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Asymptotics for the low-lying eigenstates of the
Schrodinger operator with magnetic field near corners

V. Bonnaillie-Noé&l and M. Dauge

Abstract

The Neumann realization for the Schrodinger operator with magnetic field is con-
sidered in a bounded two-dimensional domain with corners. This operator is associated
with a small semi-classical parameter h or, equivalently, with a large magnetic field.
We investigate the behavior of its eigenpairs as h tends to zero, like in a semi-classical
limit. We prove, in the situation where the domain is a polygon and the magnetic field
is constant, that the lowest eigenvalues are exponentially close to those of model prob-
lems associated with the corners. We approximate the corresponding eigenvectors by
linear combinations of functions concentrated in corners at the scale v/h. If the do-
main has curved sides and the magnetic field is smoothly varying, we exhibit a full
asymptotics for eigenpairs in powers of v/h.
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1 Introduction

The topic of our paper takes its origin from the Ginzburg-Landau theory modeling supercon-
ducting properties in presence of an external magnetic field [T} 28]: The study of the Hes-
sian of the Ginzburg-Landau functional leads to analyze the ground state of the Schrodinger
operator with magnetic field [[T2}, [I8]. A small semi-classical parameter h = (kB)~! ap-
pears as the magnetic field B is large or the physical characteristic x of the superconducting
material is large. When compared with most of the literature about Schrodinger operators,
the unusual feature of the resulting problem is that it is posed on subdomains of R? or R3,
and subject to Neumann or impedance boundary conditions.

Motivated by this, and also by other works about the spectrum of Schrodinger operator
in the semi-classical limit, see [[T9) 20] for instance, we deal with the asymptotics for the
low-lying eigenstates of the Schrodinger operator with magnetic field in a bounded two-
dimensional domain, with focus on the influence of convex corners.

Let  denote a bounded domain in R? and A = (Aj, As) a smooth magnetic potential
associated with its magnetic field B = curl A. It is assumed that B > 0 on (. We investi-
gate the behavior of the eigenpairs of the Neumann realization P, on §2 for the Schrodinger
operator —(hV —iA)% as h — 0.

Many papers are devoted to the analysis of the first eigenpair when 2 is a smooth domain.
We can quote works of Bernoff-Sternberg [B]], Lu-Pan [22] 23]], Helffer-Morame [[16), [I7]:
It is proved that the fundamental state is localized near points of the boundary where the
curvature is maximal, and a two-term asymptotics of the fundamental state energy of Pj, is



given. More recently, Fournais-Helffer [[14]] prove a complete asymptotic expansion for low-
lying eigenvalues of P, on domains such that the boundary curvature reaches its maximum
in only one point.

Although the interest for non smooth domain is often mentioned in physical literature
[I8L 1131 261, quite few mathematical papers are devoted to that problem: Let us mention con-
tributions of Jadallah [21]], Pan [24] which deal with very particular domains like a square
or a quarter plane. More recently, [5]] gives a systematic analysis for infinite sectors of R?,
proving an asymptotics of the smallest eigenvalue of —(V — i.4)? when the aperture o of
the sector tends to 0, and exponential decay estimates for the corresponding eigenfunctions.
The limit as A — 0 of the first eigenvalue of P}, for domains with corners is deduced.

In this paper, we prove sharper results, exhibiting the complete asymptotic expansion of
low-lying eigenstates for curvilinear polygonal domains. We also prove refined results in the
case when the domain has straight sides and the magnetic field is constant: The convergence
of the eigenpairs to their limits is then exponential, behaving as exp(—/3/ \/E) for a positive
[ depending on their rank.

