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Analysis of crack singularities in an aging elastic
material

M. COSTABEL *, M. DAUGE T, S.A. NazAarRov ¥, J. SOKOLOWSKI §

Abstract

We consider a quasistatic system involving a Volterra Kemmedelling an hereditarily-
elastic aging body. We are concerned with the behavior glaliement and stress fields in
the neighborhood of cracks. In this paper, we investigadectise of a straight crack in a
two-dimensional domain with a possibly anisotropic matdew.

We study the asymptotics of the time dependent solution theacrack tips. We prove
that, depending on the regularity of the material law andvbleerra kernel, these asymp-
totics contain singular functions which are simple homegers functions of degre§ or
have a more complicated dependence on the distance variabl¢he crack tips. In the
latter situation, we observe a novel behavior of the singiuactions, incompatible with
the usual fracture criteria, involving super polynomiatdtions ofln » growing in time.
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1 Introduction

Aging and creeping processes in an elastic body cause thtcgbgioperties of the body to
change with time, in particular by making its internal sture compatible with its deformation
state by a relaxation of stresses. Such processes ar@eblatiow, so their modelization may
neglect the dynamical effects and be done by quasistatiateqs where the time is only
a parameter. For a proper description of aging viscoelastiereditary-elastic materials, the
postulated constitutive law between strains and stresseally includes an integral operator
with respect to the parameter

We do not consider here the models related to the evolutiogeometry of such aging
bodies,cf. [2]. So the resulting mathematical model of an aging bodegathe form of a
system of partial differential equations with respect ®dspatial variables = (x1, z5), and of
a perturbation in the form of an \Volterra integral operatithwespect to the parameter

Our paper is devoted to the mechanically relevant situatioere the body contains a crack.



1.A Crack in an hereditarily-elastic aging body

We consider the case of a two-dimensional bétgontaining a crack modelized as a straight
segment where traction free boundary conditions are pbegtr In the same way as in the
static problems, singularities may appear in solutionsichsnodels at crack tips. The precise
knowledge of these singularities is of main interest intinee mechanics.

In the case of the standard equations of pure linear elgstibe asymptotics of solutions
near crack tips have been known since a long time: As apicaf the general theory of [16]
to plane angles of openingr, we obtain that the asymptotics at each tip are combination o
homogeneous terms of the formV (). Here (r, ) are polar coordinates centered at the tip.
Explicit calculations for isotropic materials prove thaet\’s (the singularity exponents) are
half-integers%, % The generalization of this result to any homogeneoiso&opic material
law is due to [12] (see also [9] for a generality beyond etdsfi. The square root singularity
r1/2 for the displacement corresponds to an unbounded stressivgularityr—1/2.

Concerning homogeneousptropic aging viscoelastic bodies, it is already showf [40,

24] and others, that the singularities of stresses at thekdips are of the same form as in
the case of purely elastic bodies. However the stress iityeflastors become time-dependent.
This can be explained by an application of the so-calledespwndence principle, we refer the
reader to [38], [40] (see also Section 1.C for details).

In this paper, we make general assumptions on the instantamdasticity law (supposed to
be anisotropic and smooth), and on the relaxation kernpp@@sed to have a sectorial inhomo-
geneity). We prove that the standard square root singylarit’> of stresses is combined with
atermX depending in an holomorphic way anr (“logarithmic packet”). Such behaviour of
singular solutions is shown in [34] for scalar problems, vrexplicit calculations are available.

In view of its relatively slow growth ag — 0 (see (1.17) in the sequel) this holomor-
phic functionX leaves unchanged the power order of the stress singulbiatyever it makes
impossible to define the stress intensity factor (see (Ib&&)w) and to apply stress fracture
criteria.

In section 7 certain sufficient conditions are given for thespnce of such logarithmic pack-
ets. Certain fracture criteria in mechanics of cracks cabaageadily adapted to such changes
of the structure of singularities. Therefore an importasue for applications is to know the
precise conditions under which tegquare-root singularity subsisiis our context of aging ma-
terials. Using the approach of [8] (see also [9, 10]), we jaein section 6.A a positive answer
in the smooth case. More precisely, if the instantaneouskelsanatrix and relaxation kernel
are smooth functions of the spatial variables= (z, x2) then the logarithms are totally ab-
sent in the asymptotic expansions. Let us point out thateghwew the general anisotropic laws
make the angular parts of singularities different from tholstained in the case of instantaneous
elasticity problem.

There are explicit examples of hereditarily-elastic beda which logarithmic packets will
appear at crack tips. We provide such an example, which issenae representative and in-
structive since it shows that the well established statéimehe mechanical community that

“Pure square-root singularity of stresses are to be expgatethe case of the invariance,
with respect to the translations along the crack faces, efitistantaneous elastic moduli
and of the relaxation kernel”



is not true. Indeed, we obtain logarithmic packets for inttaeously isotropic homogeneous
materials provided that the crack is located at the intertaetween two different relaxation
kernels. Such a phenomenon may be the result of aging anceaavskrved if, for example, the
body is made of two parts, both of the same material, butistpat different moments: So the
second part is added after the first one has already changdd the aging process (cf. Remark
7.5). In our example, the instantaneous Hooke’s tensootsogic while the relaxation kernel
is also isotropic but takes different values in the upper lamer half-planes. We emphasize
that the presence of logarithmic packets is ensured by &iaelaetween the instantaneous
Lamé coefficients and the coefficients of relaxation keriigis relation resembles the famous
Dundurs relation [13] providing a condition for the preserf oscillating singularities at a
crack between two dissimilar isotropic elastic half-plane

The asymptotic forms are determined thanks to a particulapasty of cracks in purely
elastic media: In arbitrary anisotropic homogeneous bbdyrhain singularity exponent of
stresses is always equal tol /2, thereforeindependent of timeOur mathematical framework
does not apply to the case of time-dependent exponentjiduesds the case of aging media in
reference domains with angles different fr@m (V-notch). There exist results [5, 6, 7, 25, 26]
on asymptotic behaviour of stresses in hereditarily-elagjing media for small times — 0
and large times — oo, but such results are unfortunately not sufficiently pretisbe used in
fracture mechanics. The asymptotic structure of physietddifor time-dependent exponents
still remains an open problem.

1.B Mathematical formulation of the problem

In the framework of creep theory [2, 3], we consider a heegiljt-elastic aging, anisotropic,
nonhomogeneous two-dimensional bddywith a straight crack) = Q, \ M where, is a
smooth domain and/ represents the crack

M ={z = (x1,22) : |z1] <1, 25 =0} C Q. (1.2)

We denote the crack tipd, 0) and (-1, 0) by O' and O™, respectively, and the crack surfaces
by M*. Thus the boundary? is the union of the exterior boundaff), =: I and of the
crack surfaces\/*. Let n stand for the unit outward normal vector (column) to the latang
0Q. On M*, we haven = Fe, wheree, denotes the second basis vectoyl)". Note that
the normal is not defined at the tig3' (here and furthei stands for eitheil or II). In the
sequel we treat dimensionless coordinates and, by regcalaachievd = 1.

Besides Cartesian coordinates, we need polar coordifigtes) attached to each crack tip
O'. Of courser; = |x — O, and we choose; so that the crackl/ is included in the lines
Vi = *.

Equilibrium equations and boundary conditioae written in matrix form as follows

~V.)To(u;z = x x -
{D( Va) o(u;z,t) (1), Q=0 \M, (1.2)

D(n(x))To(u;z,t) = g(x,t), redN\{Otuo"}.

Here f = (f1,f2)" andg = (g1,92)" are the vectors ofolume forces and tractionse-
spectively, in the form of column vectors'(means transposition) andl(u; x,¢) stands for



Figure 1. The domain with crack.

the vector of stresseat the pointz and at the time, evaluated for thelisplacement vector
u = (u,uy)" . Moreover,D(V,) denotes the x 2-matrix of differential operators,

T+ (o 0 272,
D(V.) _(0 9y 27Y%0,) 7

The columne = (e11, €99, 21/%¢15) T of height3,

Vz:(g;), 0; 9 j=1,2. (1.3)

= )
8xj

e(u;z,t) = D(Vy)u(x,t),

denotes th&ector of strains The factors2-'/? are introduced into (1.3) in order to equalize
natural norms of the strain column above and the usual nostraih tensor of rank.

In an hereditary-elastic aging body,is determined according to tlenstitutive law
t
o(u;z,t) = Az, t)D(V,)u(x, t) +/ B(z,t, 7)D(V)u(z,7)dr. (1.4)
0

Here, the3 x 3-matrix functionsA and B are theHooke matrixand therelaxation kernel
respectively. They are symmetric by definition and, funthere, A(z,t) is supposed to be
positive definite:

ETA(z, 1) € > calé* VEER?, 2€Qq, te(0,7) (1.5)

with a positive constant,. We make the following smoothness assumption on the caattici
of A: For a fixed intege¥ > 0,

|VIA(z,t)| <y, 7=0,...,¢, 2 €Qy, forae.te(0,T), (1.6)

where V/w denotes the set of all derivatives of ordeiof the functionw. In other words,
entries of A are /-times continuously differentiable functions ine €}, (in the body without
crack) and measurable bounded functions @ |0, 7.



Since the relaxation kernel can possess a cylindrical &ojgp (cf. [3]) in the vicinity of
the crack tips, we assume a weaker regularity hypothesthéomatrix B. Let p be a positive
function onQ, \ {O' U O™} which coincides withr; in a neighbourhood 0b?, e.g.,p =
min{1, 1, i1 }. The relaxation kerneB satisfies the following weighted condition:

|VIB(z,t,7)| < cpplx)™, j=0,...,¢, x€Q, forae. (t,7) € T(T), (1.7)
with the triangle
T(T):={(t,7) : t€(0,T), 7€ (0,t)}. (1.8)

Assumption (1.7) is sufficient for the existence of a solutioto problem (1.2)-(1.4).

However the determination of asymptotic properties of thieton «(x, t) requires stronger
hypotheses on the relaxation kernel. We assume that at eadhtgp O, i = 1,11, B(x, -, )
stabilizes ag;; — 0 towards a matrixB*(y;, -, -) which only depend on the angular variable
¢i € (—m, m): For a suitablestabilization rateds > 3,

|vgv(B(x7t7 T) - Bi(gobta T))| S 635’ ri_j+6B7 .] = 07 te 767 YIS Q7 (19)
for a.e. (t,7) € T(T)
where entries ofB* are [-times continuously differentiable ip; € [, 7] and bounded in

(t,7) € T(T). Thus B' may have a jump through the cradk. We note that condition (1.9)
implies condition (1.7). Moreover, iB satisfies a smoothness condition like (1.6), namely

\VIB(z,t,7)| <cp, j=0,....0, v €Qq, forae. (t,7)€T(T), (1.10)

condition (1.9) is obviously fulfilled withB' := B(O'), which is independent af;..
We introduce the following notations for the second ordetigkdifferential operators in-
tervening in problem (1.2)-(1.4): For the instantaneousrafors, we denote

{ L(z,t,Vo)u(z,t) == D(=V.) Az, t)D(V,)u(z,t), =€, (1.11)

N(z,t, V) u(x,t) = D(n(x)) Az, t)D(V,)u(z,t), x€dQ\{0'uO1},

whereas the differential operators associated with tlaxation kernel are denoted by

P(z,t,7,V,) = D(=V,)"B(x,t,7)D(V,), x€Q, 115
Q(x,t,7,V,) = D(n(z))" B(x,t,7)D(V,), redN\{O'uo"}. (1.12)

With these notations problem (1.2)-(1.4) can be writterhan¢ondensed form,
{L(t), N(t)} u(t) +/0 {P(t,7),Qt, 7)ful(r) dr ={f(t), g(t)} (1.13)

on O x (ag \ {OTU oﬂ})  forae.te (0,7).

without any explicit reference to the dependence on theakbgiz of functionsu, f,¢g and
omitting the differential operatoY, .



1.C Main results and structure of the paper

Relying on the formulation (1.2)-(1.4) of the creep probjeve study the behavior of physical
fields u(z,t) ando(u; x,t) near the crack tips, i.e. as — 0, i = I, II. In particular we give
a precise description of the singularities of the stresd.fiel

The classical result of thesotropic elasticity theory, which serves as a base of fracture
mechanics, leads to singularities of square-root typeatthck tips. It is well known (see
e.g., [39, 4, 40, 24], and others) that the same type of samigigls occur in the creep theory for
instantaneously isotropicomogeneous materials with thestropic relaxation kerngli.e.,

A(t) 4+ 2u(t) A(t) 0
A(t) = A(t) At)+2ut) 0 |,
0 0 2(t)

(1.14)

N(t,T) 0
B(t,7) = ( N(t,T) N(t, )+ 24/ (¢, 7) 0 ) :
0 0 20/ (t, 7)

here\(t) > 0, u(t) > 0 are the Lamé coefficients. In the cited works several difiemathe-
matical approaches are used. However, at the final stagkGigymr implicitly, the main role
is played by thesorrespondence principlEf. [38, 35]), which states that

“The stress state of a plane homogeneous and isotropic lsadgependent of the Poisson
ratio o = A[2(\ + u)]7! in the absence of body forces, in the case of selfequilibdtim
exterior tractions applied on each connected componeriteobbundary.”
For problem (1.2)-(1.4) with the matrices defined by (1.148,Poisson ratio can be interpreted
as the composition of Volterra integral operators,

2= A(t)z(t) +/0 N(t,7)z(t,7) dr, 2+ p(t)z(¢) —i—/o w(t,m)z(t,7)dr,  (1.15)

which allows, in principle, to express the singular solntid the creep problem by means of the
singular solutions to the elasticity system. However,atle also to some difficulties connected
with the fact that the operators defined by (1.15) do not cotemWe refer the reader to [40]
for details.

