . ,An,B is due to the on-the-fly computation of A1

that implies a cascade acceptance by A2, . . . ,An,B.
For the converse implication, one notes that winning in G̃×A, allows to have

a winning strategy in the original pushdown game. For this, one needs to use a
stack as memory that stores partial plays in G̃ × A and allows to reconstruct
the bumps (recall that G̃ ×A only represents the factorization). This direction
is much more technical than the preceding one. This construction also implies
effectivity of the winning strategy in the original game.

The result for games on finite graphs, is shown similarly, using Lemma 1 and
Theorem 3.

5 Complexity

We first start with some definitions:

Definition 5 Let h, N ≥ 0. tow(h, N) is defined inductively by:

– tow(0, N) = N .
– tow(h, N) = 2tow(h−1,N) for h ≥ 1.

Definition 6 (h-DEXPTIME) Let consider a problem P and a deterministic
Turing Machine deciding in O(tow(h, N)) steps whether some instance of the
problem P is true, where N is polynomial in the size of the instance. Then the
problem P belongs to the class h-DEXPTIME.

We have the following results for pushdown games equipped with winning
conditions of the form ΩA1�···�Ak�B:

Proposition 2 Let A1, . . . ,Ak be a collection of deterministic pushdown au-
tomata, and let B be a deterministic Büchi pushdown automaton. Let G be a
pushdown game equipped with the winning condition ΩA1�···�Ak�B. Deciding
the winner in such a game is an (k + 2)-DEXPTIME problem.

Proof. By induction on k and noting that the construction given in the proof of
Proposition 1 induces an exponential blow up, and that deciding the winner in
a Büchi pushdown game is a DEXPTIME problem.

Proposition 3 The problem of deciding the winner in a pushdown game equipped
with a winning condition of the form ΩA1�···�Ak�B, with k ≥ 0, is a (k + 1)-
DEXPTIME hard problem.

Therefore we have the following result:

Theorem 4 The problem of deciding the winner in a pushdown game (resp. a
finite game graph) equipped with a winning condition of the form ΩA1�···�Ak�B

is non-elementary complete (in the size of the winning condition).

6 Winning Positions and Strategies

We first give some results on the form of the set of winning positions for push-
down games equipped with the winning condition ΩA1�···�An�B.

In [10, 3], it is shown that the set of winning positions in a parity pushdown
game is a regular language. In fact, using the same techniques, one can prove a
similar result for various winning conditions, as for instance for unboundedness
or strict unboundedness.

For the conditions we study in this paper, the set of winning positions may
not be regular. For instance, every deterministic context-free language may occur
as a winning set:

Proposition 4 Let A be some deterministic pushdown automaton on finite
words. There exists a deterministic Büchi automaton B, a pushdown process
P = (Q, Γ,⊥, ↪→), a state q ∈ Q and a partition Q = QE ∪ QA such that,
in the induced pushdown game equipped with the winning condition ΩB, the set
{u | (q, u) ∈ WE} is exactly the set of words recognized by A.

First, let us recall what a persistent strategy is:

Definition 7 (Persistent strategy) [8] A strategy ϕ for Eve is persistent if
for each play v1v2 . . . vk played by Eve according to this strategy, if vi = vj , for
some 1 ≤ i, j < k, and vi is a vertex where Eve is to move, then vi+1 = vj+1.

In other words, a persistent strategy may require memory but once a choice
is made, it is done forever. For the winning conditions of the form ΩA1�···�An�B,
we show that Eve has a persistent winning strategy. More precisely:

Theorem 5 Let P = (Q, Γ,⊥, ↪→) be a pushdown process, let QE ∪ QA be a
partition of Q and let G = (V,→) be the associated pushdown graph. For any
collection A1, . . . ,An of deterministic pushdown automata, for any deterministic
Büchi pushdown automaton B, Eve has a persistent winning strategy from any
winning position in the pushdown game G = (G, VE , VA, ΩA1�···�An�B).

7 Conclusion

We have provided a family of winning conditions that have an arbitrary high
Borel complexity while remaining decidable for pushdown games and games

on finite graphs. Deciding the winner for such a winning condition is an non-
elementary complete problem. In addition, for pushdown games, it gives an ex-
ample of decidable winning conditions inducing non regular sets of winning posi-
tions. The exact form of the winning sets remains open. Finally, we have shown
that there are persistent winning strategies for pushdown games equipped with
these winning conditions. The existence of positional strategies remains open.

Acknowledgments. I gratefully acknowledge Jacques Duparc for suggesting
me to study this family of conditions. His advices and knowledge of Borel com-
plexity were very important in this research. I would also like to express my
thanks to Anca Muscholl for her help while writing this paper.

References

1. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controlers with
partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

2. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbound-
edness and regular conditions. In Proceedings of FST TCS 2003, volume 2914 of
Lecture Notes in Computer Science, pages 88–99. Springer, 2003.

3. T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. vol-
ume 68 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

4. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning
condition. In Proceedings of CSL 2002, volume 2471 of Lecture Notes in Computer

Science, pages 322–336. Springer, 2002.
5. J. Duparc. Wadge hierarchy and Veblen hierarchy. part I: Borel sets of finite rank.

Journal of Symbolic Logic, 66(1):56–86, 2001.
6. E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model-checking for the mu-calculus

and its fragments. Theoretical Computer Science, 258(1-2):491–522, 2001.
7. M. Jurdziński. Small progress measures for solving parity games. In Proceeding of

STACS 2000, volume 1770 of Lecture Notes in Computer Science, pages 290–301.
Springer-Verlag, 2000.

8. J. Marcinkowski and T. Truderung. Optimal complexity bounds for positive LTL
games. In Proceedings of CSL 2002, volume 2471 of Lecture Notes in Computer

Science, pages 262–275. Springer, 2002.
9. D.A. Martin. Borel determinacy. Annals of Mathematics, 102(363-371), 1975.

10. O. Serre. Note on winning positions on pushdown games with ω-regular conditions.
Information Processing Letters, 85:285–291, 2003.

11. W. Thomas. On the synthesis of strategies in infinite games. In Proceedings

of STACS ’95, volume 900 of Lecture Notes in Computer Science, pages 1–13.
Springer, 1995.

12. W. Thomas. Infinite games and verification (extended abstract of a tutorial). In
Proceedings of CAV 2002, volume 2404 of Lecture Notes in Computer Science,
pages 58–64. Springer, 2002.

13. J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solv-
ing parity games. In Proceedings of CAV 2000, volume 1855 of Lecture Notes in

Computer Science, pages 202–215. Springer-Verlag, 2000.
14. I. Walukiewicz. Pushdown processes: games and model checking. Information and

Computation, 157:234–263, 2000.
15. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

