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Abstract

We consider the buckling problem for a family of thin plateghvwhickness parameter
e. This involves finding the least positive multiplé,;, of the load that makes the plate
buckle a value that can be expressed in terms of an eigenvaluespnahbVolving a non-
compact operator. We show that under certain assumptiotisedoad, we have® ;, =
O(e?). This guarantees that provided the plate is thin enough,ntimimum value can
be numerically approximated without the spectral poliutitbat is possible due to the
presence of the non-compact operator. We provide numergzaputations illustrating

some of our theoretical results.
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1 Introduction

An important problem in engineering is the determinatiotheflimit of elastic stabilityof
a body, or more informally, the point at which the bdalyckles Linearization of the problem
leads to this limit being expressed as that critical mudtiyl;,, of the applied load (or, more
generally, a pre-existing stress) at which the equatiohgdehave a unique solution. For
structures such as plates and shells thatlaran one direction, the classical approach is now
to impose Kirchhoff-type hypotheses on the displacemeatgjve a dimensionally reduced
model. This leads to the critical multipliers being forntekh as the eigenvalugs= )\~ of
acompactoperatorX. As a result\.;, = imax 1S Well-separated from other eigenvalues and
can be easily approximated using the finite element methesdg. [1]).

In [12], a method that uses the full three-dimensional dquoat(rather than their dimen-
sionally reduced version) has been proposed, based on anyind model derived classically
by Trefftz [13]. This allows various loads, boundary coratis and topological details (e.g.
stiffeners) that might have otherwise complicated the disienal reduction to be taken into
account for the buckling analysis. The disadvantage offthimulation (which has been im-
plemented in thé.p commercial code STRESS CHECK) is that the underlying opepatis
no longer compact. As a result, the essential specte(iX) of X no longer coincides with
{0} (as it must for compacX) — it can potentially contain eigenvalues of infinite muliity,
accumulation points, a continuous spectrum, etc. This earses serious problems such as
spectral pollution in the finite element approximatione(Eg and the references therein).

Let us define thessential numerical rangé’. of X by

We = [min 0(X), max 0. (X)]. (1.1)
The corresponding regidree of the essential spectruor the buckling problem is
A={A=p""| peR\ W} (1.2)

Our goal in this paper is to show that for a model problem of railfa of thin plates the
eigenvalues of interest,;, lie insideA when the plate thicknegs= 2¢ is small enough. Then,
by a result of Descloux [6], the finite element method giveldupion-free approximations of
these eigenvalues (see [5]). Our proof also bounds the dsyimpehavior of the smallest
three-dimensional eigenvalugsases — 0 in terms of the smallest eigenvalues of the two-
dimensional model based on the Kirchhoff hypothesis.

The outline of our paper is as follows.

e In Section 2, we define the model family of plates and des¢hibéduckling formulation
under consideration. We present a result from [5] that shtws(A) > C > 0 for all
e — 0 and we prove thak,,;, is larger thare?c, for a constant, > 0.



e In sections 3 to 5, by the construction of quasi-modes wegotioat under some generic
assumptions on there-existing stressan the family of plates there holds

A < e O, (1.3)

min — min

with AEL the smallest eigenvalue of the corresponding Kirchhofftlimg problem.

e Section 6 contains the results of numerical experiments.

e Section 7 is an appendix in which we discuss the choice of dhaly of loads that
are applied to the family of plates to make them buckle: We firat any non-zero
membrane load constant through the thickness and indepeoifdeyields a pre-existing

stress which satisfies the hypotheses leading to (1.3).

Although our results here are proved rigorously only for special case of a plate, we
expect that more complicated thin domains, such as flextellss would demonstrate the
same types of behavior, in contrast with clamped elliptielilshvhere we do not expect any
O(e?) eigenvalue.

2 Thebuckling problem for thin plates

2.a Theéasticity operator

We consider a family of plate° = w x (—¢,¢) where the mid-surface is a fixed
domain inR2. The boundaryw will be considered smooth. We assume that the plate is made
of isotropic elastic material, with Lamé constants givgmtandz. Then for the displacement
field v = {u;} on QF (Latin indices are in{1, 2,3}, while Greek onesy, § are in{1, 2},
with repeated indices indicating summation), we define itheakized strain tenses; (u) =
5 (9;u; + 0;u;). By Hooke’s law, the stress tensor is then given by

o(u) = Ae(u),
whereA = A;;1;, the tensor of elastic constants of the material is given by
Ajin = N30k + (0351 + 610 j1).-

The plate is left free on the top and bottom faé§s:= w x {£ec}. On the lateral edge
['§ = Ow x (—¢,¢), we enforceclampedboundary conditionsy = 0. Then the space of
admissible displacements is given by

Voi={ve H(X)’| v=00nT} = 0w x (—¢,¢)}.

The spacé’, is endowed with the norm

Jull, = (Z 0yl )

i,7=1
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For functionsu, v € V., we now define the usual bilinear form for elasticity by

af(u,v) = /6 o(u):e(v)de = /QE {Nep,(w)eqq(v) + 2fie;j(u)e;;(v) } da. (2.1)

Obviously,a© is coercive ori/, though with coercivity constant dependentoi he following
theorem holds.

Theorem 2.1 Korn Inequalities. (i) There exists a constarit’ > 0 such that the following
inequality holds uniformlye € (0, 1], Vu € V.:

lull}, < K (a*(u,w) +e7*|ul

L)) (2.2)

(ii) There exists a constarit” > 0 such that the following inequality holds uniformily €
(0,1], Vu € V..
lul?, <K' (u,u). 2:3)

Proof: The result of (i) is stated in [5, Lemma 5.1] and proved there
The proof of (ii) follows from a scaling argument: Qb = w x (—1,1) with coordinates
(w1, 9, X3) @NdXs = x3/¢, letu be defined as

U (71, 02, X3) = Ua(T1, 2, 23) AN Uz(x1, 22, X3) = cug(w1, T2, T3). (2.4)
Denoting the derivatives with respectte, 24, X5 in Q by 0y, d», 95, we have

e Mull? = D 10atsl® + 77D (10as]® + 1058al?) + < l|05us]%,  (2.5)
o

«

where the norni| - || denotes thd.?(Q2) norm. Using the the positivity of the Lamé material
matrix and the scaling argument, we obtain

e a’(u,u) > CZ!Ieaﬁ WP +e” Z!I6a3 I+ & Dsis | (2.6)

The Korn inequality o gives the estimate

Z lez; (w)[1* = C’Z |07, 2 2.7)

for some positive constard’. Noting that the term*4y|5363!|2 is present in both (2.5) and
(2.6), we can combine the three previous inequalities tainlf2.3). O



2.b Pre-existing stresses

Suppose now that we are given a famiilye } of pre-existing stress states in the body, such
thato? satisfies the equations of equilibrium @A. In applications{o:} might be a sequence
of residualstresses created e.g. in the manufacture of the plate, loutrioontext, it is more
convenient to assume it arises from a sequence of loadisgsdacussed in the appendix (see
also the examples in Section 6). Then the buckling probleta f;nd the smallest multiple
X, Of o5 (called the ‘pre-buckling stress’) for which the plate blesk As shown in [12, 5]
this can be formulated as the minimum positive spectrale/aly, of the problem:

Find (u,)\) € V. x R satisfying: Vv € V., a°(u,v) = Ab"(u,v), (2.8)

where the ternd“(-, -) in (2.8) represents the work done by due to the product terms of the
Green-Lagrange strain tensor:

b (u,v) :/ (05)i5 Osti, 00, d. (2.9)

Unless otherwise stated: will be bounded orf2¢, uniformly fore € [0, 1]. Then itis clear
thatb®(-, -) is a uniformly bounded bilinear form dri. for all € € (0, 1]:

0 (u, v)| < 9IMp|lully, [lvlly, , (2.10)

where

My = max [(05)i ()] (2.11)
Remark 2.2 Supposer: is determined from a given loading 611 (as in the cases discussed
in Section 6 and the appendix). Then we can expétb be singular at the edgés, +¢), x €
Jw. However, these infinite values are normally discardederetigineering analysis (because
of the presence of plastic zones). That is the reason why Wemwpiose an assumption on the
family {02} (Hypothesis 3.1 ahead) which ensures that these prerexistiesses have no
boundary layer present. (For actual stresses determinedgiyen loading, this amounts to
taking only the asymptotic contribution to them into acdpuegardless of boundary layer
effects.) Then (2.11) is satisfied wiffl, < cc.