We show in the sequel that for an arbitrary anisotropic adiegeditarily-elastic medium,
the stress singularities might change and depgwtdmorphicallyon the logarithm of the polar
coordinater;, so that, for any € (0,1/2),

o(u;x,t) = ri_l/in(ln Ti, i, t) + O(Tf_l/z) , o — O, (1.16)

As we prove in Theorem 6.4, for any € [—n, n] and a.e.t € [0, 7] the following estimate is
valid

}Zi(lnr, gp,t)} < cexp <d1t+d2\/t| lnr|> , (1.17)

wherec, dy, d, are positive constants . Thus, the functior- ¥(—z, ¢,t) grows faster than
any polynomialz", N > 0, but slower compared to any exponential functismp(cz),c > 0.



In this way, the power orden'i_l/2 of the stress singularity is maintained in the creep theery a
well. However, in opposition to pure elasticity, the protuc
.1/20(u; x,t) (1.18)

Ty

with fixed ¢ andt may have no limit ag; — 0. Therefore, the usual definition of the stress
intensity factors, referring to the limit of (1.18) at = 0 with r; — 0, do not make sense
any more, which invalidates certain fracture criteria. hmstcontext, the conditions on the
model which assure the absence of logarithmic packets arepafrtance, in particular for the
applicability of classical fracture criteria to the creeplgiems. We prove that if3* in (1.9)
does not depend op;, then the angular paX® in (1.16) does not contailmr; at all. At
the same time, we point out certain sufficient conditionsclwlguarantee the appearance of
logarithmic packets in (1.16).

The paper is organized as follows. In section 2, the claksiethod for Volterra equations
is applied to obtain the existence of a weak solution to @noi(1.13) defined by (1.2)-(1.4). In
section 3, we prove a basic regularity result in the form oémponential estimate in for the
solutionu(z, t) in some suitable weighted Sobolev spaces with respect tepthtal variable
z. These weighted spaces contain the standard singuldrities'/? of the stresses, thus the
displacements described by these spaces aré'nap to the crack tips, in general.

In the next two sections 4 and 5, we prepare the material ®optbof (done in section 6)
of a splitting of the time dependent solutiafiz, ¢) into a regular part and a singular part made
of two logarithmic packets. Sections 4 and 5 are devoteddangtantaneouproblems, i.e.,
the problems where the timeis simply a frozen parameter in the Hooke matrx and the
Volterra kernel is absent (or considered as an independghitirand side through a bootstrap
procedure).

We gather in section 4 classical material related to corsgmatotics for elasticity solu-
tions, namely the Mellin transformation and the main siagties. In section 5 we combine
the asymptotics for the instantaneous problem with thegtiag procedure. This results in new
original estimates on finite logarithmic packets of arlitreength. Relying on the approach
initiated in [8], we also investigate the situation of a #iabd kernel B* independent of the an-
gular variable: We prove in this case that we are stayingarstime class of fields with separate
asymptotics without logarithms, along the whole bootspragredure. Finally in section 6, we
come back to the time dependent problem and prove the redrdesdly mentioned above. We
end by a discussion of the logarithmic packets in section 7.

2 Existence of solutions and exponential estimates

In this section, we use a standard method for Volterra egostisee e.g. [19], [15]) to derive
existence and estimates fofiaite energysolution to problem (1.13).

We will use everywhere the following generic notation: Fdanach spac# with norm
| -1l 5, let Lo (0, T; B) denote the space of abstract functions in the intef@al") with values
in the space3, equipped with the norm

|U; T, =esssup|U)], : te(0,T)}.



2.A General method for Volterra equations

For the convenience of the reader, we provide the existamtamiqueness result for an abstract
\olterra equation

+ /t B(t, T)u(r)dr =f(t), fora.e. t € (0,7), (2.1)
0

where®d(t) : ® — R andB(t,7) : © — R are families of continuous operators between
the Banach space® andfi. We assume moreover that the operati(s) are invertible and
that the inverse operatof(¢)~' and the operator®(¢, ) are measurable and bounded for
t € (0,7) and(t, 7) in the triangle7 (T) (1.8), respectively.

Theorem 2.1. For any f € L..(0,7;9R), there exists a unique solutian € L., (0,7;%R) of
equation(2.1). Moreover there holds the estimate

i tll, < coe™ [If; tly, . for ae.te (0,7), (2.2)
for any ¢y and d, such that
co > ess suplRA(t) |, and & > esssup||A(t) Bt 7). - (2.3)
te(0,T) (t,7)eT(T) -
Proof. (i) Existence. We search the solution in the form of the series
u(t) =Y uk(t), (2.4)
k=0

where fork > 0

A(t)uk (t) = Soxf(t) /%m lrdr .
Here we have sat~! = 0 andd, ;. is the Kronecker symbol. Let us prove the estimate
lu®; tll o < co(kD) ()" IIf s tl, , forace.t € (0,T), (2.5)

by induction. Since fork = 0 estimate (2.5) is evident, it suffices to show the estimata wi
k = K > 0 can be deduced from the the estimatesifet K — 1. To this end, in view of (2.3),
we have

il < o [ g dr <o [ I dr <
(5075)

t
<t [ T slirly dr < %0 i,

Estimate (2.5) implies the convergence of series (2.4) dsaseestimate (2.2) which follows
by the Taylor formula for the exponential functiom— et .

(i) Uniqueness. Ifu is a solution of the homogeneous equation (2.1) affd = 0 for a.e.
t € (0,tp), then

llustly < do(t —to)llustly  VE=to,

and thereforey(t) = 0 fora.e.t € (0,¢,) with anyt, <ty + d,'. The proof is completedd
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2.B Energy solutions

We come back to creep problem (1.2)-(1.4). We impose thewiatlg integrability conditions
on the data:

f € La(0,T5Lo(Q)", g € Lo (0,73 Lo(09))”, (2.6)
together with the compatibility conditions (selfequiliom of the loading for a.et)
(f(1),0)a+ (9(1),v)ea =0 YveR, aete(0,T), (2.7)

whereR = {(c1 — coza, 2 + com1) : ¢, € R} denotes the linear space of rigid motions. In
(2.7) (-, -)= is the scalar product in the spaég(=), the same symbol is used for the scalar
product of vector functions and we denote for simplicity(=)" = L, (=;R") for anyn € N.

To ensure uniqueness of the solution, the following normadilbn condition is imposed:

(u(-,t),v)o=0 YveR fora.e.te(0,7). (2.8)

Theorem 2.2. Under conditiong2.6)-(2.8), there exists a unique solution
u € Lo (0,T; H'())?, (2.9)

to problem(1.2)(1.4). Moreoveru satisfies the estimate

B tl sy < O™ U7 8y g+ 9520 oy | (2.10)
for t € (0,7") and some positive constantsand o .
Proof. Let us set

D ={ue H'(Q)” : u satisfies orthogonality conditiof2.8)} .

and let?R be the dual space @’ for the extension of thé.? duality. Condition (1.5) together
with the Korn inequality

|ull i) < Col|D(Va)ullpy) Yu €D,
(see, e.g. [36], [17]), implies that the operat@r&) defined by

A(t) (u) = <v — /Q [D(V,)o(2)]T Az, ) D(V, )u() dx)

are isomorphisms fro® onto R with bounded inverse2((¢)~'. The operators

B(t, 7)(u) = <v — /Q (D(V.)o(x)]T B(z, t,7)D(V.)u(z) dx) ,
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are well defined fron® into R because, a®(V,)v(z) = 0 for all rigid motionsv € R, — cf.
the structure of matribxO(V,) in (1.3):

/ DV, )o(2)] Bz, t, ) D(Va)u(x) de =0 YueD, veR.
Q
Let the right hand sidé¢(¢) be defined as

f(t) = <v — /Qv(x)Tf(x,t) dx + /aQU(x)Tg(x,t) da).

It is clear that conditions (2.6)-(2.7) imply th@tbelongs toL..(0,7;R). Therefore Theo-
rem 2.1 can be applied: It yields existence and uniquenessalution for problem (1.2)-(1.4),
and estimates (2.10}J

Remark 2.3. For the conclusions of Theorem 2.2, weaker hypotheses andhéx coefficients
A(z,t) and B(z,t, ) than those formulated in (1.6) and (1.7) would be suffici€e only
needs thatd and A~! are uniformly bounded of x (0, 7)) and thatB is uniformly bounded
on Q x 7(T). In particular, piecewise constant on the half planestz, > 0 is admissible.0

3 Regularity of solutions

We have just seen that a direct application of Theorem 2 dsgive existence of a finite energy
solutionu(zx, t) for problem (1.13). The same statement also allows to pregelarity results
for v if the data{ f, g} are more regular and if we know suitable couples of sp&gesi) for
which Theorem 2.1 applies.

But the presence of the crack induces the appearance ofaiitigs for the solutions of the
instantaneous problen®§(¢). The first ones of these singularities have the form

Voa e Vi),

with a smooth functiorV; of the angular variable;. Therefore, the spac® should contain
such functions. The use of standard Sobolev spaces is veitative: We could takef{*(£2)

for s < g only. A much more appropriate option consists in choosingisted Sobolev spaces
of Kondrat'ev type, [16]. These spaces will also serve tatisetstronger assumptions on the
data which we will use on the rest of the paper in view of thegtigation of the leading crack
singularities.

3.A  Weighted Sobolev spaces

Let €°(€2) be the space of the functions fro@t° (2 U 9€)) vanishing near the crack tip§*
and being smooth up to the crack surfaces, i.e., jumpsa/oare allowed. With this notation,
the Kondrat'ev spac;"((2) is defined forg € R andm € Ny = {0,1, ...} as the completion
of the space of smooth functio®° (€2) with respect to the norm

m o ) ) 9 1/2
il = (D2 07Vl 0 ) (3.1)
j=0
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wherep = min{1, r1, 71} is the same weight function as in (1.7).

We also need trace spaces for> 1. Note that the boundar§s? is the union of the external
boundaryd(), and the two sided/* of the crack. Thus a trace on 05 is equivalent to the
data of

¢0:¢‘3QO and ¢i:¢‘Mi‘
Let us denote the trace operator— w \ 20 PY To, the trace operator 02, by ') and the
trace operators o/ * by T'z.
Since 0% is disjoint from the crack, it is obvious thdtg(vﬁm(ﬁ)) coincides with the

standard trace spadé™'/2(9<). On M+ and M, we introduce the spacé%m_l/Q(Mi)
as the closure of° (M=) for the norm (3.2):

m—1 1/2
(m_1 2 .
H¢||Vén_l/2(Mi) = {Z ||pﬁ ( 2tk 8f¢HL2(M) + I;E,,B(d])} with

k=0

o [f

Here 0f denotes the partial derivative of orderin z,, i.e., along the crack. As shown e.g. in
[18] the spacé/ﬁm_l/z(MJf) coincides with the trace spad® (V;(12)), and the same faFy .

Finally we choose to denote uyﬁm‘m(asz) the direct sum

2 dxy dy

|2y —yn?

(3.2)

plar)” 7M1, £0) — plyn)” O (yn, £0)

Vi (00) = BV @ Vi A () @ v () (3:3)

Thanks to the density of smooth functions which are zero erctack tips, we can show that
T'o(V4(€2)) coincides Withvﬁm_l/z(éQ) algebraically and topologically. In other words

Y eTo(VEQ) < <o H"?00) and ¢* e V)P (M%), (3.4)

Although the norms (3.1) are well suited for the descriptidthe asymptotic behavior of
the solutions at the crack tips, the operators defined byristantaneous Neumann elasticity
operators (1.11) with domaibfé”(ﬁ)? are never of index zero, whatever the choice of the
space weight inde®, in contrast to the operator with domath' ().

The reason for this is the presence of non-zero translatipms+ ase, in the asymptotics
of solutions at each crack tip as soon as the right hand sieiie regular than the dual of the
energy spacéi!(£2)?, together with the following two facts:

(i) If £ — 3 < 0, the weighted spactz(ﬁ”l(Q)2 is not contained in the energy spabé (2)?,

(ii) If £ — 5 > 0, non-zero translationg, e; + ase, do not belong td/ﬁ“l(Q)Q.

Thus, translations are viewed sisgularitiesof degree0 by the weighted scaléfﬁ“r 1(Q)2.
Constants and, more generally, smooth functions in thee€iart variabler, are made ad-
missible by a simple modification of the weighted norms (3dading to the introduction of
the so-calledstep-weighted spacg87, 32] which in the case under consideration are closely
connected with weighted Sobolev spaces [21].
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They can be defined as follows: Let € Ny andj € R, with —1 < 3 < m. For any integer
s,m—p—1<s<m,the spacé/ﬁm“’s(ﬂ) is the completion of£>°(Q2) := €°(Q2) + C> (1)
with respect to the norm

m+1

1/2
ol s (Zr|pﬁ<+1+ﬂww||m+2||pﬂ “Viulll,g) - (3S)

j=s+1

We note that the conditiom — 3 — 1 < s ensures that any smooth functiane C*>*(Q) has
a finite norm (3.5). If we choose = m, we obtain the alternative class of weighted spaces
HFHH(Q) = Vﬁm“’m(Q) defined as the functions with finite norm

m+1

[ — (Z PRI (36)

where the weight is independent of the derivation order. fbHewing result is a consequence
of Hardy’s inequality and is proved in [21] (see also [33]0T.h.5.6 and Lemma 6.1.5).

