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Asymptotics for the low-lying eigenstates of the

Schrödinger operator with magnetic field near corners

V. Bonnaillie-Noël and M. Dauge

Abstract

The Neumann realization for the Schrödinger operator with magnetic field is con-

sidered in a bounded two-dimensional domain with corners. This operator is associated

with a small semi-classical parameter h or, equivalently, with a large magnetic field.

We investigate the behavior of its eigenpairs as h tends to zero, like in a semi-classical

limit. We prove, in the situation where the domain is a polygon and the magnetic field

is constant, that the lowest eigenvalues are exponentially close to those of model prob-

lems associated with the corners. We approximate the corresponding eigenvectors by

linear combinations of functions concentrated in corners at the scale
√
h . If the do-

main has curved sides and the magnetic field is smoothly varying, we exhibit a full

asymptotics for eigenpairs in powers of
√
h .
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1 Introduction

The topic of our paper takes its origin from the Ginzburg-Landau theory modeling supercon-

ducting properties in presence of an external magnetic field [11, 28]: The study of the Hes-

sian of the Ginzburg-Landau functional leads to analyze the ground state of the Schrödinger

operator with magnetic field [12, 18]. A small semi-classical parameter h = (κB)−1 ap-

pears as the magnetic field B is large or the physical characteristic κ of the superconducting

material is large. When compared with most of the literature about Schrödinger operators,

the unusual feature of the resulting problem is that it is posed on subdomains of R
2 or R

3 ,

and subject to Neumann or impedance boundary conditions.

Motivated by this, and also by other works about the spectrum of Schrödinger operator

in the semi-classical limit, see [19, 20] for instance, we deal with the asymptotics for the

low-lying eigenstates of the Schrödinger operator with magnetic field in a bounded two-

dimensional domain, with focus on the influence of convex corners.

Let Ω denote a bounded domain in R
2 and A = (A1,A2) a smooth magnetic potential

associated with its magnetic field B = curlA . It is assumed that B > 0 on Ω . We investi-

gate the behavior of the eigenpairs of the Neumann realization Ph on Ω for the Schrödinger

operator −(h∇− iA)2 as h→ 0 .

Many papers are devoted to the analysis of the first eigenpair when Ω is a smooth domain.

We can quote works of Bernoff-Sternberg [3], Lu-Pan [22, 23], Helffer-Morame [16, 17]:

It is proved that the fundamental state is localized near points of the boundary where the

curvature is maximal, and a two-term asymptotics of the fundamental state energy of Ph is
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given. More recently, Fournais-Helffer [14] prove a complete asymptotic expansion for low-

lying eigenvalues of Ph on domains such that the boundary curvature reaches its maximum

in only one point.

Although the interest for non smooth domain is often mentioned in physical literature

[8, 13, 26], quite few mathematical papers are devoted to that problem: Let us mention con-

tributions of Jadallah [21], Pan [24] which deal with very particular domains like a square

or a quarter plane. More recently, [5] gives a systematic analysis for infinite sectors of R
2 ,

proving an asymptotics of the smallest eigenvalue of −(∇− iA)2 when the aperture α of

the sector tends to 0 , and exponential decay estimates for the corresponding eigenfunctions.

The limit as h→ 0 of the first eigenvalue of Ph for domains with corners is deduced.

In this paper, we prove sharper results, exhibiting the complete asymptotic expansion of

low-lying eigenstates for curvilinear polygonal domains. We also prove refined results in the

case when the domain has straight sides and the magnetic field is constant: The convergence

of the eigenpairs to their limits is then exponential, behaving as exp(−β/
√
h) for a positive

β depending on their rank.

2 Outline

Let us sketch our results. The behavior of the first eigenstates of Ph depends on the spectrum

of model problems associated with each point of the boundary, in particular, those associated

with the corners s of Ω . Section 3 is devoted to spectral and solvability properties of such

model operator Qα := −(∇ − iA0)
2 on an infinite sector of opening α and vertex at

the origin. Here A0 is the canonical magnetic potential 1
2(−X2,X1) corresponding to the

magnetic field B = 1 . For any opening α , the essential spectrum of the operator Qα is

equal to [Θ0,+∞) , with the universal constant Θ0 ≃ 0.590125 . Depending on the value of

α , the discrete spectrum of Qα is empty or consists of Kα eigenvalues. The corresponding

eigenvectors are exponentially decreasing and, moreover, solutions Ψ of QαΨ = L with

Neumann conditions and exponentially decreasing right hand side L , are exponentially

decreasing, too.

Sections 4-5 are devoted to the Schrödinger operator Ph when the domain Ω is a poly-

gon, i.e. its sides are segments on lines, and the magnetic field B is equal to 1 . To fix ideas,

the magnetic potential is taken as 1
2(−x2, x1) . The eigenvectors of the model operators Qαs

corresponding to the aperture αs at each corner s of Ω allow the construction of quasi-

modes in Section 4. These quasi-modes generate a space of dimension KΩ :=
∑

s
Kαs

, the

sum of the contributions of each corner. In Section 5, we prove that the first KΩ eigenvalues

of Ph , when divided by h , converge exponentially fast towards the eigenvalues of the model

operators ⊕sQ
αs . We also prove the localization of their eigenfunctions in corresponding

corners. Let us emphasize that, when several corners have the same aperture, clustering of

eigenvalues appear, and that each of the corresponding eigenvectors may concentrate in the
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vicinity of several corners.

In Sections 6-7, we analyze more general domains (curvilinear polygons) with smoothly

varying magnetic fields B . Again, we use the model operators Qαs to construct quasi-modes

for Ph , but now in combination with a formal series calculus. We obtain asymptotics series

in powers of
√
h for a finite number of low-lying eigenstates of Ph . In Section 8, we

conclude our paper by commenting on numerical approximation issues: The eigenmodes

have a two-scale structure, in the form of the product of a corner layer at scale
√
h with

an oscillatory term at scale h . The latter makes the numerical approximation delicate, see

[1, 2, 7]. A finite element method using high degree polynomials is being investigated by

the authors, together with the tunneling effect in presence of symmetries.

3 Model operators in infinite sectors

The model problem associated with a corner of opening α in the domain Ω is a Schrödinger

operator Qα in an infinite sector Gα of same opening, with a model magnetic potential A0

corresponding to a constant field equal to 1 . After recalling results from [5] on the spectrum

of this operator, we study its solvability in spaces of exponentially decreasing functions. We

end this section by stating the relation between this model problem and a more general

Schrödinger operator Qα,A associated with any affine magnetic potential A .

3.1 Spectrum

We denote by X = (X1,X2) the Cartesian coordinates in R
2 , and by R = |X| and θ the

polar coordinates. Let Gα be the sector in R
2 with opening α :

Gα = {X ∈ R
2, θ ∈ (0, α)}.

We consider the model magnetic potential A0 defined on R
2 by

A0(X) =
1

2
(−X2,X1). (1)

Then the magnetic field B given by curlA0 is equal to 1 . Let Qα be the Neumann real-

ization of the Schrödinger operator −(∇ − iA0)
2 on the sector Gα . The operator Qα is

associated with the sesquilinear form qα defined on the variational space V(qα) as follows:

V(qα) =
{

Ψ ∈ L2(Gα), (∇− iA0)Ψ ∈ L2(Gα)
}
, (2)

qα(Ψ,Φ) =

∫

Gα

(∇− iA0)Ψ(X) · (∇− iA0)Φ(X) dX, Ψ,Φ ∈ V(qα). (3)

The norm attached with the space V(qα) is

||Ψ||2V(qα) = ||Ψ||2L2(Gα) + ||(∇− iA0)Ψ||2L2(Gα).
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Note that if Ψ ∈ V(qα) , then for any ball B , Ψ ∈ H1(Gα ∩ B) . Conversely, any Ψ in

L2(Gα) such that ∇Ψ and |X|Ψ are in L2(Gα) , belongs to V(qα) .

Then the operator Qα associated with the form qα writes

Qα = −(∇− iA0)
2 = −∆ + i(X1∂X2 − X2∂X1) +

1

4
|X|2. (4)

It is defined on its domain D(Qα) :

D(Qα) =
{

Ψ ∈ V(qα), (∇− iA0)
2Ψ ∈ L2(Gα), ν · (∇− iA0)Ψ

∣∣
∂Gα = 0

}
.

Here ν is the outward unit normal on the boundary of Gα .

The operator Qα is hermitian and positive. The lowest part of its spectrum can be defined

by Rayleigh quotients.

Definition 3.1. Let µk(α) be the k− th smallest element of the spectrum of Qα , given by

the max-min principle:

µk(α) = max
Ψ1,...,Ψk−1

min

{
qα(Ψ,Ψ)

〈Ψ,Ψ〉 , Ψ ∈ V(qα), Ψ ∈ [Ψ1, . . . ,Ψk−1]
⊥

}
. (5)

Here 〈·, ·〉 denotes the hermitian scalar product of L2(Gα) .

Let us quote some results of [5] about the spectrum of Qα .

Theorem 3.2.

(i) The infimum of the essential spectrum of Qα is equal to Θ0 := µ1(π) .

(ii) For all α ∈ (0, π
2 ] , µ1(α) < Θ0 and, therefore, µ1(α) is an eigenvalue.

(iii) Let k be a positive integer and α > 0 such that µk(α) < Θ0 . We denote by

Ψα
k a normalized eigenfunction associated with µk(α) . Then Ψα

k satisfies the following

exponential decay estimate:

∀ε > 0,∃Cε,α,

∣∣∣∣
∣∣∣∣ e
(√

Θ0−µk(α)−ε
)
|X| Ψα

k

∣∣∣∣
∣∣∣∣
V(qα)

≤ Cε,α. (6)

Remark 3.3. Based on the asymptotics of µ1(α) as α → 0 , see [5], and numerical com-

putations, see [4, 1], we conjecture that µ1 is increasing from (0, π] onto (0,Θ0] and equal

to Θ0 on [π, 2π) .

