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Analysis of crack singularities in an aging elastic
material

M. COSTABEL ∗, M. DAUGE †, S.A. NAZAROV ‡, J. SOKOLOWSKI §

Abstract

We consider a quasistatic system involving a Volterra kernel modelling an hereditarily-
elastic aging body. We are concerned with the behavior of displacement and stress fields in
the neighborhood of cracks. In this paper, we investigate the case of a straight crack in a
two-dimensional domain with a possibly anisotropic material law.

We study the asymptotics of the time dependent solution nearthe crack tips. We prove
that, depending on the regularity of the material law and theVolterra kernel, these asymp-
totics contain singular functions which are simple homogeneous functions of degree12 or
have a more complicated dependence on the distance variabler to the crack tips. In the
latter situation, we observe a novel behavior of the singular functions, incompatible with
the usual fracture criteria, involving super polynomial functions ofln r growing in time.
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1 Introduction

Aging and creeping processes in an elastic body cause the elastic properties of the body to
change with time, in particular by making its internal structure compatible with its deformation
state by a relaxation of stresses. Such processes are relatively slow, so their modelization may
neglect the dynamical effects and be done by quasistatic equations where the timet is only
a parameter. For a proper description of aging viscoelasticor hereditary-elastic materials, the
postulated constitutive law between strains and stresses usually includes an integral operator
with respect to the parametert.

We do not consider here the models related to the evolution ofgeometry of such aging
bodies,cf. [2]. So the resulting mathematical model of an aging body takes the form of a
system of partial differential equations with respect to the spatial variablesx = (x1, x2), and of
a perturbation in the form of an Volterra integral operator with respect to the parametert.

Our paper is devoted to the mechanically relevant situationwhere the body contains a crack.
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1.A Crack in an hereditarily-elastic aging body

We consider the case of a two-dimensional bodyΩ containing a crack modelized as a straight
segment where traction free boundary conditions are prescribed. In the same way as in the
static problems, singularities may appear in solutions of such models at crack tips. The precise
knowledge of these singularities is of main interest in fracture mechanics.

In the case of the standard equations of pure linear elasticity, the asymptotics of solutions
near crack tips have been known since a long time: As application of the general theory of [16]
to plane angles of opening2π , we obtain that the asymptotics at each tip are combination of
homogeneous terms of the formrλV(ϕ). Here(r, ϕ) are polar coordinates centered at the tip.
Explicit calculations for isotropic materials prove that the λ ’s (the singularity exponents) are
half-integers1

2
, 3

2
,... The generalization of this result to any homogeneous anisotropic material

law is due to [12] (see also [9] for a generality beyond elasticity). The square root singularity
r1/2 for the displacement corresponds to an unbounded stress with singularityr−1/2 .

Concerning homogeneous,isotropic, aging viscoelastic bodies, it is already shown,cf. [40,
24] and others, that the singularities of stresses at the crack tips are of the same form as in
the case of purely elastic bodies. However the stress intensity factors become time-dependent.
This can be explained by an application of the so-called correspondence principle, we refer the
reader to [38], [40] (see also Section 1.C for details).

In this paper, we make general assumptions on the instantaneous elasticity law (supposed to
be anisotropic and smooth), and on the relaxation kernel (supposed to have a sectorial inhomo-
geneity). We prove that the standard square root singularity r−1/2 of stresses is combined with
a termΣ depending in an holomorphic way onln r (“logarithmic packet”). Such behaviour of
singular solutions is shown in [34] for scalar problems, where explicit calculations are available.

In view of its relatively slow growth asr → 0 (see (1.17) in the sequel) this holomor-
phic functionΣ leaves unchanged the power order of the stress singularity.However it makes
impossible to define the stress intensity factor (see (1.18)below) and to apply stress fracture
criteria.

In section 7 certain sufficient conditions are given for the presence of such logarithmic pack-
ets. Certain fracture criteria in mechanics of cracks cannot be readily adapted to such changes
of the structure of singularities. Therefore an important issue for applications is to know the
precise conditions under which thesquare-root singularity subsistsin our context of aging ma-
terials. Using the approach of [8] (see also [9, 10]), we provide in section 6.A a positive answer
in the smooth case. More precisely, if the instantaneous Hooke’s matrix and relaxation kernel
are smooth functions of the spatial variablesx = (x1, x2) then the logarithms are totally ab-
sent in the asymptotic expansions. Let us point out that, however, the general anisotropic laws
make the angular parts of singularities different from those obtained in the case of instantaneous
elasticity problem.

There are explicit examples of hereditarily-elastic bodies for which logarithmic packets will
appear at crack tips. We provide such an example, which is in asense representative and in-
structive since it shows that the well established statement in the mechanical community that

“Pure square-root singularity of stresses are to be expected in the case of the invariance,
with respect to the translations along the crack faces, of the instantaneous elastic moduli
and of the relaxation kernel”
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is not true. Indeed, we obtain logarithmic packets for instantaneously isotropic homogeneous
materials provided that the crack is located at the interface between two different relaxation
kernels. Such a phenomenon may be the result of aging and can be observed if, for example, the
body is made of two parts, both of the same material, but starting at different moments: So the
second part is added after the first one has already changed due to the aging process (cf. Remark
7.5). In our example, the instantaneous Hooke’s tensor is isotropic while the relaxation kernel
is also isotropic but takes different values in the upper andlower half-planes. We emphasize
that the presence of logarithmic packets is ensured by a relation between the instantaneous
Lamé coefficients and the coefficients of relaxation kernel. This relation resembles the famous
Dundurs relation [13] providing a condition for the presence of oscillating singularities at a
crack between two dissimilar isotropic elastic half-planes.

The asymptotic forms are determined thanks to a particular property of cracks in purely
elastic media: In arbitrary anisotropic homogeneous body the main singularity exponent of
stresses is always equal to−1/2, thereforeindependent of time. Our mathematical framework
does not apply to the case of time-dependent exponents, thusdiscards the case of aging media in
reference domains with angles different from2π (V-notch). There exist results [5, 6, 7, 25, 26]
on asymptotic behaviour of stresses in hereditarily-elastic aging media for small timest → 0
and large timest→ ∞ , but such results are unfortunately not sufficiently precise to be used in
fracture mechanics. The asymptotic structure of physical fields for time-dependent exponents
still remains an open problem.

1.B Mathematical formulation of the problem

In the framework of creep theory [2, 3], we consider a hereditarily-elastic aging, anisotropic,
nonhomogeneous two-dimensional bodyΩ with a straight crack:Ω = Ω0 \M whereΩ0 is a
smooth domain andM represents the crack

M = {x = (x1, x2) : |x1| ≤ l, x2 = 0} ⊂ Ω0. (1.1)

We denote the crack tips(l, 0) and(−l, 0) by OI andOII , respectively, and the crack surfaces
by M± . Thus the boundary∂Ω is the union of the exterior boundary∂Ω0 =: Γ and of the
crack surfacesM± . Let n stand for the unit outward normal vector (column) to the boundary
∂Ω. OnM± , we haven = ∓e2 wheree2 denotes the second basis vector(0, 1)⊤ . Note that
the normal is not defined at the tipsOi (here and furtheri stands for eitherI or II). In the
sequel we treat dimensionless coordinates and, by rescaling, we achievel = 1.

Besides Cartesian coordinates, we need polar coordinates(ri, ϕi) attached to each crack tip
Oi. Of courseri = |x − Oi|, and we chooseϕi so that the crackM is included in the lines
ϕi = ±π .

Equilibrium equations and boundary conditionsare written in matrix form as follows
{
D(−∇x)

⊤σ(u; x, t) = f(x, t), x ∈ Ω = Ω0 \M ,

D(n(x))⊤σ(u; x, t) = g(x, t), x ∈ ∂Ω \ {OI ∪OII} .
(1.2)

Here f = (f1, f2)
⊤ and g = (g1, g2)

⊤ are the vectors ofvolume forces and tractions, re-
spectively, in the form of column vectors (⊤ means transposition) andσ(u; x, t) stands for
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Figure 1: The domain with crack.

the vector of stressesat the pointx and at the timet, evaluated for thedisplacement vector
u = (u1, u2)

⊤ . Moreover,D(∇x) denotes the3 × 2-matrix of differential operators,

D(∇x)
⊤ =

(
∂1 0 2−1/2∂2

0 ∂2 2−1/2∂1

)
, ∇x =

(
∂1

∂2

)
, ∂j =

∂

∂xj

, j = 1, 2 . (1.3)

The columnε = (ε11, ε22, 2
1/2ε12)

⊤ of height3,

ε(u; x, t) = D(∇x)u(x, t) ,

denotes thevector of strains. The factors2−1/2 are introduced into (1.3) in order to equalize
natural norms of the strain column above and the usual norm ofstrain tensor of rank2.

In an hereditary-elastic aging body,σ is determined according to theconstitutive law

σ(u; x, t) = A(x, t)D(∇x)u(x, t) +

∫ t

0

B(x, t, τ)D(∇x)u(x, τ) dτ . (1.4)

Here, the3 × 3-matrix functionsA andB are theHooke matrixand therelaxation kernel,
respectively. They are symmetric by definition and, furthermore, A(x, t) is supposed to be
positive definite:

ξ⊤A(x, t) ξ ≥ cA|ξ|2 ∀ξ ∈ R
3, x ∈ Ω0, t ∈ (0, T ) (1.5)

with a positive constantcA . We make the following smoothness assumption on the coefficients
of A: For a fixed integerℓ > 0,

|∇j
xA(x, t)| ≤ c′A, j = 0, . . . , ℓ, x ∈ Ω0, for a.e. t ∈ (0, T ) , (1.6)

where∇j
xw denotes the set of all derivatives of orderj of the functionw . In other words,

entries ofA are ℓ-times continuously differentiable functions inx ∈ Ω0 (in the body without
crack) and measurable bounded functions int ∈ [0, T ].
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Since the relaxation kernel can possess a cylindrical anisotropy (cf. [3]) in the vicinity of
the crack tips, we assume a weaker regularity hypothesis forthe matrixB . Let ρ be a positive
function onΩ0 \ {OI ∪ OII} which coincides withri in a neighbourhood ofOi, e.g., ρ =
min{1, rI, rII}. The relaxation kernelB satisfies the following weighted condition:

|∇j
xB(x, t, τ)| ≤ cB ρ(x)

−j , j = 0, . . . , ℓ, x ∈ Ω, for a.e. (t, τ) ∈ T (T ), (1.7)

with the triangle
T (T ) :=

{
(t, τ) : t ∈ (0, T ), τ ∈ (0, t)

}
. (1.8)

Assumption (1.7) is sufficient for the existence of a solution u to problem (1.2)-(1.4).

However the determination of asymptotic properties of the solutionu(x, t) requires stronger
hypotheses on the relaxation kernel. We assume that at each crack tipOi, i = I, II, B(x, ·, ·)
stabilizes asri → 0 towards a matrixBi(ϕi, ·, ·) which only depend on the angular variable
ϕi ∈ (−π, π): For a suitablestabilization rateδB > 1

2
,

|∇j
x

(
B(x, t, τ) − Bi(ϕi, t, τ)

)
| ≤ c′B r

−j+δB

i
, j = 0, . . . , ℓ, x ∈ Ω, (1.9)

for a.e. (t, τ) ∈ T (T )

where entries ofBi are l-times continuously differentiable inϕi ∈ [−π, π] and bounded in
(t, τ) ∈ T (T ). ThusBi may have a jump through the crackM . We note that condition (1.9)
implies condition (1.7). Moreover, ifB satisfies a smoothness condition like (1.6), namely

|∇j
xB(x, t, τ)| ≤ cB, j = 0, . . . , ℓ, x ∈ Ω0, for a.e. (t, τ) ∈ T (T ) , (1.10)

condition (1.9) is obviously fulfilled withBi := B(Oi), which is independent ofϕi.

We introduce the following notations for the second order partial differential operators in-
tervening in problem (1.2)-(1.4): For the instantaneous operators, we denote
{

L(x, t,∇x)u(x, t) := D(−∇x)
⊤A(x, t)D(∇x)u(x, t), x ∈ Ω,

N(x, t,∇x)u(x, t) := D(n(x))⊤A(x, t)D(∇x)u(x, t), x ∈ ∂Ω \ {OI ∪ OII},
(1.11)

whereas the differential operators associated with the relaxation kernel are denoted by
{
P (x, t, τ,∇x) := D(−∇x)

⊤B(x, t, τ)D(∇x), x ∈ Ω ,

Q(x, t, τ,∇x) := D(n(x))⊤B(x, t, τ)D(∇x), x ∈ ∂Ω \ {OI ∪OII} .
(1.12)

With these notations problem (1.2)-(1.4) can be written in the condensed form,

{L(t), N(t)} u(t) +

∫ t

0

{P (t, τ), Q(t, τ)}u(τ) dτ = {f(t), g(t)} (1.13)

on Ω ×
(
∂Ω \ {OI ∪ OII}

)
, for a.e. t ∈ (0, T ) .

without any explicit reference to the dependence on the variable x of functionsu, f, g and
omitting the differential operator∇x .
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1.C Main results and structure of the paper

Relying on the formulation (1.2)-(1.4) of the creep problem, we study the behavior of physical
fields u(x, t) andσ(u; x, t) near the crack tips, i.e. asri → 0, i = I, II. In particular we give
a precise description of the singularities of the stress field.

The classical result of theisotropic elasticity theory, which serves as a base of fracture
mechanics, leads to singularities of square-root type at the crack tips. It is well known (see
e.g., [39, 4, 40, 24], and others) that the same type of singularities occur in the creep theory for
instantaneously isotropichomogeneous materials with theisotropic relaxation kernel, i.e.,

A(t) =




λ(t) + 2µ(t) λ(t) 0

λ(t) λ(t) + 2µ(t) 0
0 0 2µ(t)



 ,

B(t, τ) =



λ′(t, τ) + 2µ′(t, τ) λ′(t, τ) 0

λ′(t, τ) λ′(t, τ) + 2µ′(t, τ) 0
0 0 2µ′(t, τ)


 ;

(1.14)

hereλ(t) ≥ 0, µ(t) > 0 are the Lamé coefficients. In the cited works several different mathe-
matical approaches are used. However, at the final stage, explicitly or implicitly, the main role
is played by thecorrespondence principle(cf. [38, 35]), which states that

“The stress state of a plane homogeneous and isotropic body is independent of the Poisson
ratio σ = λ[2(λ + µ)]−1 in the absence of body forces, in the case of selfequilibriumof
exterior tractions applied on each connected component of the boundary.”

For problem (1.2)-(1.4) with the matrices defined by (1.14),the Poisson ratio can be interpreted
as the composition of Volterra integral operators,

z 7→ λ(t)z(t) +

∫ t

0

λ′(t, τ)z(t, τ) dτ , z 7→ µ(t)z(t) +

∫ t

0

µ′(t, τ)z(t, τ) dτ , (1.15)

which allows, in principle, to express the singular solution of the creep problem by means of the
singular solutions to the elasticity system. However, it leads also to some difficulties connected
with the fact that the operators defined by (1.15) do not commute. We refer the reader to [40]
for details.

We show in the sequel that for an arbitrary anisotropic aginghereditarily-elastic medium,
the stress singularities might change and dependholomorphicallyon the logarithm of the polar
coordinateri, so that, for anyε ∈ (0, 1/2),

σ(u; x, t) = r
−1/2
i

Σi(ln ri, ϕi, t) +O(r
ε−1/2
i

) , x → Oi . (1.16)

As we prove in Theorem 6.4, for anyϕ ∈ [−π, π] and a.e.t ∈ [0, T ] the following estimate is
valid ∣∣Σi(ln r, ϕ, t)

∣∣ ≤ c exp
(
d1t+ d2

√
t| ln r|

)
, (1.17)

wherec, d1, d2 are positive constants . Thus, the functionz 7→ Σi(−z, ϕ, t) grows faster than
any polynomialzN , N > 0, but slower compared to any exponential functionexp(εz), ε > 0.
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In this way, the power orderr−1/2
i

of the stress singularity is maintained in the creep theory as
well. However, in opposition to pure elasticity, the product

r
1/2
i
σ(u; x, t) (1.18)

with fixed ϕ and t may have no limit asri → 0. Therefore, the usual definition of the stress
intensity factors, referring to the limit of (1.18) atϕi = 0 with ri → 0, do not make sense
any more, which invalidates certain fracture criteria. In this context, the conditions on the
model which assure the absence of logarithmic packets are ofimportance, in particular for the
applicability of classical fracture criteria to the creep problems. We prove that ifBi in (1.9)
does not depend onϕi, then the angular partΣi in (1.16) does not containln ri at all. At
the same time, we point out certain sufficient conditions which guarantee the appearance of
logarithmic packets in (1.16).