2  Outline

Let us sketch our results. The behavior of the first eigenstates of P, depends on the spectrum
of model problems associated with each point of the boundary, in particular, those associated
with the corners s of €. Section [lis devoted to spectral and solvability properties of such
model operator Q% := —(V — iAg)? on an infinite sector of opening o and vertex at
the origin. Here Ay is the canonical magnetic potential %(—Xg, X1) corresponding to the
magnetic field 3 = 1. For any opening «, the essential spectrum of the operator Q< is
equal to [©, +00), with the universal constant O ~ 0.590125. Depending on the value of
«, the discrete spectrum of Q™ is empty or consists of K, eigenvalues. The corresponding
eigenvectors are exponentially decreasing and, moreover, solutions ¥ of Q¥ = £ with
Neumann conditions and exponentially decreasing right hand side £, are exponentially
decreasing, too.

Sections are devoted to the Schrodinger operator P, when the domain 2 is a poly-
gon, i.e. its sides are segments on lines, and the magnetic field B is equal to 1. To fix ideas,
the magnetic potential is taken as %(—xg, x1). The eigenvectors of the model operators Qs
corresponding to the aperture «g at each corner s of {2 allow the construction of quasi-
modes in Section Bl These quasi-modes generate a space of dimension Kq := > K, the
sum of the contributions of each corner. In SectionBl we prove that the first K eigenvalues
of P, when divided by h, converge exponentially fast towards the eigenvalues of the model
operators GsQ. We also prove the localization of their eigenfunctions in corresponding
corners. Let us emphasize that, when several corners have the same aperture, clustering of
eigenvalues appear, and that each of the corresponding eigenvectors may concentrate in the



vicinity of several corners.

In Sections [Bl{7] we analyze more general domains (curvilinear polygons) with smoothly
varying magnetic fields B. Again, we use the model operators () to construct quasi-modes
for P, but now in combination with a formal series calculus. We obtain asymptotics series
in powers of v/h for a finite number of low-lying eigenstates of P},. In Section B we
conclude our paper by commenting on numerical approximation issues: The eigenmodes
have a two-scale structure, in the form of the product of a corner layer at scale v/h with
an oscillatory term at scale h. The latter makes the numerical approximation delicate, see
[1L 2, [7]. A finite element method using high degree polynomials is being investigated by
the authors, together with the tunneling effect in presence of symmetries.

3 Model operators in infinite sectors

The model problem associated with a corner of opening « in the domain {2 is a Schrédinger
operator Q“ in an infinite sector G of same opening, with a model magnetic potential .4,
corresponding to a constant field equal to 1. After recalling results from [5]] on the spectrum
of this operator, we study its solvability in spaces of exponentially decreasing functions. We
end this section by stating the relation between this model problem and a more general
Schrodinger operator Q™+ associated with any affine magnetic potential A.

3.1 Spectrum

We denote by X = (X, Xy) the Cartesian coordinates in R?, and by R = |X| and 6 the
polar coordinates. Let G be the sector in R? with opening o

G*={XeR? Hc(0,a)}.
We consider the model magnetic potential A defined on R? by

1
Ao(X) = 5(—X2,X1)- (D

Then the magnetic field B given by curl 4 is equal to 1. Let Q“ be the Neumann real-
ization of the Schrodinger operator —(V — i.4g)? on the sector G®. The operator Q® is
associated with the sesquilinear form ¢ defined on the variational space V(¢®) as follows:

V(™) = {we LG, (V-id)¥ e L3(G™)}, )
(0, ®) = /a(v—mo)m(X) V—iAB(X) dX, T2 V(). ()

The norm attached with the space V(¢%) is
191 gey = 191122 (o + [V = 0A0) 122 (G-
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Note that if ¥ € V(¢®), then for any ball B, ¥ € H'(G* N B). Conversely, any ¥ in
L?(G®) such that V¥ and | X |V are in L?(G?), belongs to V(¢%).

Then the operator Q% associated with the form ¢® writes
Q" = ~(V — ido)? = A+ i(Xad, — Xadk,) + 71X @
It is defined on its domain D(Q“):
D(Q®) = {qf EV(g®), (V —ido)*V € L(G*), v-(V —ido)¥|, .. = o}.

Here v is the outward unit normal on the boundary of G*.
The operator Q¢ is hermitian and positive. The lowest part of its spectrum can be defined

by Rayleigh quotients.