Lemma 3.1.

() Letm € Ny and 5 € R, with —1 < 5 < m. We assume that is not an integer. For any
integers with m — 3 — 1 < s < m, the spacef*!(Q2) coincides with the spac\?fﬁm“’s(Q).
(i) Forany ¢ > m, the spaceH ;"' (Q2) coincides with the spack;"*!(Q2).

With the particular choice ofn— 3 € (0,1) ands = 0, the spacé/gm“’o((z) is well defined
(and coincides withHgL“(Q)). We emphasize that, in comparison with the spa@e™ (Q)
that either includes, or excludes the constamtnd the functiorin r; simultaneously, the step-
weighted spacé/ﬁm“’O(Q) with m — ¢ € (0,1) includes the translation rigid motions, i.e.
constants, and excludes the displacements resulting frermancentrated forces at the tifs,
I.e. logarithmic functions.

Let us also note that for a functian € Vﬁm“”(ﬂ) with m € Ny andm — 5 € (0,1) the
following relations are a consequence of a variant of Hardyequality, see [21, Lemma 1.2]:

w(z) =o(x)+ Y x'(x)b, @eVyTQ), beR, (3.7)
i=LII

1@y + 2 10l < ellwllymoogg, - (3.8)

i=LII

Here x' € C5°(Q) is a smooth cut—off function, which is equal to one in a ne@ithood of
the point O, with the propertyy!(z)x™(z) = 0 for z € Q. Thus the supports of the cut—
off functions are disjoint and the functiong (respectivelyy!!) vanish in a vicinity of O
(respectivelyO!). We can choosg* such thatsupp x' C B! := {z : |z — O] < 1}.

The sum in the left hand side of (3.8) is a norm in the spﬁ;ﬁl’o(ﬂ) equivalent to the
norm (3.5), which means that the spacg™°(Q) = H;*'(Q), with m — 3 € (0,1) can be
considered as weighted space with separate asymptotics
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Let us point out that all the weighted spaces we have intredlace independent both alge-
braically and topologically on the specific choice of thedtions p and x*.

We end this section by a statement which generalizes (3.8)-and is proved in a similar
way, see [21, Lemma 1.3]. We use Cartesian coordinate sgstem (x; F1, 25) =: (xi1, Ti2)
with centerO*.

Lemma 3.2. Letm € Ny and 5 € R, with —1 < 3 < m. We assume that is not an integer.
Let s be the integral part ofn — 3. Then any functiom & Vﬁm“”(Q) satisfies the following:

(i) There exist unique real numbetg, |a| < s, such that

w(z) =o(x)+ Y x'(x) Y b % we Vit (Q), (3.9)

i=LII |a|<s

||w||vﬁm+1(g) + Z Z ‘bta| < C||wHV[;n+1,S(Q) . (310)

i=LIT |o|<s

Here, fora = (a1, as), 2 denotes the monomiat’ z{7 and a! = a;las,!.
(i) The left hand side df3.10)is a norm in the spacéfﬁm“’s(ﬂ) equivalent to the norn(8.5).
(iii) The constants are the pointwise traces at the crack @' of the derivatives ofi:

b = 0°w(0Y, |a| <s, i=11IL

(iv) The constantsg are all zero if and only ifw belongs tovﬁm“(Q).

(v) If, moreover,s < m (i.e., 3 > 0), the spacd/ﬁm“’s(Q) is continuously imbedded i&°(€2),
with €%(Q2) the space of-times continuously differentiable functions up to thermary of 2.

3.B Basic regularity

We will apply Theorem 2.1 again to problem (1.2)-(1.4) in svrpair of space®, R: The op-
erator2(¢) is defined by the differential expressidi (z,t, V. ), N(z,t,V,)}, the domain®

IS taken as finite codimension subspacéf/ﬁfl’l’o(ﬂ)2 and the target space as finite codimension
subspace ofz;V(€2) with

REV(Q) == VETH(Q)? x V2 (09)2 . (3.11)

Here/ is the positive integer introduced in (1.6) and (1.7) and ssuael — 3 > 0.

The following assertion can be proved either by combinirgdbercive weak formulation of
problem (3.12) (cf. Theorem 2.2) and the Kondrat'ev theoryy calculations the dimensions
of kernel and cokernel for the elasticity operatoD — R (see [33§6.1] for details).

Theorem 3.3. Let the timet be fixed. The instantaneous elasticity operator

u— {L(z,t,V,), N(z,t,V,)}(u) on Qx (d9\ {0"u O™} (3.12)
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defines an isomorphisfi(t) : ® — MR with

D = {ueV;"(Q)* : u satisfies orthogonality conditiof2.8)} ,

: . » (3.13)
R={{fg}€ RéV(Q) : {f, g} satisfy compability conditio(2.7)}

if and only if ¢ — 8 € (0, 3).

Remark 3.4. By mere application of Lemma 3.2 about the splittingwjf“’o(ﬂ) we find that,
if £— 3 e (0,3) the solutionu of the instantaneous elasticity operator with g} € RV (Q)
has an asymptotic expansion of the form

u(x) = a,g(l’) + Z Xl(x) (al,i e| + Q2i eg) s (314)

i=LII

whereug € Vé“(Q)2 anda, ;, ag; are real constants. We recall that and e, are the unit
vectors inR?. O

Let us emphasize that the upper bou§1cd)n the weight is due to the strongeshgulari-
ties at the crack tips, which are associated with éxponent}, as already mentioned. Note
that formula (3.14) will appear as a particular situatioraghore general statement about the
asymptotics of the solution of the instantaneous problem as 0, see (4.23).

Then we can apply the functional framework in Theorem 2.1 @oge:

Theorem 3.5.Let! € N := {1,2,..} and 8 > —1 such that! — 8 € (0, 3). Let the right
hand side of the probleii.2) verify condition(2.7) and the regularity assumption:

{f,9} € Lo (0,T; REV () . (3.15)

Then there exists a unique solutiore L, (0, T; VBM’O(Q))2 to problem(1.2)-(1.4) such that
the orthogonality conditioii2.8)is satisfied. The following estimate holds true,

bt thyeinoggy < Col™ I, 0}t ooy (3.16)
with positive constants, and ¢, which are independent of, g and¢ € [0, T].

Definition (3.5) provides/; *(Q) ¢ H'(Q) for ¢ — 8 € (0,1). Therefore Theorem 3.5
gives, in a more precise way, the differentiability propesiof the energy solution (2.9).

Proof of Theorem 3.5. Theorem 3.3 gives that the operat@$) defined by (3.12) are iso-
morphisms fron® ontoR. Let

B(t,7) ={P(-,t,7,V.),Q(-,t,7,V,)}

be the Volterra operator kernel. Let us prove thHt, 7) defines a family of continuous opera-
tors: © — ‘R.
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The compatibility condition (2.7) was already shown in tiheqs of Theorem 2.2. Therefore
it only remains to prove that there exists> 0 such that for any vector function — u(x) in
© and fora.e(t,7) € T(T)

||{P(7 ta T, Vm)7 Q(J t> T, vx)}uHRgv(Q) S C||u||vé+170(9) . (317)

We rely on the splitting (3.14) for the vector functien= (uy, us) € Vﬁ“l’o(Q)?. Obviously
there holds

||{P('>ta7—’ vx)>Q('at>T> VI)}aﬁHRéV(Q) < CHﬂﬁHVg’H(Q) :

Moreover, thanks to the right factdp(V,) in {P,Q}, the term{P(-,¢,7,V.),Q(-,t,7,V,)}

is zeroover constants (note that here, it would not be enough tkantite orders of the operators
because of the possible angular dependency of their ceeifg)i Therefore we have obtained
(3.17). Thus Theorem 2.1 can be applied and yields the sestiftheorem 3.500

In the case of problem (1.13) the series (2.4) for the digpteent fieldu takes the form
u(z,t) = Z uF(z,1), (3.18)
k=0

where u* is the solution to problen{ L, N}u* = {f*, ¢*} with the orthogonality condition
(2.8) and the right hand sidds*, ¢*} given as follows :{ f°, ¢°} = {f, ¢} and fork € N,

{f(z,1), ¢"(2,1)} = ~{D(=V.) 'Yz, 1), D(n(2)) Y*(z, 1)},

t
with  Y¥*(x,t) = / B(z,t,7)D(V)u" " (z,7)d7r. (3.19)
0
Thus, the intermediate estimates (2.5) in the proof of Téwec2.1 give for problem (1.13)
1
muk ; tm V§+1»0(Q) < Co (50t)ky‘|‘{f> g} ; tmRév(Q) : (320)

4 Singularities of instantaneous problems with smooth data

For/ — G € (0, %) as specified in Theorem 3.5, the elememtsf the spacevﬁ”m(ﬁ)2 have
pointwise traces at the crack tigg' and O, but their associated stress field&u; z) have
not. The square root singularities of the instantaneoublenas prevent any further use of
Theorem 3.5 to improve the regularity result on the solutign ¢) of the creep problem. Since
itis important to have a description of the non-continucar pf the stress field, we come back
to the instantaneous problems

{ L(z,t, V) u(zx) = f(x), x e, 4.1)
N(xz,t, V) u(x) = g(x), r e dN\{O'uOo}

at fixed timet.
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We consider this instantaneous problem (4.1) witie H'(€2) and the right hand side

{f,g} € RIV(Q) for a weight indexy such that! — v > 3. From Theorem 3.3 we know
thatu belong to\/ﬁ”l(Q)2 for all 8 suchthat/ — 8 < %, but the limit is sharp and does not

belong ton“(Q)2 in general. In this range of weights, the regularity resak to be replaced
with a splitting result into regular and singular parts.

In this section we recall known techniques and results engimat the description of asymp-
totics of u, in order to prepare for the next step, in which we have to thkévolterra kernel
into account.

We start by the introduction of the Mellin operator penciés@aciated with the operators
in (4.1) at the crack tips, and continue by recalling the Meitansformation and its use to
obtain splittings in regular and singular parts of solusioriParticular features of the pencils
corresponding to crack problems for linear elasticity &entaddressed. The splitting results
are finally given first in the case of flat data, then for gensnmaboth data.

4.A Mellin operator pencils

The regularity properties (and the singularities) of solhg to problem (4.1) are determined
by two model problems corresponding to each of the two crgsk®® for i = I,1I. These

problems are obtained by freezing the coefficienté gind N at O', defining L' and N*=:
L{(t,V,) = D(=V,)TA(O't) D(V,) 4.2)
N¥(t,V,) = D(¥ey)TA(O'1) D(V,). '

These problems are set on the plane with the semi-infinitkcra
K:={zieR: ri>0, |oi| <7}
and are written as :
{ .L‘(t, Vo) U(r) = Fay), €K, 43)
N V) Ulr) = GF(wiy), o= £,

The properties of problem (4.3) are related to the resoloéthie associateMellin operator
pencil A'[t]. In order to define this symbol, we first write the operator&)# polar coordinates

(r, @) = (ri, ¢1):
LY (t, V) =17 2Lt 0,0,,70,), N'ZE(,V,) = r'"N'=(t,0,,70,), (4.4)
Here the angular variable belongs to the interval
T = (—m,m),

r to the half-axisR ; andd, = 9/0¢, 9, = 9/0r. The Mellin operator pencil’[t] associated
with problem (4.3) is the holomorphic operator valued fimetC > A\ — A'[t](\), where
A'[t](N) is the operator acting iff according to

{ . — {Ei(tv 90,8%07)‘>> /\/'ii(t,a@,A)},

AN = HAH(Y)? — RYH(T).
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Here R‘H(Y) is the target space:
RH(Y) := H7(T)? x R? x R%

We recall that the time € [0, 7] is fixed. Nevertheless, acts as a parameter and we will keep
in our notations the dependency of the operators.on

4.B Mellin transformation

We fix one crack tipO € {O', O™} and omit the index € {I,II} in the notation of co-
ordinates, writingr and ¢ instead ofr; and ¢;. After Kondrat'ev [16], the fundamental
tool for the investigation of problem (4.3) is the Fourieaglace transform with respect to
the variablet = Inr, in other words the Mellin transform, which associates tauaction
Ry x (—=m,7) > (r,0) — U(r,0) with compact support im the function defined for alh € C
by

M[U]()\,H):/O oor_’\U(r,Q) %

The inverse Mellin transforra\/lg1 can be expressed as (wighe R)

Ur,0) = —— /R L M) a (4.5)

2

The Mellin transform can be naturally extended to functibaknging to the weighted spaces
of the classV': In the infinite sectoiK of opening2r we define the weighted spacé$(K)
like in (3.1) with the distance functiop replaced with the true distaneeto the vertexO of

K. The main result for the validity of the Mellin transform is

Lemma4.1. Forany U € Vﬁ“l(K), the Mellin transformM U] is well defined for any\ with
real part Re A equal to/ — § and the inverse Mellin formul@.5) holds foré = ¢ — 3.

We also define correspondingly the weighted trace spﬁ§é¥2(8K) , compare with (3.2),

and the product spacg;V (K) for right hand sides, see (3.11). FoF, G*} € R;V(K) such
that (4.9) holds, we have for anywith Re A = ¢ — -

AN MUA) = {M[r*F], M[rGF)}. (4.6)

The above relation is the reason for the definitionft].