The paper is organized as follows. In section 2, the classical method for Volterra equations
is applied to obtain the existence of a weak solution to problem (1.13) defined by (1.2)-(1.4). In
section 3, we prove a basic regularity result in the form of anexponential estimate int for the
solutionu(x, t) in some suitable weighted Sobolev spaces with respect to thespatial variable
x. These weighted spaces contain the standard singularitiesin r−1/2 of the stresses, thus the
displacements described by these spaces are notC1 up to the crack tips, in general.

In the next two sections 4 and 5, we prepare the material for the proof (done in section 6)
of a splitting of the time dependent solutionu(x, t) into a regular part and a singular part made
of two logarithmic packets. Sections 4 and 5 are devoted to the instantaneousproblems, i.e.,
the problems where the timet is simply a frozen parameter in the Hooke matrixA, and the
Volterra kernel is absent (or considered as an independent right hand side through a bootstrap
procedure).

We gather in section 4 classical material related to corner asymptotics for elasticity solu-
tions, namely the Mellin transformation and the main singularities. In section 5 we combine
the asymptotics for the instantaneous problem with the bootstrap procedure. This results in new
original estimates on finite logarithmic packets of arbitrary length. Relying on the approach
initiated in [8], we also investigate the situation of a stabilized kernelBi independent of the an-
gular variable: We prove in this case that we are staying in the same class of fields with separate
asymptotics without logarithms, along the whole bootstrapprocedure. Finally in section 6, we
come back to the time dependent problem and prove the resultsalready mentioned above. We
end by a discussion of the logarithmic packets in section 7.

2 Existence of solutions and exponential estimates

In this section, we use a standard method for Volterra equations (see e.g. [19], [15]) to derive
existence and estimates for afinite energysolution to problem (1.13).

We will use everywhere the following generic notation: For aBanach spaceB with norm
‖ · ‖

B
, let L∞(0, T ;B) denote the space of abstract functions in the interval(0, T ) with values

in the spaceB , equipped with the norm

|||U ; T |||
B

= ess sup
{
‖U(t)‖

B
: t ∈ (0, T )

}
.
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2.A General method for Volterra equations

For the convenience of the reader, we provide the existence and uniqueness result for an abstract
Volterra equation

A(t)u(t) +

∫ t

0

B(t, τ)u(τ) dτ = f(t) , for a.e. t ∈ (0, T ) , (2.1)

whereA(t) : D → R and B(t, τ) : D → R are families of continuous operators between
the Banach spacesD andR. We assume moreover that the operatorsA(t) are invertible and
that the inverse operatorsA(t)−1 and the operatorsB(t, τ) are measurable and bounded for
t ∈ (0, T ) and(t, τ) in the triangleT (T ) (1.8), respectively.

Theorem 2.1. For any f ∈ L∞(0, T ; R), there exists a unique solutionu ∈ L∞(0, T ; R) of
equation(2.1). Moreover there holds the estimate

|||u ; t|||
D
≤ c0e

δ0t |||f ; t|||
R
, for a.e. t ∈ (0, T ) , (2.2)

for any c0 and δ0 such that

c0 ≥ ess sup
t∈(0,T )

‖A(t)−1‖
R→D

and δ0 ≥ ess sup
(t,τ)∈T (T )

‖A(t)−1B(t, τ)‖
D→D

. (2.3)

Proof. (i) Existence. We search the solution in the form of the series

u(t) =

∞∑

k=0

uk(t) , (2.4)

where fork ≥ 0

A(t)uk(t) = δ0,kf(t) −
∫ t

0

B(t, τ)uk−1(τ) dτ .

Here we have setu−1 = 0 andδi,k is the Kronecker symbol. Let us prove the estimate

|||uk ; t|||
D
≤ c0(k!)

−1(δ0t)
k|||f ; t|||

R
, for a.e. t ∈ (0, T ) , (2.5)

by induction. Since fork = 0 estimate (2.5) is evident, it suffices to show the estimate with
k = K > 0 can be deduced from the the estimates fork ≤ K−1. To this end, in view of (2.3),
we have

|||uK ; t|||
D
≤ δ0

∫ t

0

‖uK−1(τ)‖
D

dτ ≤ δ0

∫ t

0

|||uK−1 ; τ |||
D

dτ ≤

≤ c0δ
K
0

∫ t

0

τK−1

(K − 1)!
|||f ; τ |||

R
dτ ≤ c0

(δ0t)
K

K!
|||f ; t|||

R
.

Estimate (2.5) implies the convergence of series (2.4) as well as estimate (2.2) which follows
by the Taylor formula for the exponential functiont 7→ eδ0t .
(ii) Uniqueness. Ifu is a solution of the homogeneous equation (2.1) andu(t) = 0 for a.e.
t ∈ (0, t0), then

|||u ; t|||
D
≤ δ0(t− t0)|||u ; t|||

D
∀t ≥ t0 ,

and therefore,u(t) = 0 for a.e. t ∈ (0, t1) with any t1 < t0 + δ−1
0 . The proof is completed.
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2.B Energy solutions

We come back to creep problem (1.2)-(1.4). We impose the following integrability conditions
on the data:

f ∈ L∞

(
0, T ;L2(Ω)

)2
, g ∈ L∞

(
0, T ;L2(∂Ω)

)2
, (2.6)

together with the compatibility conditions (selfequilibrium of the loading for a.e.t)

(f(·, t), v)Ω + (g(·, t), v)∂Ω = 0 ∀v ∈ R, a.e.t ∈ (0, T ) , (2.7)

whereR =
{
(c1 − c0x2, c2 + c0x1) : cq ∈ R

}
denotes the linear space of rigid motions. In

(2.7) (·, ·)Ξ is the scalar product in the spaceL2(Ξ), the same symbol is used for the scalar
product of vector functions and we denote for simplicityL2(Ξ)n = L2(Ξ; Rn) for anyn ∈ N.
To ensure uniqueness of the solution, the following normalization condition is imposed:

(u(·, t), v)Ω = 0 ∀v ∈ R for a.e.t ∈ (0, T ) . (2.8)

Theorem 2.2. Under conditions(2.6)-(2.8), there exists a unique solution

u ∈ L∞

(
0, T ;H1(Ω)

)2
, (2.9)

to problem(1.2)-(1.4). Moreoveru satisfies the estimate

|||u ; t|||
H1(Ω)

≤ Ceδt
{
|||f ; t|||

L2(Ω)
+ |||g ; t|||

L2(∂Ω)

}
(2.10)

for t ∈ (0, T ) and some positive constantsC and δ .

Proof. Let us set

D =
{
u ∈ H1(Ω)2 : u satisfies orthogonality condition(2.8)

}
.

and letR be the dual space ofD′ for the extension of theL2 duality. Condition (1.5) together
with the Korn inequality

‖u‖H1(Ω) ≤ CΩ‖D(∇x)u‖L2(Ω) ∀u ∈ D ,

(see, e.g. [36], [17]), implies that the operatorsA(t) defined by

A(t)(u) =
(
v 7−→

∫

Ω

[D(∇x)v(x)]
⊤A(x, t)D(∇x)u(x) dx

)

are isomorphisms fromD onto R with bounded inversesA(t)−1 . The operators

B(t, τ)(u) =
(
v 7−→

∫

Ω

[D(∇x)v(x)]
⊤B(x, t, τ)D(∇x)u(x) dx

)
,
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are well defined fromD into R because, asD(∇x)v(x) = 0 for all rigid motionsv ∈ R, – cf.
the structure of matrixD(∇x) in (1.3):

∫

Ω

[D(∇x)v(x)]
⊤B(x, t, τ)D(∇x)u(x) dx = 0 ∀u ∈ D, v ∈ R.

Let the right hand sidef(t) be defined as

f(t) =
(
v 7−→

∫

Ω

v(x)⊤f(x, t) dx+

∫

∂Ω

v(x)⊤g(x, t) dσ
)
.

It is clear that conditions (2.6)-(2.7) imply thatf belongs toL∞(0, T ; R). Therefore Theo-
rem 2.1 can be applied: It yields existence and uniqueness ofa solution for problem (1.2)-(1.4),
and estimates (2.10).

Remark 2.3. For the conclusions of Theorem 2.2, weaker hypotheses on thematrix coefficients
A(x, t) andB(x, t, τ) than those formulated in (1.6) and (1.7) would be sufficient.One only
needs thatA andA−1 are uniformly bounded onΩ × (0, T ) and thatB is uniformly bounded
on Ω×T (T ). In particular, piecewise constantB on the half planes±x2 ≥ 0 is admissible.

3 Regularity of solutions

We have just seen that a direct application of Theorem 2.1 gives the existence of a finite energy
solutionu(x, t) for problem (1.13). The same statement also allows to prove regularity results
for u if the data{f, g} are more regular and if we know suitable couples of spaces(D,R) for
which Theorem 2.1 applies.

But the presence of the crack induces the appearance of singularities for the solutions of the
instantaneous problemsA(t). The first ones of these singularities have the form

V : x 7−→ √
ri Vi(ϕi),

with a smooth functionVi of the angular variableϕi. Therefore, the spaceD should contain
such functions. The use of standard Sobolev spaces is very limitative: We could takeHs(Ω)
for s < 3

2
only. A much more appropriate option consists in choosing weighted Sobolev spaces

of Kondrat’ev type, [16]. These spaces will also serve to setthe stronger assumptions on the
data which we will use on the rest of the paper in view of the investigation of the leading crack
singularities.

3.A Weighted Sobolev spaces

Let C∞
0 (Ω) be the space of the functions fromC∞(Ω ∪ ∂Ω0) vanishing near the crack tipsOi

and being smooth up to the crack surfaces, i.e., jumps onM are allowed. With this notation,
the Kondrat’ev spaceV m

β (Ω) is defined forβ ∈ R andm ∈ N0 = {0, 1, ...} as the completion
of the space of smooth functionsC∞

0 (Ω) with respect to the norm

‖w‖
V m

β (Ω)
=

( m∑

j=0

‖ρβ−m+j∇j
xw‖

2

L2(Ω)

)1/2

, (3.1)
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whereρ = min{1, rI, rII} is the same weight function as in (1.7).

We also need trace spaces form ≥ 1. Note that the boundary∂Ω is the union of the external
boundary∂Ω0 and the two sidesM± of the crack. Thus a traceψ on ∂Ω is equivalent to the
data of

ψ0 = ψ
∣∣
∂Ω0

and ψ± = ψ
∣∣
M±

.

Let us denote the trace operatorw 7→ w
∣∣
∂Ω

by Γ0 , the trace operator on∂Ω0 by Γ
0
0 and the

trace operators onM± by Γ
±
0 .

Since ∂Ω0 is disjoint from the crack, it is obvious thatΓ0
0(V

m
β (Ω)) coincides with the

standard trace spaceHm−1/2(∂Ω0). OnM+ andM− , we introduce the spacesV m−1/2
β (M±)

as the closure ofC∞
0 (M±) for the norm (3.2):

‖ψ‖
V

m−1/2

β (M±)
=

{
m−1∑

k=0

‖ρβ−(m− 1

2
)+k ∂k

1ψ‖
2

L2(M)
+ I±m,β(ψ)

}1/2

with

I±m,β(ψ) =

∫ 1

−1

∫ 1

−1

∣∣∣ρ(x1)
β ∂m−1

1 ψ(x1,±0) − ρ(y1)
β ∂m−1

1 ψ(y1,±0)
∣∣∣
2 dx1 dy1

|x1 − y1|2
. (3.2)

Here∂k
1 denotes the partial derivative of orderk in x1 , i.e., along the crack. As shown e.g. in

[18] the spaceV m−1/2
β (M+) coincides with the trace spaceΓ+

0 (V ℓ
β (Ω)), and the same forΓ−

0 .

Finally we choose to denote byV m−1/2
β (∂Ω) the direct sum

V
m−1/2
β (∂Ω) := Hm−1/2(Γ0) ⊕ V

m−1/2
β (M+) ⊕ V

m−1/2
β (M−) . (3.3)

Thanks to the density of smooth functions which are zero on the crack tips, we can show that
Γ0(V

ℓ
β (Ω)) coincides withV m−1/2

β (∂Ω) algebraically and topologically. In other words

ψ ∈ Γ0(V
ℓ
β (Ω)) ⇐⇒ ψ0 ∈ Hm−1/2(∂Ω0) and ψ± ∈ V

m−1/2
β (M±). (3.4)

Although the norms (3.1) are well suited for the descriptionof the asymptotic behavior of
the solutions at the crack tips, the operators defined by the instantaneous Neumann elasticity
operators (1.11) with domainV ℓ+1

β (Ω)2 , are never of index zero, whatever the choice of the
space weight indexβ , in contrast to the operator with domainH1(Ω)2 .

The reason for this is the presence of non-zero translationsa1e1 + a2e2 in the asymptotics
of solutions at each crack tip as soon as the right hand side ismore regular than the dual of the
energy spaceH1(Ω)2 , together with the following two facts:
(i) If ℓ− β < 0, the weighted spaceV ℓ+1

β (Ω)2 is not contained in the energy spaceH1(Ω)2 ,
(ii) If ℓ− β ≥ 0, non-zero translationsa1e1 + a2e2 do not belong toV ℓ+1

β (Ω)2 .

Thus, translations are viewed assingularitiesof degree0 by the weighted scaleV ℓ+1
β (Ω)2 .

Constants and, more generally, smooth functions in the Cartesian variablex, are made ad-
missible by a simple modification of the weighted norms (3.1), leading to the introduction of
the so-calledstep-weighted spaces[27, 32] which in the case under consideration are closely
connected with weighted Sobolev spaces [21].
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They can be defined as follows: Letm ∈ N0 andβ ∈ R, with −1 < β ≤ m. For any integer
s, m−β− 1 < s ≤ m, the spaceV m+1,s

β (Ω) is the completion ofC∞(Ω) := C∞
0 (Ω) + C∞(Ω)

with respect to the norm

‖w‖
V m+1,s

β (Ω)
=

( m+1∑

j=s+1

‖ρβ−(m+1)+j∇j
xw‖

2

L2(Ω)
+

s∑

j=0

‖ρβ−m+s∇j
xw‖

2

L2(Ω)

)1/2

. (3.5)

We note that the conditionm − β − 1 < s ensures that any smooth functionw ∈ C∞(Ω) has
a finite norm (3.5). If we chooses = m, we obtain the alternative class of weighted spaces
Hm+1

β (Ω) = V m+1,m
β (Ω) defined as the functions with finite norm

‖w‖
Hm+1

β (Ω)
=

( m+1∑

j=0

‖ρβ∇j
xw‖

2

L2(Ω)

)1/2

, (3.6)

where the weight is independent of the derivation order. Thefollowing result is a consequence
of Hardy’s inequality and is proved in [21] (see also [33], Thm. 4.5.6 and Lemma 6.1.5).

Lemma 3.1.
(i) Let m ∈ N0 and β ∈ R, with −1 < β ≤ m. We assume thatβ is not an integer. For any
integers with m− β − 1 < s ≤ m, the spaceHm+1

β (Ω) coincides with the spaceV m+1,s
β (Ω).

(ii) For anyβ > m, the spaceHm+1
β (Ω) coincides with the spaceV m+1

β (Ω).

With the particular choice ofm−β ∈ (0, 1) ands = 0, the spaceV m+1,0
β (Ω) is well defined

(and coincides withHm+1
β (Ω)). We emphasize that, in comparison with the spaceV m+1

β (Ω)
that either includes, or excludes the constant1 and the functionln ri simultaneously, the step-
weighted spaceV m+1,0

β (Ω) with m − β ∈ (0, 1) includes the translation rigid motions, i.e.
constants, and excludes the displacements resulting from the concentrated forces at the tipsOi,
i.e. logarithmic functions.

Let us also note that for a functionw ∈ V m+1,0
β (Ω) with m ∈ N0 andm − β ∈ (0, 1) the

following relations are a consequence of a variant of Hardy’s inequality, see [21, Lemma 1.2]:

w(x) = w̃(x) +
∑

i= I,II

χi(x) bi , w̃ ∈ V m+1
β (Ω) , bi ∈ R , (3.7)

‖w̃‖
V m+1

β (Ω)
+

∑

i= I,II

|bi| ≤ c‖w‖
V m+1,0

β (Ω)
. (3.8)

Hereχi ∈ C∞
0 (Ω0) is a smooth cut–off function, which is equal to one in a neighbourhood of

the pointOi, with the propertyχI(x)χII(x) = 0 for x ∈ Ω. Thus the supports of the cut–
off functions are disjoint and the functionsχI (respectivelyχII ) vanish in a vicinity ofOII

(respectivelyOI ). We can chooseχi such thatsuppχi ⊂ Bi := {x : |x−Oi| < 1}.

The sum in the left hand side of (3.8) is a norm in the spaceV m+1,0
β (Ω) equivalent to the

norm (3.5), which means that the spaceV m+1,0
β (Ω) = Hm+1

β (Ω), with m − β ∈ (0, 1) can be
considered as aweighted space with separate asymptotics.
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Let us point out that all the weighted spaces we have introduced are independent both alge-
braically and topologically on the specific choice of the functionsρ andχi.