Let us define the operat®© : V. — V. by
Foranyw € V., X*w € V. is the unique solution of

a(Xw,v) =0 (w,v) YveV.. (2.12)

Then (2.8) is simply the variational formulation for finditige eigenvalues, = A\~! (and
corresponding eigenvectors)Xf. We note from the definition af* andi® that for any: > 0,



X¢ is not compact as an operator framinto itself, so that its spectrum(X¢) may have other
components besides isolated eigenvalues of finite mudiiypli
Let us define for any, € C, the operator

Xe = pl — X°.
Then we define the following components of the spectrum a8]in |

(1) Discrete spectrum
04(XF) = {p € C, ker X5, # {0} andX, is a Fredholm operator front into V. }.

(2) Essential spectrum
0.(X?) = {p € C, X, is not a Fredholm operator frobi into V_}.
Then we have the following result [15] (see also [5, TheoreB)3
Theorem 2.3 o(X®) C R and ¢(X®) = 0.(X°) U 04(X°).

We now quote a result proved in [5, Theorem 5.2] that provadesstimate of the essential
spectrum. This result relies on the Korn inequality (2.2giin Theorem 2.1.

Theorem 2.4 Let K, M, be the constants in the uniform Korn’s inequali/2) and bound
for the pre-buckling stresses (2.11)respectively. Theke € (0, 1],

O'e(XE) C [—QKM(),QKMQ]

By the results of Descloux [6], spectral pollution will ordgcur fory in the above interval.
In other words, any\ = i, ~! belonging to the interval

A= <_ 9K1M0 ’ 9K1M0) (2.13)

can be approximated without pollution by the finite elemerthod (see [5] for details).

The other Korn inequality (2.3) yields a lower boundgp,

Theorem 2.5 Let K/, M, be the constants in the second uniform Korn’s inequ#fit$) and
bound for the pre-buckling stresses(2.11)respectively. Theke € (0, 1],
2

€
Aoin = .
9K M




Proof: We have)\¢

min

guotient we have

= (15,,.) ' and by the mini-max principle based on the Rayleigh-Riesz

Hinax = MAX b(u,w)
B weVe af(u,u)

Inequalities (2.3) and (2.11) then giue,,, < 9K’'M, =2, hence the result. OJ

The results in the next sections show that under some quiErgleassumptions on the pre-
existing stresses there holds,, < e2\EL + O(&3) with AEL the smallest positive eigenvalue
of a similar 2D problem. Sincdiam(A) = O(1), independently ot, we can be assured
e .. € A provideds is small enough and will hence be accurately approximated.

min

3 Anintroduction to asymptotic analysis

A natural way to start the analysis is as follows: Scalingdbmaing)< in thexz; direction,
we get thes-independent domaift = w x (—1,1). The coordinates i) naturally split
into (xt, X3) wherez+ denotes the in-plane variablés,, ) andx; the stretched transverse
variablezs /. Our assumption on the pre-existing stresses is the fatigwi

Hypothesis 3.1 (i) There exist smooth real functio@s; on Q such that for alle > 0, the
pre-existing stress: is given by

(Ui)aﬁ(x) = TaplaT,X3), a,=1,2
(0%) 5(x) = eTas(rT,X3), a=1,2 (3.1)
(Ui)gg(x) = 82533(331', Xg).

(i) The coefficientg) ; defined as

1 1
Pgﬁ(iﬁ) = 5/ Top(2T,X3) dX3 (3.2)
-1

satisfy the non-negativity property: There exiSts C5°(w) such that
[ #hstar)ancar) 0x¢ ) dar >0, (3.3)
We note that;; = 7 ;.

Remark 3.2 The waye scales in (3.1) ensures that there will be no boundary lgyesent in
o (see Remark 2.2). The second hypothesis guarantees tratiidoe positive eigenvalues
present (see Remark 5.2). Note that the weaker assumption

phs(zT) # 0 for somea, (3.4)

would already guarantee that (3.3) is non-zero, which in tmould assure the existence of
eigenvalues that might be positive or negative. As specifigl2], the engineering problem
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requires one to fingositiveeigenvalues, which is why we need the stronger assumpti@h (3
Except for some specialized cases, (3.3) can be generglcted to be true whenever the
weaker condition (3.4) holds.

We postpone to section 7 the discussion of the kinds of loademuwhich the above as-
sumption will hold.

The aim of the next sections is to prove that under Hypottg4isthe least positive buck-
ling eigenvalues belong to the intervaland have a power series expansion.iiA powerful
tool for this is the construction of quasi-modes (approxargigen-pairs). The validation of
this method requires, however, that the eigen-pairs we teaaqproximate are the eigen-pairs
of aself-adjoint operatorSince this is not the case for the operatérwe begin by construct-
ing a self-adjoint operator® with the same spectrum &s.

3.a Sdf-adjoint equivalent operator

The elasticity operatah® defined byA®(u) : v — a°(u, v) has a fully discrete spectrum.

Let its eigen-pair basis be denoted(a$, w;),. . There holds:

A*(u) = ) A (u, wj) w)
l
(here(u, w) denotes the scalar productid(Q2¢)). We define the operatd}* as

Q(u) = Y (A) 7 {u, wi) wj.

14

In factQ° = (A®)~'/2? and there holds
0 (Q(w), @ (w) = (). 35)

The operatoQ® is bounded fromH, := L%*(Q¢) into V. and fromV! into H.. The Korn
inequality (2.3) together with identity (3.5) gives that

QM y, <Ce" and [[|Q]]y,_, <Ce (3.6)
With B*(u) : v — b°(u, v), continuous froni into V., we define
Ye = Q°B°Q* : H. — H.. (3.7)
Then it is clear that there holds:

Theorem 3.3 The operatofY© is self-adjoint and bounded frof, into itself and its spectrum
coincides with the spectrum &F. Thus, the inverse of its discrete spectrum

o7 (V) = (AR A=y, pu€oa(Y)}

gives back the buckling eigenvalues.



With h > 0, anh quasi-modé ., y) for Y is a pair with reaju and non-zerav such that

1Yy — pyll,,. < hlyl,. - (3.8)

Using spectral projectors according to [11], we can extbedesult of [14, Lemmas 12 & 13]
and obtain

Lemma 3.4 Let(u,y) be anh quasi-mode folr=. Then
dist (p, o(Y®)) < h. (3.9

Let us assume that(Y¢) N [ — h, i + h| is contained in the discrete spectrumYofand let
E,;, be the sum of corresponding eigenspaces. Then there exsts), ;, such that

h
ly —wlly, < 5719l (3.10)

whereM is the distance of (Y¢) N [ — h, ;n + k] to the remaining part of the spectrum, i.e.
t0 o (Y*) N (R\ [ — i+ h)).

We are going to construct quasi-modes¥orby an asymptotic method adapted from [3].
It is based on a scaled boundary value formulation of the Imgkroblem.