From the general theory Agranovich-Vishik [1] we know théft]()\) is invertible for all
A outside a discrete sét'. Since the sek' coincides with the set of such that the kernel
of A'[t] is not reduced td0}, X' is called the spectrum ofi’[t] and for A € ' the non-zero

solutions of '
Lt 0,0, N U(p) = 0, peT,
Nii(taagm)‘)u((p) - 07 (P::tﬂ',

are the eigenvectors of![t]. Moreover, the power-law function of degree= C

(4.7)

Uz, t) =1 U(p,t), (4.8)
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is a solution to problem (4.3) with zero right hand side:
{ Lit,V,)U(z;) = 0, m5€K,

. 49
NV Um) = 0, g . (*9)

if and only if A\ belongs toX:! and/ is a corresponding eigenvector. Finally;— A[t](\) !
is meromorphic on the complex plane with polesih

The fundamental result concerning the solvability of thedeigroblem (4.3) follows, cf.
[16, §1]:

Theorem 4.2. Let Re &} be the set of real partof the elements of:.

(i) Let 3 € R, such that3 ¢ ReX'. Then problem(4.3) realizes an isomorphism from
VT (K)? onto RSV (K). We have the representation formula for its solution:

U=t AT TTHOA) AN, with H = (M[2F], M[rG*]}

20T JRer=t—p

and there holds the estimate

(ii) Let furthermorey < 3, such thaty ¢ Re X, For {F,G*} € R{V(K) N RIV(K), let Uy
and U, be the solutions of proble(d.3)in Vﬁ”l(K)2 and V*!(K)?, respectively. There holds

Us=U, + i r* AN TPH(A) d (4.11)
2w C

Here C is a simple closed contour around all elementsifcontained in the strip
{AeC : {—-F<Red<l—~}.

The key argument for the above results is the Mellin symbadiculus: The solutio/; is
found via the formula

Us = ML [A0) M2 F), MG} |

and the constan€'; in (4.10) is any upper bound fad'[t](A\)~! in the norm of continuous
operatorskR‘H(Y) — H*1(T)? equipped with the parameter-dependent norms [1].

Moreover,U{()\) := A'[t](A\)~'H()\) is a meromorphic extension of the Mellin transform of
Us tothe strip{A € C : ¢ — 3 < Re\ < ¢ —~}. Note that the residue in (4.11) is the sum of
the contributionsS{r} of each polev € ¥, with ¢ — 3 < v < ¢ — ~: For o > 0 small enough
(in the case of cracks any < % is suitable)

1 .
S{v}(z) = —/ P AN TH(A) dA. (4.12)
27 Jir—vl=e
If v is anon-zero element &f, it is a pole of orderl and S{v} has the form-"U () with an
eigenvectoi/ associated with the eigenvalue

1 Inthe case otracksRe X' coincides with the set of half-integers, $geC.



20

4.C Spectrum of the operator pencils, eigenvalue§ and 1

In our particular situation of a crack, we know much more dabéiuand the poles ofd'[¢](\) L.
Let us first recall that in [28], see also in [33%.4] and [30], it is proved that the spectrum of
the associated operator pencil coincides with

ZU{m+$+iv:meZ} v realindependentofn, (4.13)

in the general situation of the Dirichlet and Neumann protdéor arbitrary selfadjoint systems
which enjoy the polynomial property [29, 31]. The fact that 0 is well known for elasticity
equations in isotropic and orthotropic materials and waabéished in [11] for homogeneous
anisotropic elasticity. In [9] the equality = 0 is proved for arbitrary Douglis—Nirenberg
systems with the same boundary operators on the two cratcesry = +xn. The situation
v # 0 occurs e.g., with a crack inside the interface between tvisotnopic bodies, we refer
the reader to [13, 30, 11] for related examples.

We gather in the following lemmas the facts which we will us@ur analysis.

Lemma 4.3. (i) The spectrunkt contains integers and semi-integers, i ¥!,= %Z.

(i) All non-zero eigenvalues € 17 are algebraically simple, their geometric multiplicities
are equal to2. The full algebraic multiplicity of the eigenvalue= 0 is 4, its partial algebraic
multiplicities are equal t@®.

(iii) Eigenfunctions corresponding to positive integare N are traces onY of vector poly-
nomials of degree\, solutions of problen4.9). In particular, for each\ € N there are exactly
two linear independent polynomials.

For the specific problems considered in the paper, we areesttz only in the eigenvalues
A= % and )\ = 1, and in the corresponding power solutions (4.8) of probléra)(
The solvability of A'[¢](\) when X belongs to its spectrum is related to dual eigenfunctions

corresponding to the eigenvalue\ via the following duality product between functiolsand
U e HY(Y):

2UIU) = [ U L0 Ul d

=3

d ..
+ Z/{*(iw)T—N‘i(t,aw,)\)‘ U(£n)
T d)\ )\:5

Here follow properties concerning the eigenvalue- %
Lemma 4.4. We recall thatY is the interval(—m, 7).
(i) The power solution&.8) of problem(4.9) with A\ = 1 have a basis of the formiV; ;(z, t),
Vai(z, 1)} with
Vig(a, 1) = 1/ Viilp,t) and Vo(z,t) = r'/Vas(p,t). (4.14)

Thanks tq(1.6)we can choos®,,; € L« (0, T; C“(T))z, n=1,2.
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(i) The eigenfunction§);* )J corresponding to the eigenvaluel of problem(4.7) can be
selected so that the foIIowmg blorthogonallty conditisrsatisfied

X (Vni( ) [ V(1) = 0ny, nj=1,2, (4.15)

whereJ, ; is the Kronecker symbol, and as a consequence of the bouesedfV, ; in ¢, one
2

getsV € Lo (0,75 C(T))".
(iif) The boundary value problem
Lt 0, 00, ) U(p) = Flp), 9 €15 N0, 5)U(FT) =GF (4.16)

with the right hand sideg.F, G*} € R‘H(Y) admits a solutior/ € H*1(T)? if and only if
the following compatibility conditions are verified

/V 0. 1) Fly d(p—i-z (xm, )G =0, j=1,2. (4.17)

Any solution is determined up to linear combinatien¥; ; + c2V, ;. However by imposing the
orthogonality conditions

a unique solution is obtained. Furthermore, the followistjmate holds true
Ay ey < CILF G5 Hl gy (4.19)

Proof. The part(ii) is a particular case of general normalization and biortihadjty condi-
tions presented in [23], as it is given in [33, page 65]. In][BOprovided the mechanical
interpretation of the conditions, as well as the methodsetéction of the base$V, ;, Vs i},
adapted to different fracture criteria. The p@ij is the standard Fredholm alternative from the
theory of ordinary differential equationél

Remark 4.5. For isotropic materials, standard normalization condgiéor the eigenfunctions
V, ; and),; deal with the associated stresses on the polarfaxis- > 0, ¢ = 0} prolongating
the crack. As shown in [30], these normalization conditions

{(D(eg)eg)TA(O,t)D(Vz)Vnﬁ(iUla0):(QWT)_I/z(S”vl (normal'stress) 4 20

(D(e2)e1)TA((’), t)D(V ) Voi(z1,0) = (277)~Y25, 5 (shear stress)

can be satisfied for anisotropic materials as will.

Besides its first assertion which is derived with the helpmifde algebraic calculations, the
next lemma delivers the same facts about eigenvaltieas Lemma 4.4 abouf%.
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Lemma 4.6.
(i) A basis{W:i(z,t) = rW,i(p,t), Wai(z) = rWai(p)} of the power solution$4.8) of
problem(4.9)with A = 1 is given as follows

WLi(.T, t) =T1€e1 — Jngl(t) i Wg,i(],’) = T1€9 — I2€7, (421)

where Al(t) = £, A"(O 1) LA (O, t) € Loo(0,T)?,

0 2%1/2 A21) (A22 A23)
Ey = A= A" =
. (1 0 )’ (A31 7 A32 A33 ’

i.e., the matrix(A’, A”) is the lower2 x 3—submatrix of the matrix.

(i) There exist eigenfunctiond;* and W," associated with the eigenvaluel of problem(4.7)
so that the properties corresponding(ig and (iii) of Lemma4.4hold for A = 1.

Let us point out that the first solution in (4.21) correspotalthe loading along the crack
i.e.,ac(Wyi;z,t) = (c(t),0,0)T. The second solution in (4.21) is a rotation about the p6int
Note that the two other rigid motions, the shifts along thesax andz,, are presentin (3.14)
as detached terms of the asymptotics.

4.D Splitting of solutions for regular data with zero valuesat crack tips

We investigate the solutions provided by Theorem 3.3 when the data are more regular, but
still flat, which means that their traces at the crack tips, if theyteaie zero. The extension to
more realistic regular data is discussed in the next sedtign

Theorem 4.7. Let v be such that
v>-1 and (—~ve(1,3). (4.22)

Let{f,g} € RfV(Q) satisfying the compatibility conditiof2.7) and « be the energy solution
of the instantaneous problef#.1) satisfying the orthogonality conditid2.8). We know, Theo-
rem 3.3 thatu belongs toVé*LO(Q)2 for all 5 such that’ — 3 € (0, ), with the asymptotics
(3.14) There holds moreover

2
uw(x) = uy(z) + Z X'(z) Z {amen + bniVini(zi, t) + cniWai(z, t)} (4.23)

i=LII n=1

wherew, € V*'(Q)? and ani, by, ¢y are real numbers. We recall thayy = (z; — 1,25)
and xy; = (z; + 1, 22). The displacements

Vnﬁ(xia t) = T‘I/QVnﬁ(QOi, t) and Wn,i(iﬂi; t) =T; Wn,i(gpia t)

1

are those introduced in Lemmds4 (i) and 4.6 (i), respectively, for each crack tip.
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Proof. We chooses such that! — 5+ 1 = ¢ — ~. By Theorem 3.3, we know that has
the expansion (3.14). Since the coefficients of the opesatoand N are smooth, we can
immediately deduce that

{F,Gi} = {L', N"" }(*ug) € RIV(K), i=11I,

where x' i is defined on the entire sectt by extension byo. Then we apply Theorem 4.2
to the data{ F}, G}, which also belong td%éV(K) since they have compact support. The
solution Uz = Ug; coincides withy'ug. The regular partig/, = U, ;. The residue formula
for i = I,II, combined with Lemmas 4.4 and 4.6 yields that the asymppatits appear for
v= % and1 and that they have the form in (4.23). Setting

@) = Y X @Ua(a)

i=LII

we end the proof of the theorem.

Remark 4.8. (i) Since the functionsV,, ; are polynomial, the expansion (4.23) can be refor-
mulated as

2
u(z) =y (z) + Y x'(@)D baiVaulzst) with @, € VH(Q)2 (4.24)

i=1II n=1

Here theb, ; are the same constants as in (4.23). Note that witin the range (4.22), for
any displacemeniw € V/*1'(Q)? the stresses have pointwise values at the crack{@ip<t.
Lemma 3.2. In particular, the associated normal stregses: N(z,t,V,)w, on M* have
pointwise valueg/*(O') at the crack tips.

(ii) In principle we can choose and! so that/ — ~ is still larger than prescribed by (4.22).
But the latter limitation suffices to obtain a descriptiortlod stresses modulo continuous fields
(i.e. the displacements moduld fields). Moreover taking variable coefficients into accoisnt
easier with (4.22) (nehadowsare present)l

4.E Smooth data for tractions. Values at crack tips
Until now we have considered right hand sides

{f,9} € RIV(Q) with -~ e (1,3). (4.25)

For the volume forcesf, since V.""'(Q) = H{~'(Q), we have no other choice thaf ¢
V/~1(€2)?; moreover, any function, sufficiently smooth§h belongs to this space.
In contrast, for the tractiong we note that the weight”~!*! is unbounded and forces the

elements oﬂ/f“(Q) to have pointwise value zero i®¥* for their gradients. Whereas for the
regular parti., in (4.24), the pointwise valuegt(O') are zero by virtue of assumption (4.25),
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for a general displacement € V'*-'(Q2)?, these values are not zero. However they cannot be
any combination of real values: Since

N(z,t,Va)]|,+ = D(Fe2)  A(z1,0,t)D(V,) (4.26)
we obtain the compatibility conditions for the normal sses of a regular displacement:
g (0O =—gt(0Y, i=1I, IL (4.27)

We cannot be satisfied with the assumptigiiO*) = 0 because

(i) Such a property is not acceptable in many physically justiéeamples, in particular in the
case of the uniform pressure from the interior of the cradksfocks).

(i) We have to keep in mind the creep problem where a recursiveegue has to be applied,
see (3.19). Since only one out of the two polynomial dispiaeets)V ; is a rigid motion, the
iterative procedure does not conserve zero pointwise sdbreghe normal stresses.

Now is it justified to impose the compatibility condition 2#)? The answer may be yes
only if the Volterra kernelB has differentiable coefficients with respecto In the case of
sectorial coefficients, condition (4.27) cannot be kephglthe iterative procedure.