We end this section by a statement which generalizes (3.7)-(3.8) and is proved in a similar
way, see [21, Lemma 1.3]. We use Cartesian coordinate systems xi = (x1∓1, x2) =: (xi1, xi2)
with centerOi.

Lemma 3.2. Let m ∈ N0 andβ ∈ R, with −1 < β < m. We assume thatβ is not an integer.
Let s be the integral part ofm− β . Then any functionw ∈ V m+1,s

β (Ω) satisfies the following:

(i) There exist unique real numbersbαi , |α| ≤ s, such that

w(x) = w̃(x) +
∑

i= I,II

χi(x)
∑

|α|≤s

bαi
xα

i

α!
, w̃ ∈ V m+1

β (Ω) , (3.9)

‖w̃‖
V m+1

β (Ω)
+

∑

i= I,II

∑

|α|≤s

|bαi | ≤ c‖w‖
V m+1,s

β (Ω)
. (3.10)

Here, forα = (α1, α2), xα
i denotes the monomialxα1

i1x
α2

i2 andα! = α1!α2!.

(ii) The left hand side of(3.10)is a norm in the spaceV m+1,s
β (Ω) equivalent to the norm(3.5).

(iii) The constantsbαi are the pointwise traces at the crack tipOi of the derivatives ofu :

bαi = ∂αw(Oi), |α| ≤ s, i = I, II.

(iv) The constantsbαi are all zero if and only ifw belongs toV m+1
β (Ω).

(v) If, moreover,s < m (i.e., β > 0), the spaceV m+1,s
β (Ω) is continuously imbedded inCs(Ω),

with Cs(Ω) the space ofs-times continuously differentiable functions up to the boundary ofΩ.

3.B Basic regularity

We will apply Theorem 2.1 again to problem (1.2)-(1.4) in a new pair of spacesD, R: The op-
eratorA(t) is defined by the differential expression{L(x, t,∇x), N(x, t,∇x)}, the domainD
is taken as finite codimension subspace ofV ℓ+1,0

β (Ω)2 and the target space as finite codimension
subspace ofR ℓ

βV (Ω) with

R ℓ
βV (Ω) := V ℓ−1

β (Ω)2 × V
ℓ−1/2
β (∂Ω)2 . (3.11)

Hereℓ is the positive integer introduced in (1.6) and (1.7) and we assumeℓ− β > 0.

The following assertion can be proved either by combining the coercive weak formulation of
problem (3.12) (cf. Theorem 2.2) and the Kondrat’ev theory,or by calculations the dimensions
of kernel and cokernel for the elasticity operator: D → R (see [33,§6.1] for details).

Theorem 3.3. Let the timet be fixed. The instantaneous elasticity operator

u 7−→ {L(x, t,∇x), N(x, t,∇x)}(u) on Ω ×
(
∂Ω \ {OI ∪OII}

)
(3.12)
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defines an isomorphismA(t) : D → R with

D =
{
u ∈ V ℓ+1,0

β (Ω)2 : u satisfies orthogonality condition(2.8)
}
,

R =
{
{f, g} ∈ R ℓ

βV (Ω) : {f, g} satisfy compability condition(2.7)
} (3.13)

if and only if ℓ− β ∈ (0, 1
2
).

Remark 3.4. By mere application of Lemma 3.2 about the splitting ofV ℓ+1,0
β (Ω) we find that,

if ℓ− β ∈ (0, 1
2
) the solutionu of the instantaneous elasticity operator with{f, g} ∈ R ℓ

βV (Ω)
has an asymptotic expansion of the form

u(x) = ũβ(x) +
∑

i= I,II

χi(x) (a1,i e1 + a2,i e2) , (3.14)

where ũβ ∈ V ℓ+1
β (Ω)2 and a1,i, a2,i are real constants. We recall thate1 and e2 are the unit

vectors inR2 .

Let us emphasize that the upper bound1
2

on the weight is due to the strongestsingulari-
ties at the crack tips, which are associated with theexponent1

2
, as already mentioned. Note

that formula (3.14) will appear as a particular situation ofa more general statement about the
asymptotics of the solution of the instantaneous problem asri → 0, see (4.23).

Then we can apply the functional framework in Theorem 2.1 andprove:

Theorem 3.5. Let l ∈ N := {1, 2, ...} and β > −1 such thatℓ − β ∈ (0, 1
2
). Let the right

hand side of the problem(1.2)verify condition(2.7)and the regularity assumption:

{f, g} ∈ L∞

(
0, T ;R ℓ

βV (Ω)
)
. (3.15)

Then there exists a unique solutionu ∈ L∞

(
0, T ;V ℓ+1,0

β (Ω)
)2

to problem(1.2)-(1.4)such that
the orthogonality condition(2.8) is satisfied. The following estimate holds true,

|||u ; t|||
V ℓ+1,0

β (Ω)
≤ c0e

δ0t|||{f, g} ; t|||
Rℓ

βV (Ω)
, (3.16)

with positive constantsc0 and δ0 which are independent off, g and t ∈ [0, T ].

Definition (3.5) providesV ℓ+1,0
β (Ω) ⊂ H1(Ω) for ℓ − β ∈ (0, 1). Therefore Theorem 3.5

gives, in a more precise way, the differentiability properties of the energy solution (2.9).

Proof of Theorem 3.5. Theorem 3.3 gives that the operatorsA(t) defined by (3.12) are iso-
morphisms fromD onto R. Let

B(t, τ) = {P (·, t, τ,∇x), Q(·, t, τ,∇x)}

be the Volterra operator kernel. Let us prove thatB(t, τ) defines a family of continuous opera-
tors : D → R.
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The compatibility condition (2.7) was already shown in the proof of Theorem 2.2. Therefore
it only remains to prove that there existsc > 0 such that for any vector functionx 7→ u(x) in
D and for a.e.(t, τ) ∈ T (T )

‖{P (·, t, τ,∇x), Q(·, t, τ,∇x)}u‖Rℓ
βV (Ω)

≤ c‖u‖
V ℓ+1,0

β (Ω)
. (3.17)

We rely on the splitting (3.14) for the vector functionu = (u1, u2) ∈ V ℓ+1,0
β (Ω)2 . Obviously

there holds
‖{P (·, t, τ,∇x), Q(·, t, τ,∇x)}ũβ‖Rℓ

βV (Ω)
≤ c‖ũβ‖V ℓ+1

β (Ω)
.

Moreover, thanks to the right factorD(∇x) in {P,Q}, the term{P (·, t, τ,∇x), Q(·, t, τ,∇x)}
iszeroover constants (note that here, it would not be enough to invoke the orders of the operators
because of the possible angular dependency of their coefficients). Therefore we have obtained
(3.17). Thus Theorem 2.1 can be applied and yields the results of Theorem 3.5.

In the case of problem (1.13) the series (2.4) for the displacement fieldu takes the form

u(x, t) =

∞∑

k=0

uk(x, t) , (3.18)

whereuk is the solution to problem{L,N}uk = {fk, gk} with the orthogonality condition
(2.8) and the right hand sides{fk, gk} given as follows :{f 0, g0} = {f, g} and fork ∈ N,

{fk(x, t), gk(x, t)} = −{D(−∇x)
⊤Y k(x, t), D(n(x))⊤Y k(x, t)} ,

with Y k(x, t) =

∫ t

0

B(x, t, τ)D(∇x)u
k−1(x, τ) dτ . (3.19)

Thus, the intermediate estimates (2.5) in the proof of Theorem 2.1 give for problem (1.13)

|||uk ; t|||
V ℓ+1,0

β (Ω)
≤ c0 (δ0t)

k 1

k!
|||{f, g} ; t|||

Rℓ
βV (Ω)

. (3.20)

4 Singularities of instantaneous problems with smooth data

For ℓ − β ∈ (0, 1
2
) as specified in Theorem 3.5, the elementsu of the spaceV ℓ+1,0

β (Ω)2 have
pointwise traces at the crack tipsOI andOII , but their associated stress fieldsσ(u; x) have
not. The square root singularities of the instantaneous problems prevent any further use of
Theorem 3.5 to improve the regularity result on the solutionu(x, t) of the creep problem. Since
it is important to have a description of the non-continuous part of the stress field, we come back
to the instantaneous problems

{
L(x, t,∇x) u(x) = f(x) , x ∈ Ω ,

N(x, t,∇x) u(x) = g(x) , x ∈ ∂Ω \ {OI ∪ OII} ,
(4.1)

at fixed timet.
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We consider this instantaneous problem (4.1) withu ∈ H1(Ω) and the right hand side
{f, g} ∈ R ℓ

γV (Ω) for a weight indexγ such thatℓ − γ > 1
2
. From Theorem 3.3 we know

thatu belong toV ℓ+1
β (Ω)2 for all β such thatℓ− β < 1

2
, but the limit is sharp andu does not

belong toV ℓ+1
γ (Ω)2 in general. In this range of weights, the regularity result has to be replaced

with a splitting result into regular and singular parts.
In this section we recall known techniques and results ending up at the description of asymp-

totics of u , in order to prepare for the next step, in which we have to takethe Volterra kernel
into account.

We start by the introduction of the Mellin operator pencils associated with the operators
in (4.1) at the crack tips, and continue by recalling the Mellin transformation and its use to
obtain splittings in regular and singular parts of solutions. Particular features of the pencils
corresponding to crack problems for linear elasticity are then addressed. The splitting results
are finally given first in the case of flat data, then for generalsmooth data.

4.A Mellin operator pencils

The regularity properties (and the singularities) of solutions to problem (4.1) are determined
by two model problems corresponding to each of the two crack tips Oi for i = I, II. These
problems are obtained by freezing the coefficients ofL andN at Oi, definingLi andN i± :

{
Li(t,∇x) = D(−∇x)

⊤A(Oi, t)D(∇x)

N i±(t,∇x) = D(∓e2)
⊤A(Oi, t)D(∇x) .

(4.2)

These problems are set on the plane with the semi-infinite crack

K := {xi ∈ R : ri > 0, |ϕi| < π}

and are written as :
{

Li(t,∇x)U(xi) = F (xi) , xi ∈ K ,

N i±(t,∇x)U(xi) = G±(xi1) , ϕi = ±π .
(4.3)

The properties of problem (4.3) are related to the resolventof the associatedMellin operator
pencilAi[t]. In order to define this symbol, we first write the operators (4.2) in polar coordinates
(r, ϕ) := (ri, ϕi):

Li(t,∇x) =: r−2Li(t, ϕ, ∂ϕ, r∂r) , N i±(t,∇x) =: r−1N i±(t, ∂ϕ, r∂r) , (4.4)

Here the angular variableϕ belongs to the interval

Υ = (−π, π),

r to the half-axisR+ and∂ϕ = ∂/∂ϕ , ∂r = ∂/∂r . The Mellin operator pencilAi[t] associated
with problem (4.3) is the holomorphic operator valued function C ∋ λ 7→ Ai[t](λ), where
Ai[t](λ) is the operator acting inΥ according to

Ai[t](λ) :=

{
u 7−→

{
Li(t, ϕ, ∂ϕ, λ), N i±(t, ∂ϕ, λ)

}
,

Hℓ+1(Υ)2 −→ R ℓH(Υ).
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HereR ℓH(Υ) is the target space:

R ℓH(Υ) := Hℓ−1(Υ)2 × R
2 × R

2.

We recall that the timet ∈ [0, T ] is fixed. Nevertheless,t acts as a parameter and we will keep
in our notations the dependency of the operators ont.

4.B Mellin transformation

We fix one crack tipO ∈ {OI,OII} and omit the indexi ∈ {I, II} in the notation of co-
ordinates, writingr and ϕ instead ofri and ϕi. After Kondrat’ev [16], the fundamental
tool for the investigation of problem (4.3) is the Fourier-Laplace transform with respect to
the variablet = ln r , in other words the Mellin transform, which associates to a function
R+ × (−π, π) ∋ (r, θ) 7→ U(r, θ) with compact support inr the function defined for allλ ∈ C

by

M[U ](λ, θ) =

∫ +∞

0

r−λU(r, θ)
dr

r
.

The inverse Mellin transformM−1
ξ can be expressed as (withξ ∈ R)

U(r, θ) =
1

2iπ

∫

Re λ=ξ

rλM[U ](λ, θ) dλ. (4.5)

The Mellin transform can be naturally extended to functionsbelonging to the weighted spaces
of the classV : In the infinite sectorK of opening2π we define the weighted spacesV ℓ

β (K)
like in (3.1) with the distance functionρ replaced with the true distancer to the vertexO of
K. The main result for the validity of the Mellin transform is

Lemma 4.1. For anyU ∈ V ℓ+1
β (K), the Mellin transformM[U ] is well defined for anyλ with

real part Reλ equal toℓ− β and the inverse Mellin formula(4.5)holds forξ = ℓ− β .

We also define correspondingly the weighted trace spacesV
ℓ−1/2
β (∂K), compare with (3.2),

and the product spaceR ℓ
βV (K) for right hand sides, see (3.11). For{F,G±} ∈ R ℓ

βV (K) such
that (4.9) holds, we have for anyλ with Reλ = ℓ− β :

Ai[t](λ)M[U ](λ) = {M[r2F ],M[rG±]}. (4.6)

The above relation is the reason for the definition ofAi[t].

From the general theory Agranovich-Vishik [1] we know thatAi[t](λ) is invertible for all
λ outside a discrete setΣi. Since the setΣi coincides with the set ofλ such that the kernel
of Ai[t] is not reduced to{0}, Σi is called the spectrum ofAi[t] and forλ ∈ Σi the non-zero
solutions of {

Li(t, ϕ, ∂ϕ, λ)U(ϕ) = 0 , ϕ ∈ Υ ,

N i±(t, ∂ϕ, λ)U(ϕ) = 0 , ϕ = ±π ,
(4.7)

are the eigenvectors ofAi[t]. Moreover, the power-law function of degreeλ ∈ C

U(x, t) = rλU(ϕ, t) , (4.8)



19

is a solution to problem (4.3) with zero right hand side:
{

Li(t,∇x)U(xi) = 0 , xi ∈ K ,

N i±(t,∇x)U(xi) = 0 , ϕi = ±π .
(4.9)

if and only if λ belongs toΣi andU is a corresponding eigenvector. Finally,λ 7→ Ai[t](λ)−1

is meromorphic on the complex plane with poles inΣi.
The fundamental result concerning the solvability of the model problem (4.3) follows, cf.

[16, §1]:

Theorem 4.2. Let Re Σi be the set of real parts1 of the elements ofΣi.
(i) Let β ∈ R, such thatβ 6∈ Re Σi. Then problem(4.3) realizes an isomorphism from
V ℓ+1

β (K)2 ontoR ℓ
βV (K). We have the representation formula for its solution:

U =
1

2iπ

∫

Re λ=ℓ−β

rλAi[t](λ)−1H(λ) dλ, with H = {M[r2F ],M[rG±]}

and there holds the estimate

‖U‖
V ℓ+1

β (K)
≤ Cβ‖{F,G±}‖

Rℓ
βV (K)

. (4.10)

(ii) Let furthermoreγ < β , such thatγ 6∈ Re Σi. For {F,G±} ∈ R ℓ
βV (K) ∩ R ℓ

γV (K), let Uβ

andUγ be the solutions of problem(4.3) in V ℓ+1
β (K)2 andV ℓ+1

γ (K)2 , respectively. There holds

Uβ = Uγ +
1

2iπ

∫

C

rλAi[t](λ)−1H(λ) dλ . (4.11)

Here C is a simple closed contour around all elements ofΣi contained in the strip

{λ ∈ C : ℓ− β < Reλ < ℓ− γ}.
The key argument for the above results is the Mellin symboliccalculus: The solutionUβ is

found via the formula

Uβ = M−1
ℓ−β

[
Ai[t](λ)−1

{
M[r2F ],M[rG±]

}]

and the constantCβ in (4.10) is any upper bound forAi[t](λ)−1 in the norm of continuous
operatorsR ℓH(Υ) → Hℓ+1(Υ)2 equipped with the parameter-dependent norms [1].

Moreover,U(λ) := Ai[t](λ)−1H(λ) is a meromorphic extension of the Mellin transform of
Uβ to the strip{λ ∈ C : ℓ− β < Reλ < ℓ− γ}. Note that the residue in (4.11) is the sum of
the contributionsS{ν} of each poleν ∈ Σ, with ℓ− β < ν < ℓ− γ : For ̺ > 0 small enough
(in the case of cracks any̺< 1

2
is suitable)

S{ν}(x) =
1

2iπ

∫

|λ−ν|=̺

rλAi[t](λ)−1H(λ) dλ. (4.12)

If ν is a non-zero element ofΣ, it is a pole of order1 andS{ν} has the formrνU(ϕ) with an
eigenvectorU associated with the eigenvalueν .