3.b Scaled boundary value formulation
Under Hypothesis 3.1, we consider problem (2.8): Rind \¢) € V. x R satisfying

Yo e V., a°(u®,v) =NV (u,v).
We scale the unknownsf (2.4)
ua(e)(zT,X3) = ui(z) and wus(e)(zT,Xs) = eusz(x). (3.11)
Then the variational spadé is transformed into
Vi={ve H'(Q)?| v=00nTy=0wx (—1,1)}
and the above eigenvalue problem becomes
Vo eV, a(e)(u(e),v) = A b(e)(u(e),v), (3.12)
where
ale)(u,v) = / [N bop(€) () g (€) (0) + 2y (¢) (w)iiys (¢) (v) } dr, (3.13)

b(g) (’U,, ’U) = /Q {Eij &'ua 8jva + 5_251'3' aﬂLg 8]"(]3} dx, (314)
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and where the scaled straif) (<) is defined as
Iialg(&f) = €qp, I€a3(€) = 5_1€a3, KJ33(€) = 5_2633. (315)

We integrate by parts and obtain the following boundary &gdroblem orf2

A(g)u(e) = N B(e)u(e) in  Q, (3.16)
T()u(e) = A S(e)u(e) on Ty, (3.17)
u(e) = 0 on T, (3.18)

where the interior operatoi&(¢), B(¢) and the traction operatoiB(c), S(¢) are defined as
follows

A(e) = A+ &°A%  with
2ﬁ83613(u) + 58131/3 (z + ﬁ)@l diVT uT + ﬁATul
A’ = | 2[0se03(w) + Adasus |, A*= | (A+7)dxdivr ut + HATuy |(3.19)
()\ + 2ﬁ)833u3 )\83 diVT uT + 2ﬁ856g3(u)

T) = T°+°T?  with

2pe3(u) 0
T = 2mess(u) , TP=| 0 (3.21)
()\ + 2ﬁ)63u3 Adivrut

S(e) = £’S with (Su), = 73,;0;us. (3.22)
In (3.19) and (3.21)u+ = (uy, uo) are the in-plane componentiy + ut = 0yu; + dyus and
At =07 + 03.

Our analysis is organized in two main steps:

() The construction of quasi-modes as power series solutibtedooundary value prob-
lem (3.16)-(3.18).

(i) The identification of all smallest eigenvalues of problemi§3-(3.18) with quasi-mode
expansions.

4 Buckling quasi-modes: An outer expansion

In a similar way as [4, 3], the construction of quasi-modétslf split into two steps:

(a) The solution of the boundary value problem (3.16)-(3.17jH@wut the lateral Dirichlet
boundary condition) by the constructionmdwer series expansions

Me] = doted+ein. .. (4.1)
ule] = u’+eu' +*uP+ ... (4.2)

10



with A\° ~ e%\[e] andu(e) ~ ule]. Note that we start the expansion'sfwith the power
2 because of Theorem 2.5 according to which we cannot find ei@es smaller than
O(e?). Step(a) is referred to aputer expansion

(b) The solution of the whole problem (3.16)-(3.18) requires ithtroduction of annner
expansionncluding boundary layer terms.

4.a Formal seriessolution for the outer expansion

As in [7], step(a) consists of solving (3.16)-(3.17) in the sense of formaikeser
A’ + 22A%ule] = e*Ae]Bule in Q,
{ ( Jule] ] Buld w3

(T°+2T?)ule] = 'A\[€]Sule] on Ty.

Equating the terms with the same poweean front, we find successively for afll= 0,1, ...
(with the convention thatt~! = u=2 = 0)

{ Alul + A%u~? = SN Bu™tF in Q, .
Tou! + T?uf 2 = Zi;‘é A\, Suf~47F on I.. .
The six first problems are

A% =0 [Q, Tu'=0 [T, (4.5)
A'u' =0 [Q)], Tou!' =0 [I4], (4.6)
Au? + A%’ =0 [, T+ T =0 [, (4.7)
AP+ A%ul =0 [Q, TP+ T%wl=0 [I (4.8)
Alu' + A%u? = \Bu® [,  Tou'+ T?u? = \Su’ [I.], (4.9)
A’ + A%y® = \oBu'! + \Bu’ €], TOu® + T?u® = \oSu' + \;Su’ [['1].(4.10)

4b First steps

It is well known and easy to check that the solutiaifsandu! to (4.5) and (4.6) respec-
tively can be anKirchhoff-Love displacemente.:

Lemma4.1 (i) Let the operato)’ : ¢ — U°¢ be defined frond>(z)? into C>(Q)? by
U°C = (G — X301Gs, G2 — X3DaGs, C3), € = (G, G, G3) (). (4.11)
(i) Any smooth solutiom” andu! to (4.5)and(4.6) are of the form
u®=U%° and u!'=U°%", with ¢ ¢'ec @)
For the two next equations, for a fix€gdwe look forv such that
A'v = —A*(UC) [Q], T'v=-TU) [[4].
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Selecting the third components of the equationQiand onI'y., we find forv; a problem of
the type
(A +200) 03303 = —F3  [Q), (N +210) 003 = —GF  [T'4], (4.12)

with F; = (A?U°%¢); andGE = (T?U%¢)s. The problem (4.12) is a Neumann problem on
the interval(—1, 1) for each fixedz+ € w. It can be solved if and only if the following
compatibility conditions are satisfied

®(Fy(zr,-), G (x7),G5 (z7)) =0, VT € w, (4.13)

where forf € L'(—1,1) andg™ € R the compatibility form® is given by

1
O(f,g",97) = /_1 f(X3)dXz + gt — g™ (4.14)

With the actual value of; andG=, the compatibility condition (4.13) is satisfied. Then ther
is a unique solutioms with zero mean value on each fiber x (—1,1). That solutionus is
the result of the action of an operatdf on ¢: we write thatvs =: (U%¢)s, see (4.19).

In a similar way the two first components of the equationafean be written as

ﬁa33va = _Fa [QL ﬁa?»va = _Gi: [F:I:]> a = 1a 27 (415)

with F, = (X + 71)0asvs + (A?U°¢), andGE = Tid,v3 + (T?U ().,
Computing the corresponding compatibility foli F,, GZ) for o = 1, 2, we find that for
allzt e w

{ O(F, G (er) = 2(EATG + (§+mal divr 1) () @.16)

O(F,G)(x7) = 2(EATG + (A +R)da divr C7) (a7).

Here(+ = ({1, () and)\ denotes the Lamé coefficient of the plane stress model:
=221\ +2m)

We denote by, the2 x 2 matrix of the right hand sides of (4.16) divided by 2:

_ IATC + (E + )01 div Ct )
LnCr <ﬁATC2 + A+ @) divr ¢r /) (4.17)

L., is the actual plane stress elasticity operator. We find tieatan solve, instead of (4.15):
A03300 = —Fy + (LmC1)a [, A3 = _Gi i), a=12,

because this new right hand sides satisfy the compatilsifdition

/_1 (Fa(-TT,X3) - (LmCT)a(a?T)) dxz — Gl (x1) + G, (z1) =0, Vir € w.

1

We can then compute, =: (U%¢),. Explicitly calculating the operatdd®, we obtain the
result,cf[4, Lemma 3.2]:

12



Lemma4.2 LetU" be as defined i4.11)
(i) Let the operatolL’ : ¢ — L°¢ be defined frong>(@)? into C*=(w)? by

(L°) T = LnCr cf (4.17) and (L°¢); = 0. (4.18)
(ii) Let the operatotU? : ¢ — U?¢ be defined frong>(@)? into C>°(Q)? by

(U2C)a - QQaadiVTCT + Q38aAT<3
(U¢); = aqdiviér + @AG

with ¢1, ¢2, g3 the polynomials in the variable; defined as

(4.19)

q1(X3) = — % X35 G2(X3) = ﬁ (X3 —3),

g5(Xs) = 5= (A + 470) X3 — (5A + 127i) Xs).