In order to provide precise definitions of the spaces for thenblary datay, it is necessary
to examine more carefully spaces of traces. We have alrgadyduced in (3.3) the space

V;‘1/2(a§z). It coincides with the trace space bﬁ(Q), see (3.4). Considering now the space
Vf"(Q) = Hf(Q) with v and! as in (4.22), we find that a relation of type (3.4) is no longer

true. Indeed, on the model of (3.3) we define the spﬁé_el/z(aﬁ) as the direct sum

Hﬁ‘”(ﬁﬂ) — He_1/2(890> o H£‘1/2(M+) & Hf‘l/Q(M_) 7 (4.28)

where H,~/2(M*) is the space with the norm, cf. (3.2):

1 1/2
2
L {Z ST fﬂ;@)} ,
k=0

where the seminormﬁ’iv(zp) are defined in (3.2). Each spaﬁéf_m(]\/[i) is the trace space
I'5(H.(Q)) separately, and consists of function$ admitting the representation

@) =9 (@) + Y x(@, 090 with  §F e VIV (M) (4.29)

i=LII

In the space (4.28), the elemer’:f:%t are independent from each other, and(O') can be
chosen as any constants. On the other hand, formula (3.&9 tie same representation (4.29)
for the tracey € I'y(H:(92)) but with the relationship

PHOY) =9 (0, i=11I, (4.30)

since the constanis are common in (3.7) for both surfaces of the cradk



25

Note that (4.30) differs from (4.27) and the change of sign@i27) results from the matrix
D(7Fe,) in the Neumann elasticity operator (4.27). To provide theezt relationship between
pointwise values at crack tips of applied external surfaegling, we introduce the trace opera-
tor I'; = 0, for the derivative along the outward normal. For the samgeaf weight indices
~, due to the opposite direction of the normal A, we obtain

e T (HTH Q) < vy € HV?(T,) and
¢F € HVP(MF) with 7 (0Y) = —¢~(0Y), i =1, IL. (4.31)
The following space for datéf, ¢} is now justified mechanically
REW(Q) = VY Q)2 x Ty (VEFRY(Q) (4.32)

We point out, that in the right hand side of (4.32) the symbiotan be replaced by since
HH Q) = VIEHQ) and HIPH(Q) = VIFHY(Q) for 4,1 satisfying (4.22) (Lemma 3.1). We
use the symbol in (4.32) for the only reason to distinguish the spa‘tél\/(Q) from the
maximal space for daturfif, g} defined as

RIH(Q) == H7H(Q)? x HV2(09) . (4.33)
In view of (4.28), space (4.33) is intrinsic for problem (Bmathematically.

4.F Splitting of solutions with general smooth data
The model problem (4.3) with right-hand sides satisfying dompatibility condition (4.31)
admits a smooth particular solution: Explicit calculasaive

Lemma 4.9. Particular solutions of probleni.3) with the right hand side$” = 0 and G* of
the formG*(z,) = &G with G € R? are given by

Woilz,t) = —2Gi(t), with Gi(t) = ELA"(OL )1 E_G e R?, (4.34)
with £ and A” defined in Lemm4.6.
We immediately deduce from this lemma the following extenf Theorem 4.7

Theorem 4.10.Lety be suchthat —v € (1,3). Let{f, g} € Rf71V(Q), cf. (4.32) satisfying
the compatibility conditiorf2.7) and letu be the energy solution of the instantaneous problem
(4.1) satisfying the orthogonality conditigi2.8). There holds

2

u(@) =y () + Y X'(@) Y baiVaslwit) with @, € VH(Q)2 (4.35)

i=LII n=1
The full decomposition af can be written as
2
u(x) = a“/(x) + Z Xl(x> [Z (an,i e, + bn,ivn,i(xia t) + Cn,iWn,i(xia t)) - x2Gi} (436)
i=LII n=1

with u., € Vf“(QP, real constantsu,, ;, b,.i, ¢,i, and G; according to Lemma.9.



26

Remark 4.11. If, instead of a right hand side ifif, g} € RfJV(Q), we take a right hand side
{f.9} € RIH(Q) (i.e., without compatibility conditions for tractions atack tips) we find,
instead of (4.35), a splitting of the form

2
u(x) = ﬁ}:y(l’) + Z X‘(x) Z (men,i(xi, t) + dn,an,i(xi, t)) (437)

i=LII n=1

with the regular parfi, € V*'(Q)?. Here X, ;, for n = 1,2, are logarithmic singularities, of
the formr (InrW' (@i, t) + WO (g1, 1)) and (d,), _, , are the two components gf (O) +
g~ (0OY). O

5 Power and power-logarithmic solutions of instantaneous blems with
singular data

In this section, we develop new preparatory material in vaéthe proof of our results relating
to the creep problem (1.2)-(1.4). The idea we have in min@d imake use of the represen-
tation of solutions of the creep problem as a series (3.1&ravithe termsy;, of the series
solve {L, N}u, = {fr, gx} With {fx, gx} defined by (3.19). We start the analysis by apply-
ing Theorem 4.10 to the first termy,. Then, we obtain fof f1, ¢} a right hand side which
contains itself a power singularity. This singular righinbaside gives rise, in general, to a
power-logarithmic singularity fot;; , because of e&sonancédetween the data and the inverse
of the Mellin operator pencil aty = %

The investigation okingulardata in that sense is the purpose of this section. Relying on
Kondrat’ev’s theory, reformulated with the help of the Meltransform (se€4.B), we prove
sharp estimates about power-logarithmic singularitiedependently of their degree. This will
lead to our results regarding the general structure of samigies of the creep problem (“loga-
rithmic packets”). Finally, to prepare for the situationsexe logarithmic terms do not propa-
gate (or are absent), we investigate in more detail the angtiucture of singularities, using
the Cayley transform as initiated in [8].

5.A \olterra kernel in polar coordinates

Recall thati = I,II indicates the crack tig)* while & corresponds to the crack’s surfaces
M#= . Freezing coefficients of differential operators assecidb the relaxation kernel,

{P(x,t,T,Vx) = D(-V,)"B(x,t,7)D(V,) , 5.0)

Q(x,t,7,V,) = D(n(z))"B(z,t,7)D(Va),
gives the operators with coefficients depending on the angariabley; € T = (-, ),

{ Pi(@i,t, T, V:E) - D(_vx)TBi(SObta T)-D(vx) ) pi € T7 (5 2)

Q*(t,7,V,) = D(Fey) Bi(£m,t,7)D(V,),
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with B! the “limit” of B asxz — O in the sense of (1.9). Recall that fd& with smooth
coefficients in the sense of (1.10), the coefficients in (&r2)independent ap; .

Similarly to (4.4), we writeP?, Q' in polar coordinatesr, ¢)

{Pi(%tm,vx) = 2Pt 7, ,0,,70,), (5.3)

QU (.7, V) = r1Q(t,7,0,,70,) .

We fix one crack tip0 € {O', O™} and we therefore omit the indéxe {I,I1}. The time
t € [0,7] is also fixed. Nevertheless,acts as a parameter and we will keep in our notations
the dependency of the operatorsion

5.B Logarithmic right hand sides and solutions

Let us fix \y € X, Ao > 0. Let us go back to the iterative procedure used in the proof of
Theorem 2.1: It consists in alternating the solution of astdntaneous probleril, N*}(¢)
with the application of the \olterra kerndlP, Q*}(¢, 7). The Volterra kernel transforms a
singularity of the formr*/°(y) into a right hand side of the formr*=2F0(;p), rro=1Go0%}
corresponding to a Mellin transform with a pole of ordein \,. Then the next solution of the
instantaneous problem will correspond to a Mellin transfovith a pole of (generic) ordez,
giving as singular part a termith a logarithmof the forms* (1/°(¢) + (Inr) U (¢)) .

That is the reason why it is natural to consider right hanésidhich have themselves a
power logarithmic asymptotics. We first give simple formsut@ncerning the Mellin transform
of functions with a power logarithmic expansion.

Lemmab.1. Let \y € R, ¢ € Ny and let be giveV’ € H**1(T) for j =0, ..., q. We define
the power logarithmic functiofy” as

Vi)=Y %(m YV () (5.4)

and the meromorphic functioyi as

vy =3 (A_Vﬁ (5.5)

=0
(i) We have the Cauchy residue formula for any 0:
1

2im [A—=Xo|=0

1% V() dA. (5.6)

(i) Let us denote the characteristic function of the region= {x € K : r < 1} by ©,. Let
(3 be such that — 5 < )\y. Then the functio®;V belongs to the weighted spab%“l (Ky)
and its norm satisfies the estimate:

q dj ;
||@1V||Vé+l(K1) < CZ(; ()\0 — 1 +6)j+1 ||V ||H€+1(T) (57)
J:
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whereC' > 0 andd > 1 depend only on.

(iii) Lety be such that — v > X,. Then the functior{1 — ©1)V belongs toV " (K \ K )
and its norm satisfies the estimate:

. |
10 =00V, <C2 7 it IV ey (5.8)

7=0

(iv) The Mellin transform o,V is defined for allRe A < A\q whereas the Mellin transform of
(1 —©4)V is defined for allRe A > X\, and both coincide with in (5.5).

Proof. It relies on simple explicit computations based on the fdemu

! dr
Vx>0 VneN / r*(Inr)" = (=1)"n! e
0

Let x € C3°(R?) be a cut-off function which equals tbfor » < 5 and to0 for r > 1. We
are ready for solving the model problem (4.3) with power hitanic right-hand side. We will
provide universal estimates for its solution (i.e. indegmmt of its degree).

Proposition 5.2. Let \y # 0 belong toX. Let~ and § such that! — 3 < \y < ¢ —~ and
[0 —B,0—~]NE ={)\}. Letq e Ny and {F/,G'*} € R*H(Y) for j =0,...,¢— 1 and set

q—1 1

Z—' lnr P2 FI pAo lgﬂi} rekK.
J=0 J:
(i) The right-hand sidg F, G} = yH belongs toR;V (K) and problem(4.3) at time ¢ has
a unique solutionU € Vﬁ“l(K)Q. Similarly problem(4.3) at time ¢ with right hand side
{F,G*} = (1 - x) H has a unique solutiott/, € V."*'(K)>. Moreover there exis€, > 0

andd, > 1 independent off, ¢ andt € [0, 7] so that

qg—1

HU5||V€+1(K + ||U ||V€+1(K < OO Z 6J H{fj gji}HRéH . (59)

7=0

(ii) There exists unique angular functiobd € H***(Y)2, j = 0,..., ¢ such that

q
1 L
Ug=U,+1) ﬁ(ln YU’ (5.10)
j=0 "

and we have the following estimates: For any> 2, there exists’; > 0 independent off, ¢
andt € [0,T7], so that there holds

max &7 || U||

0<5<q

<Cr max 8 |[{F,G*}|

0<5<qg-1

(5.11)

HEFL(T) REH(Y)
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Proof. (i) A straightforward modification of Lemma 5(i) and(ii) yields thaty H belongs
to R5V(K) and (1 — x)H to RIV(K) with the estimates

-1

HXHHR/ZBV(K) + H(l - X)HHR{;‘/(K S Z ||{F] gji}HRéH

7=0

Using the continuity of the inverse of the operator of probl&t.3) in the suitable spaces,
compare with Theorem 4.2, we obtain (5.9). The assumptibiag 6f uniform ellipticity and
(1.6) of boundedness yield that the constaptin (5.9) can be chosen independentlyto&
[0,7].

(ii) Let us defineH(\) as the Mellin transform of {r*F, rG*}:
H(\) = {M[xr*F], M[xrGF]}(\) for Rel < \.
We note that{ Fi.,, GE,} := x H — ©; H has its support in the regiofw : % <r < 1}.

reg

Therefore the Mellin transform

Hreg(N) = {M[r* Freg], MrGie ]} (V)
is holomorphic in the whole complex plane and easy compmnatyield thatH,., satisfies the
following estimates in any dis¢\ € C : |\ — \¢| < o}:

q—1

) 1 o
HHreg()‘)HRL/H(T) S CQZﬁH{fj?g]i}HRZH(T) ) (512)

J=0

with a constant’, > 0 depending only ord and o. We deduce from (5.5) that

q—1 Hj
. - L i

By (4.11) we obtain the expansion (5.10) together with thedBg formula,

P03 L = - PAI) T H(A) dX. (5.14)

py Vi 2271— |>\_>\0|:g

Combining with the Cauchy formula (5.6) we obtain
q ; q—l
u’ . H™
2 gy = A ( Ot Hreg()) (5.15)

j=0 n=0

modulo holomorphic functions. The Laurent expansion4df|(\)~! at \, takes the form of
the convergent series:

AfJ(N)

+ZR J(A = Xo)™. (5.16)
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The radius of convergence of this series is the distanceetaldsest pole td,. This distance
being % the radius of convergence %s which means that for alf > 2, we have the estimate
for the termsR,,, [t] with a constantC' = C'(4, A[t])

IR M gy penry < €™ m==1,0,.., (5.17)

Combining (5.15) with (5.16) and identifying the powers(af— \;), we obtain

W= > RullH" (5.18)
n> 1 mg 1

with the conventior{ ™! := H,ee(No).

Let us choose); > 2 and let us denote biN the boundmax;_¢ . .1 6] % HWH(T By
definition ’ '
||HJHRZH(T) S(isl_j]N-? .]:077q_1
Thus (5.12) yields fof{ ™! = Hyee(No):
|H~ 1y|R[H < C'e™"N < C'6,N
which means that we have finally
||HJ||R€H S Cl(sl_JN7 j = _1707"'7q_ 1. (519)
Therefore estimates (5.17) and (5.19) yield
||u HHZ+1 S Z ||R HRZH _}HH-I HHn||R€H
n—m=j
< Y coorNgt= Y CC’<5) N
B n—m=j ' n—m=j 61
< CC'N§7 f: (i) _conNed 2L 520
- ! 1 5 1-4/6,

m=—1
Choosingd € (2,6;) and letting
Cl - 0(5, A[t]) Cl 515_1(1 - 5/51>_1

we deduce (5.11) from (5.20). The assumptions (1.5) — (Ivé)p that the constants(o, A[t])
are bounded in, therefore the constant; in (5.11) can be chosen independently @ [0, 77,
onced; > 2 is chosen.O

Remark 5.3. The identity: A[t](\) "' AJt](\) = Id combined with expansion (5.16), gives by
identifying the coefficients of A — \g) ™!
R_1[t] At](Xo) = 0, ie.  R_4[t]=0 on RangeA[t](\o). (5.21)

We note that the augmentation of the logarithmic degree ffbo U in Proposition 5.2 comes
from the only termR _; [t] H?~'. Thusif H?~! belongs to the range od[t]()\), the logarithmic
degree does not increase.
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It remains to give an estimate of the action of the relaxakemel frozen inO over a
power-logarithmic expression.