1 In the case ofcracksRe Σ
i coincides with the set of half-integers, see§4.C.



20

4.C Spectrum of the operator pencils, eigenvalues1
2

and 1

In our particular situation of a crack, we know much more about Σi and the poles ofAi[t](λ)−1 .
Let us first recall that in [28], see also in [33,§7.4] and [30], it is proved that the spectrum of
the associated operator pencil coincides with

Z ∪ {m+ 1
2
± iν : m ∈ Z} ν real independent ofm, (4.13)

in the general situation of the Dirichlet and Neumann problems for arbitrary selfadjoint systems
which enjoy the polynomial property [29, 31]. The fact thatν = 0 is well known for elasticity
equations in isotropic and orthotropic materials and was established in [11] for homogeneous
anisotropic elasticity. In [9] the equalityν = 0 is proved for arbitrary Douglis–Nirenberg
systems with the same boundary operators on the two crack surfacesϕ = ±π . The situation
ν 6= 0 occurs e.g., with a crack inside the interface between two anisotropic bodies, we refer
the reader to [13, 30, 11] for related examples.

We gather in the following lemmas the facts which we will use in our analysis.

Lemma 4.3. (i) The spectrumΣi contains integers and semi-integers, i.e.,Σi = 1
2
Z.

(ii) All non-zero eigenvaluesλ ∈ 1
2
Z are algebraically simple, their geometric multiplicities

are equal to2. The full algebraic multiplicity of the eigenvalueλ = 0 is 4, its partial algebraic
multiplicities are equal to2.

(iii) Eigenfunctions corresponding to positive integersλ ∈ N are traces onΥ of vector poly-
nomials of degreeλ, solutions of problem(4.9). In particular, for eachλ ∈ N there are exactly
two linear independent polynomials.

For the specific problems considered in the paper, we are interested only in the eigenvalues
λ = 1

2
andλ = 1, and in the corresponding power solutions (4.8) of problem (4.9).

The solvability ofAi[t](λ) whenλ belongs to its spectrum is related to dual eigenfunctions
corresponding to the eigenvalue−λ via the following duality product between functionsU and
U∗ ∈ H1(Υ):

X
(
U | U∗

)
=

∫ π

−π

U∗(ϕ)⊤
d

dλ
Li(t, ϕ, ∂ϕ, λ)

∣∣∣
λ=

1
2

U(ϕ) dϕ

+
∑

±

U∗(±π)⊤
d

dλ
N i±(t, ∂ϕ, λ)

∣∣∣
λ=

1
2

U(±π) .

Here follow properties concerning the eigenvalueλ = 1
2
.

Lemma 4.4. We recall thatΥ is the interval(−π, π).
(i) The power solutions(4.8)of problem(4.9)with λ = 1

2
have a basis of the form

{
V1,i(x, t),

V2,i(x, t)
}

with

V1,i(x, t) = r1/2V1,i(ϕ, t) and V2,i(x, t) = r1/2V2,i(ϕ, t). (4.14)

Thanks to(1.6)we can chooseVn,i ∈ L∞

(
0, T ;C∞(Υ)

)2
, n = 1, 2.
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(ii) The eigenfunctions
(
V ∗

j,i

)
j=1,2

corresponding to the eigenvalue−1
2

of problem(4.7)can be
selected so that the following biorthogonality condition is satisfied

X
(
Vn,i(·, t) | V ∗

j,i(·, t)
)

= δn,j , n, j = 1, 2 , (4.15)

whereδn,j is the Kronecker symbol, and as a consequence of the boundedness ofVn,i in t, one

getsV ∗
j,i ∈ L∞

(
0, T ;C∞(Υ)

)2
.

(iii) The boundary value problem

Li(t, ϕ, ∂ϕ,
1
2
)U(ϕ) = F(ϕ) , ϕ ∈ Υ ; N i±(t, ∂ϕ,

1
2
)U(±π) = G± (4.16)

with the right hand sides{F ,G±} ∈ R ℓH(Υ) admits a solutionU ∈ Hℓ+1(Υ)2 if and only if
the following compatibility conditions are verified

∫ π

−π

V ∗
j,i(ϕ, t)

⊤F(ϕ) dϕ+
∑

±

V ∗
j,i(±π, t)⊤G± = 0 , j = 1, 2 . (4.17)

Any solution is determined up to linear combinationsc1V1,i + c2V2,i. However by imposing the
orthogonality conditions

X
(
U | V ∗

j,i

)
= 0 , j = 1, 2 , (4.18)

a unique solution is obtained. Furthermore, the following estimate holds true

‖U‖
Hℓ+1(Υ)

≤ C‖{F ,G±}‖
RℓH(Υ)

. (4.19)

Proof. The part(ii) is a particular case of general normalization and biorthogonality condi-
tions presented in [23], as it is given in [33, page 65]. In [30] is provided the mechanical
interpretation of the conditions, as well as the methods of selection of the bases{V1,i,V2,i},
adapted to different fracture criteria. The part(iii) is the standard Fredholm alternative from the
theory of ordinary differential equations.

Remark 4.5. For isotropic materials, standard normalization conditions for the eigenfunctions
V1,i andV2,i deal with the associated stresses on the polar axis{x : r > 0, ϕ = 0} prolongating
the crack. As shown in [30], these normalization conditions

{ (
D(e2)e2

)⊤
A(O, t)D(∇x)Vn,i(x1, 0) = (2πr)−1/2δn,1 (normal stress)

(
D(e2)e1

)⊤
A(O, t)D(∇x)Vn,i(x1, 0) = (2πr)−1/2δn,2 (shear stress)

(4.20)

can be satisfied for anisotropic materials as well.

Besides its first assertion which is derived with the help of simple algebraic calculations, the
next lemma delivers the same facts about eigenvalues±1 as Lemma 4.4 about±1

2
.
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Lemma 4.6.
(i) A basis

{
W1,i(x, t) = rW 1,i(ϕ, t) , W2,i(x) = rW 2,i(ϕ)

}
of the power solutions(4.8) of

problem(4.9)with λ = 1 is given as follows

W1,i(x, t) = x1e1 − x2A
i(t) , W2,i(x) = x1e2 − x2e1 , (4.21)

whereA
i(t) = E+A

′′(Oi, t)−1A′(Oi, t) ∈ L∞(0, T )2 ,

E± =

(
0 2±1/2

1 0

)
, A′ =

(
A21

A31

)
, A′′ =

(
A22 A23

A32 A33

)
,

i.e., the matrix(A′, A′′) is the lower2 × 3–submatrix of the matrixA.

(ii) There exist eigenfunctionsW ∗
1 andW ∗

2 associated with the eigenvalue−1 of problem(4.7)
so that the properties corresponding to(ii) and(iii) of Lemma4.4hold for λ = 1.

Let us point out that the first solution in (4.21) correspondsto the loading along the crack
i.e., σ(W1,i; x, t) = (c(t), 0, 0)⊤ . The second solution in (4.21) is a rotation about the pointO .
Note that the two other rigid motions, the shifts along the axesx1 andx2 , are present in (3.14)
as detached terms of the asymptotics.

4.D Splitting of solutions for regular data with zero valuesat crack tips

We investigate the solutionsu provided by Theorem 3.3 when the data are more regular, but
still flat, which means that their traces at the crack tips, if they exist, are zero. The extension to
more realistic regular data is discussed in the next section4.E.

Theorem 4.7. Let γ be such that

γ > −1 and ℓ− γ ∈ (1, 3
2
). (4.22)

Let {f, g} ∈ R ℓ
γV (Ω) satisfying the compatibility condition(2.7)andu be the energy solution

of the instantaneous problem(4.1)satisfying the orthogonality condition(2.8). We know, Theo-
rem 3.3, that u belongs toV ℓ+1,0

β (Ω)2 for all β such thatℓ− β ∈ (0, 1
2
), with the asymptotics

(3.14). There holds moreover

u(x) = ũγ(x) +
∑

i= I,II

χi(x)
2∑

n=1

{
an,i en + bn,iVn,i(xi, t) + cn,iWn,i(xi, t)

}
(4.23)

where ũγ ∈ V ℓ+1
γ (Ω)2 and an,i, bn,i, cn,i are real numbers. We recall thatxI = (x1 − 1, x2)

andxII = (x1 + 1, x2). The displacements

Vn,i(xi, t) = r
1/2
i

Vn,i(ϕi, t) and Wn,i(xi, t) = riW n,i(ϕi, t)

are those introduced in Lemmas4.4 (i) and4.6 (i), respectively, for each crack tip.
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Proof. We chooseβ such thatℓ − β + 1 = ℓ − γ . By Theorem 3.3, we know thatu has
the expansion (3.14). Since the coefficients of the operators L and N are smooth, we can
immediately deduce that

{Fi, G
±
i } := {Li, N i±}(χi ũβ) ∈ R ℓ

γV (K), i = I, II,

whereχi ũβ is defined on the entire sectorK by extension by0. Then we apply Theorem 4.2
to the data{Fi, G

±
i }, which also belong toR ℓ

βV (K) since they have compact support. The
solutionUβ = Uβ,i coincides withχi ũβ . The regular part isUγ = Uγ,i. The residue formula
for i = I, II, combined with Lemmas 4.4 and 4.6 yields that the asymptoticparts appear for
ν = 1

2
and1 and that they have the form in (4.23). Setting

ũγ(x) =
∑

i= I,II

χi(x)Uγ,i(xi)

we end the proof of the theorem.

Remark 4.8. (i) Since the functionsWn,i are polynomial, the expansion (4.23) can be refor-
mulated as

u(x) = w̃γ(x) +
∑

i= I,II

χi(x)

2∑

n=1

bn,iVn,i(xi, t) with w̃γ ∈ V ℓ+1,1
γ (Ω)2. (4.24)

Here thebn,i are the same constants as in (4.23). Note that withγ in the range (4.22), for
anydisplacementw ∈ V ℓ+1,1

γ (Ω)2 the stresses have pointwise values at the crack tipsOi, cf.
Lemma 3.2. In particular, the associated normal stressesg± = N(x, t,∇x)w̃γ on M± have
pointwise valuesg±(Oi) at the crack tips.

(ii) In principle we can chooseγ and l so thatℓ − γ is still larger than prescribed by (4.22).
But the latter limitation suffices to obtain a description ofthe stresses modulo continuous fields
(i.e. the displacements moduloC1 fields). Moreover taking variable coefficients into accountis
easier with (4.22) (noshadowsare present).

4.E Smooth data for tractions. Values at crack tips

Until now we have considered right hand sides

{f, g} ∈ R ℓ
γV (Ω) with ℓ− γ ∈ (1, 3

2
). (4.25)

For the volume forcesf , since V ℓ−1
γ (Ω) = Hℓ−1

γ (Ω), we have no other choice thanf ∈
V ℓ−1

γ (Ω)2 ; moreover, any function, sufficiently smooth inΩ, belongs to this space.

In contrast, for the tractionsg we note that the weightργ−l+1 is unbounded and forces the
elements ofV ℓ+1

γ (Ω) to have pointwise value zero inOi for their gradients. Whereas for the
regular partw̃γ in (4.24), the pointwise valuesg±(Oi) are zero by virtue of assumption (4.25),
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for a general displacementw ∈ V ℓ+1,1
γ (Ω)2 , these values are not zero. However they cannot be

any combination of real values: Since

N(x, t,∇x)
∣∣
M±

= D(∓e2)
⊤A(x1, 0, t)D(∇x) (4.26)

we obtain the compatibility conditions for the normal stresses of a regular displacement:

g−(Oi) = −g+(Oi), i = I, II. (4.27)

We cannot be satisfied with the assumptiong±(Oi) = 0 because

(i) Such a property is not acceptable in many physically justified examples, in particular in the
case of the uniform pressure from the interior of the crack (oil stocks).

(ii) We have to keep in mind the creep problem where a recursive procedure has to be applied,
see (3.19). Since only one out of the two polynomial displacementsW j is a rigid motion, the
iterative procedure does not conserve zero pointwise values for the normal stresses.

Now is it justified to impose the compatibility condition (4.27)? The answer may be yes
only if the Volterra kernelB has differentiable coefficients with respect tox. In the case of
sectorial coefficients, condition (4.27) cannot be kept along the iterative procedure.

In order to provide precise definitions of the spaces for the boundary datag , it is necessary
to examine more carefully spaces of traces. We have already introduced in (3.3) the space
V

ℓ−1/2
β (∂Ω). It coincides with the trace space ofV ℓ

β (Ω), see (3.4). Considering now the space
V ℓ,0

γ (Ω) = Hℓ
γ(Ω) with γ and l as in (4.22), we find that a relation of type (3.4) is no longer

true. Indeed, on the model of (3.3) we define the spaceH
ℓ−1/2
γ (∂Ω) as the direct sum

Hℓ−1/2
γ (∂Ω) := Hℓ−1/2(∂Ω0) ⊕Hℓ−1/2

γ (M+) ⊕Hℓ−1/2
γ (M−) , (4.28)

whereHℓ−1/2
γ (M±) is the space with the norm, cf. (3.2):

‖ψ‖
H

ℓ−1/2
γ (M±)

=

{
ℓ−1∑

k=0

‖ργ∂k
1ψ‖

2

L2(M±)
+ I±l,γ(ψ)

}1/2

,

where the seminormsI±l,γ(ψ) are defined in (3.2). Each spaceHℓ−1/2
γ (M±) is the trace space

Γ
±
0 (Hℓ

γ(Ω)) separately, and consists of functionsψ± admitting the representation

ψ±(x1) = ψ̃±(x1) +
∑

i= I,II

χi(x1, 0)ψ±(Oi) with ψ̃± ∈ V ℓ−1/2
γ (M±) . (4.29)

In the space (4.28), the elements̃ψ± are independent from each other, andψ±(Oi) can be
chosen as any constants. On the other hand, formula (3.7) gives the same representation (4.29)
for the traceψ ∈ Γ0(H

ℓ
γ(Ω)) but with the relationship

ψ+(Oi) = ψ−(Oi) , i = I, II , (4.30)

since the constantsbi are common in (3.7) for both surfaces of the crackM .
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Note that (4.30) differs from (4.27) and the change of signs in (4.27) results from the matrix
D(∓e2) in the Neumann elasticity operator (4.27). To provide the correct relationship between
pointwise values at crack tips of applied external surface loading, we introduce the trace opera-
tor Γ1 = ∂n for the derivative along the outward normal. For the same range of weight indices
γ , due to the opposite direction of the normal onM± , we obtain

ψ ∈ Γ1

(
Hℓ+1

γ (Ω)
)
⇐⇒ ψ0 ∈ Hℓ−1/2(Γ0) and

ψ± ∈ Hℓ−1/2
γ (M±) with ψ+(Oi) = −ψ−(Oi), i = I, II . (4.31)

The following space for data{f, g} is now justified mechanically

R ℓ,1
γ V (Ω) := V ℓ−1

γ (Ω)2 × Γ1

(
V ℓ+1,1

γ (Ω)
)2
. (4.32)

We point out, that in the right hand side of (4.32) the symbolV can be replaced byH since
Hℓ−1

γ (Ω) = V ℓ−1
γ (Ω) andHℓ+1

γ (Ω) = V ℓ+1,1
γ (Ω) for γ, l satisfying (4.22) (Lemma 3.1). We

use the symbolV in (4.32) for the only reason to distinguish the spaceR ℓ,1
γ V (Ω) from the

maximal space for datum{f, g} defined as

R ℓ
γH(Ω) := Hℓ−1

γ (Ω)2 ×Hℓ−1/2
γ (∂Ω)2 . (4.33)

In view of (4.28), space (4.33) is intrinsic for problem (4.1) mathematically.

4.F Splitting of solutions with general smooth data

The model problem (4.3) with right-hand sides satisfying the compatibility condition (4.31)
admits a smooth particular solution: Explicit calculations give

Lemma 4.9. Particular solutions of problem(4.3)with the right hand sidesF = 0 andG± of
the formG±(x1) = ±G with G ∈ R

2 are given by

W0,i(x, t) = −x2Gi(t) , with Gi(t) = E+A
′′(Oi, t)−1E−G ∈ R

2 , (4.34)

with E± andA′′ defined in Lemma4.6.