3.2 Solvability and exponential decay

We firstly prove the Fredholm alternative for the operator Qα − µId , if µ is an eigenvalue.

Then, we prove the exponential decay of solutions if the right hand side is itself exponen-

tially decaying. We recall notation partially introduced in Theorem 3.2.
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Notation 3.4.

Let α ∈ (0, 2π) and Kα be the largest integer such that µKα(α) < Θ0 .

• We denote by (Ψα
j )1≤j≤Kα an orthonormalized system of eigenfunctions respectively

associated with µj(α) for the operator Qα .

• Let k ∈ N with k = 1 , or 2 ≤ k ≤ Kα and such that µk−1(α) < µk(α) . Let l be the

multiplicity of µk(α) . Thus, we have

µk−1(α) < µk(α) = . . . = µk+l−1(α) < µk+l(α) ≤ Θ0.

Lemma 3.5. With Notation 3.4, let L be a linear form defined and continuous on V(qα) ,

and such that

L(Ψα
j ) = 0, ∀j = k, . . . , k + l − 1. (7)

Then, there exists a unique Ψ ∈ V(qα) such that

{
〈Ψ,Ψα

j 〉 = 0, ∀j = k, . . . , k + l − 1,

qα(Ψ,Φ) − µk(α)〈Ψ,Φ〉 = L(Φ), ∀Φ ∈ V(qα),
(8)

with qα defined by (3) and 〈·, ·, 〉 the L2 -scalar product on Gα . If we assume that, more-

over, L(Ψα
j ) = 0 for all j = 1, . . . , k−1 , the solution of (8) is orthogonal to Ψα

1 , . . . ,Ψ
α
k−1 .

Proof. Let N ≥ k+ l−1 such that µN (α) < Θ0 . With Notation 3.4, it is enough to choose

k + l − 1 ≤ N ≤ Kα . We split the linear form L as

L = L0 +
k−1∑

j=1

cjΨ
α
j +

N∑

j=k+l

cjΨ
α
j with L0(Ψ

α
j ) = 0, ∀j = 1, . . . , N.

We define the space

VN = {Ψ ∈ V(qα), 〈Ψ,Ψα
j 〉 = 0, ∀j = 1, . . . , N}.

Let us prove that the sesquilinear form qα − µk(α)〈·, ·〉 is coercive on VN : Let κ ∈ (0, 1)
and Ψ ∈ VN , then

qα(Ψ,Ψ) − µk(α)〈Ψ,Ψ〉 ≥ (1 − κ)qα(Ψ,Ψ) + (κµN+1(α) − µk(α)) 〈Ψ,Ψ〉

≥ min(1 − κ, κµN+1(α) − µk(α)) ||Ψ||2V(qα).

It suffices to choose κ ∈ (0, 1) such that κµN+1(α)− µk(α) > 0 to deduce the coercivity.

Therefore, by the Lax-Milgram theorem, there exists a unique Ψ0 ∈ VN such that

qα(Ψ0,Φ) − µk(α)〈Ψ0,Φ〉 = L0(Φ), ∀Φ ∈ VN .
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By orthogonality, Ψ0 is the unique solution in V(qα) for the problem
{

〈Ψ0,Ψ
α
j 〉 = 0, ∀j = 1, . . . , N,

qα(Ψ0,Φ) − µk(α)〈Ψ0,Φ〉 = L0(Φ), ∀Φ ∈ V(qα).
(9)

Furthermore, for j ∈ {1, . . . , k − 1, k + l, . . . ,N} , the unique function uj ∈ V(qα) or-

thogonal to Ψα
k , . . . ,Ψ

α
k+l−1 such that (Qα − µk(α))uj = Ψα

j is given by

uj =
1

µj(α) − µk(α)
Ψα

j .

Consequently,

Ψ := Ψ0 +
k−1∑

j=1

cj
µj(α) − µk(α)

Ψα
j +

N∑

j=k+l

cj
µj(α) − µk(α)

Ψα
j (10)

is the unique solution of (8).

Let us now analyze the decay of the solution Ψ as split in (10). Theorem 3.2 gives the

decay of Ψα
j . Therefore, it is enough to study the decay of Ψ0 .

Lemma 3.6. With Notation 3.4, let N be an integer, k + l − 1 ≤ N ≤ Kα . Let L0 be a

linear form continuous on V(qα) . We assume

L0(Ψ
α
j ) = 0, ∀j = 1, . . . , N, (11)

and that, moreover, there exists δ0 > 0 such that L0 is defined on {eδ0|X|Ψ, Ψ ∈ V(qα)}
with the estimate

∃C > 0, ∀Φ ∈ V(qα),
∣∣∣L0(e

δ0|X|Φ)
∣∣∣ ≤ C||Φ||V(qα). (12)

Then, the solution Ψ0 ∈ V(qα) of (9) satisfies eδN |X|Ψ0 ∈ V(qα) for some positive number

δN ≤ δ0 , independent of L0 .

Proof. Let δ ≤ δ0 . We define Ψδ = eδ|X|Ψ0 , and we check that for any Φ ∈ V(qα) ,

qα(Ψ0,Φ) = qα(e−δ|X|Ψδ,Φ)

=

∫

Gα

(∇− iA0 − δI)Ψδ · (∇− iA0 + δI)(e−δ|X|Φ) dX,

with I =

(
1
1

)
. Let us define the space VN

δ and the form aδ on VN
δ × VN

δ by

VN
δ =

{
Ψ ∈ V(qα), 〈Ψ, e−δ|X|Ψα

j 〉 = 0, ∀j = 1, . . . , N
}
,

aδ(Ψ,Φ) =

∫

Gα

(
(∇− iA0 − δI)Ψ · (∇− iA0 + δI)Φ − µk(α)Ψ Φ

)
dX.
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Then, for any Φ ∈ V(qα) , we have

L0(Φ) = qα(Ψ0,Φ) − µk(α)〈Ψ0,Φ〉 = aδ(Ψδ, e
−δ|X|Φ) = Lδ(e

−δ|X|Φ), (13)

where, thanks to (12), the linear form Lδ can be defined on V(qα) by

Lδ(Φ) = L0(e
δ|X|Φ). (14)

Due to the compatibility condition (11), we have

Lδ(e
−δ|X|Ψα

j ) = 0, ∀j = 1, . . . , N.

Solving the problem of finding Φδ ∈ VN
δ such that

aδ(Φδ,Φ) = Lδ(Φ), ∀Φ ∈ VN
δ , (15)

will provide exponential decay of the solution Ψ0 for problem (8).

We verify easily that the form aδ is sesquilinear and continuous on VN
δ × VN

δ . Let us

prove its coercivity. Let Ψ ∈ VN
δ , then

|aδ(Ψ,Ψ)| ≥ Re aδ(Ψ,Ψ) = qα(Ψ,Ψ) − µk(α)||Ψ||2 − δ2||Ψ||2. (16)

We decompose Ψ such that

Ψ =
N∑

j=1

〈Ψ,Ψα
j 〉Ψα

j + Ψ⊥,

then, the definition of VN
δ and the decay of Ψα

j give for any j = 1, . . . , N ,

∣∣〈Ψ,Ψα
j 〉
∣∣ =

∣∣∣〈Ψ, (1 − e−δ|X|)Ψα
j 〉
∣∣∣

≤ ||Ψ||L2(Gα)

(∫

Gα

δ2|X|2|Ψα
j (X)|2 dX

)1/2

≤ Cj δ||Ψ||L2(Gα). (17)

Furthermore, due to the decomposition of Ψ and (17), it follows

qα(Ψ,Ψ) = qα(Ψ⊥,Ψ⊥) +
N∑

j=1

∣∣〈Ψ,Ψα
j 〉
∣∣2 qα(Ψα

j ,Ψ
α
j )

≥ µN+1(α)||Ψ⊥||2 +

N∑

j=1

µj(α)
∣∣〈Ψ,Ψα

j 〉
∣∣2

≥ µN+1(α)||Ψ||2 −
N∑

j=1

(µN+1(α) − µj(α))
∣∣〈Ψ,Ψα

j 〉
∣∣2

≥
(

(µN+1(α) − δ2
N∑

j=1

C2
j (µN+1(α) − µj(α))

)
||Ψ||2. (18)
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Defining MN =
∑N

j=1C
2
j (µN+1(α) − µj(α)) , we deduce from (16)-(18), for κ ∈ (0, 1) ,

|aδ(Ψ,Ψ)| ≥ (1 − κ)||(∇− iA0)Ψ||2 +
(
κ
(
µN+1(α) − δ2MN

)
− µk(α) − δ2

)
||Ψ||2.

We define

δ̄N = min

(
δ0 ,

√
µN+1(α) − µk(α)

1 +MN

)
.

For δ ∈ (0, δ̄N ) , we choose κ ∈ (0, 1) such that κ
(
µN+1(α)− δ2MN

)
−µk(α)− δ2 > 0 .

This choice proves the coercivity of aδ on VN
δ for any δ ∈ [0, δ̄N ) .

Applying the Lax-Milgram theorem, we find that there exists a unique Φδ ∈ VN
δ solu-

tion of the variational problem (15). Thanks to the orthogonality conditions, Φδ satisfies,

moreover, aδ(Φδ,Φ) = Lδ(Φ) , ∀Φ ∈ V(qα) . Since δ is positive, Φδ satisfies, a fortiori,

aδ(Φδ, e
−δ|X|Φ) = Lδ(e

−δ|X|Φ), ∀Φ ∈ V(qα).

Therefore Φδ coincides with Ψδ = eδ|X|Ψ0 , compare with (13). We deduce that eδ|X|Ψ0

belongs to V(qα) for all δ ∈ [0, δ̄N ) , which ends the proof.