Proposition 5.4. Let \y € R, ¢ € Ny and let be giveri// € H***(T) for j = 0,...,q. We
define the power logarithmic functiofF’, G*} by

q

(Pt m Vo), Q4 m V) (™ 3 S (2 ()

=7 Z; %(m Py {r 2 Fi(t, 7, 0),r T G ()} (5.22)
=

Foranyé > 0, there existg' > 0 independent of{’, ¢ and (¢, 7) € 7(T), so that there holds

max & || {F7,G7}(t, 7)||
0<5<gq

<C max & ||lu? | (5.23)

RCH(Y) H+H1(T
Proof. Let B[t, 7](\) := {P(t, 7, ,0,, ), QF(t,7,0,,\)} be the Mellin symbol of the ex-
pression (5.3) of the frozen relaxation kernel in polar dawates. We have the formula, com-
pare with (5.15)

q )
{F, G}t 1)
<Z (A= o) J+1) Z (A — Xo)itt (5.24)
Jj=
But, since? and Q* are differential operators ind, of order < 2, we have the expansion
Bt, 7](A\) = B[t, 7] + BMt, T](A — Xo) + B[t, 7](X — Xo)?, (5.25)
and, therefore:
{F7, G753 (t,7) = B[t T|U? + B[t 7] U~ + B*[t, 7] U’ . (5.26)

The uniform bound (1.7) on the relaxation kernel yields dama bound on the operatois®,
k =0,1,2, as continuous operatofg‘*!(T) — R*H(T). Hence estimate (5.23) follows

5.C Absence of logarithms: Cayley representation

In the situation wheréhe limit “stabilized” material laws B*(¢, 7) for i = I, II, of the relax-
ation kernel are independent of the angular variallewe are going to show that the iterative
procedure (3.18) —(3.19) produces singularities of thefagt™'/2V () only, with the exclusion
of any logarithmic term. As usual, we fix a crack i} and omit its mention.

In order prove this “non appearance of logarithms”, for argdinon integer elemerl, of
>}, we construct

— aclassit()g) of functionsU(z) homogeneous of degreg, i.e. of the formr*o/ (),

— aclass$()\) of corresponding right hand sidés(z) = {F, G*}(z),
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with the following three properties:
(i) Foranyt € (0,T), the primal singular functions (4.12) belongtt(\,);

(i) If the frozen Volterra kernel P, Q*}(t, 7) has constant coefficients ip, then for all
Ue u()\O)’ {Pv Qi}(ta T)U belongs tOﬁ()\o),

(i) ForanyH € $(\o), the solution (5.4) belongs tel(\g).

We can see that, as a result, the singularities of the tefing = 0,1, ..., generated by
the iterative procedure (3.18)—(3.19) will stay insitl€),), excluding the appearance of any
logarithmic term.

We start with the definition of a clasd()\) for each) in the discD(), 7). Let
C=re”, r>0, pc(-m,7)

be the complex writing of the coordinatesc K centered atD. We have to define an Ansatz
for an admissible homogeneous function of degke@ he prototypes are the functiodgs and
¢*, which are sufficient to describe the singularities of thelaae operator. For a wider class
of scalar elliptic operators, they have to be generalizechtp+ ¢)* and (¢ + a()* with «

a complex parameter of modulus 1, and finally, to cover any Agmon-Douglis-Nirenberg
system, to contour integrals i of such functions [8].

We give the following meaning téa¢ + ¢)* and (¢ + a{)* for |a| < 1 and(¢ € K:

(al + Q) = Q_’\(l + a%)A and (¢ +al)*:=¢* (1 + a%)A. (5.27)

The fu_nctionsgA and ¢* are well defined oK and as|a| < 1, the functionsl + « (/¢ and
1 + « ¢/ take their values in the half plari®e z > 0, thus the products in (5.27) make sense.

For any fixed timet, the homogeneous operatb(t, V,.), see (4.2), transforms the homo-
geneous functions (5.27) in similar functions with- 2 instead\: There holds

L(t, Vo) (a€ + O = A = 1)(a¢ + O Ly [t](),
L(t, Vo) (¢ + af)* = AA = 1)(¢ + aQ)**L[t](a),
where L. [t|(«) are theCayley symbolassociated with.(¢, V) = L(t, 01, 3):
Lit](a) == L(t,a+1,i(ac—1)) and L_[t](a):=L(t 1+ o, i(l —)). (5.29)

(5.28)

Due to the uniform ellipticity condition (1.5) there exisis< 1 such that for allt € [0, 7] and
for all a € C with |a| € [p, 1],
det Ly [t](a) #0.

Let us denote byl the space of complex analytic functions®@fin the ring{a € C : |a| €
[o,1]}. We set

U (N = {U 3q, €A U= / (a¢ + ) q () da},
lal=e (5.30)
U_(\) = {U dq e U= / (¢ +al) q_(a) da}.

la|=e¢
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Note that we can use any cirdle| = R with ¢ < R < 1 in the above contour integrals without
modifying the result.

Lemma 5.5. If X is not an integer, the intersectiott (A) N $L_(\) is reduced to{0}.

Proof. Let Uy € 8.()). According to the definition (5.27), we can write

Up(r,p) = /| _ (aC + C_)’\q+(oz) da = r’\e_i)‘“’/ (1+ oze2i“°))‘q+(oz) da,

la|=0

U_(r,¢) = /| _ (C+al)q_(a)da = rAe"’\‘p/ (1+ ae ) q_(a)da.

la|=e¢

We see that as functions @f, both U, (r, ¢) andU_(r, ¢) have unique analytic continuations
from [—m, 7] to all of R satisfying

Ul(rip+m)=e U, (r,¢) and U_(r,p+m)=e*"U_(r,¢) foralpecR.

Now assume thal/, = U_. By analyticity, this holds for allp € R if it holds for ¢ in some
non-trivial interval (in our case fop € [—m, 7]). We find

0=U(r,p) —U_(r,¢) = (e — MU, (r,p) forallp c R.
Hence eithe € Z or U, (r,¢) =0 forall o € R. O

As a consequence of [8, Th.2.1], the above Ansatz coverslalisns (4.8) of the homoge-
neous system (4.3) without boundary conditions:

Proposition 5.6. Let 23[¢](\) be the space of solutiort4.8) of the homogeneous system
L(t,V,)U(x)=0, zek

Then for all¢ € (0,7") and non-integen\ € C
M[t](\) C LU (N) @ LU (N).

Furthermore, both space®3[t|(A) N L (A) and 23[t](A) N LU_(A) have dimensionR.

Since the order of the pol&, of A[t]()\)~! is 1, the primal singularities in\, are linear
combinations of elements ®@3[t|()\y). Therefore our first requireme() is met with

As already suggested by formulas (5.28) homogeneous opgraith constant coefficients
act between spaced(\) with distinct \.

Lemma5.7. Let P(V,) be a2 x 2 matrix of differential operators of order., homogeneous
with constant coefficients. Then there holdE € (A —m) forall U € $A(\).
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Proof. The coefficients ofP(V,) are linear combinations of products of the fodfi' oz
with x; + k9 = m. However

Oc(aC+ O = da(a¢ + )" and 9c(¢ +ag)* = A(¢ +ag)*!
and similarly fords. The conclusion of the lemma is now obvious.

Let us now define fon = )\, the space$ (o)
H) == {{F, Gy F e S\ — 2), GF=r~lg ¢* €C, with ¢ = g—}. (5.32)

Lemma 5.8. Let P(V,) and Q(V.) be 2 x 2 matrices of differential operators homogeneous
of order2 and 1, respectively. Then there hold®, £Q}U € $H()\o) forall U € $U(\).

According to this lemma, our second requirem@ntis met, since in the constant coefficient
case for all(t, 7) € 7(T), Q*(t,7) has the form+Q.

Proof. In view of Lemma 5.7, we only have to prove th@t/ \@ZW = -QU \@Z_W. Indeed,
QU belongs tosh(\g — 1). Let A\; := Xy — 1. Let us prove that

YV € $U()y), v\m =-V| (5.33)

p=—m"

In view of the Ansatz (5.30), it suffices to prove (5.33) foraalar functionV" of the form
(aC + O™ or (¢ + al)™M. We then use (5.27). We have

)\1 )\1

C_’\1<1+a%>)\1 — re N9 (1 4 ae’?) = reMT(14+a)™  (5.34)
p=T Y=T
and (M <1 + a%)kl = ret™MT(14 a)Al. (5.35)
==

Since\; = m + 1, with an integermn, e*'™ = +i. Whence (5.33) fol/ = (a( + {)*'. The
proof for the other case is similail

We end this subsection with the proof of our third requiret{a:

Lemmab5.9. Let H = {F,G*} belong to$()\,). Then there exists a solutidii € $L()\,) of
the model problentd.3). {L(t,V,), N*(t,V,)}U = {F,G*}.

Proof. By assumption there exisgt, € 2(*> such that

- @ () q,(a) da al)*2q_(a)da. .
F—/Iazg( C+¢) " a(a)d +/ (¢ +ad)™®?q_(a)d (5.36)

loe=0
Therefore by setting — here we use the Cayley symbols (5.29),

-
Moo —1)
1

T N0e—1) /a|:g(< +aQ) L [t](e) ' q_(a) da, (5.38)

Uy = / (@ OVL ) g, () da (5.37)
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we obtainl, € L1(\y) suchthatl(¢,V,)Uy = F. Lemma5.8yields thafL, N*}U, (whichis
equal to{ L, =N }U,) belongs ta$()\,) . Considering the new right hand sidé— { L, N*} U,
we are reduced to solve the model problem (4.3) witk= 0 and the compatibility condition
Gt = G~ . Let us consider the mappirdt()\) defined on the space3 of Proposition 5.6

MW(\) — C*xC?

U — (NTU| N7U| (5.39)

r=1,p=m ’ r=1,p=—m )

As 23(\g) C $()g), Lemma 5.8 yields that the range 8%()\) is contained in the two-
dimensional spac¢(g™,g7) € C> x C? : gt = g~ }. The kernel oft()\,) is the space of
singular functions homogeneous of degPge This space is of dimensioh (see Lemma 4.4
for \y = % and [9] for more general framework). Therefore the rang8idf\) is the whole
space{(g™,g7) € C* x C?: g© = g~ }, and there exists a solution I3 (\g) C LI()\,) to our

last problem.O

As a consequence of Lemma 5.5 and the symbolic calculus ofmas.8 and 5.9, we
obtain immediately the following result.

Proposition 5.10. Let A\ € X\ Z. The spacedl()\y) and $(\,), defined in(5.30)(5.31)and
(5.32) respectively, equipped with the norms

10l = max las(e)l+ max [q_(a)], (5.40)
HE 0 s = 1Flyogs T 17T+ 1971, (5.41)

are Banach spaces. Moreover, the operators
{P(t,7,V,),Q*(t,7,V,)} and {L(t,V,),N*(t,V.)} : HU(X\) — H(N\) (5.42)
{L(t, V), N (t,V)} ' 9(\) — U(N) (5.43)

are bounded linear operators whose norms depend only ondsooiithe coefficients of the dif-
ferential operators, cf(1.6)-(1.7)and, concerning{ L(t, V), N*(t,V,)}~', on the ellipticity
constantc, (1.5)of the operatorA.

6 Asymptotics near the crack tips for the creep problem

We come back to the solution(z,t), = € Q, t € (0,T), of the creep problem (1.13). We
make the following assumption on the ddtA(t), g(¢)} :

{f,9} € Lo (0, T; R'V(Q)), v suchthat! — v € (1,3),
with the compatibility condition (2.7). Herkis the positive integer in (1.6)-(1.7) arRif’lH(Q)

is the space (4.32), where the tractiongare supposed to satisfy the compatibility conditions
g (OY + g~ (0" = 0 at the crack tips. We will discuss later on the more generse eghen
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{f.9} € L(0,T; REH(2)), where no condition on the tracgs (O') are prescribed. We
assume that the stabilization rate in (1.9) satisfies thguiakty

5B>€—’y—1/2 (61)

where, sincg — v > 1, the lower bound is larger thary2.

From Theorem 3.5, we know that the solutierbelongs toL (0, T, Vﬁ“l(Q))2 for all g
such that? — 5 € (0, %). We recall thatu has the representation (3.18) as a sum of teufns
which solve of the problem§L, N}u* = { f*, ¢*} subject to the orthogonality condition (2.7).
The right hand side$f*, g*} are given by{f° ¢°} = {f, g} for k = 0 and (3.19) fork € N.

In this section we are going to derive the following asymiptédrmulae for the members
u” of series (3.18) (thtterate solutions™:

wHat) =Tt + Y @) (af () + Vi) + W 1) (6:2)

i=1,11

where* is the “flat regular part” inL.. (0, T; Vf+1(§2))2, the termsa?(¢) are constants ifk>
at each fixed time, and the functiohd and W} are, a priori, “logarithmic packets” of degree
k at Ao = 3 and )\, = 1, respectively:

Viat) = Y
I=0 (6.3)

From the mere application of Proposition 5.2, it can be fgadien that the number of terms

in the sums grows witlk — oo, in general, and therefore, the abstract Theorem 2.1 cdmeot

employed in the framework of weighted spaces with separ@dgthptotics since these spaces
must inflate from step to step of the iterative procedure.