We immediately deduce from this lemma the following extension of Theorem 4.7

Theorem 4.10. Let γ be such thatℓ−γ ∈ (1, 3
2
). Let {f, g} ∈ R ℓ,1

γ V (Ω), cf. (4.32), satisfying
the compatibility condition(2.7)and letu be the energy solution of the instantaneous problem
(4.1)satisfying the orthogonality condition(2.8). There holds

u(x) = w̃γ(x) +
∑

i= I,II

χi(x)

2∑

n=1

bn,iVn,i(xi, t) with w̃γ ∈ V ℓ+1,1
γ (Ω)2. (4.35)

The full decomposition ofu can be written as

u(x) = ũγ(x) +
∑

i= I,II

χi(x)
[ 2∑

n=1

(
an,i en + bn,iVn,i(xi, t) + cn,iWn,i(xi, t)

)
− x2Gi

]
(4.36)

with ũγ ∈ V ℓ+1
γ (Ω)2 , real constantsan,i, bn,i, cn,i, andGi according to Lemma4.9.
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Remark 4.11. If, instead of a right hand side in{f, g} ∈ R ℓ,1
γ V (Ω), we take a right hand side

{f, g} ∈ R ℓ
γH(Ω) (i.e., without compatibility conditions for tractions at crack tips) we find,

instead of (4.35), a splitting of the form

u(x) = w̃γ(x) +
∑

i= I,II

χi(x)
2∑

n=1

(
bn,iVn,i(xi, t) + dn,iXn,i(xi, t)

)
(4.37)

with the regular part̃wγ ∈ V ℓ+1,1
γ (Ω)2 . HereXn,i, for n = 1, 2, are logarithmic singularities, of

the formri

(
ln riW 1(ϕi, t) + W 0(ϕi, t)

)
and

(
dn,i

)
n=1,2

are the two components ofg+(Oi) +

g−(Oi).

5 Power and power-logarithmic solutions of instantaneous problems with
singular data

In this section, we develop new preparatory material in viewof the proof of our results relating
to the creep problem (1.2)-(1.4). The idea we have in mind is to make use of the represen-
tation of solutions of the creep problem as a series (3.18) where the termsuk of the series
solve {L,N}uk = {fk, gk} with {fk, gk} defined by (3.19). We start the analysis by apply-
ing Theorem 4.10 to the first termu0 . Then, we obtain for{f1, g1} a right hand side which
contains itself a power singularity. This singular right hand side gives rise, in general, to a
power-logarithmic singularity foru1 , because of aresonancebetween the data and the inverse
of the Mellin operator pencil atλ0 = 1

2
.

The investigation ofsingulardata in that sense is the purpose of this section. Relying on
Kondrat’ev’s theory, reformulated with the help of the Mellin transform (see§4.B), we prove
sharp estimates about power-logarithmic singularities, independently of their degree. This will
lead to our results regarding the general structure of singularities of the creep problem (“loga-
rithmic packets”). Finally, to prepare for the situations where logarithmic terms do not propa-
gate (or are absent), we investigate in more detail the angular structure of singularities, using
the Cayley transform as initiated in [8].

5.A Volterra kernel in polar coordinates

Recall thati = I, II indicates the crack tipOi while ± corresponds to the crack’s surfaces
M± . Freezing coefficients of differential operators associated to the relaxation kernel,

{
P (x, t, τ,∇x) = D(−∇x)

⊤B(x, t, τ)D(∇x) ,

Q(x, t, τ,∇x) = D(n(x))⊤B(x, t, τ)D(∇x) ,
(5.1)

gives the operators with coefficients depending on the angular variableϕi ∈ Υ = (−π, π),
{
P i(ϕi, t, τ,∇x) = D(−∇x)

⊤Bi(ϕi, t, τ)D(∇x) , ϕi ∈ Υ ,

Qi±(t, τ,∇x) = D(∓e2)
⊤Bi(±π, t, τ)D(∇x) ,

(5.2)
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with Bi the “limit” of B as x → Oi in the sense of (1.9). Recall that forB with smooth
coefficients in the sense of (1.10), the coefficients in (5.2)are independent ofϕi.

Similarly to (4.4), we writeP i, Qi± in polar coordinates(r, ϕ)
{
P i(ϕ, t, τ,∇x) =: r−2Pi(t, τ, ϕ, ∂ϕ, r∂r) ,

Qi±(t, τ,∇x) =: r−1Qi±(t, τ, ∂ϕ, r∂r) .
(5.3)

We fix one crack tipO ∈ {OI,OII} and we therefore omit the indexi ∈ {I, II}. The time
t ∈ [0, T ] is also fixed. Nevertheless,t acts as a parameter and we will keep in our notations
the dependency of the operators ont.

5.B Logarithmic right hand sides and solutions

Let us fix λ0 ∈ Σ, λ0 > 0. Let us go back to the iterative procedure used in the proof of
Theorem 2.1: It consists in alternating the solution of an instantaneous problem{L,N±}(t)
with the application of the Volterra kernel{P,Q±}(t, τ). The Volterra kernel transforms a
singularity of the formrλ0U0(ϕ) into a right hand side of the form{rλ0−2F0(ϕ), rλ0−1G0±},
corresponding to a Mellin transform with a pole of order1 in λ0 . Then the next solution of the
instantaneous problem will correspond to a Mellin transform with a pole of (generic) order2,
giving as singular part a termwith a logarithmof the formrλ0

(
U0(ϕ) + (ln r)U1(ϕ)

)
.

That is the reason why it is natural to consider right hand sides which have themselves a
power logarithmic asymptotics. We first give simple formulas concerning the Mellin transform
of functions with a power logarithmic expansion.

Lemma 5.1. Let λ0 ∈ R, q ∈ N0 and let be givenVj ∈ Hℓ+1(Υ) for j = 0, . . . , q . We define
the power logarithmic functionV as

V (x) = rλ0

q∑

j=0

1

j!
(ln r)jVj(ϕ) (5.4)

and the meromorphic functionV as

V(λ) =

q∑

j=0

Vj

(λ− λ0)j+1
. (5.5)

(i) We have the Cauchy residue formula for any̺ > 0:

V =
1

2iπ

∫

|λ−λ0|=̺

rλV(λ) dλ . (5.6)

(ii) Let us denote the characteristic function of the regionK1 = {x ∈ K : r < 1} by Θ1 . Let
β be such thatℓ − β < λ0 . Then the functionΘ1V belongs to the weighted spaceV ℓ+1

β

(
K1)

and its norm satisfies the estimate:

‖Θ1V ‖
V ℓ+1

β (K1)
≤ C

q∑

j=0

dj

(λ0 − l + β)j+1
‖Vj‖

Hℓ+1(Υ)
(5.7)
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whereC > 0 and d > 1 depend only onl .

(iii) Let γ be such thatℓ − γ > λ0 . Then the function
(
1 − Θ1

)
V belongs toV ℓ+1

γ

(
K \ K1

)

and its norm satisfies the estimate:

‖
(
1 − Θ1

)
V ‖

V ℓ+1
γ (K1)

≤ C

q∑

j=0

dj

(ℓ− γ − λ0)j+1
‖Vj‖

Hℓ+1(Υ)
. (5.8)

(iv) The Mellin transform ofΘ1V is defined for allReλ < λ0 whereas the Mellin transform of(
1 − Θ1

)
V is defined for allReλ > λ0 and both coincide withV in (5.5).

Proof. It relies on simple explicit computations based on the formula:

∀κ > 0 ∀n ∈ N0

∫ 1

0

rκ(ln r)n dr

r
= (−1)nn! κ−n−1.

Let χ ∈ C∞
0 (R2) be a cut-off function which equals to1 for r < 1

2
and to0 for r > 1. We

are ready for solving the model problem (4.3) with power logarithmic right-hand side. We will
provide universal estimates for its solution (i.e. independent of its degree).

Proposition 5.2. Let λ0 6= 0 belong toΣ. Let γ and β such thatℓ − β < λ0 < ℓ − γ and
[ℓ−β, ℓ− γ]∩Σ = {λ0}. Let q ∈ N0 and{F j,Gj±} ∈ R ℓH(Υ) for j = 0, . . . , q− 1 and set

H(x) =

q−1∑

j=0

1

j!
(ln r)j

{
rλ0−2F j, rλ0−1Gj±

}
, x ∈ K .

(i) The right-hand side{F,G±} = χH belongs toR ℓ
βV (K) and problem(4.3) at time t has

a unique solutionUβ ∈ V ℓ+1
β (K)2 . Similarly problem(4.3) at time t with right hand side

{F,G±} = (1 − χ)H has a unique solutionUγ ∈ V ℓ+1
γ (K)2 . Moreover there existC0 > 0

and δ0 > 1 independent ofH , q and t ∈ [0, T ] so that

‖Uβ‖V ℓ+1

β (K)
+ ‖Uγ‖V ℓ+1

γ (K)
≤ C0

q−1∑

j=0

δj
0 ‖{F j,Gj±}‖

RℓH(Υ)
. (5.9)

(ii) There exists unique angular functionsU j ∈ Hℓ+1(Υ)2 , j = 0, . . . , q such that

Uβ = Uγ + rλ0

q∑

j=0

1

j!
(ln r)jU j (5.10)

and we have the following estimates: For anyδ1 > 2, there existsC1 > 0 independent ofH , q
and t ∈ [0, T ], so that there holds

max
0≤ j ≤ q

δj
1 ‖ U j‖

Hℓ+1(Υ)
≤ C1 max

0≤ j ≤ q−1
δj
1 ‖{F j,Gj±}‖

RℓH(Υ)
. (5.11)
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Proof. (i) A straightforward modification of Lemma 5.1(i) and(ii) yields thatχH belongs
to R ℓ

βV (K) and(1 − χ)H to R ℓ
γV (K) with the estimates

‖χH‖
Rℓ

βV (K)
+ ‖(1 − χ)H‖

Rℓ
γV (K)

≤ C

q−1∑

j=0

δj
0 ‖{F j,Gj±}‖

RℓH(Υ)
.

Using the continuity of the inverse of the operator of problem (4.3) in the suitable spaces,
compare with Theorem 4.2, we obtain (5.9). The assumptions (1.5) of uniform ellipticity and
(1.6) of boundedness yield that the constantC0 in (5.9) can be chosen independently oft ∈
[0, T ].

(ii) Let us defineH(λ) as the Mellin transform ofχ{r2F, rG±}:

H(λ) = {M[χ r2F ],M[χ rG±]}(λ) for Reλ < λ0.

We note that{Freg, G
±
reg} := χH − Θ1H has its support in the region{x : 1

2
< r < 1}.

Therefore the Mellin transform

Hreg(λ) = {M[r2Freg],M[rG±
reg]}(λ)

is holomorphic in the whole complex plane and easy computations yield thatHreg satisfies the
following estimates in any disc{λ ∈ C : |λ− λ0| ≤ ̺}:

‖Hreg(λ)‖
RℓH(Υ)

≤ C ′
̺

q−1∑

j=0

1

j!
‖{F j,Gj±}‖

RℓH(Υ)
, (5.12)

with a constantC ′
̺ > 0 depending only onl and̺. We deduce from (5.5) that

H(λ) = Hreg(λ) +

q−1∑

j=0

Hj

(λ− λ0)j+1
with Hj := {F j,Gj±}. (5.13)

By (4.11) we obtain the expansion (5.10) together with the Cauchy formula,

rλ0

q∑

j=0

1

j!
(ln r)jU j =

1

2iπ

∫

|λ−λ0|=̺

rλA[t](λ)−1H(λ) dλ. (5.14)

Combining with the Cauchy formula (5.6) we obtain

q∑

j=0

U j

(λ− λ0)j+1
≃ A[t](λ)−1

( q−1∑

n=0

Hn

(λ− λ0)n+1
+ Hreg(λ0)

)
(5.15)

modulo holomorphic functions. The Laurent expansion ofA[t](λ)−1 at λ0 takes the form of
the convergent series:

A[t](λ)−1 =
R−1[t]

λ− λ0
+

∞∑

m≥0

Rm[t](λ− λ0)
m. (5.16)
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The radius of convergence of this series is the distance to the closest pole toλ0 . This distance
being 1

2
, the radius of convergence is1

2
, which means that for allδ > 2, we have the estimate

for the termsRm[t] with a constantC = C(δ,A[t])

‖Rm[t]‖
RℓH(Υ)→Hℓ+1(Υ)

≤ C δm, m = −1, 0, . . . , (5.17)

Combining (5.15) with (5.16) and identifying the powers of(λ− λ0), we obtain

U j =
∑

n−m=j
n≥−1, m≥−1

Rm[t]Hn. (5.18)

with the conventionH−1 := Hreg(λ0).
Let us chooseδ1 > 2 and let us denote byN the boundmaxj=0,...,q−1 δ

j
1 ‖Hj‖

RℓH(Υ)
. By

definition
‖Hj‖

RℓH(Υ)
≤ δ−j

1 N, j = 0, . . . , q − 1.

Thus (5.12) yields forH−1 = Hreg(λ0):

‖H−1‖
RℓH(Υ)

≤ C ′e−δ1N ≤ C ′δ1N,

which means that we have finally

‖Hj‖
RℓH(Υ)

≤ C ′δ−j
1 N, j = −1, 0, . . . , q − 1. (5.19)

Therefore estimates (5.17) and (5.19) yield

‖U j‖
Hℓ+1(Υ)

≤
∑

n−m=j

‖Rm[t]‖
RℓH(Υ)→Hℓ+1(Υ)

‖Hn‖
RℓH(Υ)

≤
∑

n−m=j

C C ′ δm
N δ−n

1 =
∑

n−m=j

C C ′
( δ
δ1

)m

N δ−j
1

≤ C C ′
N δ−j

1

∞∑

m=−1

( δ

δ1

)m

= C C ′
N δ−j

1

δ1
δ

1

1 − δ/δ1
. (5.20)

Choosingδ ∈ (2, δ1) and letting

C1 = C(δ,A[t])C ′ δ1δ
−1(1 − δ/δ1)

−1

we deduce (5.11) from (5.20). The assumptions (1.5) – (1.6) give us that the constantsC(δ,A[t])
are bounded int, therefore the constantC1 in (5.11) can be chosen independently oft ∈ [0, T ],
onceδ1 > 2 is chosen.

Remark 5.3. The identity:A[t](λ)−1A[t](λ) = Id combined with expansion (5.16), gives by
identifying the coefficients of(λ− λ0)

−1

R−1[t]A[t](λ0) = 0, i.e. R−1[t] ≡ 0 on RangeA[t](λ0). (5.21)

We note that the augmentation of the logarithmic degree fromH to U in Proposition 5.2 comes
from the only termR−1[t]Hq−1 . Thus ifHq−1 belongs to the range ofA[t](λ0), the logarithmic
degree does not increase.
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It remains to give an estimate of the action of the relaxationkernel frozen inO over a
power-logarithmic expression.

Proposition 5.4. Let λ0 ∈ R, q ∈ N0 and let be givenU j ∈ Hℓ+1(Υ) for j = 0, . . . , q . We
define the power logarithmic function{F,G±} by

{
P (ϕ, t, τ,∇x), Q

±(t, τ,∇x)
}(
rλ0

q∑

j=0

1

j!
(ln r)jU j(ϕ)

)

= rλ0

q∑

j=0

1

j!
(ln r)j

{
r−2F j(t, τ, ϕ), r−1Gj±(t, τ)

}
. (5.22)

For any δ > 0, there existsC > 0 independent ofU j , q and (t, τ) ∈ T (T ), so that there holds

max
0≤ j ≤ q

δj ‖ {F j,Gj±}(t, τ)‖
RℓH(Υ)

≤ C max
0≤ j ≤ q

δj ‖U j‖
Hℓ+1(Υ)

. (5.23)

Proof. Let B[t, τ ](λ) := {P(t, τ, ϕ, ∂ϕ, λ),Q±(t, τ, ∂ϕ, λ)} be the Mellin symbol of the ex-
pression (5.3) of the frozen relaxation kernel in polar coordinates. We have the formula, com-
pare with (5.15)

B[t, τ ](λ)
( q∑

j=0

U j

(λ− λ0)j+1

)
=

q∑

j=0

{F j,Gj±}(t, τ)
(λ− λ0)j+1

. (5.24)

But, sinceP andQ± are differential operators inr∂r of order≤ 2, we have the expansion

B[t, τ ](λ) = B0[t, τ ] + B1[t, τ ](λ− λ0) + B2[t, τ ](λ− λ0)
2, (5.25)

and, therefore:

{F j,Gj±}(t, τ) = B0[t, τ ]U j + B1[t, τ ]U j−1 + B2[t, τ ]U j−2. (5.26)

The uniform bound (1.7) on the relaxation kernel yields a uniform bound on the operatorsBk ,
k = 0, 1, 2, as continuous operatorsHℓ+1(Υ) → R ℓH(Υ). Hence estimate (5.23) follows.

5.C Absence of logarithms: Cayley representation

In the situation wherethe limit “stabilized” material lawsBi(t, τ) for i = I, II, of the relax-
ation kernel are independent of the angular variableϕ, we are going to show that the iterative
procedure (3.18) – (3.19) produces singularities of the form rn+1/2V(ϕ) only, with the exclusion
of any logarithmic term. As usual, we fix a crack tipOi and omit its mention.