Using Lemmas 3.5 and 3.6, we deduce:

Lemma 3.7. With Notation 3.4, let L be a linear form continuous on V(qα) . We assume

L(Ψα
j ) = 0, ∀j = k, . . . , k + l − 1, (19)

and that, moreover, there exists δ0 > 0 such that L is defined on eδ0|X|V(qα) with the

estimate:

∃C > 0, ∀Φ ∈ V(qα),
∣∣∣L(eδ0|X|Φ)

∣∣∣ ≤ C||Φ||V(qα). (20)

Then, there exists a unique Ψ ∈ V(qα) such that

{
〈Ψ,Ψα

j 〉 = 0, ∀j = k, . . . , k + l − 1,

qα(Ψ,Φ) − µk(α)〈Ψ,Φ〉 = L(Φ), ∀Φ ∈ V(qα).
(21)

Furthermore, eδ|X|Ψ ∈ V(qα) for some δ ≤ δ0 independent of L .

Proof. The existence and uniqueness is clear according to Lemma 3.5. Combining Lemma

3.6 and Theorem 3.2 with the decomposition of Ψ into

Ψ0 +

k−1∑

j=1

cj
µj(α) − µk(α)

Ψα
j +

N∑

j=k+l

cj
µj(α) − µk(α)

Ψα
j ,

we obtain the decay of Ψ for any δ < min
(
δ̄N ,

√
Θ0 − µN (α)

)
, with any integer N such

that k + l − 1 ≤ N ≤ Kα .
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3.3 Generalization to any affine magnetic potential

To conclude this section about model problems, we deal with an arbitrary real-valued affine

magnetic potential, thus of the form

A(X) =
(
a11X1 + a12X2 + a10 , a21X1 + a22X2 + a20

)
. (22)

The associated magnetic field is

B = curlA = a21 − a12. (23)

The quadratic function (the gauge function) defined by

G(X) =
1

2

(
a11X

2
1 + a22X

2
2 + (a12 + a21)X1X2

)
+ a10X1 + a20X2, (24)

is such that

A = BA0 + ∇G, (25)

with the model magnetic potential A0 defined in (1).

Proposition 3.8. Let α ∈ (0, 2π) , and let A be an affine magnetic potential as in (22)-(25).

We assume that the associated magnetic field B is positive. Then the Neumann realization,

Qα,A , of the Schrödinger operator −(∇ − iA)2 on Gα has Kα eigenvalues strictly less

than BΘ0 . For k ≤ Kα , the k -th eigenvalue of −(∇ − iA)2 is equal to Bµk(α) and its

corresponding normalized eigenvector, Ψα,A
k , is given on Gα by

Ψα,A
k (X) =

√
B exp (iG(X)) Ψα

k (
√
B X).

Proof. We verify easily that Ψα,A
k is L2 -normalized. The operator Qα,A is defined on

D(Qα,A) with

D(Qα,A) =
{
Ψ ∈ L2(Gα), (∇− iA)Ψ ∈ L2(Gα),

(∇− iA)2Ψ ∈ L2(Gα), ν · (∇− iA)Ψ|∂Gα = 0
}
. (26)

Using the transformation

D(Qα) → D(Qα,A)

Ψ 7→ ΨA with ΨA(X) =
√
B exp(iG(X)) Ψ(

√
B X),

we see that the change of variables Y =
√
B X leads to

(∇X − iA(X))ΨA(X) =
√
B exp(iG(X))

(√
B∇Y − i(A(X) −∇G(X))

)
Ψ(Y)

=
√
B exp(iG(X))

(√
B∇Y − iBA0

(
Y√
B

))
Ψ(Y)

= B exp(iG(X)) (∇Y − iA0(Y))Ψ(Y).

10



It follows

Qα,AΨA(X) = B
√
B exp(iG(X)) QαΨ(Y).

Remark 3.9. Note that (∇− iA)2Ψ = (∇+ iA)2Ψ for any real-valued smooth magnetic

potential A and any Ψ ∈ D(Qα,A) . Thus, Proposition 3.8 is still valid when the magnetic

field B is negative and Ψα,A
k is given on Gα by

Ψα,A
k (X) =

√
|B| exp(iG(X)) Ψα

k (
√

|B| X).

4 Quasi-modes for the Schrödinger operator with constant mag-

netic field in a polygonal domain

Before considering in a further step a more general situation (Sections 6-7), we suppose

that our domain Ω is a convex bounded polygon with straight edges, and that the magnetic

potential is equal to A0(x) = 1
2 (−x2, x1) . We are interested in the behavior of the low-

est eigenvalues of the Neumann realization Ph on Ω , for the Schrödinger operator with

magnetic potential A0 and semi-classical parameter h > 0 .

The associated sesquilinear form ph is defined on H1(Ω) by

ph(u, v) =

∫

Ω
(h∇− iA0)u(x) · (h∇− iA0)v(x) dx. (27)

The operator Ph = −(h∇− iA0)
2 is well defined on its domain D(Ph) , with

D(Ph) =
{
u ∈ H2(Ω), ν · (h∇− iA0)u

∣∣
∂Ω

= 0
}
. (28)

In this section, we introduce suitable corner quasi-modes which will allow to construct

limit spectral problems for Ph .

4.1 Definition of corner quasi-modes

Let Σ be the set of the vertices s of Ω , and αs be the opening of Ω at s ∈ Σ . The spectrum

of Ph is in close relation with the spectra of the model operators Qαs , as defined in (4), for

s describing the set of corners Σ .

As a first step in the explanation of this relation, we introduce, for each vertex s , the

infinite plane sector Ğs which coincides with Ω near the vertex s : For d > 0 small enough,

we have

Ω ∩B(s, d) = Ğs ∩B(s, d).

11



There exists a rotation Rs such that

{X = Rs(x− s), x ∈ Ğs} = Gαs .

As a consequence of Proposition 3.8, we obtain:

Lemma 4.1. For all integer k , 1 ≤ k ≤ Kαs
, the function ψ̆h,s,k defined by

ψ̆h,s,k(x) =
1√
h

exp

(
i

2h
x ∧ s

)
Ψαs

k

(Rs(x− s)√
h

)
on Ğs, (29)

is a normalized eigenvector for the operator −(h∇− iA0)
2 with Neumann boundary con-

ditions on Ğs , associated with the eigenvalue hµk(αs) .

Thus we construct quasi-modes for Ph from the eigenpairs (µk(αs),Ψ
αs

k ) of Qαs for

each corner s of Ω and each k ≤ Kαs
via translation, rotation and cut-off according to:

Notation 4.2. • Let s ∈ Σ and ρs be the distance to other vertices:

ρs = dist(s,Σ \ {s}).

Let ρ′ ∈ (0, ρs) and χs be a radial smooth cut-off function with support in B(s, ρs) , equal

to 1 in B(s, ρ′) and such that 0 ≤ χs ≤ 1 .

• Let k ≤ Kαs
. Applying the cut-off χs to the function ψ̆h,s,k in (29) we define

ψh,s,k(x) = χs(x) ψ̆h,s,k(x) on Ω. (30)

4.2 Properties of quasi-modes

We gather in the following lemma the main properties of the functions ψh,s,k .

Lemma 4.3. For any ε > 0 , there exists Cε such that (31)-(33) hold.

(i) The L2 norm of ψh,s,k is nearly 1:

1 − Cε exp

(
− 2√

h

(
ρ′
√

Θ0 − µk(αs) − ε
))

≤ ||ψh,s,k||2L2(Ω) ≤ 1. (31)

(ii) The Rayleigh quotient of ψh,s,k is nearly hµk(αs):

∣∣∣∣∣
ph(ψh,s,k, ψh,s,k)

||ψh,s,k||2L2(Ω)

− hµk(αs)

∣∣∣∣∣ ≤ Cε exp

(
− 2√

h

(
ρ′
√

Θ0 − µk(αs) − ε
))

. (32)

(iii) The pair (hµk(αs), ψh,s,k) is an approximate eigenpair of Ph :

||Phψh,s,k − hµk(αs)ψh,s,k||L2(Ω)

||ψh,s,k||L2(Ω)
≤ Cε exp

(
− 1√

h

(
ρ′
√

Θ0 − µk(αs) − ε
))

. (33)

12



Proof. (i) Since, by construction, ||ψ̆h,s,k||L2(Ğs)
= 1 and thanks to the decay properties

(6) of Ψαs

k , we have

1 ≥ ||χsψ̆h,s,k||2L2(Ω) ≥
∫

Ω∩B(s,ρ′)
|ψ̆h,s,k|2 dx

=

∫

Gαs ∩B
“

0, ρ′√
h

”

|Ψαs

k (X)|2 dX

= 1 −
∫

Gαs \B
“

0, ρ′√
h

”

|Ψαs

k (X)|2 dX

≥ 1 − Cε exp

(
− 2ρ′√

h

(√
Θ0 − µk(αs) − ε

))
.

(ii) Let us prove the estimate about the quadratic form. We have ψh,s,k ∈ H1(Ω) and

ph(ψh,s,k, ψh,s,k) =

∫

Ω
|(h∇− iA0)ψh,s,k|2 dx

=

∫

Ω
|χs(h∇− iA0)ψ̆h,s,k|2 dx+ h2

∫

Ω
|ψ̆h,s,k|2|∇χs|2 dx

+ 2h Re

∫

Ω
χs(h∇− iA0)ψ̆h,s,k · ∇χs ψ̆h,s,k dx. (34)

Due to the properties of χs and to the decay estimate (6) again, we have
∫

Ω
|χs(h∇− iA0)ψ̆h,s,k|2 dx ≤

∫

Ω
|(h∇− iA0)ψ̆h,s,k|2 dx

≤ hµk(αs) ||ψ̆h,s,k||2L2(Ğs)
(35)

and
∫

Ω
|χs(h∇− iA0)ψ̆h,s,k|2 dx ≥

∫

Ω∩B(s,ρ′)
|(h∇− iA0)ψ̆h,s,k|2 dx

≥
∫

Ğs

|(h∇− iA0)ψ̆h,s,k|2 dx −
∫

Ğs\B(s,ρ′)
|(h∇− iA0)ψ̆h,s,k|2 dx

≥ hµk(αs) ||ψ̆h,s,k||2L2(Ğs)
− Cε exp

(
− 2ρ′√

h

(√
Θ0 − µk(αs) − ε

))
. (36)

Still using Theorem 3.2, we deduce also the estimate
∣∣∣∣ 2h Re

∫

Ω
χs(h∇− iA0)ψ̆h,s,k · ∇χs ψ̆h,s,k dx+ h2

∫

Ω
|ψ̆h,s,k|2|∇χs|2 dx

∣∣∣∣

≤ Ch

∫

Ω\B(s,ρ′)

(
|(h∇− iA0)ψ̆h,s,k|2 + |ψ̆h,s,k|2

)
dx

≤ Cε exp

(
− 2ρ′√

h

(√
Θ0 − µk(αs) − ε

))
. (37)
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Putting together relation (34) with estimates (35), (36), (37) and using the estimate (31) for

||ψh,s,k||L2(Ω) , we deduce (32).