Definition 3.1. Let uy(«v) be the k—th smallest element of the spectrum of Q“, given by
the max-min principle:

. . qa(\llvllj) e L
pk(cr) = qll?%}ilmln{w’ VeV(g"), Ve[W...,¥ 4] p. (5

Here (-, -) denotes the hermitian scalar product of L*(G%).

Let us quote some results of [[5]] about the spectrum of Q.

Theorem 3.2.
(i) The infimum of the essential spectrum of Q% is equal to ©¢ := p1(m).
(ii) For all o € (0, 5], p1(a) < Oq and, therefore, ju1(cv) is an eigenvalue.

(iii) Let k be a positive integer and « > 0 such that pp(a) < ©g. We denote by
U a normalized eigenfunction associated with (o). Then V¢ satisfies the following
exponential decay estimate:
o(VEo—hi@—<) IXI go

Ve > 0,3Cx.a, < Cep ©)

V(q®) ’

Remark 3.3. Based on the asymptotics of p;(«) as o — 0, see [5], and numerical com-
putations, see [4} 1], we conjecture that p4 is increasing from (0, 7] onto (0, ©] and equal
to ©¢ on [m,27).

3.2 Solvability and exponential decay

We firstly prove the Fredholm alternative for the operator Q® — plId, if p is an eigenvalue.
Then, we prove the exponential decay of solutions if the right hand side is itself exponen-
tially decaying. We recall notation partially introduced in Theorem



Notation 3.4.

Let o € (0,27) and K, be the largest integer such that px, (o) < ©g.

e We denote by (\P?)lg j<K,. an orthonormalized system of eigenfunctions respectively
associated with 1i;(cv) for the operator Q.

o Let k € Nwith k =1,0r 2 <k < K, and such that p_1(c) < pg(a). Let [ be the
multiplicity of p(c). Thus, we have

pre-1(a) < p(a) = ... = pgri—1(@) < pgri(a) < Op.

Lemma 3.5. With Notation B4 let L be a linear form defined and continuous on V(q%),
and such that
LVF)=0, Vi=k,.. k+l-1 @)

Then, there exists a unique ¥ € V(q*) such that

(T, 00 =0, Vj=k,... k+I1-1,
{ ! ®)

qa(\Ilv q>) - Nk(ax\llv q>> = ﬁ(@), Vo € V(qa)y

with q® defined by @) and {-,-,) the L?-scalar product on G®. If we assume that, more-
over, L(V$) =0 forall j =1,...,k—1, the solution of @) is orthogonal to W§, ..., U ..

Proof. Let N > k+1—1 such that uy(«) < ©g. With Notation B4 it is enough to choose
k+1—-1<N < K,. We split the linear form L as

k—1 N
L=Lo+Y U+ > U with Lo(¥9)=0,Vj=1,...,N.
Jj=1 j=k+l

We define the space
VN ={T eV(), (¥,05)=0,Vj=1,...,N}

Let us prove that the sesquilinear form ¢® — jux()(,-) is coercive on V¥: Let x € (0, 1)
and U € V!V, then

¢*(V,9) — pe(a)(¥, W) = (1= r)g*(V,¥) + (kpni(e) — pw(a)) (¥, ¥)
> min(l — &, ka1 (@) = (@) [P

It suffices to choose x € (0, 1) such that kun41 () — g (o) > 0 to deduce the coercivity.

Therefore, by the Lax-Milgram theorem, there exists a unique ¥, € V!V such that

q“(Wo, ®) — pp(a)(Tg, ®) = Lo(®), VP e VN,



By orthogonality, ¥ is the unique solution in V(¢®) for the problem

(T, T%) =0, Vj=1,...,N, o
q“(Vo, ) — pu(a)(Wo, @) = Lo(P), VP € V(¢?).
Furthermore, for j € {1,...,k — 1,k +1,..., N}, the unique function u; € V(¢*) or-
thogonal to W, ..., Wy, | such that (Q% — ug(a))u; = V¢ is given by

1
u = ————— U,
I (@) — @)

Consequently,

k-1 5 N .