In order prove this “non appearance of logarithms”, for any fixed non integer elementλ0 of
Σ, we construct

– a classU(λ0) of functionsU(x) homogeneous of degreeλ0 , i.e. of the formrλ0U(ϕ),

– a classH(λ0) of corresponding right hand sidesH(x) = {F,G±}(x),
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with the following three properties:

(i) For anyt ∈ (0, T ), the primal singular functions (4.12) belong toU(λ0);

(ii) If the frozen Volterra kernel{P,Q±}(t, τ) has constant coefficients inϕ, then for all
U ∈ U(λ0), {P,Q±}(t, τ)U belongs toH(λ0);

(iii) For anyH ∈ H(λ0), the solution (5.4) belongs toU(λ0).

We can see that, as a result, the singularities of the termsuk , k = 0, 1, . . ., generated by
the iterative procedure (3.18) – (3.19) will stay insideU(λ0), excluding the appearance of any
logarithmic term.

We start with the definition of a classU(λ) for eachλ in the discD(λ0,
1
4
). Let

ζ := reiϕ, r > 0, ϕ ∈ (−π, π)

be the complex writing of the coordinatesx ∈ K centered atO . We have to define an Ansatz
for an admissible homogeneous function of degreeλ. The prototypes are the functionsζλ and
ζ̄λ , which are sufficient to describe the singularities of the Laplace operator. For a wider class
of scalar elliptic operators, they have to be generalized to(αζ + ζ̄)λ and (ζ + αζ̄)λ with α
a complex parameter of modulus< 1, and finally, to cover any Agmon-Douglis-Nirenberg
system, to contour integrals inα of such functions [8].

We give the following meaning to(αζ + ζ̄)λ and(ζ + αζ̄)λ for |α| < 1 andζ ∈ K:

(αζ + ζ̄)λ := ζ̄λ
(
1 + α

ζ

ζ̄

)λ

and (ζ + αζ̄)λ := ζλ
(
1 + α

ζ̄

ζ

)λ

. (5.27)

The functionsζλ and ζ̄λ are well defined onK and as|α| < 1, the functions1 + α ζ/ζ̄ and
1 + α ζ̄/ζ take their values in the half planeRe z > 0, thus the products in (5.27) make sense.

For any fixed timet, the homogeneous operatorL(t,∇x), see (4.2), transforms the homo-
geneous functions (5.27) in similar functions withλ− 2 insteadλ: There holds

L(t,∇x)(αζ + ζ̄)λ = λ(λ− 1)(αζ + ζ̄)λ−2L+[t](α),

L(t,∇x)(ζ + αζ̄)λ = λ(λ− 1)(ζ + αζ̄)λ−2L−[t](α),
(5.28)

whereL±[t](α) are theCayley symbolsassociated withL(t,∇x) ≡ L(t, ∂1, ∂2):

L+[t](α) := L
(
t, α + 1, i(α− 1)

)
and L−[t](α) := L

(
t, 1 + α, i(1 − α)

)
. (5.29)

Due to the uniform ellipticity condition (1.5) there exists̺ < 1 such that for allt ∈ [0, T ] and
for all α ∈ C with |α| ∈ [̺, 1],

detL±[t](α) 6= 0 .

Let us denote byA the space of complex analytic functions ofα in the ring{α ∈ C : |α| ∈
[̺, 1]}. We set

U+(λ) =
{
U : ∃q+ ∈ A2 U =

∫

|α|=̺

(αζ + ζ̄)λq+(α) dα
}
,

U−(λ) =
{
U : ∃q− ∈ A2 U =

∫

|α|=̺

(ζ + αζ̄)λq−(α) dα
}
.

(5.30)
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Note that we can use any circle|α| = R with ̺ ≤ R < 1 in the above contour integrals without
modifying the result.

Lemma 5.5. If λ is not an integer, the intersectionU+(λ) ∩ U−(λ) is reduced to{0}.

Proof. Let U± ∈ U±(λ). According to the definition (5.27), we can write

U+(r, ϕ) =

∫

|α|=̺

(αζ + ζ̄)λq+(α) dα = rλe−iλϕ

∫

|α|=̺

(1 + αe2iϕ)λq+(α) dα ,

U−(r, ϕ) =

∫

|α|=̺

(ζ + αζ̄)λq−(α) dα = rλeiλϕ

∫

|α|=̺

(1 + αe−2iϕ)λq−(α) dα .

We see that as functions ofϕ, bothU+(r, ϕ) andU−(r, ϕ) have unique analytic continuations
from [−π, π] to all of R satisfying

U+(r, ϕ+ π) = e−iλπ U+(r, φ) and U−(r, ϕ+ π) = eiλπ U−(r, φ) for all ϕ ∈ R .

Now assume thatU+ = U− . By analyticity, this holds for allϕ ∈ R if it holds for ϕ in some
non-trivial interval (in our case forϕ ∈ [−π, π]). We find

0 = U+(r, ϕ) − U−(r, ϕ) = (e−iλπ − eiλπ)U+(r, ϕ) for all ϕ ∈ R .

Hence eitherλ ∈ Z or U+(r, ϕ) = 0 for all ϕ ∈ R.

As a consequence of [8, Th.2.1], the above Ansatz covers all solutions (4.8) of the homoge-
neous system (4.3) without boundary conditions:

Proposition 5.6. Let W[t](λ) be the space of solutions(4.8)of the homogeneous system

L(t,∇x)U(x) = 0 , x ∈ K.

Then for all t ∈ (0, T ) and non-integerλ ∈ C

W[t](λ) ⊂ U+(λ) ⊕ U−(λ).

Furthermore, both spacesW[t](λ) ∩ U+(λ) and W[t](λ) ∩ U−(λ) have dimension2.

Since the order of the poleλ0 of A[t](λ)−1 is 1, the primal singularities inλ0 are linear
combinations of elements inW[t](λ0). Therefore our first requirement(i) is met with

U(λ0) := U+(λ0) ⊕ U−(λ0). (5.31)

As already suggested by formulas (5.28) homogeneous operators with constant coefficients
act between spacesU(λ) with distinctλ.

Lemma 5.7. Let P (∇x) be a2 × 2 matrix of differential operators of orderm, homogeneous
with constant coefficients. Then there holdsPU ∈ U(λ−m) for all U ∈ U(λ).
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Proof. The coefficients ofP (∇x) are linear combinations of products of the form∂κ1

ζ ∂κ2

ζ̄
with κ1 + κ2 = m. However

∂ζ(αζ + ζ̄)λ = λα(αζ + ζ̄)λ−1 and ∂ζ(ζ + αζ̄)λ = λ(ζ + αζ̄)λ−1

and similarly for∂ζ̄ . The conclusion of the lemma is now obvious.

Let us now define forλ = λ0 the spaceH(λ0)

H(λ0) :=
{
{F,G±} : F ∈ U(λ0 − 2), G± = rλ0−1g±, g± ∈ C, with g+ = g−

}
. (5.32)

Lemma 5.8. Let P (∇x) andQ(∇x) be 2× 2 matrices of differential operators homogeneous
of order 2 and 1, respectively. Then there holds{P,±Q}U ∈ H(λ0) for all U ∈ U(λ0).

According to this lemma, our second requirement(ii) is met, since in the constant coefficient
case for all(t, τ) ∈ T (T ), Q±(t, τ) has the form±Q.

Proof. In view of Lemma 5.7, we only have to prove thatQU
∣∣
ϕ=π

= −QU
∣∣
ϕ=−π

. Indeed,
QU belongs toU(λ0 − 1). Let λ1 := λ0 − 1. Let us prove that

∀V ∈ U(λ1), V
∣∣
ϕ=π

= −V
∣∣
ϕ=−π

. (5.33)

In view of the Ansatz (5.30), it suffices to prove (5.33) for a scalar functionV of the form
(αζ + ζ̄)λ1 or (ζ + αζ̄)λ1 . We then use (5.27). We have

ζ̄λ1

(
1 + α

ζ

ζ̄

)λ1
∣∣∣
ϕ=π

= re−iλ1ϕ
(
1 + αe2iϕ

)λ1

∣∣∣
ϕ=π

= re−iλ1π
(
1 + α

)λ1 (5.34)

and ζ̄λ1

(
1 + α

ζ

ζ̄

)λ1
∣∣∣
ϕ=−π

= re+iλ1π
(
1 + α

)λ1 . (5.35)

Sinceλ1 = m+ 1
2
, with an integerm, e±iλ1π = ±i. Whence (5.33) forV = (αζ + ζ̄)λ1 . The

proof for the other case is similar.

We end this subsection with the proof of our third requirement (iii) :

Lemma 5.9. Let H = {F,G±} belong toH(λ0). Then there exists a solutionU ∈ U(λ0) of
the model problem(4.3): {L(t,∇x), N

±(t,∇x)}U = {F,G±}.

Proof. By assumption there existq± ∈ A2 such that

F =

∫

|α|=̺

(αζ + ζ̄)λ0−2q+(α) dα+

∫

|α|=̺

(ζ + αζ̄)λ0−2q−(α) dα. (5.36)

Therefore by setting – here we use the Cayley symbols (5.29),

U0 =
1

λ0(λ0 − 1)

∫

|α|=̺

(αζ + ζ̄)λ0L+[t](α)−1q+(α) dα (5.37)

+
1

λ0(λ0 − 1)

∫

|α|=̺

(ζ + αζ̄)λ0L−[t](α)−1q−(α) dα , (5.38)
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we obtainU0 ∈ U(λ0) such thatL(t,∇x)U0 = F . Lemma 5.8 yields that{L,N±}U0 (which is
equal to{L,±N}U0 ) belongs toH(λ0). Considering the new right hand sideH−{L,N±}U0 ,
we are reduced to solve the model problem (4.3) withF = 0 and the compatibility condition
G+ = G− . Let us consider the mappingN(λ0) defined on the spacesW of Proposition 5.6

W(λ0) −→ C
2 × C

2

U 7−→
(
N+U

∣∣
r=1,ϕ=π

, N−U
∣∣
r=1,ϕ=−π

)
(5.39)

As W(λ0) ⊂ U(λ0), Lemma 5.8 yields that the range ofN(λ0) is contained in the two-
dimensional space{(g+, g−) ∈ C2 × C2 : g+ = g−}. The kernel ofN(λ0) is the space of
singular functions homogeneous of degreeλ0 . This space is of dimension2 (see Lemma 4.4
for λ0 = 1

2
, and [9] for more general framework). Therefore the range ofN(λ0) is the whole

space{(g+, g−) ∈ C2 × C2 : g+ = g−}, and there exists a solution inW(λ0) ⊂ U(λ0) to our
last problem.

As a consequence of Lemma 5.5 and the symbolic calculus of Lemmas 5.8 and 5.9, we
obtain immediately the following result.

Proposition 5.10. Let λ0 ∈ Σ \Z. The spacesU(λ0) and H(λ0), defined in(5.30)-(5.31)and
(5.32), respectively, equipped with the norms

‖U‖
U(λ0)

= max
̺≤|α|≤1

|q+(α)| + max
̺≤|α|≤1

|q−(α)| , (5.40)

‖{F, rλ0−1g±}‖
H(λ0)

= ‖F‖
U(λ0−2)

+ |g+| + |g−| , (5.41)

are Banach spaces. Moreover, the operators

{P (t, τ,∇x), Q
±(t, τ,∇x)} and {L(t,∇x), N

±(t,∇x)} : U(λ0) → H(λ0) (5.42)

{L(t,∇x), N
±(t,∇x)}−1 : H(λ0) → U(λ0) (5.43)

are bounded linear operators whose norms depend only on bounds of the coefficients of the dif-
ferential operators, cf.(1.6)-(1.7)and, concerning{L(t,∇x), N

±(t,∇x)}−1 , on the ellipticity
constantcA (1.5)of the operatorA.

6 Asymptotics near the crack tips for the creep problem

We come back to the solutionu(x, t), x ∈ Ω, t ∈ (0, T ), of the creep problem (1.13). We
make the following assumption on the data{f(t), g(t)}:

{f, g} ∈ L∞

(
0, T ;R ℓ,1

γ V (Ω)
)
, γ such thatℓ− γ ∈ (1, 3

2
),

with the compatibility condition (2.7). Herel is the positive integer in (1.6)-(1.7) andR ℓ,1
γ H(Ω)

is the space (4.32), where the tractionsg are supposed to satisfy the compatibility conditions
g+(Oi) + g−(Oi) = 0 at the crack tips. We will discuss later on the more general case when
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{f, g} ∈ L∞

(
0, T ;R ℓ

γH(Ω)
)
, where no condition on the tracesg±(Oi) are prescribed. We

assume that the stabilization rate in (1.9) satisfies the inequality

δB > ℓ− γ − 1/2 (6.1)

where, sinceℓ− γ > 1, the lower bound is larger than1/2.

From Theorem 3.5, we know that the solutionu belongs toL∞

(
0, T ;V ℓ+1

β (Ω)
)2

for all β
such thatℓ − β ∈ (0, 1

2
). We recall thatu has the representation (3.18) as a sum of termsuk

which solve of the problems{L,N}uk = {fk, gk} subject to the orthogonality condition (2.7).
The right hand sides{fk, gk} are given by{f 0, g0} = {f, g} for k = 0 and (3.19) fork ∈ N.

In this section we are going to derive the following asymptotic formulae for the members
uk of series (3.18) (the“iterate solutions”):

uk(x, t) = ũk(x, t) +
∑

i= I, II

χi(x)
(
ak

i (t) + V k
i (x, t) +W k

i (x, t)
)
, (6.2)

whereũk is the “flat regular part” inL∞

(
0, T ;V ℓ+1

γ (Ω)
)2

, the termsak
i (t) are constants inR2

at each fixed time, and the functionsV k
i andW k

i are, a priori, “logarithmic packets” of degree
k at λ0 = 1

2
andλ0 = 1, respectively:

V k
i (x, t) = r

1/2
i

k∑

j=0

1

j!
(ln ri)

j Vkj
i

(ϕi, t) ,

W k
i (x, t) = ri

k∑

j=0

1

j!
(ln ri)

j Wkj
i

(ϕi, t) .

(6.3)

From the mere application of Proposition 5.2, it can be readily seen that the number of terms
in the sums grows withk → ∞ , in general, and therefore, the abstract Theorem 2.1 cannotbe
employed in the framework of weighted spaces with separatedasymptotics since these spaces
must inflate from step to step of the iterative procedure.

Nevertheless, in the situation where the limit relaxation kernelsBi do not depend on the
angular variablesϕi, the degree of the singular parts is stationary at0, as shown in section 5.C,
which restores the possibility of applying the abstract Theorem 2.1. Before investigating the
most general situation, we first deal with this case.

6.A Case of a smooth kernel: Absence of logarithms

We make the assumption (1.10) on the relaxation kernelB . Therefore we are in the situation
where{P,Q±}(t, τ) has constant coefficients inϕ and the constructions of section 5.C apply.
Let γ such thatℓ− γ ∈ (1, 3

2
) and such that (6.1) holds.

We setβ = γ + 1, thusβ satisfies the condition prescribed in Theorem 3.5. We are going
to use the abstract framework of Theorem 2.1 with the following choice for the spacesD and
R: We choose subspaces of the couple(D,R) used before in (3.13) in the form of spaces with
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detached asymptotics, where the asymptotics belong to the special classesU(1
2
) and H(1

2
)

defined in (5.30)-(5.31) and (5.32), respectively:

D =
{
u ∈ V ℓ+1,0

β (Ω)2 : u satisfies orthogonality condition (2.8) and (6.4)

u = w̃ +
∑

i= I,II

χ(xi)Ui(xi), w̃ ∈ V ℓ+1,1
γ (Ω)2, Ui ∈ U(1

2
)
}
,

R =
{
{f, g} ∈ R ℓ

βV (Ω) : h := {f, g} satisfy compability condition (2.7) and (6.5)

h = h̃ +
∑

i= I,II

χ(xi)Hi(xi), h̃ ∈ R ℓ,1
γ V (Ω), Hi ∈ H(1

2
)
}
,

with the respective norms, cf. (5.40) and (5.41)

‖u‖
D

=
(
‖w̃‖2

V ℓ+1,1
γ (Ω)

+
∑

i= I,II

‖Ui‖2

U(1/2)

)1/2

(6.6)

‖h‖
R

=
(
‖h̃‖2

R ℓ,1
γ V (Ω)

+
∑

i= I,II

‖Hi‖2

H(1/2)

)1/2

. (6.7)

Theorem 6.1. Let the assumption(1.10)on the relaxation kernelB be satisfied. Let the right
hand side of problem(1.13)satisfy for aγ such thatℓ− γ ∈ (1, 3

2
)

{f, g} ∈ L∞

(
0, T ;R ℓ,1

γ V (Ω)
)
, i.e., withg−(Oi, t) = −g+(Oi, t) , (6.8)

together with the compatibility condition(2.7). Let β = γ + 1.