(iii) Let us now prove the last estimate. Since χs is radial, we can check that ψh,s,k satisfies

the Neumann boundary condition and, thus, belongs to D(Ph) . We have

Ph(ψh,s,k) = χsPh(ψ̆h,s,k) − 2h∇χs · (h∇− iA0)ψ̆h,s,k − h2ψ̆h,s,k ∆χs.

On the support of χs , we have, thanks to Lemma 4.1,

Phψ̆h,s,k(x) = hµk(αs)ψ̆h,s,k(x).

Therefore χsPh(ψ̆h,s,k) = hµk(αs)ψh,s,k . The same arguments as above for the proof of

(37) lead to the estimate

||2h∇χs · (h∇− iA0)ψ̆h,s,k + h2ψ̆h,s,k∆χs||2L2(Ω)

≤ Cε exp

(
− 2ρ′√

h

(√
Θ0 − µk(αs) − ε

))
. (38)

This ends the proof of Lemma 4.3.

4.3 Partition of unity

We end this section by a useful lemma which will allow to achieve the proof of the spectral

asymptotics which can be obtained from the quasi-modes.

Lemma 4.4. For any s ∈ Σ , let χs be a real-valued cut-off function supported in B(s, ρs) .

We assume moreover that for any s 6= s
′ , suppχs ∩ suppχ′

s = ∅ . We define χ0 on Ω by

χ2
0 = 1 −∑

s∈Σ χ
2
s . By convention χs with s = 0 refers to χ0 . Then, for any ψ ∈ H1(Ω) ,

ph(ψ,ψ) =
∑

s∈Σ∪{0}

ph(χsψ,χsψ) − h2
∑

s∈Σ∪{0}

||ψ∇χs||2L2(Ω).

Proof. Let s ∈ Σ ∪ {0} , then

|(h∇− iA0)(χsψ)|2 = |χs|2|(h∇− iA0)ψ|2 + h2|ψ|2|∇χs|2

+ 2h Re χsψ (h∇− iA0)ψ · ∇χs

= |χs|2|(h∇− iA0)ψ|2 + h2|ψ|2|∇χs|2 + h2 Re ψ∇ψ · ∇|χs|2.

Let us sum up this relation for s ∈ Σ ∪ {0} , it follows

∑

s∈Σ∪{0}

|(h∇− iA0)(χsψ)|2 =
∑

s∈Σ∪{0}

|χs|2|(h∇− iA0)ψ|2 + h2
∑

s∈Σ∪{0}

|ψ|2|∇χs|2

+ h2
∑

s∈Σ∪{0}

Re ψ∇ψ · ∇|χs|2.
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Since
∑

s∈Σ∪{0} |χs|2 = 1 on Ω , we notice that on Ω

∑

s∈Σ∪{0}

|χs|2|(h∇− iA0)ψ|2 = |(h∇− iA0)ψ|2,

∑

s∈Σ∪{0}

Re ψ∇ψ · ∇|χs|2 = Re ψ∇ψ · ∇
∑

s∈Σ∪{0}

|χs|2 = 0.

Integrating on Ω ends the proof.

5 Spectral asymptotics in a polygon (constant magnetic field)

In this section, we prove that, provided that some of the model operators Qαs have eigenval-

ues λ below their essential spectrum, a corresponding number of eigenvalues µh of Ph are

exponentially close to hλ as h tends to 0 . We also prove the related results for eigenspaces.

5.1 Approximation of eigenvalues of Ph by corner model operators

We first make precise the notations about eigenvalues.

Notation 5.1. • We denote by µh,n the n− th eigenvalue of Ph counted with multiplicity.

• We denote by λn the n− th eigenvalue of ⊕s∈ΣQ
αs counted with multiplicity as defined

by the min-max principle, and let KΩ be the largest integer such that λKΩ
< Θ0 . With

Notation 3.4, we have KΩ =
∑

s∈ΣKαs
. We assume that KΩ ≥ 1 . For any n ≤ KΩ , we

denote by Σn the subset of vertices:

Σn =
{
s ∈ Σ, λn is an eigenvalue for Qαs

}
,

and by rn the distance

rn = r(λn) = min
s∈Σn

d(s,Σ \ {s}).

Theorem 5.2. With Notation 5.1, for any ε > 0 , there exists Cε such that

µh,1 ≤ hλ1 + Cε exp

(
− 2√

h

(
r1
√

Θ0 − λ1 − ε
))

,

|µh,n − hλn| ≤ Cε exp

(
− 1√

h

(
rn
√

Θ0 − λn − ε
))

, ∀n ≤ KΩ.

Proof. (i) Estimate (32) of Lemma 4.3 applied with µk(αs) = λ1 and ρ′ = r1 − ε′ and the

min-max principle (recalled in Definition 3.1) lead to

µh,1 ≤ hλ1 + Cε exp

(
− 2√

h
(r1 − ε′)

(√
Θ0 − λ1 − ε

))
.

15



(ii) Let n ≤ KΩ and s ∈ Σn . Let Ψαs be a normalized eigenvector for Qαs associated

with λn and let ψ̆h,s be the function deduced from Ψαs by (29). Then ψ̆h,s is a normalized

eigenfunction of −(h∇− iA0)
2 on Ğs associated with the eigenvalue hλn . Let ε > 0 . Let

χs ∈ C∞
0 (Ω, [0, 1]) be a smooth cut-off function as in (30), with ρ′ < rn − ε

2 , and define

ψh,s = χsψ̆h,s as in (30).

We deduce from estimate (33) that there exists Cε > 0 such that

||Ph(ψh,s) − hλnψh,s||L2(Ω)

||ψh,s||L2(Ω)
≤ Cε exp

(
− 1√

h

(
rn
√

Θ0 − λn − ε
))

. (39)

Due to the spectral theorem (cf [25, Chap. VII]), it follows

d(σ(Ph), hλn) ≤ Cε exp

(
− 1√

h

(
rn
√

Θ0 − λn − ε
))

. (40)

(iii) Let us prove a lower bound for the eigenvalues of Ph using ideas of [9, 27]. Let n ≤
KΩ + 1 be such that λn−1 6= λn . With the cut-off functions χs already introduced for

s ∈ Σ , let us define χ0 on Ω by χ2
0 = 1 −∑

s∈Σ χ
2
s . Due to Lemma 4.4, we know that for

any u ∈ H1(Ω) ,

ph(u, u) =
∑

s∈Σ∪{0}

ph(χsu, χsu) − h2
∑

s∈Σ∪{0}

||u∇χs||2L2(Ω). (41)

Since suppχ0 ∩ Σ = ∅ , we can apply the result of [12] for smooth domains: there exists

c > 0 so that

ph(χ0u, χ0u) ≥ (hΘ0 − ch2)||χ0u||2L2(Ω). (42)

For any s ∈ Σ , let T s be the restriction of Qαs to the space spanned by the eigenfunctions

Ψαs

k corresponding to eigenvalues µk(αs) ≤ λn−1 . We denote by R∗
h,s the application

R∗
h,sD(Ph) → D(Qαs)

ŭh,s 7→ u such that ŭh,s(x) =
1√
h

exp

(
i

2h
x ∧ s

)
u

(Rs(x− s)√
h

)
.

Then we have

ph(χsu, χsu) = h qαs

(
R∗

h,s(χsu),R∗
h,s(χsu)

)

≥ h λn||R∗
h,s(χsu)||2L2(Gαs ) − h

〈
R∗

h,s(χsu), T
sR∗

h,s(χsu)
〉
. (43)

Let Th,s be the restriction of −(h∇− iA0)
2 on Ğs to the space spanned by the eigenfunc-

tions ψ̆h,s,k , see (29), corresponding to eigenvalues µk(αs) ≤ λn−1 . We set

T =
∑

s∈Σ

χsTh,sχs.
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Combining (41)-(43) we obtain, since λn ≤ Θ0 ,

ph(u, u) ≥ hλn||u||2L2(Ω) − 〈u, Tu〉 − ch2||u||2L2(Ω).

Since for any s ∈ Σ ,

rank(χsTh,sχs) ≤ rank(T s) = card
{

eigenvalues of Qαs less than λn−1

}
,

we deduce, thanks to the assumption λn−1 < λn , that the rank of T is not greater than

n− 1 .

To obtain a lower bound for µh,n , we use the max-min principle. Let u1, . . . , un−1 be-

long to the orthogonal space of ker(T ) . Then for all ψ in {u1, . . . , un−1}⊥ , ψ belongs to

ker(T ) and we have

µh,n ≥ 〈ψ,Phψ〉
||ψ||2 ≥ hλn − ch2. (44)

(iv) Now we reach the conclusion: According to (40), we know that there exists µh ∈ σ(Ph)
such that

|µh − hλn| ≤ Cε exp

(
− 1√

h
(rn
√

Θ0 − λn − ε)

)
.

Using (44), we obtain that µh belongs to the set {µh,k, λk = λn} , which ends the proof of

the theorem.

Remark 5.3. In particular the lower bound (44) is valid for n = KΩ + 1: In this case,

λKΩ+1 = Θ0 . Thus (44) yields

µKΩ+1,h ≥ hΘ0 − ch2.