(iii) Let ¢ belong toC> (w)3.
Then the fieldJ?¢ is the unique solution with zero mean values on each fibex (—1,1) of
the problem

AC(U%C) + A2(UC) = L°¢C [Q],  TO(U) +TU%) =0 [Is).  (4.20)
The outcome is that the general solution of (4.5) & (4.7) is
w’ =U%°% wu?=U%?+U%" forany¢® with L°¢° =0, (4.21)
and the general solution of (4.6) & (4.8) is
u' = U, W =U°¢ +U*¢t forany¢! with L°C = 0. (4.22)
4.c Next terms
To solve the next equation (4.9), we look for an operatdsuch thaty = U*¢ solves
A’v = —A%(U%C) + X\BU¢ [Q],  Tw=-T*U%) + \SUC [I].

Forvs we have still a problem of the form (4.12) with, na#y andG= the third components of
the right hand sides in the above equation. The compatilzitindition (4.13) is not satisfied
in general. Instead, we compute the valué¢fs, G3) and find it equal to:

2 R 1
S0+ 2t 4 [ D04 %, (4.23)
We go on to find v, v5) and obtain a problem of the form (4.15). Computib@-,, G=), we
find

1

QCXﬁATaa divr CT + )\0/ (8565565('& — xgaﬁ(m@m(‘g — 8565367(’3) ng, (424)

1
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wherecs ; is a real constant. In (4.23) appears the standard ovaAathﬁ)AzT which is the
bending operator of thin plates for the Lamé coefficienandz. We have also obtained in
(4.23)-(4.24) differenmoments of the pre-existing stresses

1

1 1 1
pgj(xT) = 5/ Goj(rT,X3) dX3 and p}lﬁ(asT) = 5/ X3Gas(TT,X3) dX5.  (4.25)
-1 -1

With all of these, we obtain a statement like Lemma 4.2 whiavigles the operators for the
solution of (4.9):

Lemma 4.3 (i) Let the operatoiL? : ¢ — L?¢ be defined frong>(@)? into C*°(x)* by
(L°¢) 7 = —¢5,A70. divy ¢+ and  (L°¢)s = =% Lp¢s = —1 A+ 20) A2, (4.26)

(ii) Let the operatoM" : ¢ — M¢ be defined frong>(@)? into C*(z)? by
o._ (P QVy Cr
we— (P aT) (¢ o

Py = —0.0° 5031 and Qn = (0aphs0s + OaPos)

with

wherep? ;, po; andp,,; are defined in(4.25)
(iii) Let ¢ belong toC>°(w)3. Then the problem of finding such that

0 20112/ _ 00 _ 12, _ 0
{Afu+A(U ¢) — \BU% L%¢ — A\ M¢ [, (4.28)

T + T?(U%¢) — ASU¢ = 0 4]
has a unique solutiom =: U*¢ with zero mean values on each fiber x (—1,1).

As a result of all previous calculations, we obtain that teaeyal solution of (4.5), (4.7)
and (4.9) is given by (4.21) and

ut = U + U2 + U for any¢? with LO¢? + L2¢0 = \oMO¢P. (4.29)

For the solution of the next step, we prove in the same waythiea¢ exist operatols’ and
U°® such that the general solution of (4.5)-(4.10) is given ®yd¢bnjunction of (4.21), (4.22),
(4.29) and

u5 — UOCS_'_ U2C3 + U4C1 + USCO

4.30
for any¢® with L°¢® + L2¢' + L*¢Y = AM ¢! + A MO¢P. (4.30)
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4.d Operator seriessolutions

Following the method of [3, 7], we solve problem (4.3) in trense offormal series
Solving successively equations (4.4) for edas above we find that fail formal series\[¢]
given by (4.1) and for all formal series

(el =¢+e¢t +¢C+ ..., e’
subject to the “residual” equations
Lel¢[e] = e*A[e]M[e]¢ e, (4.31)

the formal series[c] given by
ule] = Ule|¢]e] (4.32)

yields all solutions of(4.3) (compare with (4.21), (4.22), (4.29) and (4.30)). &efz] =
L’ + cL' + £2L% + ... is a formal series with operator coefficients, acting fré(@)?* into
itself. According to the calculations aboJ€’, is given by (4.18)L' = 0 andL? is given by
(4.26). SimilarlyM[e] = M°+cM'+c2M? +. . . has operator coefficients acting fraii® (z)?
into itself, M° is given by (4.27) andM' = 0.

Finally, the operator seried[c] = U° + cU' + £2U? + ... has coefficients acting from
C>(w)? into C*>°(Q)? with U° given by (4.11)U' = 0 andU? given by (4.19).

The existence of the next operatdrs U* andM” is proved as above.

5 Final construction of bucking quasi-modes

Until now, we have discarded the lateral boundary condstiamd have found the general
solution of the remaining equations. If we are able to findditions on the coefficientg”
and )\ of the formal series\[e] and([¢] so that the coefficienta” of u[e] satisfy the lateral
Dirichlet conditions, the whole problem will be solved. bt we can do this only for the first
termsu’ andu!. To proceed, we have to take the boundary layer terms intouatc\We will
also describe them with the help of formal series.

5.a Lateral boundary conditionson the outer expansion

Now we try to have thes* satisfy the lateral Dirichlet conditions and we study thi/so
ability of the residual equations (4.31) on the surface gaoec”.

We know thatu’ is the Kirchhoff-Love displacement®¢® with generato®. It is clear
thatu® = 0 onTy if and only if

(=0o0ndw, j=1,23 and 9,3 =0 on dw. (5.1)

In order to proceed, it is useful to distinguish betwesembraneand bendingdisplace-
ments and their corresponding surface generators. Reeathtdisplacement = (uy, uy, ug)
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on 2 is a membrane displacement if the two in-plane componenendu, are even in the
transverse variable;, and if the third component; is odd. The displacementis a bending
displacement if, conversely; andu, are odd andis is even inxs.

With ¢ = (¢, G, G3), we denotd(y, ¢»,0) by ¢,, and(0, 0, (3) by ¢,,. We see thatl®¢,, is
membrane wheredd"(, is bending. Thud)’¢,, + U’¢, = U is the splitting ofU°¢ into
its membrane and bending parts.

The first residual equation, see (4.21)L1g° = 0. With (4.18), this means that, ¢S = 0.
Taking the boundary conditions into account, we have obthin

Ln¢5 =0 and ¢5 =0 on dw.

Therefore¢S = 0, which means thag” = ¢}.

The Dirichlet boundary conditions om' and the residual equation (4.22) also yield that
¢' = Cpe

The next residual equation is given in (4.28¥¢? + L2¢° = \;M°¢°. As we know that
¢’ = ¢} the third component of the above equation yields that (seenhas 4.2 and 4.3)
sLu¢§ = AP(Y. Since the operatdk, is invertible from A (w) — H~*(w), the equation
that we have obtained aff is compatible with the Dirichlet boundary conditigh € HZ(w)
which we have found in (5.1). Summarizing what we have olethso far, we have:

Lemmab5.1 The first surface generatod and ¢! are of bending type, i.&° = (0,0,¢?)
and¢' = (0,0, ¢d). The generatoc? is solution of the following probletn

sLe¢d = XP¢, with ¢ e Hi(w) (5.2)

Remark 5.2 We will find positive eigenvalueg, for problem (5.2) if and only ifP is not
negative definite, in other words if the mean valpgg of the pre-existing stresség; satisfy
Hypothesis 3.1 (ii).

We cannot go further, because from the expressiotfdy; it follows that the condition
u? = 0 onT, would impose)?¢{ = 92¢Y = 0 on dw, a condition that cannot be fulfilled in
general. To go further we have to introduce boundary layefilps in our analysis.

5.b Boundary layer terms

In order to fulfill the Dirichlet boundary condition dry, we have to combine the general
outer expansion found in (4.30)-(4.32) withianer expansioaw|e] = sew! + c?w? + - - - with
exponentially decreasing profiles®, which are theboundary layer termsaturally involved
in the solution asymptotics, see [9, 10] and [4, 3].