Then the solutionu ∈ L∞(0, T ;V ℓ+1,0
β (Ω)2) of problem(1.13)given by Theorem3.5, admits

the representation
u(x, t) = w̃(x, t) +

∑

i= I,II

χi(x) r
1/2
i

Vi(ϕi, t) (6.9)

where (recall thatΥ denotes the interval(−π, π))

w̃ ∈ L∞(0, T ;V ℓ+1,1
γ (Ω)2) and Vi ∈ L∞(0, T ;Hℓ+1(Υ)2) , (6.10)

with the estimates

|||ũ ; t|||
V ℓ+1

γ (Ω)
+ |||Vi ; t|||

Hℓ+1(Υ)
≤ c0e

δ0t|||{f, g} ; t|||
R ℓ,1

γ V (Ω)
. (6.11)

Remark 6.2. In (6.10) and (6.11) the spaceHℓ+1(−π, π) has been mentioned only to fix ideas.
Any Sobolev spaceHm could have been used either since, in the present situation,the angular
functions are analytic on[−π, π].
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Proof. We only have to prove that the assumptions of Theorem 2.1 are satisfied, namely that
the operator{L(t), N±(t)} is continuous and invertible fromD into R, with uniform norms
in t ∈ (0, T ), and that{P (t, τ), Q±(t, τ)} is continuous fromD into R, with uniform norms
in (t, τ) ∈ T (T ).

The continuity fromD into R relies on (5.42), on the continuity of{L(t), N±(t)} and
{P (t, τ), Q±(t, τ)} from V ℓ+1,1

γ (Ω)2 into R ℓ,1
γ V (Ω), and on the continuity of

u 7−→ χi(x)
(
{L(t, x,∇x), N

±(t, x,∇x)} − {L(t,Oi,∇x), N
±(t,Oi,∇x)}

)
u

from U(1
2
) into R ℓ

γV (Ω), and similar for{P,Q±}.

The continuity of the inverse relies on (5.43) and on Theorem4.10.

6.B Case of a sectorial kernel: Accumulation of logarithms for iterate solutions

The estimates given in the following proposition allow for the convergence proof of the double
series resulting from (3.18) when using (6.2) combined with(6.3).

Proposition 6.3. We assume that the operators(1.11)and(1.12)satisfy conditions(1.6), (1.9)
and (6.1). Let the right hand side of problem(1.13)satisfy for aγ such thatℓ − γ ∈ (1, 3

2
)

assumption(6.8) together with the compatibility condition(2.7). Let uk be the iterate solutions
of instantaneous elasticity problems{L,N}uk = {fk, gk} with right-hand sides(3.19)under
orthogonality condition(2.8).

Thenuk can be represented in the form(6.2), with the coefficients given by(6.3). In addition,
the following estimates hold

|||ũk ; t|||
V ℓ+1

γ (Ω)
+

∑

i= I,II

(
|||ak

i ; t||| +
k∑

j=0

δj
1

[
|||Vkj

i ; t|||
Hℓ+1(Υ)

+ |||W kj
i ; t|||

Hℓ+1(Υ)

])

≤ c2(δ2t)
k

k!
|||{f, g} ; t|||

R ℓ,1
γ V (Ω)

, (6.12)

whereδ1, δ2 and c2 are positive constants, independent of the integerk .

Proof. Let us denote byN(t) the norm

N(t) := |||{f, g} ; t|||
R ℓ,1

γ V (Ω)
.

Sinceu0 solves the instantaneous elasticity problem (4.1), Theorem 4.10 ensures the represen-
tations (6.2) and (6.3) atk = 0 together with formulae

V00
i (ϕ, t) = b1,i(t)V1,i(ϕ, t) + b2,i(t)V2,i(ϕ, t) ,

W 00
i (ϕ, t) = c1,i(t)W 1,i(ϕ, t) + c2,i(t)W 2,i(ϕ, t) − x2Gi(t) ,

(6.13)

and the estimate

|||ũ0 ; t|||
V ℓ+1

γ (Ω)
+ |||a0

n,i ; t||| + |||bn,i ; t||| + |||cn,i ; t||| + |||Gi ; t||| ≤ CN(t) , (6.14)
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whereGi is determined according to Lemma 4.9 withG(t) = g+(Oi, t) (cf. (6.8)). Direct
evaluation of norms of elements in (6.13) in the spaceHℓ+1(Υ) shows that estimate (6.14)
yields estimate (6.12) forj = k = 0.

The proof is achieved by induction, thus we assume that (6.2), (6.3) and (6.12) hold for
k < K and we verify the same formulae fork = K ≥ 1.

First of all, we observe, that owing to (4.22), assumption (6.8) provides inclusion (3.15) for
anyβ ∈ (ℓ− 1

2
, l) while, in view of (6.1), we can choose the weight indexβ such that

β − δβ < γ and β − 1 < γ . (6.15)

Inequalities (6.15) allow to reduce the problem foruK in Ω to model problem (4.3). To this
end, equations (4.1) foruK with the right-hand side (3.19) are multiplied by the cut-off function
χi which leads to the problem

Li(t,∇x)χ
i(x)uK(x, t) = χi(x)2FK

i (x, t) + F̃K
i (x, t) , x ∈ K

N i±(t,∇x)χ
i(x)uK(x, t) = χi(x)2GK±

i
(x, t) + G̃K±

i
(x, t) , ϕ = ±π ,

(6.16)

where

{FK
i (x, t), GK±

i (x, t)} =

−
∫ t

0

{
P i(x, t, τ,∇x), Q

i±(x, t, τ,∇x)
}(
V K−1

i
(x, τ) +WK−1

i
(x, τ)

)
dτ , (6.17)

and

{F̃K
i , G̃

K±
i } = [{Li, N i±}, χi]uK

︸ ︷︷ ︸
Ii
1

− χi{L− Li, N −N i±}uK

︸ ︷︷ ︸
Ii
2

(6.18)

− χi

∫ t

0

{P,Q}χiaK−1
i

dτ

︸ ︷︷ ︸
Ii
3

− χi

∫ t

0

[{P i, Qi±}, χi]
(
V K−1

i
+WK−1

i

)
dτ

︸ ︷︷ ︸
Ii
4

− χi

∫ t

0

[{P − P i, Q−Qi±}, χi]
(
V K−1

i +WK−1
i

)
dτ

︸ ︷︷ ︸
Ii
5

−χi

∫ t

0

{P,Q}ũK−1 dτ

︸ ︷︷ ︸
Ii
6

The termIi
1 includes the commutator[{Li, N i±}, χi] which vanishes near the tipOi, hence

|||Ii
1 ; t|||

Rℓ
κ V (K)

≤ c|||uK ; t|||
V ℓ+1,0

β (Ω)
(6.19)

with any κ ∈ R, in particular forκ = γ . The presence of the right factorD(∇x) in (5.1)
implies that the pointOi is outside of the support ofIi

4 , so the induction insures that

|||Ii
3 ; t|||

Rℓ
γV (Ω)

≤ c

∫ t

0

∣∣aK−1
i

(τ)
∣∣ dτ ≤ c

c2
δ2

1

K!
(δ2t)

K
N(t) . (6.20)
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Next, an application of estimate (6.12) for the remainderũK leads to

|||Ii
6 ; t|||

Rℓ
γV (K)

≤ c

∫ t

0

|||ũK−1 ; τ |||
V ℓ+1,0

γ (Ω)
dτ ≤

≤ cc2

∫ t

0

1

(K − 1)!
(δ2τ)

K−1
N(τ) dτ ≤ cc2

1

K!
(δ2t)

K
N(t) . (6.21)

Furthermore, by (6.15) and the following inequality

|∇j
x(A(x, t) − A(Oi, t))| ≤ ciAjr

δj ,0
i

≤ Ci
Ajr

1−j
i

, (6.22)

we find that, by virtue of (4.4), (5.3) and (3.20),

|||Ii
2 ; t|||

Rℓ
γV (K)

≤ c|||ri∇xu
K ; t|||

V ℓ
γ (Ω∩ suppχi)

≤

≤ c|||uK ; t|||
V ℓ+1,0

γ+1
(Ω)

≤ c|||uK ; t|||
V ℓ+1,0

β (Ω)
≤ c

c0
δ0

1

K!
(δ0t)

K
N(t) . (6.23)

By an application of Lemma 5.1, in view of estimate (6.12) with k = K − 1, to the angular
partsVK−1i andWK−1i it follows that

|||V K−1
i ; t|||

V ℓ+1

β (K1)
+ |||WK−1

i ; t|||
V ℓ+1

β (K1)
≤

≤ s

K−1∑

j=0

dj

(
1

(β − l + 1
2
)j+1

|||VK−1
i ; t|||

Hℓ+1(Υ)
+

1

(β − l + 1)j+1
|||WK−1

i ; t|||
Hℓ+1(Υ)

)

≤ cc2
2

(K − 1)!
(δ2t)

K−1
N(t)

{
K−1∑

j=0

δ−j
1 dj

(β − l + 1
2
)j+1

}
. (6.24)

For δ1 > 0 sufficiently large, the sum in curly brackets in (6.24) is bounded by the constant

C = (β − l + 1
2
)−1

(
1 − d

[
δ1(β − l + 1

2
)
]−1

)−1

,

since(β − l + 1) > (β − l + 1
2
) > 0 by the restriction required in Theorem 3.3. The derived

estimate serves for processing the termsIi
4 andIi

5 in the same way as withIi
1 andIi

2 :

|||Ii
4 ; t|||

Rℓ
κ V (K)

≤ c

∫ t

0

(
|||V K−1

i ; τ |||
V ℓ+1

β (K1)
+ |||WK−1

i ; τ |||
V ℓ+1

β (K1)

)
dτ

≤ cC
1

K!
(δ2t)

K
N(t) , (6.25)

for all κ ∈ R, and

|||Ii
5 ; t|||

Rℓ
γV (K)

≤ c

∫ t

0

(
|||rδB

i V K−1
i ; τ |||

V ℓ+1
γ (K1)

+ |||rδB
i WK−1

i ; τ |||
V ℓ+1

γ (K1)

)
dτ

≤ c

∫ t

0

(
|||V K−1

i
; τ |||

V ℓ+1

β (K1)
+ |||WK−1

i
; τ |||

V ℓ+1

β (K1)

)
dτ

≤ cC
c2
δ2

1

K!
(δ2t)

K
N(t) . (6.26)



41

Stabilization condition (1.9) and the first inequality in (6.15) are applied in (6.26).
It is supposed thatδ2 ≥ δ0 , whereδ0 denotes the constant in Theorem 3.5. Thus, the norms

indicated in (6.19), (6.23), (6.20), (6.25), (6.26), (6.21) are bounded by the common majorant

c

(
1

δ0
+

1

δ2

)
1

K!
(δ2t)

K
N(t) . (6.27)

Using representations (6.17), (6.3), estimates (6.12) with k = K − 1 and Proposition 5.4,
we conclude that

{FK
i (x, t), GK

i (x, t)} = −
K−1∑

j=0

1

j!
(ln ri)

j

∫ t

0

({
r−3/2FKj

i (ϕi, τ), r
−1/2GKj±

i (τ)
}

+
{
r−1HKj

i (ϕi, τ), r
0KKj±

i (τ)
})

dτ ,

with the estimates

|||{FKj
i
,GKj±

i
} ; τ |||

RℓH(Υ)
+ |||{HKj

i
,KKj±

i
} ; τ |||

RℓH(Υ)
≤ cδ−j

1

(δ2τ)
K−1

(K − 1)!
N(τ) . (6.28)

Thus, by an application of Proposition 5.2 for three valuesλ0 = 0, λ0 = 1
2

andλ0 = 1, and
Theorem 4.2, the following decomposition of the solution tomodel problem (6.16) is obtained

χi(x)uK(x, t) = aK
i (t) + V K

i (x, t) +WK
i (x, t) + ũK

i (x, t) , (6.29)

whereV K
i andWK

i take the form (6.3) and, moreover,

|||ũK
i ; t|||

Rℓ
γV (K)

+ |||aK
i ; t||| +

K∑

j=0

δj
1

(
|||VKj

i
; t|||

Hℓ+1(Υ)
+ |||WKj

i
; t|||

Hℓ+1(Υ)

)
≤

≤ c

{
1

δ0

1

K!
(δ2t)

K +

∫ t

0

1

(K − 1)!
(δ2τ)

K−1dτ

}
N(t)

≤ c

(
1

δ0
+

1

δ1

)
1

K!
(δ2t)

K
N(t) .

In order to derive the asymptotic formula foruK from (6.29) we proceed as follows. (6.29)
is multiplied by the cut-off functionχi, and the contributions fori = I, II and the term

{
1 −

(
χI

)2 −
(
χII

)2 }
uK

are assembled together. The estimate

|||{1 −
(
χI

)2 −
(
χII

)2}uK ; t|||
V ℓ+1

γ (Ω)
≤ |||uK ; t|||

V ℓ+1,0
β (Ω)

≤ c

δ0

1

K!
(δ0t)

K
N(t) .

is obtained, taking into account thatχI + χII = 1 near the pointsOi.
Thus, we have proved representation (6.2), (6.3) and estimate (6.12) fork = K . Since the

majorant in (6.12) is of the form (6.27) with the constantc which now should be selected in the
appropriate way. It is possible, for the numbersδ0 and δ2 ≥ δ0 chosen in such a way that the
majorant in (6.12) is smaller thanc2(K!)−1(δ2t)

K
N(t).
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6.C Case of a sectorial kernel: Theorem on asymptotics with logarithmic packets

All preparations for our final result on the asymptotics of solutions of the creep problem are
now complete and we are ready to prove:

Theorem 6.4. Let {f, g} satisfy(6.8), where the smoothness indexl and the weight indexγ
are related by(4.22). Let β = γ + 1. Then the solutionu ∈ L∞(0, T ;V ℓ+1,0

β (Ω)2) of the creep
problem(1.13), given by Theorem3.5, admits the representation

u(x, t) = ũ(x, t) +
∑

i

χi(x)
(
ai(t) + r

1/2
i Vi(ln ri, ϕi, t) + riW i(ln ri, ϕi, t)

)
, (6.30)

where
ũ ∈ L∞(0, T ;V ℓ+1

γ (Ω)2) , ai ∈ L∞(0, T )2 , (6.31)

and (recall thatΥ denotes the interval(−π, π)

Vi(ln r, ϕ, t) =

∞∑

j=0

1

j!
(ln r)jVj

i
(ϕ, t) , Vj

i
∈ L∞(0, T ;Hℓ+1(Υ)2)

W i(ln r, ϕ, t) =
∞∑

j=0

1

j!
(ln r)jW j

i
(ϕ, t) , W j

i
∈ L∞(0, T ;Hℓ+1(Υ)2)

(6.32)

with the estimates, for positive constantsδ1 , δ2 and c2 :

|||ũ ; t|||
V ℓ+1

γ (Ω)
+ |||ai ; t||| ≤ c2e

δ2t|||{f, g} ; t|||
Rℓ,1

γ V (Ω)
(6.33)

|||Vj
i

; t|||
Hℓ+1(Υ)

+ |||W j
i
; t|||

Hℓ+1(Υ)
≤ c2

1

j!

(
δ2
δ1
t

)j

eδ2t|||{f, g} ; t|||
Rℓ,1

γ V (Ω)
(6.34)

Moreover, the logarithmic packets(6.32)verify the estimate

|||Vi(ln r, ·, ·) ; t|||
Hℓ+1(Υ)

+ |||W i(ln r, ·, ·) ; t|||
Hℓ+1(Υ)

≤

≤ c2e
δ2tcosh

(
2

√
δ2
δ1
t| ln r|

)
|||{f, g} ; t|||

Rℓ,1
γ V (Ω)

. (6.35)

Proof. We set

ai =
∞∑

k=0

ak
i , ũ =

∞∑

k=0

ũk .

an application of estimates (6.12) yields inclusions (6.31) and estimate (6.33). Owing to (6.3)
we have

Vj
i =

∞∑

k=j

Vkj
i , W j

i =

∞∑

k=j

W kj
i . (6.36)

Estimates (6.12) combined with the inequalitym!n! ≤ (m+ n)! leads to

|||Vj
i ; t|||

Hℓ+1(Υ)
≤ c2δ

−j
1

∞∑

k=j

1

k!
(δ2t)

k
N(t) ≤ c2

1

j!

(
δ2
δ1
t

)j

N(t)

∞∑

n=0

1

n!
(δ2t)

n .
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The same evaluation performed forW j
i results in (6.34). To show (6.35), we need the inequality

22j (j!)2

(2j)!
=

2 · 4 · ... · 2j
1 · 3 · ... · (2j − 1)

· 2 · 4 · ... · 2j
2 · 4 · ... · 2j > 1

and then we obtain

|||Vi ; t|||
Hℓ+1(Υ)

≤ c2 exp (δ2t)
∞∑

j=0

22j

(2j)!