V=", + — v — 7y (10)

= nie) —pla) j:%;rl pj(a) — pr(a) 7

is the unique solution of (&) O

Let us now analyze the decay of the solution W as split in (I0). Theorem B.2] gives the
decay of W§'. Therefore, it is enough to study the decay of Wy .

Lemma 3.6. With Notation B4 let N be an integer, k +1—1 < N < K. Let L be a
linear form continuous on V(q®). We assume

Lo(T¥) =0, Vj=1,...,N, (11)

and that, moreover, there exists 6y > 0 such that Ly is defined on {2 X1, ¥ € V(¢*)}
with the estimate

30 >0, Vo e V(g®), ‘Eo(e&”x‘@)‘ < O[]y ge)- (12)

Then, the solution Wy € V(q®) of @) satisfies XN X1Wy € V(q®) for some positive number
On < 6o, independent of Ly.

Proof. Let § < &y. We define U5 = ¢’X1 W, and we check that for any ® € V(¢%),
¢"(L0, @) = (05, @)
_ / (V — iy — 0T) s - (V — iAo + 0T (e 1®) dX,

with 7 = < i ) . Let us define the space Vév and the form as on Vév X Vév by

vy = {\Ifewqa), (W, e Xlge) — o, ijl,...,N},

as(U, @) = / ((v — Ay — 6T)U - (V — iAg + 62)® — ()W 6) dX.
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Then, for any ® € V(q®), we have
Lo(®) = ¢ (To, ®) — pup()(Tg, ) = a5(Vs, e 0Xd) = L5(e7 @),  (13)
where, thanks to (I2)), the linear form Ls can be defined on V(¢%) by
L5(®) = Lo("™D). (14)
Due to the compatibility condition (), we have
Ls(e w2y =0, Vj=1,...,N.
Solving the problem of finding &4 € Vév such that
as(®s, @) = L5(D), VP e VY, (15)
will provide exponential decay of the solution ¥ for problem (g).

We verity easily that the form as is sesquilinear and continuous on Vév X Vév . Let us
prove its coercivity. Let W € ng , then

las (¥, )| > Re a5(¥, ¥) = ¢*(¥, V) — pp ()| ¥|[* — 82| ¥||*. (16)
We decompose ¥ such that
N
U=> (U, TNV + T,
7j=1

then, the definition of Vév and the decay of W§' give forany j =1,..., N,

(ww5) = |, (1 - e Xws)|
1/2
< Wl ([ PXPSOOR ax)
< G 0|[¥|L2gey- (17)

Furthermore, due to the decomposition of ¥ and (7)), it follows

(U, ¥) = ¢*(Tt, ot +Z|\I/\I/a| (T2, 09)
7=1

N

> e @)U+ S ) (0, 0
j=1
N

i @I =3 (v (@) — pg(e) (2, 05|

j—l

S (s 62202 ) [Tt

v



Defining My = Z;Vzl CJZ(MNH(a) — pj(a)), we deduce from ([I&)-(I8), for x € (0,1),

as(¥, )] = (1= R)[|(V = iAo) W2 + (K s1(@) = 82My) = pi(e) = 62) |92

5 = mm<50 | WNH(a) — () )

1+ My

We define

For § € (0,0x), we choose « € (0,1) such that x(py11(c) —_(52MN) — pg(a) — 6% > 0.
This choice proves the coercivity of as on V& forany § € [0,dy).

Applying the Lax-Milgram theorem, we find that there exists a unique ®5 € Vév solu-
tion of the variational problem (I3l). Thanks to the orthogonality conditions, ®; satisfies,
moreover, as(Ps, P) = Ls(P), VO € V(¢%). Since J is positive, P satisfies, a fortiori,

a5(®5,e @) = Ls(e™PI®),  vd € V(¢).