5.2 Eigenspaces

It results from the previous theorem that, according to repetitions of the same values in λ ∈
{λ1, . . . , λKΩ

} , the corresponding eigenvalues µh,n are gathered into clusters, because they

are exponentially close to the same value hλ . We are going to prove that the corresponding

eigenvectors are exponentially close to linear combinations of quasi-modes. Let us first

introduce the definition of distance between subspaces E and F of a Hilbert space. The (a

priori) non-symmetric distance d(E,F ) is defined as

d(E,F ) = ||ΠE − ΠF ΠE ||H,

where ΠE and ΠF denote the orthogonal projections on E and F respectively. If both

E and F are finite dimensional, and if they have the same dimension, then d(E,F ) =
d(F,E) .

To prove that eigenvectors of Ph are close to linear combinations of quasi-modes, we

use the following refinement of [29] more adapted to clustered eigenvalues:
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Theorem 5.4 ([15, Prop. 4.1.1] [19]). Let A be an unbounded self-adjoint operator in

a Hilbert space H . Let ψ1, . . . , ψN be N linearly independent vectors in D(A) and

µ1, . . . , µN be N real numbers such that

Aψj = µjψj + rj with ||rj ||H ≤ η. (45)

Let I ⊂ R be a compact interval containing µ1, . . . , µN . We assume that there exists a > 0
such that σ(A) ∩ (I +B(0, 2a) \ I) = ∅ . Then, if E is the space spanned by ψ1, . . . , ψN

and if F is the spectral space associated with σ(A) ∩ I , we have

d(E,F ) ≤ η
√
N

a
√
κmin

S

, (46)

where κmin
S is the smallest eigenvalue of the Gram matrix S =

(
〈ψj , ψk〉H

)
.

Let us now introduce some notation for the cluster of eigenspaces and quasi-modes.

Notation 5.5. • Using Notation 5.1, we denote by {Λ1 < · · · < ΛM} the set of distinct

values in {λ1, . . . , λKΩ
} . For any m ≤M , we define the distance

Rm = r(Λm).

• For any n ≤ KΩ , we denote by (µh,n, uh,n) the n-th eigenpair of Ph .

• For any m ≤M , we define the m-th cluster of eigenspaces of Ph by

Fh,m = span
{
uh,n for any n such that λn = Λm

}
,

and the corresponding cluster of quasi-modes, cf. (29)-(30),

Eh,m = span
{
ψh,s,k = χsψ̆h,s,k for any s ∈ Σ, k ≥ 1 such that µk(αs) = Λm

}
.

A positive real number δ is attached to these spaces of quasi-modes: δ is such that for all

s ∈ Σ , the cut-off function χs is equal to 1 on B(s, Rm − δ) .

Theorem 5.6. With Notation 5.1 and 5.5, for any ε > 0 , there exists Cε such that for any

m ≤M ,

d(Eh,m , Fh,m) ≤ Cε exp

(
− 1√

h

(
(Rm − δ)

√
Θ0 − Λm − ε

))
.

Proof. For any m ≤M , we define

Σ∗
m =

{
(s, k) ∈ Σ × {1, · · · ,KΩ}, µk(αs) = Λm

}
.

(i) If the set Σ∗
m is reduced to one element, then Theorem 5.6 comes from Lemma 4.3.
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(ii) We assume that Σ∗
m is not reduced to one element. We denote by κmin

m the smallest

eigenvalue of the matrix
(
〈ψh,s,k, ψh,s′,k′〉

)
((s,k),(s′,k′))∈Σ∗

m×Σ∗
m

.

Let (s, k) 6= (s′, k′) ∈ Σ∗
m . If s = s

′ , ψ̆h,s,k and ψ̆h,s,k′ are orthogonal, and thus
∫

Ω
ψh,s,k ψh,s,k′ dx =

∫

Ω
(|χs|2 − 1) ψ̆h,s,k ψ̆h,s,k′ dx.

Then, by Cauchy-Schwarz inequality and decay of eigenfunctions,
∣∣∣∣
∫

Ω
ψh,s,k ψh,s,k′ dx

∣∣∣∣ ≤
∫

Ω\B(s,Rm−δ)

∣∣∣ψ̆h,s,k

∣∣∣
∣∣∣ψ̆h,s,k′

∣∣∣ dx

≤ Cε exp

(
− 1√

h

(
2(Rm − δ)

√
Θ0 − Λm − ε

))
.

If s 6= s
′ , since eigenfunction ψ̆h,s,k and ψ̆h,s′,k′ are localized near distinct corner, we have
∣∣∣∣
∫

Ω
ψh,s,k ψh,s′,k′ dx

∣∣∣∣ ≤
∫

Ω

∣∣∣χsψ̆h,s,k

∣∣∣
∣∣∣χs′ψ̆h,s′,k′

∣∣∣ dx

≤
∫

Ω\(B(s,Rm−δ)∪B(s′,Rm−δ))

∣∣∣ψ̆h,s,k

∣∣∣
∣∣∣ψ̆h,s,k′

∣∣∣ dx

≤ Cε exp

(
− 1√

h

(
2(Rm − δ)

√
Θ0 − Λm − ε

))
.

Using also (31), we deduce that

|κmin
m − 1| ≤ Cε exp

(
− 1√

h

(
2(Rm − δ)

√
Θ0 − Λm − ε

))
.

Let us now apply Theorem 5.4 with A = Ph . Relation (33) in Lemma 4.3 gives (45) with

η = Cε exp(−((Rm − δ)
√

Θ0 − Λm − ε)/
√
h) . Let us define I = [hΛm − η, hΛm + η] .

According to Theorem 5.2, there exists C > 0 such that for h small enough,

σ(Ph) ∩
(
I +B(0, 2Ch) \ I

)
= ∅.

For example, we choose C = min
{

Λm−Λm−1

4 , Λm+1−Λm

4

}
with the convention Λ0 = 0 .

Assumptions of Theorem 5.4 are filled and this ends the proof of Theorem 5.6.

Remark 5.7. 1. Theorem 5.6 shows that any eigenfunction of Ph associated with µh,n

is exponentially close to a linear combination of the quasi-modes corresponding to

Λm = λn for the model operators. This result is particularly interesting when the

polygon Ω has several angles with the same opening. When the polygon presents

symmetries, these linear combinations are non trivial, as exhibited by numerical ex-

periments on a square, see [6].
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2. Using Proposition 3.8, Theorems 5.2 and 5.6 can easily be generalized to the Schrödin-

ger operator with constant magnetic field equal to B . The eigenvalues are multiplied

by B and we use Proposition 3.8 to construct adapted quasi-modes.

3. Theorems 5.2 and 5.6 are still valid for a non convex polygon, even if the domain

of the operator Ph is not contained in H2(Ω) any more (a finite number of singular

functions have to be added to H2(Ω) if non convex angles are present). Moreover,

we do not expect the first eigenfunctions of Ph to be localized in a non convex corner,

since it is reasonable to conjecture that the bottom of the spectrum of Qα is equal to

Θ0 for openings α between π and 2π (cf. Remark 3.3).

6 Quasi-modes for the Schrödinger operator in a curvilinear

polygon

Let Ω be a bounded curvilinear polygon with a piecewise smooth boundary. As previously,

we denote by Σ the set of the vertices s of Ω , and by αs the opening of Ω at s . For the

sake of simplicity (cf. Remark 5.7), we assume that αs ∈ (0, π) for any s ∈ Σ .

Let B be a smooth positive magnetic field and let A be a potential associated with B , i.e.

B = curlA on Ω . As in Sections 4-5, we are interested in the behavior of the eigenpairs of

the Neumann realization Ph on Ω , for the Schrödinger operator −(h∇− iA)2 as h→ 0 .

The associated sesquilinear form ph is defined on H1(Ω) by

ph(u, v) =

∫

Ω
(h∇− iA)u(x) · (h∇− iA)v(x) dx. (47)

The operator Ph = −(h∇− iA)2 is defined on its domain D(Ph) , with

D(Ph) =
{
u ∈ H2(Ω), ν · (h∇− iA)u

∣∣
∂Ω

= 0
}
. (48)

Now, the values of the magnetic field B(s) at corners s play a key role in the eigenvalue

asymptotics. We introduce:

Notation 6.1. • We denote by µh,n the n-th eigenvalue of Ph counted with multiplicity.

• We define infimum numbers for the magnetic field by

b = inf
x∈Ω

B(x) and b′ = inf
x∈∂Ω

B(x).

• We denote by λn the n-th eigenvalue of the model operator

⊕

s∈Σ

B(s)Qαs ,
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counted with multiplicity as defined by the min-max principle, and let KΩ,B be the largest

integer K such that

λK < min(Θ0b
′, b).

We assume that KΩ,B ≥ 1 .

For simplicity of the quasi-modes construction, we make the following assumption.

Assumption 6.2. For any s ∈ Σ and k ≤ Kαs
such that B(s)µk(αs) < min(Θ0b

′, b) , we

assume that µk(αs) is a simple eigenvalue of Qαs .

The case of the curvilinear polygon is quite different from the polygonal case since a

series in power of
√
h appears now. At each corner s ∈ Σ , we perform the construction

of asymptotic quasi-modes in several steps: Section 6.1 is devoted to a change of variables

which maps a corner neighborhood to a plane sector. We use a gauge transform in Sec-

tion 6.2 to reduce to a magnetic field equal to 1 at the vertex. In Section 6.3, we perform

a scaling together with a Taylor expansion, and introduce a formal series expression of the

eigenmode problem. We solve the formal series equations in Section 6.4 and define subse-

quently our quasi-modes in Section 6.5.

6.1 Change of variables

Let s ∈ Σ . We consider the change of variables x 7→ x̂ = Rs(x− s) which sends s into 0
and Ω∩B(s, ρs) onto Gαs ∩Us . Here Us is a neighborhood of 0 . This change of variables

gives a new magnetic potential Â satisfying

A1dx1 + A2dx2 = Â1dx̂1 + Â2dx̂2,

where A = (A1,A2) and Â = (Â1, Â2) . This leads to define the new operator

P̂h,s = −
2∑

j,k=1

(h∂x̂j
− iÂj)

√
detTs Ts,jk (h∂x̂k

− iÂk),

where Ts = dR−1
s (dR−1

s )t and Ts,jk are the coefficients of the matrix Ts . The boundary

operator Th = ν · (h∇− iA) is sent onto

T̂h,s =
2∑

j,k=1

νj Ts,jk(h∂x̂k
− iÂk),

where (ν1, ν2) is the unit outer normal to the boundary of Gαs .