Nevertheless, in the situation where the limit relaxatiennlels 3 do not depend on the
angular variables;, the degree of the singular parts is stationar§ sds shown in section 5.C,
which restores the possibility of applying the abstractdreen 2.1. Before investigating the
most general situation, we first deal with this case.

6.A Case of a smooth kernel: Absence of logarithms

We make the assumption (1.10) on the relaxation kefhellTherefore we are in the situation
where { P, Q*}(t, 7) has constant coefficients in and the constructions of section 5.C apply.
Let v such that — ~ € (1, %) and such that (6.1) holds.

We set3 = v + 1, thus 3 satisfies the condition prescribed in Theorem 3.5. We aneggoi
to use the abstract framework of Theorem 2.1 with the foli@ashoice for the space® and
R: We choose subspaces of the coufe R) used before in (3.13) in the form of spaces with
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detached asymptotics, where the asymptotics belong topbeia classeé.l(%) and .6(%)
defined in (5.30)-(5.31) and (5.32), respectively:

D = {u € V;719(Q)? : u satisfies orthogonality condition (2.8) and (6.4)
w=T+ Y w@)Uiw), @ e VIIQP, ie ud)},
i=T,II
R = {{f,g} € RéV(Q) . h:={f, g} satisfy compability condition (2.7) and (6.5)
h=h+ Y x(@)Hi(x), heRNV(Q), Hie ﬁ(%)} ,
i=1,II

with the respective norms, cf. (5.40) and (5.41)

2 2 1/2
lully = (Ui + D 105 ) (6.6)
i=ILII
~ 9 1/2
1l = (Il + D IHilg s ) (6.7)

i=LII

Theorem 6.1. Let the assumptiofiL.10)on the relaxation kerneB be satisfied. Let the right
hand side of problerfil.13)satisfy for ay such that! — v € (1, 2)

{f,9} € Lo (0, T; R2'V(Y)), e, withg (0% 1) = —gT(O'1) , (6.8)

together with the compatibility conditigq2.7). Let 5 = v + 1.

Then the solutiom € L. (0, T} Vé*l’O(Q)Q) of problem(1.13)given by Theorer.5, admits
the representation

u(z,t) = w(z, t) + Z X' (z) ril/Q Vi(ei, t) (6.9)

i=LII

where (recall thatY" denotes the interval—m, 7))
W € Lo (0, T VPHH(Q)%) and Vi € Loo(0,T; HY(Y)?) (6.10)
with the estimates

17 s gy + IV sy < 0™ IHLF 9 5ty (6.11)

Remark 6.2. In (6.10) and (6.11) the spadé‘™! (-, ) has been mentioned only to fix ideas.
Any Sobolev spacé!™ could have been used either since, in the present situdiemngular
functions are analytic of-7, 7]. O



38

Proof. We only have to prove that the assumptions of Theorem 2.latisfied, namely that
the operator{ (), N*(t)} is continuous and invertible fror® into R, with uniform norms
int e (0,7),and that{ P(t, 7), Q*(t,7)} is continuous fron® into R, with uniform norms
n(r)eT(T).

The continuity from® into R relies on (5.42), on the continuity dfZ(¢), N*(¢)} and
{P(t,7),Q*(t,7)} from V*11(Q)? into R:'V(£2), and on the continuity of

u—s X'() ({L(t,x, Vo), NE(t,z,V,)} — {L(t, 0}, V,), N*(t, O, Vx)})u

from 41(3) into R!V (), and similar for{ P, Q*}.
The continuity of the inverse relies on (5.43) and on Theodelf. 0

6.B Case of a sectorial kernel: Accumulation of logarithmsdr iterate solutions

The estimates given in the following proposition allow foetconvergence proof of the double
series resulting from (3.18) when using (6.2) combined \(6tB).

Proposition 6.3. We assume that the operatdfis11)and(1.12)satisfy conditiong1.6), (1.9)
and (6.1). Let the right hand side of proble(i.13)satisfy for ay such that! — v € (1, 2)
assumptior{6.8) together with the compatibility conditiq.7). Let «* be the iterate solutions
of instantaneous elasticity problemg,, N }u* = {f* ¢g*} with right-hand side€3.19)under
orthogonality conditior(2.8).

Thenu* can be represented in the foii®.2), with the coefficients given §§.3). In addition,
the following estimates hold

k
BT ey + Do (et + 306 IV 5t oy + IV sy |)
7=0

i=LII

ca(0at)" .
S k! |H{f7 g} ) tmeyfvlv(Q) 9 (612)

whered;, 9, and ¢, are positive constants, independent of the intéger

Proof. Let us denote byN(¢) the norm
N() = {9} tl gy

Sinceu? solves the instantaneous elasticity problem (4.1), Thee¥d 0 ensures the represen-
tations (6.2) and (6.3) dt = 0 together with formulae

Vo, t) = bri(t) V1, t) + boi(t) Vo, 1)
W?O(% t) = Cl,i(t)WLi(SOa t) + C2,i(t)W2,i(<Pa t) - $2Gi(t) )

and the estimate

(6.13)

155ty ) + M5 #ll 4 Wonis #ll + Nenss #ll + 0G5 8l < ON() (6.14)
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where G; is determined according to Lemma 4.9 witht) = ¢+ (O t) (cf. (6.8)). Direct
evaluation of norms of elements in (6.13) in the sp&te!(T) shows that estimate (6.14)
yields estimate (6.12) fof = k£ = 0.

The proof is achieved by induction, thus we assume that,(§623) and (6.12) hold for
k < K and we verify the same formulae far= K > 1.

First of all, we observe, that owing to (4.22), assumptiaB)rovides inclusion (3.15) for
any g e ({ — %, [) while, in view of (6.1), we can choose the weight indésuch that

B—0g<vy and B-1<r~. (6.15)

Inequalities (6.15) allow to reduce the problem fdf in 2 to model problem (4.3). To this
end, equations (4.1) far® with the right-hand side (3.19) are multiplied by the cutfohction
x* which leads to the problem

Li(t, Vo) x' (2)u™ (2, 8) = ' (2)*Ff (2,t) + F¥(2,t), z€K
. . . ~ (6.16)
N Vo)X (@) u® (z, 1) = X (2)?GI (2, 8) + G F(a, 1), o =+,
where

{FiK(x> t)? GiKi(x> t)} =

-/ (Pt 90,05t V) () + W ) ) dr . (6.07)
0

and
{ﬁiK>é{(i} = [{LL, N e — XL — LY N = N (6.18)
. Xi/Ot{P’Q}Xia{(_ldT - Xi/ot[{P LQEL XY (VET - WY dr
N }; . }i

_ Xi/t[{p _ pi7 Q - Qii}’ Xi] (ViK_l + WiK_1> dr — Xi/t{P’ Q}aK_l .
- L, Yo

[ J/

I I
The termI; includes the commutatdf L}, N'=}, x'] which vanishes near the ti*, hence

I ¢l (6.19)

RLV(K) < CH"LLK , tm V[;H_I’O(Q)

with any »» € R, in particular for>c = . The presence of the right factd?(V,) in (5.1)
implies that the point' is outside of the support aft, so the induction insures that

t
i K1 ¢y 1 K
5 0y < € /0 ) dr < 22 (BN (6.20)
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Next, an application of estimate (6.12) for the remaindérleads to

H|]6’t|HRZV < C/ ‘|‘~K L. 7—|H “_IO(Q) dT S

< e /0 (K#((SQT)K*N(TWgccz%(azt)KN(t). (6.21)

—1)!
Furthermore, by (6.15) and the following inequality
VI (A, 1) — A0 1)] < clyr?” < Clyr{ ™ (6.22)

we find that, by virtue of (4.4), (5.3) and (3.20),

155 th e ey < cllrsVou™ s 2]

<
V‘Z (QNsuppxt) —

@ = cfju’; tmvgmo < C(S—F((sot) N(t) . (6.23)

By an application of Lemma 5.1, in view of estimate (6.12)hwit = K — 1, to the angular
parts VX1 and WX 1 it follows that

REV(K

< el g

K-1. K-1.
”H/l ’ tm Vé+l(K1) + ‘”Wl ’ tm Vé+l(K1) S

Ssz:d]<— Klt L +—WK1t ) )
=0 (ﬂ —1 + %)]4—1 ”| m HH1(T) (ﬁ l + 1)]+1 m ”| HEH(Y)
K-1 i
2 5 ]d]
< (K — 1\ e 1— . .
= (K — 1)1(52t) N(?) { jE:O G- %)Hl} (6.24)

For §; > 0 sufficiently large, the sum in curly brackets in (6.24) is bded by the constant

C=(pB-1+ %)—1(1 —d[5(8—1+ %)]‘1)_1,

since(3 —1+1) > (68— 1+ 3) > 0 by the restriction required in Theorem 3.3. The derived
estimate serves for processing the tetfhgnd I} in the same way as wittii and I3:

t
5ty < ¢ [ (I 5Tl + I8 7l )dT

<cC—g (52t)K N(t), (6.25)

forall > € R, and
¢
. 4 3 s
”|P ; tlev < C/ <”|T’ BVK b vam( K1) + |HTiBWiK K TNVWHI(Kl)) dr
0

t
<o [ IV Ty IV 57l ) d7
0 B B

< ccg—z%(ag YEN(t). (6.26)
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Stabilization condition (1.9) and the first inequality inX6) are applied in (6.26).
It is supposed thaf, > §,, whered, denotes the constant in Theorem 3.5. Thus, the norms
indicated in (6.19), (6.23), (6.20), (6.25), (6.26), (§.ale bounded by the common majorant

c<510 512) L (00" N() (6.27)

Using representations (6.17), (6.3), estimates (6.13) wi= K — 1 and Proposition 5.4,
we conclude that

K—

(RS, 1), GE(@, )} == Y }(ln o

—_

=0

/t ({ 827K (40 1), —1/QQini(T)} + {T‘leﬁ(S@h T)’TO’Cf(ji(T)D ar,

0
with the estimates

_ (527’)K_1
J
SO KT

Thus, by an application of Proposition 5.2 for three valigs= 0, Ay = % and )\, = 1, and
Theorem 4.2, the following decomposition of the solutiomtodel problem (6.16) is obtained

Y (@)u (z,t) = al (t) + VE (2, 1) + WE(z,t) + 0l (, 1), (6.29)

whereV;X and W take the form (6.3) and, moreover,

A", 6%yl + IR K5 N(r).  (6.28)

RCH(Y) REH(T)

~K Kj Kj
Tl + D A4S (VS IVt ) <
7=0

<c {5—10%(5275)K + /Ot ﬁ((smK-ldT} N(1)

<ec (510 + 511) ((52t)KN( ).

In order to derive the asymptotic formula fa¥ from (6.29) we proceed as follows. (6.29)
is multiplied by the cut-off function(!, and the contributions for = I, IT and the term

1= ()" = (M) p

are assembled together. The estimate
2 2
1= 00)° = () Hu s ) < 055ty < 5 G N )

is obtained, taking into account that + y!! = 1 near the point)'.

Thus, we have proved representation (6.2), (6.3) and ei(6al2) fork = K. Since the
majorant in (6.12) is of the form (6.27) with the constarwhich now should be selected in the
appropriate way. It is possible, for the numbeégsand d, > §, chosen in such a way that the
majorant in (6.12) is smaller than (K!) = (6,t)XN(t). O
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6.C Case of a sectorial kernel: Theorem on asymptotics witholgarithmic packets

All preparations for our final result on the asymptotics ousons of the creep problem are
now complete and we are ready to prove:

Theorem 6.4. Let {f, g} satisfy(6.8), where the smoothness indexand the weight index
are related by(4.22) Let 8 = v + 1. Then the solutiom € L. (0,7;V;*°(Q2)?) of the creep
problem(1.13) given by TheorerB.5, admits the representation

w(z,t) = u(z,t) + Z x'(2) (ai(t) + ril/2 Vi(lnrg, ¢i,t) + ri Wi(ln i, ¢4, t)) ,  (6.30)

where
€ Loo(0,T; VAR, i€ Luo(0,T)? (6.31)

and (recall thatY denotes the interval—n, )

Vi(lnr, o, t) Z— (Inr)YVi(p,t), VI € Lyo(0,T; H*(Y)?)

J!
I . (6.32)
Wi(lnr, o, t) Z —(Inr)Wi(p,t), Wi € Lo(0,T; H+(T)?)
J
with the estimates, for positive constants §, and ¢, :
5ty + st < e2e™ I{F, 9} Ul gy (6.33)
)
I ey + IVt gy < oy (5 ) P it (634
Moreover, the logarithmic packe(6.32)verify the estimate
”|Vl(1n LEAS) ) ; t”|HZ+1(T) + ”|Wi(lnra ) ) thHl (1) <
0.
< cpef cosh( , /5_?\ lnr|> 159} ity iy - (6:35)
Proof. We set . .
ai:Zaf, ﬂ:Zﬂk
k=0 k=0

an application of estimates (6.12) yields inclusions (5&1d estimate (6.33). Owing to (6.3)
we have . .
Vi=)VEL owi=) w (6.36)
k=3 k=3

Estimates (6.12) combined with the inequalityn! < (m + n)! leads to

[e.e]

IV 5ty < 2677 D0 (60 N(E) < o (aﬁ) N() Y (6)"

|
o K J!
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The same evaluation performed W{ resultsin (6.34). To show (6.35), we need the inequality

22j(j!)2_ 2-4-...-25 2-4-...-25

= . 1
(Qj)! 1.3.__..(2]'—1) 2-4-...-2j>

and then we obtain

= 2% /4, j
. < e
V%58 sy < 2050 (020 3 1 (5 tlmrl) N()

= ¢y exp (9at) cosh <2 %t\ In r\)N(t) .
1

The terms\V; are estimated in the same way, which ends the prof.