The third component of the residual equation in (4.30) givesti — (L*¢L)s = AoP¢ + M\ P(S.
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For this, we use local coordinatés s) in a plane neighborhood of the lateral boundary
OJw. Herer denotes the distance &by ands the arclength alongw. The local basis at each
point in dw is given by the unit inner normad and the unit tangent vectaer We letr be the
scaled distance = re~!.

The boundary layer Ansatz s, ., c*w* (R, s, X3) wherer — w*(R, s, X3) is exponen-
tially decreasing ag® — +oc. Here s belongs todw and (R, X3) to the half-stripZ* =
R* x (—1,1). We need suitable functional spaces of exponentially @sing functions. We
use the notationsze® := (a,b) x (—1,1) andp = min{p*, p~}, with p* the distance to the
corner(0, £1) of ©T. Ford > 0 let H5(>") be the space of?(XT) functionsy, which are
smooth up to any regular point of the boundarydf and satisfy

Vi,j €N, ROLK 0 € L2 (B1)
Vi,j €N, i+j#0, P oL € L2(X0?).

In order to preserve the homogeneity of the elasticity spstwe scale the ansatz|<]
back, cf (3.11), that is we sei[c] = e’ + c2p? + ... with % = wk andyt = wit for
all £ € N. In variables(R, s, X3) and unknownsp = (g, ¥s, ¢3) the interior and horizontal
boundary operatorA(s) andT(¢) are transformed into operators whasexpansion yields
formal series, see [34]:

Ale] = Zk e*A* and F[e] = Zk ek

where(* (R, s ; Or, 0, 03) is a partial differential system of ordérin the stretched domain
dwx YT whereast (R, s ; Or, 0, 03) is a partial differential system of ordéon the horizontal
boundariew x 7, with v = R™ x {z3 = £1}. Similarly, the operator8(c) andS(¢)
correspond to the formal seri&¥[c] andS|e]. The counterpart of problem (4.3) In variables
(R, s, X3) and unknownyp is

{W@Md = e Blelple]  in O

(5.3)
Tlelple] = &2Me| Sle]ple] on T..

The first term21° andT° of A[¢] andT|¢] split respectively into 2D-Lamé and 2D-Laplace
operators in variable&, z3) with Neumann boundary conditions:

(Ap)r = Arspr + (A + 1) Or(dives(er, ¢3)),  (T%)r = (D3R + Ores),
(A%p)3 = 11 Arsps + (A + p) 3 (dive 3(¢r, ¢3)), (T%)3 = (A + 21) D303 + A Orpr
(A0p)s = 1t Arsps, (R%)s = pdzps .

The following lemma states that, after the possible subtmaof a rigid motion, any trace
on the lateral boundary, has a lifting in exponential decreasing displacement wétoz
forces, see [4]:
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Lemmab5.3
1 0 0 —X3

Let3 = span o,11],10], 0 be the space of rigid motions air.
0 0 1 R

There exist$ > 0 such that there holds: For any € C>(T,)?, there exist a unique €
C> (0w, H5(X1)*) and a uniqueZ € C*(dw, 3) such that

Wp) = 0 in dwxXH,
T(p) = 0  on dw x4,
(6= 2)| g +oly, = O,

Since the space of traces@¥f (0w, 3) onTy coincides with the space Bfirichlet tracesof
theC*> (w) Kirchhoff-Love displacements, it is possible to match théeo and inner expansion
via admissible boundary conditions on the surface genergto

Here, by Dirichlet traces we mean those associated withahe Ip,,, L,) of the first non-
zero operators arising in the residual equations (4.319: ntembrane operatdy,, acts on
¢+ = ({1, G) and the Dirichlet traces ar@ ¢+ = ¢+l the bending operatdr, is of order
4 and acts om, its Dirichlet traces arg/ (s = ((3,9,(3)|, - The whole trace operatef is
defined asy’¢ = (v ¢, vo¢s), cf (5.1).

With the help of Lemma 5.3 we can prove as in [3] the existeri@lmundary operator
seriesy[e] = 4 + ey! + ... 2 such that if the generator serié¢§] satisfies the boundary
condition

‘&u

Y[elCle] =0 on A,
then there exists a boundary layer setigfs] in C>(dw, $;(X7)*) such that

e the corresponding seriesi¢] solves (5.3),
e the traces ofv[c] onT' coincide with those ofi[c] = U[¢|¢e] in (4.32).
Summarizing, we obtain:

Lemma 5.4 Any formal series solutior¢(s], A[c]) of the residual boundary value problem

L = &2\g|M ,
FICl] = MM [ 54
vlelgle] = 0 [Ow].
yields a solutioru[s] = U[¢]¢[¢] of (4.3)and a solutionp[s] of (5.3)such thatu[c] + we] = 0
onTY.
There exists a one to one correspondence between the sslofi¢5.4) such thag’ # 0
and the eigenpairs), \X") of problem (5.2):

n€ Hy(w) and ilynp=AKLPy. (5.5)

®The calculations in [4§6] give thaty'¢ = (vn,¢r,va¢s) With v ¢t = (cmdiv{T,0)],, andyics =
(0, c6AC3)l,,, With cm andey, non-zero constants only depending on the Lamé coefficieatsiz.
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Lemmab5.5 (i) For each solution(¢[e], A[e]) of (5.4) with ¢° # 0, the pair (¢2, \o) is an
eigenpair of problent5.2).

(ii) Let (n, \KL) be an eigenpair of problert.5). If \XL is a simple eigenvalue, there exists
a unique solutior(¢[¢], A[¢]) of (5.4)with X\, = M\ and ¢ = (0,0, 7). If XX is a multiple

eigenvalue of multiplicityl, there exist/ independent solutiong [¢], A\[¢]) of (5.4) with A\ =
AKL

The proof of this result follows along the same lines as tlo®pof [3, Th.5.3].

5.c Quas-mode estimates

The last step in the construction of quasi-modes is the ffutfdhese series, leaving a
finite number of terms. L&f[c] and\[¢] be as in Lemma 5.4, and let us consider the associated
solutionsule] andwle|. Let x = x(r) be a smooth cut-off function which is equal tdor
0 <r < rgandto0 for r > r; > ro, wherer; is small enough so that the region< r < r;
is a well-defined tubular neighborhood@b.

Let N > 0 be an integer. We denote vy () the displacement field of,

uny(e) == Nirsak <uk($'|', X3) + X(r)wk(g, s, X3)>.

k=0

We unscaleuy;(e) according to (3.11) and obtain the displacemem} on the thin plate

QF. LetA{y, be the finite sum

N
Ay =e2) "N

k=0
and lete, denote the residual

Yiny(v) = @ (ufny, v) — Ay " (ufyy,v), ve VL
With the notations of section 3.a we have
Yiny = (A7 = A B )iy

Revisiting the construction ai(c) andw(e), see also [3, Th6.1] we can prove that, if the first
term¢® of ¢[¢] is not zero, the residue satisfies

17 lly, < Ce¥lluimlly, (5.6)

We come back to the operafsf (3.7), cf Theorem 3.3. Laj{, be defined as@g)‘luiN}.
Combining (5.6) with (3.6), we obtain

||)\?N}YE'!J?N} - '!f{N}HH6 < 05N+1||y?N}||H€'
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Multipying by 5y := (A?N})_l, we deduce, sincgy, = O(c7?),
IV yiny — wimying g < Ce¥ iyl (5.7)
In other words(u{yy, Y{ny) is a0 (eN~1) quasi-mode foie. Lemma 3.4 gives that
dist (ufpy, 0 (V7)) < ceNTL

Therefore we haveist (>\§N}, o~1(Y?)) < CeN*tand we can drop the last two teref§™ A y_;
andsN*+2)\y in Ay without modifying that conclusion:

=z

2
dist (Y A, 07(Y7)) < CeNTL (5.8)
0

e
Il

Putting together (5.8) and Lemma 5.5 we finally obtain:

Theorem 5.6 Recall thatL, := (A + 21)A2 andP = — 0305 With

1 1

Pgﬁ(ﬂfT) = 5/ Gap(TT, X3) dX3.
-1

Under Hypothesi8.1, for each eigenvalug®" of problem(5.5). ;L,n = XXM Py with ) €

HZ(w), there exist€ > 0 such that there holds:

Ve € (0,1], dist (62)\KL,0_1(Y5)> < Ce?, (5.9)
wheres ! (Y¢) denotes the set of inverses of element&“ads in Theorend.3
Combining Theorems 2.4 and 5.6, we find

Corollary 5.6.1 There existg, > 0 such that for any € (0,,) the minimumgz,,, of the
positive part ofo ! (Y?) coincides with the smallest buckling eigenvahijg, and belongs to
the regionA free of spectral pollution given 2.13)

Proof: According to Theorem 2.4, the interval= (—m, m) is free from the essential

spectrum ofY< for all ¢ € (0, 1]. Let \XL be the lowest positive eigenvalue of problem (5.5):

According to Hyposesis 3.1 (ii) the positive part of thatcpem is not empty, see Remark 5.2.
From (5.9) we deduce thaf ;, < e2\EL 4 Ce3. Therefore, for alk such that

min

2\ KL 3
A Ce’ <
& Amin T OET < G

we are sure that®, |

belongs to the discrete spectrumtt. O
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6 Numerical experiments

Let us now present numerical experiments that illustrateesof the results of the previous
sections. We consider an isotropic unit disc of thicknzssclamped on the circular lateral
part, with \, 1 corresponding to Young’s modulus = 3 x 10* and Poisson ratio = 0.3. It
is subjected to a body force of the form

F. = (falxT), e f3(2T)), (6.1)

together with tractiong’= applied to the top and bottom surfaces, of the form
T = (et(a7), %5 (a7)). (6.2)

Each pair(F,, T.) leads to a corresponding pre-existing stress dtat¢. (We discuss, in the
next section, when these stress states will satisfy Hysattse1.)
We perform four families of experiments, based on the foilmyfour choices of ., T.).

(L) F. =0, T = (6,6,0), T, = (—¢,—¢,0).

(L2) F. =0, T = (e &,0), T, = (e,¢,0).

(L3) F, = (—1,-1,0), T+ = (2¢,2¢,0), T— = (2¢,2¢,0).
(L4) F.=(-1,-1,0), T.F = (,,0), T, = (g,¢,0).

As in [5], for each of the above loads, we reduce the computdt a quarter of the plate
by using symmetry boundary conditions on the plane latestispof the boundary; = 0
andxz, = 0. This enforces symmetry in the solution on the full domairoas these planes,
and we only compute approximations of those eigenvalues&/lke@menvectors satisfy these
symmetries (roughly a quarter of the total number).

Each of the loads above will lead to boundary layers in theegisting stress state:,
and one of the factors we investigate is the sensitivity ef tbmputed eigenvalues to the
resolution of these layers. We therefore consider thrderdifit meshes, as shown in Figure
1, each with twelve elements in the quarter disc (six elemabbve the midsurface of the
disc, and six below). In Mesh UNIF, the layers are of thicln@s$, 0.3 and 0.2. In Mesh
MID, the thicknesses are 0.65, 0.35¢ and ¢, while in Mesh FIN, the refinement is even
more concentrated at the boundary, with thicknesses2t, ¢, . For each loadingg® is
first numerically computed by the program STRESS CHECK,qisime of the above meshes.
Here, finer meshes will result in better resolution of theetgyi.e. in higher values df/; in
(2.11). This computed® is then used as the pre-existing stress in each case, arwhibst [10
eigenvalues computed by STRESS CHECK, using the same mesh.

Let us begin with load L1, which results in a pre-existinges# that is opure bending
type. This load does not satisfy the requirement that thetéirs R0 in the series expansion
for the membrane resultant is non-zero, since

Ry = —3(2fa +15 +13) .y, = (0,0). (6.3)

a=1
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0.8
0.65
0.5

UNIF MID FIN

Figure 1: The three meshes on the quarter disc (top view)

Hence Hypothesis 3.1 (ii) will be violated (in fact, the terim (3.2) will all be zero, as shown
in the Appendix). Consequently, the lowest eigenvalfje will not necessarily satisfy (1.3).
Hence, even foe small enough, the conditiok ;,, € A may be violated, and we may get
spectral pollution.

In Tables 1 and 2, we have tabulated the first ten eigenvalueputed using the meshes
UNIF and FIN respectively. (In this and all the computatidhat follow, the polynomial
degree used over each elemeni is 8.)

0.004

0.008

0.016

0.032

0.064

0.128

0.256

2.566e3
5.275e3
9.091e3
9.460e3
1.400e4
1.441e4
1.824e4
1.898e4
2.003e4
2.068e4

9.481e3
1.730e4
2.437e4
2.600e4
3.035e4
3.083e4
3.223e4
3.408e4
3.428e4
3.469¢e4

2.582e4
3.225e4
3.271e4
3.327e4
3.344e4
3.492e4
3.520e4
3.573e4
3.642e4
3.726e4

2.194e4
2.273e4
2.275e4
2.435e4
2.599%e4
2.657e4
2.800e4
2.934e4
2.948e4
2.974e4

1.149e4
1.507e4
1.510e4
1.603e4
1.703e4
1.720e4
1.755e4
1.857e4
1.928e4
1.931e4

1.124e4
1.168e4
1.179e4
1.224e4
1.242e4
1.302e4
1.308e4
1.341e4
1.348e4
1.418e4

9.697e3
1.007e4
1.017e4
1.018e4
1.072e4
1.075e4
1.084e4
1.108e4
1.143e4
1.149e4

Table 1: First ten computed eigenvalues for varigusoad L1, mesh UNIF

We plot these values in Figure 2. We observe, first of all, thatarges, the eigenvalues
all coalesce together, which is a symptom typical of spépdution (indicating that what
we are recovering are values from the essential spectrume{5§e In fact, when mesh
FIN is used, this clumping together is observed for all valoés, both large and small.
The separation observed in the eigenvalues with mesh UNIBrfaller values of, shows,
moreover, that these eigenvalues are highly dependeneandish. Finally, there is n®(s?)
behavior observed, as will be seen for loads L2 and L3 ahebd.cdnclusion is that in the
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0.004

0.008

0.016

0.032

0.064

0.128

0.256

8.141e3
8.172e3
8.191e3
8.263e3
8.471e3
8.530e3
8.760e3
8.780e3
8.808e3
8.861e3

8.212e3
8.242e3
8.255e3
8.327e3
8.536e3
8.596e3
8.810e3
8.854e3
8.874e3
8.917e3

8.325e3
8.353e3
8.355e3
8.425e3
8.634e3
8.696e3
8.876e3
8.951e3
8.985e3
9.037e3

8.495e3
8.520e3
8.539e3
8.575e3
8.789e3
8.858e3
8.990e3
9.064e3
9.213e3
9.261e3

8.686e3
8.760e3
8.858e3
8.884e3
9.070e3
9.152e3
9.241e3
9.299e3
9.586e3
9.648e3

8.940e3
9.022e3
9.402e3
9.443e3
9.613e3
9.665e3
9.923e3
9.964e3
1.028e4
1.035e4

9.380e3
9.451e3
1.016e4
1.020e4
1.052e4
1.075e4
1.079e4
1.081e4
1.091e4
1.116e4

Table 2: First ten computed eigenvalues for variousoad L1, mesh FIN

absence of Hypothesis 3.1, the recovered eigenvalues nidnemdysically relevant.

Next, we consider loads L2 and L3, each of which givédsg of purely membrane type.

As indicated in the next section, Hypothesis 3.1 is now Batisvith thenon-zero membrane
resultant

Ry = —2(2fa+t5+1) =(-1,-1).