We observe that

√
detTs(0) Ts,jk(0) = δj,k, Â(0) = A(s) and B(s) =

∂Â2

∂x̂1
(0) − ∂Â1

∂x̂2
(0).
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For u ∈ H2(Ω ∩B(s, ρs)) , let û be defined on Gαs ∩ Us by

û(x̂) = u(x) = u(R−1
s (x̂) + s).

There holds{
Phu = µu in Ω ∩B(s, ρs)

Thu = 0 on ∂Ω ∩B(s, ρs)
⇐⇒

{
P̂h,sû = µû in Gαs ∩ Us

T̂h,sû = 0 on ∂Gαs ∩ Us.

6.2 Gauge transform

To apply Proposition 3.8, we define

a10 = A1(s) = Â1(0), a11 =
∂A1

∂x1
(s) =

∂Â1

∂x̂1
(0), a12 =

∂A1

∂x2
(s) =

∂Â1

∂x̂2
(0),

a20 = A2(s) = Â2(0), a21 =
∂A2

∂x1
(s) =

∂Â2

∂x̂1
(0), a22 =

∂A2

∂x2
(s) =

∂Â2

∂x̂2
(0).

We also define the gauge function

Gs(x̂) =
1

2

(
a11x̂

2
1 + a22x̂

2
2 + (a12 + a21)x̂1x̂2

)
+ a10x̂1 + a20x̂2.

In accordance with Proposition 3.8, we consider the gauge transform which associates with

any function û defined on Gαs ∩ Us , the function ψ̃ such that

û(x̂) =
√

B(s) exp

(
i

h
Gs(x̂)

)
ψ̃
(√

B(s) x̂
)
. (49)

The function ψ̃ is defined on Gαs ∩ Ũs now, where Ũs =
√

B(s)Us . This leads to consider

the new coordinates y =
√

B(s) x̂ , together with the new magnetic potential

Ã(y) =
1√
B(s)

(
Â − ∇Gs

)( y√
B(s)

)
. (50)

Thus

Ã(0) = 0, curl Ã(0) = 1 and Ã(y) = A0(y) + O(y2) as y → 0.

Introducing the operator Q̃h,s defined on Gαs ∩ Ũs by

Q̃h,s = −B(s)

2∑

j,k=1

(
h∂yj − iÃj(y)

)
gs,jk(y)

(
h∂yk

− iÃk(y)
)

(51)

with gs,jk(y) =
(√

det Ts Ts,jk

) (
y B(s)−1/2

)
, and the corresponding boundary operator

T̃h,s , we check that
{
P̂h,sû = µû in Gαs ∩ Us

T̂h,sû = 0 on ∂Gαs ∩ Us

⇐⇒
{
Q̃h,sψ̃ = µψ̃ in Gαs ∩ Ũs

T̃h,sψ̃ = 0 on ∂Gαs ∩ Ũs.
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6.3 Scaling and formal series expression

In order to homogenize the powers of h in the leading part of Q̃h,s at 0 , we have to perform

the scaling

Y =
y√
h

=

√
B(s)

h
x̂.

Now appear the terms Ã(
√
hY) and gs,jk(

√
hY) , which are not homogeneous functions

any more, in general. We represent them as asymptotic series of homogeneous functions

thanks to a Taylor expansion at 0 . We denote

yℓ = yℓ1
1 y

ℓ2
2 for y = (y1, y2) and ℓ = (ℓ1, ℓ2) ∈ N

2.

We write the Taylor expansion of the potential Ã and of the change of variables gs,jk : For

any j, k ∈ {1, 2} , there exist sequences (aℓ
j)ℓ≥1 and (gℓ

j,k)ℓ≥0 satisfying, in the sense of

asymptotic series





Ãj(y) ≃
∑

|ℓ|≥1

aℓ
j y

ℓ,

gs,jk(y) ≃
∑

|ℓ|≥0

gℓ
j,k y

ℓ with g0
j,k = δj,k.

(52)

With the scaling y =
√
hY , we have

Ãj(
√
hY) ≃

∑

|ℓ|≥1

hℓ/2 aℓ
j Y

ℓ

and a similar formula for gs,jk(
√
hY) . Then the operator Q̂h,s defined in (51) can be written

in the form of a formal series of
√
h as

Q̃h,s ≃ hB(s) Qs[h] where Qs[h] =
∑

ℓ≥0

hℓ/2Qℓ
s with Q0

s = Qαs .

We note that, for any ℓ ≥ 1 , Qℓ
s is a second order operator whose coefficients are polyno-

mial functions. We do the same with the boundary operator:

T̃h,s ≃
√
hB(s) Ts[h] where Ts[h] =

∑

ℓ≥0

hℓ/2T ℓ
s with T 0

s = ν · (∇− iA0).

Putting all together we obtain:

Lemma 6.3. Let us suppose that there exists a family of solutions
(
µh, ψ̃h

)
0<h<h0

to

{
Q̃h,s ψ̃h = hB(s)µh ψ̃h in Gαs ∩ Ũs

T̃h,s ψ̃ = 0 on ∂Gαs ∩ Ũs,
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such that µh and ψ̃h have power series expansions µ[h] and ψ̃[h] in powers of
√
h . Then

there holds the formal series equation:
{
Qs[h] ψ̃[h] = µ[h] ψ̃[h] in Gαs ,

Ts[h] ψ̃[h] = 0 on ∂Gαs ,
(53)

which means that for all integer L ≥ 0 there holds





L∑

ℓ=0

QL−ℓ
s ψ̃ℓ =

L∑

ℓ=0

µL−ℓ ψ̃ℓ in Gαs ,

L∑

ℓ=0

TL−ℓ
s ψ̃ℓ = 0 on ∂Gαs .

(54)

Conversely, our quasi-modes are obtained from particular solutions of (53).

6.4 Solutions of the formal series equation (53)

The first problem in (54) (for L = 0) is
{
Q0

s ψ̃
0 = µ0 ψ̃0 in Gαs ,

T 0
s ψ̃

0 = 0 on ∂Gαs .
(55)

The solutions of this problem are the eigenpairs (µk(αs),Ψ
αs

k ) of the operator Qαs , which

we take as starting values for our construction of solutions of the whole system (54). We fix

k ≤ Kαs
and set

µ0
s,k = µk(αs) and Ψ0

s,k = Ψαs

k .

Then (µ0
s,k,Ψ

0
s,k) is a particular solution of (55). For simplicity, we assume that µk(αs) is

a simple eigenvalue of Qαs (see Assumption 6.2 and Remark 7.2 ). We determine succes-

sively the terms Ψℓ
s,k and µℓ

s,k of the formal series

Ψs,k[h] =
∑

ℓ≥0

hℓ/2Ψℓ
s,k and µs,k[h] =

∑

ℓ≥0

hℓ/2µℓ
s,k

by solving successively each problem in the sequence of problems (54), L = 1, 2, . . .

For L = 1 , the problem is
{
Q1

sΨ
0
s,k +Q0

sΨ
1
s,k = µ1

s,kΨ
0
s,k + µ0

s,kΨ
1
s,k,

T 1
s Ψ0

s,k + T 0
s Ψ1

s,k = 0.

We can rewrite it as
{

(Q0
s − µk(αs))Ψ

1
s,k = (µ1

s,k −Q1
s )Ψ

αs

k ,

T 0
s Ψ1

s,k = −T 1
s Ψαs

k .
(56)
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This problem has the form of problem (21) considered in Lemma 3.7, with the right hand

side

L(v) =
〈
(µ1

s,k −Q1
s )Ψ

αs

k , v
〉
Gαs

+
〈
T 1

s Ψαs

k , v
〉
∂Gαs

.

We choose µ1
s,k so that the compatibility condition (19) is satisfied, i.e.

µ1
s =

〈
Q1

sΨ
αs

k ,Ψ
αs

k

〉
Gαs

−
〈
T 1

s Ψαs

k ,Ψ
αs

k

〉
∂Gαs

.

By decay of Ψαs

k and since Q1
s is an operator of order 2 , the right hand side L satisfies the

decay condition (20). Thus Lemma 3.7 provides the existence of a solution Ψ1
s,k satisfying

(56) and, furthermore, there exists δ1 > 0 such that eδ1|X|Ψ1
s,k ∈ V(qαs) .

Next, the problem for L = 2 can be written as

{
(Q0

s − µk(αs))Ψ
2
s,k = (µ2

s,k −Q2
s )Ψ

αs

k + (µ1
s,k −Q1

s )Ψ
1
s,k,

T 0
s Ψ2

s,k = −T 1
s Ψ1

s,k − T 2
s Ψαs

k .

We choose µ2
s,k to satisfy (19). Due to the decay of Ψ1

s,k and Ψαs

k , (20) is satisfied and

we apply Lemma 3.7 to determine Ψ2
s,k . We do the same successively and so determine

coefficients Ψℓ
s,k and µℓ

s,k . Construction is summed up in the following lemma.

Lemma 6.4. Let s ∈ Σ . We fix k ≤ Kαs
and set

µ0
s,k = µk(αs) and Ψ0

s,k = Ψαs

k .

We assume that µk(αs) is simple for Qαs (see Assumption 6.2).

For any ℓ ≥ 1 , there exist µℓ
s,k ∈ R , Ψℓ

s,k ∈ V(qαs) such that for any L ≥ 0 ,





L∑

ℓ=0

QL−ℓ
s Ψℓ

s,k =
L∑

ℓ=0

µL−ℓ
s,k Ψℓ

s,k in Gαs ,

L∑

ℓ=0

TL−ℓ
s Ψℓ

s,k = 0 on ∂Gαs .