Therefore ®5 coincides with \I/(;_ =& ‘X|\I/0, compare with (I3). We deduce that e5|X‘\I/0
belongs to V(¢®) for all 6 € [0,y ), which ends the proof. O

Using Lemmas B3 and Bl we deduce:
Lemma 3.7. With Notation[B4 let L be a linear form continuous on V(q“). We assume
L¥F)=0, Vji=k,....,k+1-1, (19)

and that, moreover, there exists 0g > 0 such that L is defined on e®XV(¢®) with the
estimate:
30 >0, Y& e V(g®), (c(eéolx\cp)( < C1®|ly(ge- (20)

Then, there exists a unique V € V(q*) such that

U U =0, Vj—k ... k+l—1,
{( ) j o

q“(¥, @) — pe(a)(¥, @) = L(P), VP € V().
Furthermore, /X1 € V(q®) for some § < & independent of L.

Proof. The existence and uniqueness is clear according to Lemma 33l Combining Lemma
B8 and Theorem B2 with the decomposition of ¥ into

k—1 N
. .
Uy + E -9y E — Y,
= (@) —pla) 7 G () = prle)

we obtain the decay of ¥ for any § < min (5 Ny VB0 — 1 N(a)) , with any integer /N such
that k+1—-1< N < K,. O



3.3 Generalization to any affine magnetic potential

To conclude this section about model problems, we deal with an arbitrary real-valued affine
magnetic potential, thus of the form

A(X) = (011X1 +a12Xe + aig, a21Xy + axeXs + azo)' (22)
The associated magnetic field is
B = curl A = as; — aqo. (23)

The quadratic function (the gauge function) defined by

1
Gg(X) = 3 (CLllX% + ageX3 + (a1 + a21)X1X2> + a10X1 + agoXs, (24)
is such that
A=BAy+ VG, (25)
with the model magnetic potential Aq defined in ().

Proposition 3.8. Let o € (0,27), and let A be an affine magnetic potential as in @2)-23)).
We assume that the associated magnetic field B is positive. Then the Neumann realization,
Q>4 of the Schrédinger operator —(V —iA)? on G has K, eigenvalues strictly less
than BOy. For k < K,, the k-th eigenvalue of —(V — iA)? is equal to Buy(a) and its
corresponding normalized eigenvector, \I’Z‘ , is given on G by

eA(X) = VB exp (1G(X)) TE(VBX).

Proof. We verify easily that \I'z’A is L?-normalized. The operator Q% is defined on
D(Q™A) with

D(Q™A) = {¥ € L*(G%), (V —iA)¥ € L*(G%),
(V — iAW € L*(GY),v- (V —iA)¥, ., =0}. (26)
Using the transformation

D(Q*) — D@
T — U4 with UAX) = VB exp(iG(X)) ¥ (VB X),

we see that the change of variables Y = VB X leads to
(Vx — iAX))TAX) = VB exp(i G(X)) (\/E Vy — i(AX) = VG(X)) ) ¥(Y)
VB exp(iG(X)) <\/Evy —iB Ay <l>> U(Y)

VB
= Bexp(iG(X)) (Vv —iAo(Y))¥(Y).

10



It follows
QUATA(X) = B VB exp(i G(X)) Q2T(Y).

O
Remark 3.9. Note that (V — i4)2W¥ = (V +i.A)?W for any real-valued smooth magnetic

potential A and any ¥ € D(QQ’A). Thus, Proposition is still valid when the magnetic
field B is negative and \Ifz’A is given on G* by

TA(X) = V/[B] exp(i G(X) TF(v/]B] X).

4 Quasi-modes for the Schrodinger operator with constant mag-
netic field in a polygonal domain

Before considering in a further step a more general situation (Sections [6H7), we suppose
that our domain (2 is a convex bounded polygon with straight edges, and that the magnetic
potential is equal to Ag(z) = %(—x2,21). We are interested in the behavior of the low-
est eigenvalues of the Neumann realization P, on 2, for the Schridinger operator with
magnetic potential Ay and semi-classical parameter h > 0.