In this case, the presence or absence of body forces doesaket much of a difference in
the resulting eigenvalues, due to the fact that the redulighe same for both cases. Tables
3 and 4, both based on mesh MID, illustrate this. Also, it suont that using the meshes
UNIF and FIN gives very similar results (the tables are nproduced here). This lack of
mesh-dependence suggests that even with the refinemertiersgedhe boundary layer effects
have still not been resolved sufficiently for the computégdin (2.11) to cause a problem. (We
note that the computational results in [5] dealt with a défe case of infinite stresses — this
time, due to corner singularities. It was shown that if thesmis sufficiently refined around
the corner, then the essential spectrum does eventuatlpprieate, giving spectral pollution.
A similar effect may be anticipated here, if we resolve tharmary layer sufficiently. Hence,
paradoxically, too much refinement is detrimental to redoggethe physical eigenvalues.)

We plot the first five eigenvalues for load L3 in figure 3. (Thetdbr L2 is similar.)
Now the O(£?) behavior is clearly observed. Moreover, we see that whethibkness gets
sufficiently large, the computed eigenvalues begin to cmaleindicating that the required
eigenvalues no longer lie ifu.

As shown in [5], the difference between physical and nonsjdaf eigenvalues can be quite
clearly seen by examining their eigenvectors — non-physiggenvectors have a markedly
local character, where not much variation is observed dwedbmain. In Figure 4, we plot
these eigenvectors corresponding to the first three comgigenvalues for load L3, using the
mesh MID. The plots are for the componeton the midplane of the disc. We note that the

(6.4)

a=1,2

23



50000

20000§

~< 10000

5000

2000

-©- Mesh UNIF
—— Mesh FIN

0.004

I
0.008

!
0.016

!
0.032
€

!
0.064

!
0.128

0.256

Figure 2: First 10 eigenvalues plotted againdbad L1

0.004

0.008

0.016

0.032

0.064

0.128

0.256

1.861e0
7.383e0
8.956e0
1.174el
1.604el
1.786el
2.033el
2.530el
2.572el
3.108el

7.444e0
2.951el
3.574el
4.672el
6.346el
7.104el
8.059%1
9.938el
1.009e2
1.225e2

2.975el
1.177e2
1.423e2
1.857e2
2.500e2
2.816e2
3.179%e2
3.793e2
3.981e2
4.779e2

1.187e2
4.662e2
5.605e2
7.309e2
9.670e2
1.098e3
1.221e3
1.402e3
1.536e3
1.792e3

4.694e2
1.795e3
2.114e3
2.758e3
3.500e3
4.023e3
4.267e3
4.808e3
5.447e3
5.961e3

1.798e3
6.246e3
6.884e3
9.011e3
1.028e4
1.144e4
1.215e4
1.303e4
1.430e4
1.517e4

6.130e3
1.460e4
1.621e4
1.717e4
1.742e4
1.759e4
1.777e4
1.873e4
1.917e4
1.972e4

Table 3: First ten computed eigenvalues for varigusoad L2, mesh MID

plots on the top and bottom surfaces (not shown here) aresireilar, as can be expected from
the theory: From our construction of quasi-modes in Sediame know that each eigenvector
n = n(x1) of problem (5.5) gives rise to a buckling eigenvector wightiansverse component
ug(z) = n(xr) + O(e).

The four rows (from top to bottom) give the results fox= 0.004, 0.064, 0.128, 0.256 re-
spectively. Foe = 0.004 and 0.064, the buckling modes are the physical ones. £®.128,
however, the second eigenvector is clearly non-physisara the first and third eigenvectors
for e = 0.256. It is also interesting to note the presence of an exisgtric mode at the first
place (certainly corresponding to an axisymmetric 2-dmigetory as in (5.5)) forr = 0.004,
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0.004

0.008

0.016

0.032

0.064

0.128

0.256

1.861e0
7.381e0
8.954e0
1.174el
1.604el
1.785el
2.033el
2.529¢e1
2.571el
3.107el

7.442e0
2.950el
3.574el
4.671el
6.344el
7.103el
8.058el
9.935el
1.009e2
1.224e2

2.975el
1.177e2
1.423e2
1.857e2
2.497e2
2.816e2
3.178e2
3.792e2
3.981e2
4.779e2

1.187e2
4.662e2
5.604e2
7.309e2
9.669e2
1.098e3
1.221e3
1.402e3
1.536e3
1.792e3

4.697e2
1.796e3
2.113e3
2.760e3
3.499e3
4.025e3
4.265e3
4.808e3
5.449e3
5.959e3

1.802e3
6.244e3
6.864e3
9.002e3
1.024e4
1.138e4
1.212e4
1.297e4
1.422e4
1.512e4

6.114e3
1.480e4
1.505e4
1.515e4
1.543e4
1.560e4
1.586e4
1.754e4
1.763e4
1.787e4

Table 4: First ten computed eigenvalues for varigusoad L3, mesh MID

0.064 and 0.128.
Finally, we consider load L4, which is designed to give a zesultant,

Ry = —2(2fa+t5+17) 0,0). (6.5)

a=1,2 - (

leading to a cancellation of the right hand side in equation)(ahead. As a result of this, the
magnitude ob$ (and henceu) will drop in order, leading to a corresponding increasehim t

magnitude of the eigenvalues, compared to the previousrgadin Tables 5 and 6, we have
tabulated the eigenvalues computed using meshes UNIF &hdeSpectively, for this case.

The mentioned increase in order due to there being a zertiawsis clearly seen.

0.004

0.008

0.016

0.032

0.064

0.128

0.256

5.809e3
1.974e4
4.371e4
4.565e4
6.859¢e4
8.057¢e4
9.257e4
1.185e5
1.249e5
1.549e5

2.364e4
7.740e4
1.583e5
1.603e5
2.228e5
2.683e5
2.763e5
3.391e5
3.780e5
3.967e5

7.842e4
1.927e5
2.789e5
2.980e5
3.231e5
3.837e5
3.990e5
4.267e5
4511e5
4.911e5

1.231e5
2.214e5
2.933e5
3.083e5
3.405e5
3.770e5
4.282e5
4.382e5
4.537e5
4.765e5

1.319e5
2.176e5
2.871e5
3.083e5
3.405e5
3.770e5
4.282e5
4.382e5
4.537e5
4.765e5

1.307e5
2.016e5
2.501e5
2.604e5
2.833e5
2.850e5
3.102e5
3.272e5
3.285e5
3.355e5

1.200e5
1.536e5
1.602e5
1.605e5
1.758e5
1.782e5
1.817e5
1.826e5
1.838e5
1.845e5

Table 5: First ten computed eigenvalues for variousoad L4, mesh UNIF

We plot these numbers in figure 5. The leveling out of the eigkeres once again occurs
due to the limit ofA being reached, leading to non-physical eigenvalues beiogvered. It
may be also noticed that for small values=pthe eigenvalues are mesh-dependent.
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Figure 3: First 5 eigenvalues plotted againdbad L3

0.004

0.008

0.016

0.032

0.064

0.128

0.256

7.108e3
2.829e4
4.251e4
9.629¢e4
1.650e5
2.462e5
4.628e5
5.538e5
6.961e5
8.280e5

2.858e4
1.061e5
1.501e5
2.739e5
2.937e5
4.128e5
4.580e5
5.189e5
5.662e5
5.930e5

9.220e4
2.127e5
2.805e5
3.238e5
3.480e5
4.001e5
4.294e5
4.795e5
5.183e5
5.604e5

1.331e5
2.238e5
2.932e5
3.180e5
3.500e5
3.934e5
4.455e5
4.673e5
4.931e5
5.346e5

1.355e5
2.190e5
2.883e5
2.959e5
3.333e5
3.592e5
3.954e5
4.038e5
4.169e5
4.270e5

1.318e5
1.983e5
2.021e5
2.024e5
2.258e5
2.290e5
2.507e5
2.613e5
2.626e5
2.650e5

9.957e4
1.016e5
1.134e5
1.150e5
1.202e5
1.323e5
1.334e5
1.353e5
1.354e5
1.368e5

Table 6: First ten computed eigenvalues for varigusoad L4, mesh FIN
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In Figure 6, we plot the corresponding eigenvectors, whiohenelearly illustrate the spec-
tral pollution. The first two rows are far= 0.004, with the meshes MID and FIN respectively.
We observe that the eigenvectors are now mesh-dependeéiciting that even for such low
values ofe, the computed eigenvalues may be spurious. &~er 0.064 (Row 3) and 0.128
(Row 4), the presence of spurious eigenvectors is clearc@nolusion is that for this loading,
spectral pollution starts at smaller valuesafompared to the cases of L2 and L3, in relation
with the fact that the eigenvalues are much larger for L4.eNa$o that the shape invariance
clearly visible in Figure 4 (related to the asymptotic liroit eigenvectors) disappears here