(δ2
δ1
t| ln r|

)j

N(t)

= c2 exp (δ2t) cosh
(
2

√
δ2
δ1
t| ln r|

)
N(t) .

The termsW i are estimated in the same way, which ends the proof.

Remark 6.5. If the data{f, g} belong toL∞

(
0, T ;R ℓ

γH(Ω)
)

without fulfilling (6.8), the com-
patibility conditions (4.27) at the crack tipsOi are violated. Therefore a logarithmic term
appears in the decomposition (6.2) of the solutionu0 , see (4.37). Each step of the iterative
procedure brings a new termln ri. Thus, finally, the summation overj = 0, . . . , k in (6.3) for
W k

i must be replaced by a summation overj = 0, . . . , k + 1. However estimate (6.12) is still
valid (possibly, with new constantsc2 and δ1, δ2 ). Moreover, Theorem 6.4 applies, provided
we perform the replacement

c2 7→ c2(1 + δ−1
1 ) (6.37)

in (6.33)-(6.35). Indeed, in view of the modification of summation proposed above for (6.3),
formula (6.36) is now

Vj
i

=
∞∑

k=j

Vkj
i
, W j

i
=

∞∑

k=(j−1)+

W kj
i
.

It can be readily seen that inequality (6.34) remains valid under the replacement (6.37).

Remark 6.6. The stresses induced by the displacement field (6.30) have anasymptotic repre-
sentation containing logarithmic packets at the exponents−1

2
and0:

σ(u; x, t) = σ̃(x, t) +
∑

i= I,II

χi(x)
[
r
−1/2
i

Si(ln ri, ϕi, t) + Ti(ln ri, ϕi, t)
]
, (6.38)

with σ̃ ∈ L∞(0, T ;V ℓ
γ (Ω)4) and the estimates

|||σ̃ ; t|||
V ℓ

γ (Ω)
≤ C2e

δ2t|||{f, g} ; t|||
Rℓ,1

γ V (Ω)
,

|||Si ; t|||
Hℓ(Υ)

+ |||Ti ; t|||
Hℓ(Υ)

≤ C2e
δ2t cosh

(
2

√
δ2
δ1
t| ln r|

)
|||{f, g} ; t|||

Rℓ,1
γ V (Ω)

.

(6.39)

Sinceℓ ≥ 2 andℓ− γ ∈ (1, 3
2
), the Sobolev embeddings and Lemma 3.2 allow to deduce from

(6.39) pointwise estimates onΩ for σ̃ and on any ring0 < ra ≤ ri ≤ rb for Si andTi.
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7 Further remarks on the logarithmic packets

In this section we give sufficient conditions for the presence of logarithmic packets in asymp-
totic expansions of elastic fields near the crack tips. We assume, moreover, the following inde-
pendence on time of the Hooke matrixA and the relaxation kernelB :

A(x, t) ≡ A(x) and B(x, t, τ) ≡ B(x). (7.1)

7.A Sufficient conditions for the presence of logarithms

Let us suppose as before that{f, g} belongs toL∞(0, T ;R ℓ,1
γ V (Ω)).

As a first insight into the possible appearance of logarithms, let us come back to the starting
steps of the construction of the series

∑
k u

k in (3.18). Expansion (4.35) is valid foru0 , which
now take the form, since the angular partsVj are constant int,

u0(x) = w̃0(x) +
∑

i= I,II

χi(x) r
1/2
i

∑

n= 1,2

bn,i(t)Vn,i(ϕi) with w̃0 ∈ V ℓ+1,1
γ (Ω)2. (7.2)

Therefore, in view of (3.19), the right hand side{f 1, g1} for u1 can be split according to

f 1(x, t) = f̃ 1(x, t) −
∑

i= I,II

χi(x) r
−3/2
i

∑

n= 1,2

b̄n,i(t)Pi
(
ϕ, ∂ϕ,

1
2

)
Vn,i(ϕ)

g1(x, t) = g̃1(x, t) −
∑

i= I,II

χi(x)r
−1/2
i

∑

n= 1,2

b̄n,i(t)Qi±
(
∂ϕi

, 1
2

)
Vn,i(±π) ,

where{f̃ 1, g̃1} ∈ L∞(0, T ;R ℓ
γH(Ω)), see (4.33), and

b̄n,i(t) =

∫ t

0

bn,i(τ) dτ . (7.3)

We further consider one of the crack tips and omit the subscript i = I, II.

Since u1(x, t) is a solution of the instantaneous elasticity problem (4.1)with right-hand
side{f 1, g1}, according to Lemma 4.4(iii) the asymptotic decomposition (6.2) ofu1 does not
contain logarithms associated with the exponent1

2
(i.e., V11

i = 0 in (6.3)) if and only if the
orthogonality condition (4.17) is satisfied with

F =
∑

n= 1,2

b̄n(t)P
(
ϕ, ∂ϕ,

1
2

)
Vn(ϕ) and G± =

∑

n= 1,2

b̄n(t)Q±
(
∂ϕi

, 1
2

)
Vn(±π).

Condition (4.17) will be satisfied for any right hand side{f, g}, i.e., for any coefficient (7.3) if
and only if

Y (V ∗
j |Vn) = 0 for n, j = 1, 2,

with

Y (V ∗
j |Vn) :=

∫ π

−π

V ∗
j (ϕ)⊤P

(
ϕ, ∂ϕ,

1
2

)
Vn(ϕ) dϕ+

∑

±

V ∗
j (±π)⊤Q±

(
∂ϕ,

1
2

)
Vn(±π) . (7.4)



45

We set, as usual,

Vn(x) = r1/2Vn(ϕ) , V ∗
j (x) = r−1/2V ∗

j (ϕ) . (7.5)

Multiplying (7.4) with r−1 dr = r−1/2r−3/2r dr , integrating inr ∈ (1, 2), with the change to
the Cartesian coordinates in the annulusΞ = {x : r ∈ (1, 2), |ϕ| < π}, yields

(ln 2) Y (V ∗
j |Vn) =

∫

Ξ

V ∗
j (x)⊤D(−∇x)

⊤Bi(ϕ)D(∇x)Vn(x) dx (7.6)

+
∑

±

∫ 2

1

V ∗
j (x1,±0)⊤D(∓e2)⊤Bi(ϕ)D(∇x)Vn(x1,±0) dx1

=
(
BiD(∇x)Vn , D(∇x)V

∗
j

)
Ξ

=: Mnj .

HereBi(ϕ) is the limit (1.9) of the kernelB , cf., (5.2). Note that integrals over the circles∂B1

and ∂B2 , which appear when using Green’s formula, cancel each other, since their common
integrand is a homogeneous function ofr of order−1.

Let M be the2 × 2 matrix with coefficientsMnj .

Strain columnsD(∇x)Vn for n = 1, 2 are linearly independent inΞ. So areD(∇x)V
∗
j for

j = 1, 2. Therefore, one can find a matrixBi(ϕ) such thatM is non-singular2. In such a case
the conditions defined by (7.4) are not satisfied in general, and the termu1 gets logarithms in
its asymptotic form (6.2). In addition, from the theory of weight functions (cf. [23], [28]) it
follows that the stress intensity factorsbj(t) in (6.13) can attain any value by the appropriate
selection of the loadg|∂Ω .

In the following assertion we prove that the same conditiondet M 6= 0 producesinfinite
logarithmic packets (or no singularity at all) in the asymptotic decomposition (6.30) of elastic
fields in viscoelastic anisotropic bodies with special cylindrical inhomogeneity of their relax-
ation kernel.

Theorem 7.1. Let the matricesA and B be independent of time variablest, τ , and the ma-
trix M with entries(7.6) be non-singular. If the functionln r → V(ln r, ϕ, t) in (6.32) is a
polynomial and the corresponding sum is finite, thenV(ln r, ϕ, t) = 0.

Proof. We suppose that

V(ln r, ϕ, t) =

k∑

j=0

1

j!
(ln r)jVj(ϕ, t) , (7.7)

and the coefficientVk 6≡ 0. We put the corresponding asymptotic expansion (6.30) intoproblem
(1.2). Using formulas (4.4) and (5.3), and assembling together the coefficients of the expression

2 The results in§5.C imply thatM ≡ 0 for any matrixBi independent ofϕ . A non-trivial dependence inϕ
is necessary to obtain thatM is non-singular.
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r−3/2 1
k!

(ln r)k in the interior equation and of the termr−1/2 1
k!

(ln r)k in the boundary condition
of (1.2), the following identity is derived

L(ϕ, ∂ϕ,
1
2
)Vk(ϕ, t) = −

∫ t

0

P(ϕ, ∂ϕ,
1
2
)Vk(ϕ, τ) dτ , ϕ ∈ Υ , (7.8)

N (∂ϕ,
1
2
)Vk(±π, t) = −

∫ t

0

Q±(∂ϕ,
1
2
)Vk(±π, τ) dτ . (7.9)

We here used the formular∂rr
1/2(ln r)j = r1/2(ln r)j {1 + j(ln r)−1} which shows that we do

not need to pay attention to the differentiation of logarithms, so that the terms of lower order in
(7.7) can be neglected.
From compatibility conditions (4.17) for problem (4.16) itfollows that for a.e.t ∈ (0, T )

∫ t

0

{∫ π

−π

V ∗
j (ϕ)⊤P(ϕ, ∂ϕ,

1
2
)Vk(ϕ, τ) dϕ+

∑

±

V ∗
j (±π)⊤Q±

(
∂ϕ,

1
2

)
Vk(±π, τ)

}
dτ = 0

for j = 1, 2, thus
∫ π

−π

V ∗
j (ϕ)⊤P(ϕ, ∂ϕ,

1
2
)Vk(ϕ, t) dϕ+

∑

±

V ∗
j (±π)⊤Q±

(
∂ϕ,

1
2

)
Vk(±π, t) = 0 (7.10)

for j = 1, 2 and allt ∈ (0, T ).

Let us prove now that the linear mapping of problem (4.16) is an isomorphism from
{
V ∈ Hℓ+1(Υ)2 : V verifies the orthogonality conditions (7.10)

}

onto the linear subspace
{
(F ,G±) ∈ RℓH(Υ) : (F ,G±) verifies the compability conditions (4.17)

}
.

Indeed, the mapping is an epimorphism in view of Lemma 4.4. Itis a monomorphism since,
owing to definitions (7.4), (7.6) and the assumptiondet M 6= 0, any element of the kernel
b1V1(ϕ) + b2V2(ϕ) subject to the orthogonality condition (7.10) is zero.

Therefore, problem (7.8)-(7.9) leads to an homogeneous Volterra equation of second kind
on Υ, which admits only the trivial solution. ThusVk = 0 and we have a contradiction which
completes the proof of theorem.

7.B An interface crack

In this section, we are going to construct explicitly a singularity containing an infinite logarith-
mic packet for the case when the relaxation kernelB(ϕ) takes two distinct values in the lower
half-planeϕ ∈ (−π, 0) and the upper half-planeϕ ∈ (0, π), corresponding to two different
isotropic materials.Stricto sensu, this case does not satisfy the assumptions adopted in the pa-
per, since it is supposed in (1.9) thatϕ 7→ B(ϕ) is smooth. Nevertheless all our results can be
extended to the new framework of a piecewise constant relaxation kernel, see Remark 2.3.

As a fundamental ingredient, we use a formula giving the imaginary shift iν in the spectrum
(4.13) for an interface crack.
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Lemma 7.2. Let O be the tip of the interface crack{(x1, 0) : x1 < 0} between two isotropic
materials with Laḿe constants(λ1, µ1) and (λ2, µ2). Each material fills a half-space,x2 < 0
and x2 > 0, respectively. The spectrum of the Mellin operator pencil associated with this
transmission problem at the pointO has the form(4.13)with

ν =
1

2π
ln

(
λ1 + µ1

λ2 + µ2
· λ2(µ1 + µ2) + 3µ1µ2 + µ2

2

λ1(µ1 + µ2) + 3µ1µ2 + µ2
1

)
. (7.11)

Proof. Formula (7.11) is deduced from explicit calculations made in [11,§3.3] (we refer also
to [13] for this type of formulae) : We find in (3.27)loc. cit. that

ν =
1

2π
ln
γ5 − γ6

γ5 + γ6

.

Going backward in the paper, we find formulas forγ5 and γ6 as functions ofµ1 , µ2 and the
Poisson ratiosσ1 , σ2 . And we arrive at

ν =
1

2π
ln
µ1(3 − 4σ2) + µ2

µ1 + µ2(3 − 4σ1)
. (7.12)

Replacingσk by its expression with respect toλk andµk :

σk =
λk

2(λk + µk)
,

we find (7.11).

Remark 7.3. From formula (7.12) we easily deduce thatν = 0, i.e., µ1(3 − 4σ2) + µ2 =
µ1 + µ2(3 − 4σ1) if and only if theDundurs relationis satisfied

µ1

µ2
=

1 − 2σ1

1 − 2σ2
. (7.13)

See also [11, (3.25)].

Let us consider the situation where:

– The Hooke matrixA is that of an isotropic material of Lamé constants(λ, µ),

– The relaxation kernelϕ 7→ B(ϕ) (still independent of time) is defined forϕ < 0 (i.e.,
x2 < 0) by the matrixB− of Lamé constants(λ−, µ−) and forϕ > 0 (i.e., x2 > 0) by
the matrixB+ of Lamé constants(λ+, µ+).

A andB± are of the form (1.14) withλ, µ andλ±, µ± , respectively.

We are going to construct an infinite logarithmic packet for the creep problem associated
with A andB ≡ B± by a comparison with the singularities of the interface problem of purely
elastic material lawA + εB± whereε is a small parameter.
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Lemma 7.4. Let iν(ε) be the imaginary shift of the spectrum associated withA+ εB± . Then

ν(ε) =
1

2π
lnκ(ε), (7.14)

whereε 7→ κ(ε) is analytic in a neighborhood of0. The Taylor expansion ofκ at 0 starts with

κ(ε) = 1 + εκ1 + O(ε2), ε→ 0, (7.15)

with
κ1 =

µ

(λ+ µ)(λ+ 2µ)
(λ+ + µ+ − λ− − µ−). (7.16)

Proof. We use formula (7.11) with

λ1 = λ+ ελ−, µ1 = µ+ εµ−, λ2 = λ+ ελ+, µ2 = µ+ εµ+.

We find for κ(ε) a rational fraction with numerator and denominator of degree 3 in ε and
tending to1 asε→ 0. Computingκ1 yields (7.16).

We assume that
λ+ + µ+ 6= λ− + µ− , (7.17)

which ensures thatν(ε) 6= 0 for 0 < ε < ε0 with ε0 > 0. Then the “first” singularities of the
interface crackA+ εB± have the form of

V (ε; x) = r
1

2
+iν(ε) V(ε;ϕ) = r

1

2eiν(ε) ln r V(ε;ϕ) ,

and their complex conjugates. It is possible to chooseε 7→ V(ε;ϕ) so that the dependence
is analytic andV(0;ϕ) 6≡ 0. Composingε-expansions ofν (7.14)-(7.15) andV with series
expansion of the exponential function we find that

V (ε; x) =
∞∑

k=0

εkV k(x) with V k(x) =
( iκ1

2π

)k

r
1

2

(lnr)k

k!
V(0;ϕ) +

k−1∑

j=0

r
1

2 (lnr)j Vkj(ϕ).

(7.18)
Since(A + εB±)V (ε; x) ≡ 0, we find that the termsV k of the series (7.18) satisfy

{L,N±}V k = −{P,Q±}V k−1 ∀k ∈ N . (7.19)

We come back to the creep problem by the following trick: We set

uk(x, t) =
tk

k!
V k(x). (7.20)

Thanks to (7.19), we check that the seriesuk solves the instantaneous problems{L,N±}uk =
{fk, gk} with {fk, gk} given by (3.19). Therefore the associated series (3.18)

∑
k u

k := u(x, t)
solves the homogeneous creep problem in an infinite cracked domain. Combining (7.18) with
(7.20) gives finally

u(x, t) =
∞∑

k=0

tk

k!

[(iκ1

2π

)k

r
1

2

(lnr)k

k!
V(0;ϕ) +

k−1∑

j=0

r
1

2 (lnr)j Vkj(ϕ)
]
.

Consideringχi(x)u(xi, t) produces a solution of the creep problem with smooth and flat right
hand side, containing an infinite logarithmic packet.
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Remark 7.5. a) By extension, the proof of the last formula shows that logarithmic packets also
appear when the set (4.13) does not coincide with1

2
Z, i.e., the exponents of power solutions

have non-trivial imaginary partsν(t).

b) Since logarithmic packets are present for aging materials if the Dundurs relation (7.13)
is violated, these packets can appear at a crack on the interface of an isotropic aging material
provided that the lower and upper parts of the material on both sides of the crack are of different
age.
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