The associated sesquilinear form py, is defined on H'(f2) by

pr(u,v) = /Q(hV —iAp)u(x) - (hV —iAp)v(x) dx. (27)

The operator P, = —(hV —iAp)? is well defined on its domain D(P},), with

D(P) = {u€ H*(Q), v-(hV —ido)ul,, =0} (28)

In this section, we introduce suitable corner quasi-modes which will allow to construct
limit spectral problems for P, .

4.1 Definition of corner quasi-modes

Let X be the set of the vertices s of (2, and «s be the opening of 2 at s € . The spectrum
of Py is in close relation with the spectra of the model operators Q°, as defined in (@), for
s describing the set of corners 3.

As a first step in the explanation of this relation, we introduce, for each vertex s, the
infinite plane sector G, which coincides with § near the vertex s: For d > 0 small enough,
we have

QN B(s,d) = Gs N B(s, d).

11



There exists a rotation R such that

(X =Rs(x—s), zeGs} =G>,

As a consequence of Proposition we obtain:
Lemma 4.1. For all integer k, 1 < k < K, the function 1/?h7s,k defined by
v 1 i Rs(z —s) <
= — —x A pos (2 G 29
¢h,s,k($) \/ﬁ €xp <2h €T 5> k < \/ﬁ > on S5 (29)

is a normalized eigenvector for the operator —(hN — iAg)? with Neumann boundary con-
ditions on Gs, associated with the eigenvalue hjuy(cs).

Thus we construct quasi-modes for P, from the eigenpairs (u4(as), ¥5°) of Q% for
each corner s of {2 and each k < K, via translation, rotation and cut-off according to:

Notation 4.2. e Let s € ¥ and ps be the distance to other vertices:
ps = dist(s, X\ {s}).

Let p' € (0, ps) and xs be a radial smooth cut-off function with support in B(s, ps), equal
to 1 in B(s,p’) and such that 0 < ys < 1.
e Let k < K,,. Applying the cut-off xs to the function v, s ;, in @3) we define

Vnsk(t) = Xs(x) nsn(z) on Q. (30)

4.2 Properties of quasi-modes

We gather in the following lemma the main properties of the functions v, s ..

Lemma 4.3. For any € > 0, there exists C. such that GI)-@B3) hold.
(i) The L? norm of Yhsk is nearly 1:

2
1-C; €Xp <_ ﬁ (p/ Oy — ,Uk(as) - 5>> < Hwh,s,kH%Z(Q) <1 (€28

(ii) The Rayleigh quotient of 1y, s i, is nearly hyuy(os):

Ph(Vns ks Uhs k)
| |7/)h,s,k| |%2 Q)

- h:uk (as)

2
< C.exp <— 7 (p’ O0 — px(as) — 6)) (32)

(iii) The pair (hpy(os), VYns k) is an approximate eigenpair of Py, :

| Prtpns i — hpw(os)¥ns il L2 (o)
[ Ynskllz2 @)

1
< C:exp (— N (p’ Oo — pr(as) — 6)) (33)

12



Proof. (i) Since, by construction, HT/?hskH [2(Gy) = 1 and thanks to the decay properties
@ of Wy*, we have

1> ||X57;7)h,s,k||%2(g) > /Q B(sp') |72)h,s,k|2 dx
N B(s,p
-/ WX 2 dX
GasmB(o, ’)

- —/ W (X) 2 dX
Ger\ (0. 37)

S

/

1 — C.exp <—2—\/”E (V60— mlas) - E)> .

(ii) Let us prove the estimate about the quadratic form. We have 1}, s, € H 1 (©) and

v

Ph(Vhs i Vhsk) = /Q (WY — i Ao)Yn s x|* dz
= /Q|Xs(hv — iAo) skl dz + hz/Q nskl?|Vxs|? do
+2h Re /Q Xs(hY — iAg) sk - VXs Unsk dv.  (34)
Due to the properties of s and to the decay estimate () again, we have