Figure 4. Midplane plot ofi; for first three eigenvectors, load L3, mesh MID.
¢ =0.004 (row 1), 0.064 (row 2), 0.128 (row 3), 0.256 (row 4)
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Figure 5: First 10 eigenvalues plotted againdbad L4
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Figure 6: Midplane plot ofi; for first three eigenvectors, load L4.
Row 1: ¢ = 0.004, mesh MID, Row 2t = 0.004, mesh FIN, Row 3 = 0.064, mesh FIN,
Row 4::c = 0.128, mesh FIN



7 Appendix

In this section, we discuss the form of the pre-bucklingsst#é that is induced by choosing
a loading of the form (6.1),(6.2) used in the numerical ekpents in Section 6. In particular,
we investigate the limit?, ase — 0, taken in the sense of regular terms (without taking the
boundary layer into account).

We assume that the pre-existing loading has the form

F, = (fa(a:T,Xg),afg(xT, Xg)), TF = (ett (z1), %5 (7). (7.1)
(Herexs is the scaled vertical variable="'.) The pre-buckling displacemenf solves
Findu: € H*(Q)? such that/v € H'(QF)?

/ Ae(ul) : e(v) dz = / F.-vdx +/ Tr v dat +/ T, -vdzr. (7.2)
€ e T+ _

According to [4], the outer part, i.e., outside the boundagger, of the asymptotics of the
solutionu® ase — 0 takes the form
ug ~ €_lu?{L,b + u(I)(L,m + u%(L,b + 8(“%(L,m + u%{L,b +vy)+... (73)
e (U, U, R+ .
where

e ug; , andug, , are the bending and membrane parts{@nof the Kirchhoff-Love
displacement with generatgf = C’;m + C’;b, see sec. 5.a, namely

k k k k k k k
UKy b = (_X381C*,37 x382<*,37 <*,3) and UKrm = (g*,h <*,270)'

o v" = vk(21,X3), i.e. does not depend arin the scaled domaif?.
The formula forv! is

vl(rT,X3) = m (0, 0, —6Xsdivy )+ + (3x3 — 1) ATg{g). (7.4)
Then we can check that the stressé®f the expansion (7.3) have the form,
(0%),5(2) = Taplzr,Xs) + O(e),
(09),3(2) = €Tag(ar,Xs) + O(e?), (7.5)
(09)45(x) = €Tas(ar,X3) + O(e?),
which, when compared with (3.1), show that the first part opéthesis 3.1 will hold in the
limit.
It remains to discuss the second part of Hypothesis 3.1 lwkithe core of our assumption
which says that,s is a genuine principal part in the sense of (3.3). Accordintgt us
compute

Tap(07,X3) = —X3(2M0up + 0apAAT)C 5 + 2ieas(CO ) + dag divr €. (7.6)
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We note that—X3(210.s + (S(MXAT) 573 is the bending contribution t6,5 and that it has
a null average across the thickness, Whemg(cim) + OapAdivr Cf,lm is the membrane
contribution. Hence, (3.2) gives

pgﬁ = 2ﬁ€aﬁ(cg,m) + dapA divr Cim‘

According to [4] again, the membrane Kirchhoff-Love gemelr{im is the solution of the
boundary value problem on the midsurfage- see (4.17) for the plain stress operdtgr

Find¢) . € H}(w)? such that

1

1
meg,m(ﬂfT) = —§</_1 foloT,X3)dX3 + 1 (z1) + 1, (a:T)>, TT € Ww. (7.7)

0
*,m?

Hence(, .., and consequentlygﬁ, can be expected to be non-zero, provided the right hand
side of (7.7) is non-zero. This is clearly the case when theltantR?, is non-zero, as in the
case of Loads L2 and L3 (see (6.4)). As explained in RemarkwBeZan therefore conclude
that Hypothesis 3.1 (ii) will (in general) hold for all suchses where the first term of the
membrane resultant of the pre-existing load is not ideltyicaro.

We note also thaﬁgﬁ clearly vanishes wheR?, = 0 as for loads L1 and L4, showing that
Hypothesis 3.1 (ii) is violated for these cases.

References

[1] I. BABUSKA, J. OsBORN Eigenvalue problems. |hlandbook of numerical analysis, Vol, II
pages 641-787. North-Holland, Amsterdam 1991.

[2] P. G. QARLET, S. KESAavVAN. Two-dimensional approximation of three-dimensionakeiglue
problems in plate theoryComp. Methods Appl. Mech. Engf (1981) 149-172.

[3] M. DAUGE, , |. DJURDJEVIC, E. FAOU, A. ROSSLE Eigenmodes asymptotic in thin elastic
plates.J. Maths. Pures Appl/8 (1999) 925-964.

[4] M. DAUGE, |. GRUAIS, A. ROssLE The influence of lateral boundary conditions on the asymp-
totics in thin elastic platesSIAM J. Math. Anal31(2) (1999/00) 305—-345 (electronic).

[5] M. DAUGE, M. SuRI. Numerical approximation of the spectra of non-compactaipes arising
in buckling problems.Journal of Numerical Mathematicg)(3) (2002) 193-219.

[6] J. DEscLoux. Essential numerical range of an operator with respect toeactve form and
the approximation of its spectrum by the Galerkin meth&AM J. Numer. Anall8(6) (1981)
1128-1133.

[7] E. Faou. Elasticity on a thin shell: formal series soluticAsymptot. Anal31(3-4) (2002) 317—-
361.

[8] T. KATO. Perturbation Theory for Linear Operatar$Springer-Verlag, Berlin - Heidelberg - New
York 1976.

31



[9] V. G. MAZ’YA, S. A. Nazarov, B. A. PLAMENEVSKII. Asymptotische Theorie elliptischer
Randwertaufgaben in singul gesbrten Gebieten Il Mathematische Monographien, Band 83.
Akademie Verlag, Berlin 1991.

[10] S. A. Nazarov, |. S. ZorRIN. Edge effect in the bending of a thin three-dimensionaleplat
Prikl. Matem. Mekhan53 (4) (1989) 642—-650. English translatidnAppl. Maths. Mechg$1989)
500-507.

[11] M. REED, B. SMON. Methods of modern mathematical physics. V. Analysis ofabpes. Aca-
demic Press [Harcourt Brace Jovanovich Publishers], Nesik Y878.

[12] B. SzaBO, G. KIRALYFALVI . Linear models of buckling and stress-stiffeningomp. Methods,
Appl. Mech. Engrgl71 (1999) 43-59.

[13] E. TREFFTZ Zur Theorie der Stabilitat des elastischen Gleichgetsich. Angew. Math. Mech.
13 (1933) 160-165.

[14] M. 1. VISHIK, L. A. LYUSTERNIK. Asymptotic behaviour of solutions of linear differenéglia-
tions with large or quickly changing coefficients and bougdaondition. Russian Math. Surveys
4 (1960) 23-92.

[15] K. YosHIDA. Functional Analysis Springer-Verlag, Berlin - New York 1971.

32