(57)

Furthermore, there exists δ > 0 such that eδ|X|Ψℓ
s,k ∈ V(qαs) for any ℓ ≥ 0 .

6.5 Sequences of quasi-modes for Ph near the corner s

We are now ready to introduce sequences of quasi-modes:

Notation 6.5. • Let s ∈ Σ and let χs be a smooth cut-off function with support in B(s, ρs) ,

equal to 1 in B(s, ρs/2) .
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• Let k ≤ Kαs
. For any integer L ≥ 0 , using the numbers µℓ

s,k and functions Ψℓ
s,k

exhibited in Lemma 6.4, we define

µ
[L]
h,s,k = hB(s)

L∑

ℓ=0

hℓ/2µℓ
s,k, (58)

ψ̆
[L]
h,s,k(x) =

√
B(s)

h
exp

(
i

h
Gs(Rs(x− s))

) L∑

ℓ=0

hℓ/2Ψℓ
s,k

(√
B(s)

h
Rs(x− s)

)
(59)

and, applying the cut-off χs

ψ
[L]
h,s,k(x) = χs(x) ψ̆

[L]
h,s,k(x) on Ω. (60)

For each fixed corner s and k ≤ Kαs
, all the functions ψ

[L]
h,s,k for L = 1, 2, . . . are

quasi-modes, more and more accurate as L→ ∞ , as proved in the following lemma:

Lemma 6.6. Let s ∈ Σ and k ≤ Kαs
. For any L ≥ 1 , there exists CL > 0 such that

(61)-(62) hold.

(i) The L2 -norm of ψ
[L]
h,s,k is nearly 1:

∀h ∈ (0, h0), 1 − CL

√
h ≤ ||ψ[L]

h,s,k||L2(Ω) ≤ 1 + CL

√
h, (61)

(ii) The Rayleigh quotient of ψ
[L]
h,s,k is nearly µ

[L]
h,s,k :

∀h ∈ (0, h0),
∣∣∣ph(ψ

[L]
h,s,k, ψ

[L]
h,s,k) − µ

[L]
h,s,k

∣∣∣ ≤ CL h
L+3

2 . (62)

Proof. (i) Thanks to Lemma 6.4, we have

1 ≥ ||ψ[0]
h,s,k||2L2(Ω) ≥ ||ψ̆[0]

h,s,k||2L2(Ω∩B(s,ρs/2)) ≥ 1 − Ce−δ0ρs

q

B(s)
h .

To end the proof of (61), we notice that ψ
[L]
h,s,k = ψ

[0]
h,s,k +

√
hv , with

v(x) = χs(x)

√
B(s)

h
exp

(
i

h
Gs(Rs(x− s))

) L∑

ℓ=1

h(ℓ−1)/2Ψℓ
s,k

(√
B(s)

h
Rs(x− s)

)
.

Consequently, there exists CL such that ||v||L2(Ω) ≤ CL .

(ii) Let us prove the quadratic form estimate. We have ψ
[L]
h,s,k ∈ H1(Ω) and we observe, as

in (34), that

ph(ψ
[L]
h,s,k, ψ

[L]
h,s,k) =

∫

Ω
|χs(h∇− iA)ψ̆

[L]
h,s,k|2 dx+ h2

∫

Ω
|ψ̆[L]

h,s,k|2|∇χs|2 dx

+ 2h Re

∫

Ω
χs(h∇− iA)ψ̆

[L]
h,s,k · ∇χs ψ̆

[L]
h,s,k dx. (63)
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Due to the properties of χs and Lemma 6.4, we have

∫

Ω
|χs(h∇− iA)ψ̆

[L]
h,s,k|2 dx ≤

∫

Ω
|(h∇− iA)ψ̆

[L]
h,s,k|2 dx

≤ (µ
[L]
h,s,k + CLh

L+3
2 ) ||ψ̆[L]

h,s,k||2L2(Ω) (64)

and there exists δ > 0 such that
∫

Ω
|χs(h∇− iA)ψ̆h,s,k|2 dx ≥

∫

Ω∩B(s, ρs

2
)
|(h∇− iA)ψ̆

[L]
h,s,k|2 dx

≥ (µ
[L]
h,s,k −CLh

L+3
2 ) ||ψ̆[L]

h,s,k||2L2(Ω) − CLexp

(
−δρs

√
B(s)

h

)
. (65)

Still using the decay of Ψℓ
s,k , we deduce also the estimate

∣∣∣∣ 2h Re

∫

Ω
χs(h∇− iA)ψ̆

[L]
h,s,k · ∇χs ψ̆

[L]
h,s,k dx+ h2

∫

Ω
|ψ̆[L]

h,s,k|2|∇χs|2 dx
∣∣∣∣

≤ Ch

∫

Ω\B(s, ρs

2
)

(
|(h∇− iA)ψ̆

[L]
h,s,k|2 + |ψ̆[L]

h,s,k|2
)
dx

≤ C exp

(
−δρs

√
B(s)

h

)
. (66)

Putting together relation (63) with estimates (64), (65), (66) and using the estimate (61) for

||ψ[L]
h,s,k||L2(Ω) , we deduce (62).

As in Lemma 4.3, we would like to propose an approximate eigenpair of Ph from

(µ
[L]
s,k,Ψ

[L]
s,k) . But Ψ

[L]
s,k does not fulfill boundary condition and so we introduce a small cor-

rector by the following way:

Notation 6.7. Let s ∈ Σ and k ≤ Kαs
. With Notation 6.5, for any integer L ≥ 0 , we

consider wL
h,s,k the solution of the Neumann problem:

(h∇− iA)2wL
h,s,k = 0 on Ω and ν · (h∇− iA)(ψ

[L]
h,s,k + wL

h,s,k) = 0 on ∂Ω.

Then, we define

φ
[L]
h,s,k = ψ

[L]
h,s,k + wL

h,s,k. (67)

In the following lemma, we prove that wL
h,s,k is small.

Lemma 6.8. With Notation 6.7, there exists C such that

||wL
h,s,k||L2(Ω) ≤ Ch

L−1
2 .
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Proof. For any v ∈ H1(Ω) , we have

∫

Ω
(−(h∇− iA)2wL

h,s,k) v dx = 0

= ph(wL
h,s,k, v) +

∫

∂Ω
ν · (h∇− iA)ψ

[L]
h,s,k v dΓ.

This leads to

ph(wL
h,s,k, w

L
h,s,k) ≤ ||ν · (h∇− iA)ψ

[L]
h,s,k||H−1/2(∂Ω) ||wL

h,s,k||H1/2(∂Ω).

Using the lower bound of µh,1 given in [5], there exists C > 0 such that

ph(wL
h,s,k, w

L
h,s,k) ≥ Ch ||wL

h,s,k||2.

Furthermore, since Ω is bounded, we have

ph(wL
h,s,k, w

L
h,s,k) ≥ C̃h2||wL

h,s,k||2H1(Ω).

By construction of ψ̆
[L]
h,s,k , localization of χs and Lemma 6.4, there exists C ′ > 0 such that

||ν · (h∇− iA)ψ
[L]
h,s,k||H−1/2(∂Ω) ≤ C ′h

L+2
2 .

Consequently,

||wL
h,s,k|| ≤ ch

L−1
2 .

Using the corrector wL
h,s,k , we will now establish that quasi-modes φ

[L]
h,s,k approximate

more and more accurately an eigenfunction of Ph as L→ ∞ .

Lemma 6.9. Let s, s′ ∈ Σ and k ≤ Kαs
, k′ ≤ Kαs

. For any L ≥ 2 , there exists CL > 0

such that φ
[L]
h,s,k ∈ D(Ph) and (68)-(69) hold.

(i) Quasi-orthogonality:

|〈φ[L]
h,s,k, φ

[L]
h,s′,k′〉 − δs,s′ δk,k′| ≤ CLh

1/2, (68)

with the convention δs,s′ = 1 if s = s
′ and 0 else.

(ii) The pair (µ
[L]
h,s,k, φ

[L]
h,s,k) is an approximate eigenpair of Ph :

∣∣∣
∣∣∣Phφ

[L]
h,s,k − µ

[L]
h,s,k φ

[L]
h,s,k

∣∣∣
∣∣∣
L2(Ω)

≤ CL h
L+1

2 . (69)
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Proof. By construction of Ψℓ
s,k (cf. Lemma 6.4), the definition of ψ

[L]
h,s,k and wL

h,s,k in

Notation 6.5, we have Φ
[L]
h,s,k ∈ D(Ph) .

(i) Let us prove quasi-orthogonality:

〈φ[L]
h,s,k, φ

[L]
h,s′,k′〉

= 〈ψ[L]
h,s,k, ψ

[L]
h,s′,k′〉 + 〈ψ[L]

h,s,k, w
L
h,s′,k′〉 + 〈wL

h,s,k, ψ
[L]
h,s′,k′〉 + 〈wL

h,s,k, w
L
h,s′,k′〉. (70)

With Notation 6.5 and Lemma 6.4, we have

∣∣∣〈ψ[L]
h,s,k, ψ

[L]
h,s′,k′〉 − δs,s′δk,k′

∣∣∣ ≤ CLh
1/2.

By construction of wL
h,s,k and Lemma 6.8, we have also

∣∣∣〈ψ[L]
h,s,k, w

L
h,s′,k′〉 + 〈wL

h,s,k, ψ
[L]
h,s′,k′〉 + 〈wL

h,s,k, w
L
h,s′,k′〉

∣∣∣ ≤ CLh
L−1

2 .

(ii) Let us prove the second estimate. We have

Phφ
[L]
h,s,k − µ

[L]
h,s,kφ

[L]
h,s,k = (Ph − µ

[L]
h,s,k)ψ

[L]
h,s,k + Phw

L
h,s,k − µ

[L]
h,s,kw

L
h,s,k

= χs(Ph − µ
[L]
h,s,k)ψ̆

[L]
h,s,k

−2h∇χs · (h∇− iA)ψ̆
[L]
h,s,k − h2ψ̆

[L]
h,s,k ∆χs − µ

[L]
h,s,kw

L
h,s,k,

since Phw
L
h,s,k = 0 . By localization of the support of χs , we have

||χsPhψ̆
[L]
h,s,k − µ

[L]
h,s,kψ

[L]
h,s,k||L2(Ω) ≤ CLh

L+3
2 .