Remark 6.5. If the data{ f, g} belongtoL.. (0, T; R{H (Q2)) without fulfilling (6.8), the com-
patibility conditions (4.27) at the crack tip®* are violated. Therefore a logarithmic term
appears in the decomposition (6.2) of the solutidn see (4.37). Each step of the iterative
procedure brings a new terim r;. Thus, finally, the summation ovgr= 0, ...,k in (6.3) for
W} must be replaced by a summation oyet 0, ...,k + 1. However estimate (6.12) is still
valid (possibly, with new constants and o1, d,). Moreover, Theorem 6.4 applies, provided
we perform the replacement

ey co(14+671) (6.37)
in (6.33)-(6.35). Indeed, in view of the modification of sumiion proposed above for (6.3),
formula (6.36) is now

> owE.
=[-1D+

k_

V=YWL Wi
k=j

It can be readily seen that inequality (6.34) remains vatidar the replacement (6.37).

Remark 6.6. The stresses induced by the displacement field (6.30) haasyanptotic repre-
sentation containing logarithmic packets at the expone@tsando:

o(u;z,t) =o(x,t) + Z Y () [ri_l/z&(lnri, oi,t) + Ti(lnrg, @i, 1) | (6.38)

i=LII

with 7 € L.(0,T; V/(€2)*) and the estimates

175ty < Coe™ IS 035t ey

02
1825t ey + 1Tty < o™ cosha(24/ el el J1 (7,03 5t -

Since/ > 2 and{ —~ € (1, 2), the Sobolev embeddings and Lemma 3.2 allow to deduce from
(6.39) pointwise estimates dn for ¢ and on any ring) < r, < r; < r, for S; and7;. O

(6.39)
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7 Further remarks on the logarithmic packets

In this section we give sufficient conditions for the presentlogarithmic packets in asymp-
totic expansions of elastic fields near the crack tips. Warass moreover, the following inde-
pendence on time of the Hooke matrixand the relaxation kerndb:

A(z,t) = A(x) and B(z,t,7) = B(x). (7.1)

7.A Sufficient conditions for the presence of logarithms

Let us suppose as before that, g} belongs toL..(0,T; RV (Q)).

As afirst insight into the possible appearance of logarithetsis come back to the starting
steps of the construction of the seri{g$, «* in (3.18). Expansion (4.35) is valid far°, which
now take the form, since the angular pavisare constant irt,

w(z) =@ @)+ Y @) Y baalt)Vuiles) with @ € VALH(Q)2 (7.2)
i=LII n=1,2

Therefore, in view of (3.19), the right hand sidl¢', ¢' } for u! can be split according to

) = et =D @™ Y b)) P e, 0, ) Vaily)

i=1II n=1,2
gz, t) = Gt — D @) bast)QF (0, 3) Vaal(Er) |
i=LII n=1,2

where{f',3'} € L..(0, T; R'H(Q)), see (4.33), and

bu(t) = / ba(r) dr (7.3)

We further consider one of the crack tips and omit the supste- I, 11.

Since u'(z,t) is a solution of the instantaneous elasticity problem (ith right-hand
side{f!, ¢'}, according to Lemma 4.dii) the asymptotic decomposition (6.2) of does not
contain logarithms associated with the exponeri.e., V' = 0 in (6.3)) if and only if the
orthogonality condition (4.17) is satisfied with

F=) but)P(p.0,.3) Vulp) and G=F= > by( ois &) Vi (£7).

n=1,2 n=1,2

Condition (4.17) will be satisfied for any right hand sifg ¢}, i.e., for any coefficient (7.3) if
and only if
YV V) =0 for n,j=1,2,

with

YV V) = / VP (0.0, )Vale) do + 30 Vi ()T QE (0, Vulm) . (7.4)
+

—Tr
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We set, as usual,

Va(z) = r'2Vulp) . V() =72V () - (7.5)
Multiplying (7.4) with »='dr = r=1/2r=3/2;-dr, integrating inr € (1,2), with the change to
the Cartesian coordinates in the annutus- {z : r € (1,2), |¢| < 7}, yields

M@V = [ Vi@ D) Be)DTVae) do (7.6)
+) / V7 (1, £0) " D(Fez) ' BY(9)D(V,)Vy(21, £0) dz;
4 1

_ (BiD(Vx)Vn, D(vz)v;)_ — M, .
Here B(y) is the limit (1.9) of the kerneB, cf., (5.2). Note that integrals over the circleéB,
and 0B,, which appear when using Green’s formula, cancel each ,o¢ivere their common
integrand is a homogeneous functionrobf order —1.

Let 91 be the2 x 2 matrix with coefficientsn,,;.

Strain columnsD(V,)V;, for n = 1,2 are linearly independent i&. So areD(V,,)V;* for
j = 1,2. Therefore, one can find a matrix'() such that is non-singulat. In such a case
the conditions defined by (7.4) are not satisfied in genenal the termu! gets logarithms in
its asymptotic form (6.2). In addition, from the theory ofiglat functions (cf. [23], [28]) it
follows that the stress intensity factobg(¢) in (6.13) can attain any value by the appropriate
selection of the load|, .

In the following assertion we prove that the same conditien9t # 0 producednfinite
logarithmic packets (or no singularity at all) in the asyotm decomposition (6.30) of elastic
fields in viscoelastic anisotropic bodies with special mgtical inhomogeneity of their relax-
ation kernel.

Theorem 7.1. Let the matricesA and B be independent of time variableésr, and the ma-
trix 9t with entries(7.6) be non-singular. If the functiolmr — V(Inr, ¢, t) in (6.32)is a
polynomial and the corresponding sum is finite, th&mn r, ¢, t) = 0.

Proof. We suppose that

1
—' (In7T)V(p,t) , (7.7)
3=0 J:

Mw

V(lnr, p,t)

and the coefficient* # 0. We put the corresponding asymptotic expansion (6.30)drablem
(1.2). Using formulas (4.4) and (5.3), and assembling togrethe coefficients of the expression

2 The results ir§5.C imply that9t = 0 for any matrix B* independent ofo. A non-trivial dependence ip
is necessary to obtain th8® is non-singular.
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r=3/2L(Inr)* in the interior equation and of the term'/2.L(Inr)* in the boundary condition
of (1.2), the following identity is derived

t
Ll 0, IV t) = — / Plp,0, W (o r)dr, 9 T, (7.8)
t
N(0p, 2V (£m,t) = —/ Q* (8, IWVF(£m, ) dr . (7.9)
0

We here used the formulad,r'/2(Inr)? = r*/2(Inr)7 {1 + j(Inr)~'} which shows that we do
not need to pay attention to the differentiation of logari#h so that the terms of lower order in
(7.7) can be neglected.

From compatibility conditions (4.17) for problem (4.16jatlows that for a.et € (0,7

/ {/7r Vj*(go)TP(go, 0, 5)V* (10, 7) dg + Z Vj*(:tW)TQi (0, 3) Vk(:tW,T)} dr =0
0 +

—T

for j = 1,2, thus

/ V) (9) P, 0, 2V (@, t) dp + Y Vi (£m)TQF (0, 3) VE(dm,t) =0 (7.10)
- <
forj=1,2andallt € (0,7).

Let us prove now that the linear mapping of problem (4.16nissamorphism from

{v e H*(T)* : V verifies the orthogonality conditions (7.30)
onto the linear subspace
{(F,G%) € R'H(Y) : (F,G*) verifies the compability conditions (4.17)

Indeed, the mapping is an epimorphism in view of Lemma 4.4s & monomorphism since,
owing to definitions (7.4), (7.6) and the assumptitst 9t # 0, any element of the kernel
biVi(p) + b V() subject to the orthogonality condition (7.10) is zero.

Therefore, problem (7.8)-(7.9) leads to an homogeneou®ival equation of second kind

on Y, which admits only the trivial solution. Thug* = 0 and we have a contradiction which
completes the proof of theorem.

7.B An interface crack

In this section, we are going to construct explicitly a silagity containing an infinite logarith-
mic packet for the case when the relaxation kerBep) takes two distinct values in the lower
half-planey € (—x,0) and the upper half-plang € (0, 7), corresponding to two different
isotropic materialsStricto senspthis case does not satisfy the assumptions adopted in the pa
per, since it is supposed in (1.9) that— B(y) is smooth. Nevertheless all our results can be
extended to the new framework of a piecewise constant rietexkernel, see Remark 2.3.

As a fundamental ingredient, we use a formula giving the imey shiftiv in the spectrum
(4.13) for an interface crack.
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Lemma 7.2. Let O be the tip of the interface craci(z;,0) : x; < 0} between two isotropic
materials with Laré constantg\;, ;1) and (s, u0). Each material fills a half-space;, < 0
and z, > 0, respectively. The spectrum of the Mellin operator pensgaeiated with this
transmission problem at the poid has the forn(4.13)with

1 (A1+u1 . Az(u1+uz)+3u1uz+u§) (7.11)
2 ’ )

v=—1In
Ao+ o Ai(pn 4 pio) + Bpapis + 3

Proof. Formula (7.11) is deduced from explicit calculations madgLi, §3.3] (we refer also
to [13] for this type of formulae) : We find in (3.2T)c. cit. that

1 V5 — Y6
v=—1In .
2T 5+ Y6

Going backward in the paper, we find formulas fgrand s as functions ofu;, o and the
Poisson ratiow; , o,. And we arrive at
1 M1(3—402)+M2

V= — 1n .
21 g+ pe(3 —4oq)

(7.12)

Replacingo;, by its expression with respect tq. and iy, :

Ak

Ok = o/~ >
b 2(>\k+,uk>

we find (7.11).0

Remark 7.3. From formula (7.12) we easily deduce that= 0, i.e., u1(3 — 409) + s =
w1 + po(3 — 4oq) if and only if theDundurs relationis satisfied

pr 1 =204

pe  1—20y"

(7.13)
See also [11, (3.25)]d

Let us consider the situation where:
— The Hooke matrixA is that of an isotropic material of Lamé constafis),

— The relaxation kernelp — B(y) (still independent of time) is defined fap < 0 (i.e.,
xo < 0) by the matrix B_ of Lamé constant$\_, ) and forp > 0 (i.e., zo > 0) by
the matrix B, of Lamé constant$\, , i, ).

A and B4 are of the form (1.14) with\, . and Ay, ., respectively.

We are going to construct an infinite logarithmic packet fog treep problem associated
with A and B = B by a comparison with the singularities of the interface pgobof purely
elastic material lawA + < B. wherec is a small parameter.
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Lemma 7.4. Let iv(¢) be the imaginary shift of the spectrum associated with = B... Then

1
v(e) = — Ink(e), (7.14)
2
wheree — k(e) is analytic in a neighborhood df. The Taylor expansion of at 0 starts with
k(e) =1+4¢ek; + O(e?), & —0, (7.15)
with i
= A — A — ). 7.16

Proof. We use formula (7.11) with
M=A+eA, m=ptep, l=A+er, p2=p+ep,.

We find for x(¢) a rational fraction with numerator and denominator of deg¥en ¢ and
tending tol ase — 0. Computingx yields (7.16).0

We assume that
Ab+pe F A+ po, (7.17)
which ensures that(s) # 0 for 0 < € < g9 with €5 > 0. Then the “first” singularities of the
interface crackA + B4 have the form of
V(esz) =re OV (e;0) = r2e" O V(e )

and their complex conjugates. It is possible to choeoser V(e; p) so that the dependence
is analytic andV(0; ) # 0. Composingz-expansions o/ (7.14)-(7.15) andV with series
expansion of the exponential function we find that

2r

Vie;x) = Zska(:E) with  VF*(2) = (ml)kré (Inr) V(0; ) + r%(lnr)j VFI ().

(7.18)
Since(A +eB1)V (e;x) = 0, we find that the term¥* of the series (7.18) satisfy

{L,NFYWW* = {P,Q*}V*' VEeN. (7.19)
We come back to the creep problem by the following trick: We se
k
k(1) = %Vk(x). (7.20)

Thanks to (7.19), we check that the seriéssolves the instantaneous problefiis N+ }u* =
{f*, g"} with {f*, g*} given by (3.19). Therefore the associated series ($IB)* := u(x,t)
solves the homogeneous creep problem in an infinite cracketich. Combining (7.18) with
(7.20) gives finally

e t) =3 0 [(50y 5 B 0, ) 4 37 rbur v ()]

k=0

Consideringy'(z)u(z;,t) produces a solution of the creep problem with smooth andifjat r
hand side, containing an infinite logarithmic packet.
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Remark 7.5. a) By extension, the proof of the last formula shows thatiidiyanic packets also
appear when the set (4.13) does not coincide vgﬁh i.e., the exponents of power solutions
have non-trivial imaginary parts(t).

b) Since logarithmic packets are present for aging mateifidhe Dundurs relation (7.13)
is violated, these packets can appear at a crack on theaogeof an isotropic aging material
provided that the lower and upper parts of the material oh biokes of the crack are of different
age. [
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