/Q|Xs(hv_i~/40)7;7)h,s,k|2 dr < /Q|(hv_i~/40)7z)h,s,k|2 dx

< hpa(as) [nal e 53

and

/ (Y — iAo) sl de > / (B — i Ao)in o 2 da
Q QNB(s,p')

v

/ (WY — i Ao) s p|? dz — / (WY — i Ag) s n|? da
Gs Gs\B(s,p")

/

y 2
h,uk(as) Hwh,s,k"iz(és) - C& €xp <_% (\/ 90 - Nk(as) - E)) . (36)

v

Still using Theorem we deduce also the estimate

‘ 2h Re /QXs(hV - Z'AO)TZJh,s,k : VXs QZh,s,k dx + h2 /Q |7;7)h,s,k|2|va|2 dx

< Ch/ (\(hV — i Ao)Unsl® + th,s,k!z) dx
AN\B(s,p)
2 /
< C.exp <—£ ( O0 — pr(as) — €>> . (37)

13



Putting together relation @34) with estimates (B3)), (38), 7 and using the estimate (B for
||71Z)h,s,k| |L2(Q) , we deduce M)

(iii) Let us now prove the last estimate. Since s is radial, we can check that vy, s j satisfies
the Neumann boundary condition and, thus, belongs to D(F},). We have

Pu(¥nsk) = XsPu(¥nsi) — 20V xs - (AV — iAo)Uns e — h* s Axs.
On the support of s, we have, thanks to LemmaEL.T]
Pothn s () = hysg(as)dn s ().

Therefore xsPj, (lejh7s7k) = hpy(as)p s ;. The same arguments as above for the proof of
@) lead to the estimate

120 Xs - (Y = iA0)ns s + B2 kAXs |72 (0
/

< C.exp <_% (m_g)) (38)

This ends the proof of Lemma 3 O

4.3 Partition of unity
We end this section by a useful lemma which will allow to achieve the proof of the spectral
asymptotics which can be obtained from the quasi-modes.

Lemma 4.4. Forany s € X, let xs be a real-valued cut-off function supported in B(s, ps).
We assume moreover that for any s # s', suppys N suppx, = (. We define xo on Q2 by
X% =1-> cx X2. By convention s with s = 0 refers to xq. Then, for any » € H'(2),

o) = D palxstxs®) =B D [0Vl )

seX U{0} seX U{0}

Proof. Let s € ¥ U {0}, then

(hV —ido)(xs¥)]* = [xs[*|(hV — iAo)y | + h? [V xs|?
+ 2h Re XSE (hV —iAg) - Vxs
= |XsPI(hV = ido)¥|* + B2 *|Vxs|? + h? Re ¥V - Vs[>

Let us sum up this relation for s € ¥ U {0}, it follows

SV —id)s¥)? = D IGPIRY —ido)y P+ R > [P Vx|
sexu{0} sexu{0} sexu{0}
+h* > RepVy- Vx|
seXU{0}
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Since Zsezu{o} |xs|?> = 1 on €, we notice that on

> PRV —ido)yP = (WY — iAoy,

seXU{0}
Y. RedVy Vi’ = RegVe-V > | =0.
sexU{0} sexU{0}
Integrating on €2 ends the proof. O

S Spectral asymptotics in a polygon (constant magnetic field)

In this section, we prove that, provided that some of the model operators () have eigenval-
ues A below their essential spectrum, a corresponding number of eigenvalues pu;, of Py are
exponentially close to A\ as h tends to 0. We also prove the related results for eigenspaces.

5.1 Approximation of eigenvalues of P, by corner model operators

We first make precise the notations about eigenvalues.

Notation 5.1. e We denote by ji, , the n—th eigenvalue of P, counted with multiplicity.
e We denote by )\, the n—th eigenvalue of Gsex @™ counted with multiplicity as defined
by the min-max principle, and let K be the largest integer such that A\x, < ©g. With
Notation B.4 we have Kq = ZSEZ K, . We assume that Ko > 1. For any n < Kq, we
denote by 3J,, the subset of vertices:

Yip = {s € X, A, is an eigenvalue for QO‘S},

and by 7, the distance
rn=1(\p) = mizn d(s, X\ {s}).
s€2n

Theorem 5.2. With Notation Bl for any € > 0, there exists C. such that

2
pri < hX + Ceexp <_ﬁ (7“1 V6O — A1 — E)) ;
lhn —hAn| < Coexp (—% (rn\/@o—/\n—s)> , Vn < Kq.