By decay of Ψℓ
s,k given in Lemma 6.4 and localization of the support of ∇χs and ∆χs ,

there exists CL > 0 such that

||2h∇χs · (h∇− iA)ψ̆h,s,k + h2ψ̆h,s,k∆χs||2L2(Ω) ≤ CL exp

(
−δρs

√
B(s)

h

)
.

By Lemma 6.8, we have

µ
[L]
h,s,k||wL

h,s,k||L2(Ω) ≤ Ch
L+1

2 .

7 Spectral asymptotics in a curvilinear polygon

In this section, we give the asymptotics of the low-lying eigenvalues of Ph using the model

operators Qαs . We also prove the related results for eigenspaces.

29



7.1 Eigenvalue asymptotics

Theorem 7.1. Let L ≥ 2 . With Notation 6.1 and Assumption 6.2, let EL(h) be the set of

the KΩ,B smallest eigenvalue asymptotics µ
[L]
h,s,k as defined in Notation 6.5:

EL(h) = {µ[L]
h,s,k , s ∈ Σ, k ≤ Kαs

such that B(s)µk(αs) < min(b′Θ0, b)}.

Let n ≤ KΩ,B . There exists h0 , s ∈ Σ and k ≤ Kαs
such that µ

[L]
h,s,k is the n-th smallest

element of EL(h) for any h ∈ (0, h0) . We have, by construction

µ
[L]
h,s,k = hB(s)

L∑

ℓ=0

hℓ/2µℓ
s,k with µ0

s,k = µk(αs),

and there holds

|µh,n − µ
[L]
h,s,k| ≤ Ch

L+1
2 , ∀h ∈ (0, h0).

Proof. (i) Using Lemma 6.9 and due to the spectral theorem (cf. [25, Chap. VII]), it follows

d(σ(Ph), µ
[L]
h,s,k) ≤ C h

L+1
2 . (71)

(ii) As in the polygonal case, we now prove a lower bound for the eigenvalues of Ph using

ideas of [9, 27]. We give the sketch of the proof for the lower bound. This part is more

detailed in Section 5 for polygonal case. For s ∈ Σ , let χs be cut-off functions with disjoint

support. We define χ0 on Ω by χ2
0 = 1 −∑

s∈Σ χ
2
s . Due to Lemma 4.4, we know that for

any u ∈ H1(Ω) ,

ph(u, u) =
∑

s∈Σ∪{0}

ph(χsu, χsu) − h2
∑

s∈Σ∪{0}

||u∇χs||2L2(Ω). (72)

Since suppχ0 ∩ Σ = ∅ , we can apply the result of [17] for smooth domains which gives

that there exists c > 0 so that

ph(χ0u, χ0u) ≥ (hb′Θ0 − ch5/4)||χ0u||2L2(Ω). (73)

For any s ∈ Σ , let T s be the restriction of Qαs to the space spanned by the eigenfunctions

Ψαs

k corresponding to eigenvalues µk(αs) ≤ λn−1 . We denote by R∗
h,s the application

R∗
h,sH

1(Ω) → H1(Gαs)

ŭh,s 7→ χsu such that

ŭh,s(x) =

√
B(s)

h exp
(

i
h Gs(Rs(x− s))

)
u

(√
B(s)
h Rs(x− s)

)
.
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Then, using Lemma 6.3 and keeping the first order term in the expansion, we have

ph(χsu, χsu) ≥ hB(s) qαs

(
R∗

h,s(χsu),R∗
h,s(χsu)

)
− Ch3/2||R∗

h,s(χsu)||2V(qαs )

≥ h λn||R∗
h,s(χsu)||2L2(Gαs ) − h

〈
R∗

h,s(χsu), T
sR∗

h,s(χsu)
〉

(74)

−Ch3/2||R∗
h,s(χsu)||2V(qαs ).

Putting together (72)-(74) and considering the contribution of operator T s on each corner

s , there exists an operator T whose rank is not greater then n− 1 such that

ph(u, u) ≥ hλn||u||2L2(Ω) − 〈u, Tu〉 − ch5/4||u||2L2(Ω).

To obtain a lower bound for µh,n , we use the max-min principle. Let u1, . . . , un−1 be-

long to the orthogonal space of ker(T ) . Then for all ψ in {u1, . . . , un−1}⊥ , ψ belongs to

ker(T ) and we have

µh,n ≥ 〈ψ,Phψ〉
||ψ||2 ≥ hλn − ch5/4. (75)

(iii) According to (71), we know that there exists µh ∈ σ(Ph) such that

|µh − hµ
[L]
h,s,k| ≤ Ch

L+1
2 .

Using (75), we obtain that µh belongs to the set {µh,k, λk = λn} .

Remark 7.2. Without the Assumption 6.2 of simplicity, the result of Theorem 7.1 is still

valid but requires a more technical proof, see [10] for a construction of quasi-modes in the

case when the limiting problem may have multiple eigenvalues.

7.2 Eigenspaces

Notation 7.3. • Using Notation 6.1, we denote by {Λ1 < . . . < ΛM} the set of distinct

values in {λ1, . . . , λN} .

• For any n ≤ N , we denote by (µh,n, uh,n) the n-th eigenpair of Ph .

• For any m ≤M , we define the m-th cluster of eigenspaces of Ph by

Fh,m = span{uh,n for any n such that λn = Λm},

and the corresponding cluster of quasi-modes for any L ∈ N ,

E
[L]
h,m = span{φ[L]

h,s,k for any s ∈ Σ, k ≥ 1 such that B(s)µk(αs) = Λm}.

By using Theorem 5.4, we obtain:

Theorem 7.4. For any m ≤M and L ≥ 2 , there exists C > 0 such that

d(Fh,m, E
[L]
h,m) ≤ Ch

L−1
2 .
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Proof. For any m ≤M , we define

Σ∗
m =

{
(s, k) ∈ Σ × {1, · · · , N}, B(s)µk(αs) = Λm

}
.

(i) If the set Σ∗
m is reduced to one element, then Theorem 5.6 is obvious.

(ii) We assume that Σ∗
m is not reduced to one element. We denote by κmin

m the smallest

eigenvalue of the matrix

(
〈φ[L]

h,s,k, φ
[L]
h,s′,k′〉

)
((s,k),(s′,k′))∈Σ∗

m×Σ∗
m

.

According to Lemma 6.9, there exists CL such that

|κmin
m − 1| ≤ CLh

1/2.

Let us now apply Theorem 5.4 with A = Ph . Relation (69) of Lemma 6.9 gives (45) with

η = Ch
L+1

2 . According to Theorem 7.1, there exists C1 > 0 and C2 > 0 such that, if

we define I =
[
hB(s)µk(αs) − C1h

3/2, hB(s)µk(αs) + C1h
3/2
]

, for any (s, k) ∈ Σ∗
m , we

have for h small enough,

σ(Ph) ∩
(
I +B(0, 2C2h) \ I

)
= ∅.

For example, we choose C2 = min
{

Λm−Λm−1

4 , Λm+1−Λm

4

}
with the convention Λ0 = 0 .

Assumptions of Theorem 5.4 are filled and this ends the proof of Theorem 7.4.

Remark 7.5. With Notation 7.3, let m ≤M and L ≥ 2 . If there exist distinct values µ
[L]
h,s,k

such that B(s)µk(αs) = Λm , we may split E
[L]
h,m into several sub-clusters determined by

the different values µ
[L]
h,s,k , and, accordingly, Fh,m splits into several sub-clusters.

8 Conclusion

As a consequence of Theorem 7.1 the smallest eigenvalue of the Schrödinger operator Ph

tends to hλ1 , with λ1 the minimum over the corners s of Ω of the characteristic quantity

B(s)µ1(αs) . Do we have a convergence of the corresponding ground state? If λ1 is attained

for one corner s only, then the ground state converges to the corresponding quasi-mode,

which is exponentially localized near this corner. If λ1 is attained for several corners, we

deduce from Theorem 7.4 that the ground state is a linear combination of quasi-modes

attached to these different corners. A priori, there is no reason that the coefficients in this

combination converge as h→ 0 . Moreover, a tunneling effect may happen, that is stronger

interaction between some members of the cluster.
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Refined information on the behavior of eigenpairs can be extracted from numerical ap-

proximation of the Schrödinger problem by finite element method, insofar such an approx-

imation is accurate enough. We can see from our formulas, see (29) and (59), that eigen-

modes have a two-scale structure: they concentrate near corners with the scale
√
h but

they have a strongly oscillating term of the form exp(iΦ(x)/h) and their approximation

is very delicate. We investigate a finite element method using high degree polynomials in

[7]. Numerical computations do exhibit tunneling effect with multiple crossings between

eigenvalues when the domain presents some symmetry (for example, in a square). We hope

to propose a theoretical interpretation by analyzing an interaction matrix in a future paper.
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[7] BONNAILLIE-NOËL, V., DAUGE, M., MARTIN, D., AND VIAL, G. Computations

of the first eigenpairs for the Schrödinger operator with magnetic field. in preparation

(2005).

[8] BROSENS, F., DEVREESE, J. T., FOMIN, V. M., AND MOSHCHALKOV, V. V. Su-

perconductivity in a wedge : analytical variational results. Solid State Comm. 111, 2

(1999), 565–569.

[9] CYCON, H. L., FROESE, R. G., KIRSCH, W., AND SIMON, B. Schrödinger opera-

tors with application to quantum mechanics and global geometry, study ed. Texts and

Monographs in Physics. Springer-Verlag, Berlin, 1987.

33



[10] DAUGE, M., DJURDJEVIC, I., FAOU, E., AND RÖSSLE, A. Eigenmode asymptotics
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