Proof. (i) Estimate (32)) of Lemmal 3] applied with 4 (cs) = A1 and p' = r; — &’ and the
min-max principle (recalled in Definition B1)) lead to

2
P < h)\1+Ca€Xp<—ﬁ(T1—€’) (\/@0—)\1—6)>-

15



(ii) Let n < K and s € X,,. Let ¥% be a normalized eigenvector for Q associated
with A\, and let &h,s be the function deduced from ¥ by (29)). Then &h,s is a normalized
eigenfunction of —(hV —iAp)? on G associated with the eigenvalue h\,. Let & > 0. Let
Xs € C5°(£2,]0,1]) be a smooth cut-off function as in @0), with p’ < 7, — §, and define

T;Z)h,s = Xswh,s as in (m)

We deduce from estimate (33)) that there exists C. > 0 such that

P s) — hAy s||IL?
1Pu(ns) — hAntonsl |20y (Tnm_&», (39)

[¥nsllz2()

< Cqexp <—%

Due to the spectral theorem (cf [25, Chap. VII]), it follows
1
d((Py), hAn) < Ce exp <_ﬁ (rn\/@o - E)> . (40)

(iii) Let us prove a lower bound for the eigenvalues of P using ideas of [9, 27]. Let n <
Kq + 1 be such that \,_1 # \,. With the cut-off functions xs already introduced for
s € ¥, let us define yp on Q2 by x2 =1 — Y oses x2. Due to LemmaHE4l, we know that for
any u € HY(Q),

pru,u) = > palxsu xsu) —h* > |[uVxsllFaq)- (41)
seXU{0} seXU{0}

Since suppxp N X = (), we can apply the result of [12] for smooth domains: there exists
c > 0 so that

pr(xous xou) = (hOg — ch?)||xoul[72(q)- (42)

For any s € X, let T® be the restriction of () to the space spanned by the eigenfunctions
W= corresponding to eigenvalues pi(as) < A\p—1. We denote by R _ the application

hsP(Pn) — D(Q™)

N . 1 i Rs(x —s)
tps — w suchthat ap¢(x) = ﬁexp <%$/\S> U (T .

Then we have

pr(xst, xsu) = hq® (R (xsu), Rp o(xsu))
> b Al| Ry s(xst)l[72(gasy — B (R s(xsw), T5R;, s(xsw)). (43)

Let T}, be the restriction of —(hV — iAp)? on Gs to the space spanned by the eigenfunc-
tions TIZu)h7s7k, see (29, corresponding to eigenvalues jux(as) < Aj,—1. We set

T = Z XsTh,sXs-
seX

16



Combining T)-@3)) we obtain, since A\, < O,
pr(u, 1) > hAg[ul|F2(q) = (u, Tu) — ch?||ul72q).
Since for any s € X,
rank (xsThsXs) < rank(7°) = card{eigenvalues of Q° less than )\n_l},

we deduce, thanks to the assumption A\,_; < \,, that the rank of T is not greater than
n—1.

To obtain a lower bound for py, ,, we use the max-min principle. Let uq, ..., u,_1 be-
long to the orthogonal space of ker(T"). Then for all ¢ in {u1,...,u, 1}, 1) belongs to
ker(T") and we have

(Y, Ppip)

(iv) Now we reach the conclusion: According to @Q), we know that there exists pj, € o(P)

such that )
|n — hAn| < Ceexp (—ﬁ(rn\/ Oy — A\, — E)> .

Using @4)), we obtain that y, belongs to the set { Lhk, Ak = An}, which ends the proof of
the theorem. ]

Remark 5.3. In particular the lower bound {4 is valid for n = Kq + 1: In this case,
AKq+1 = ©g. Thus @4) yields

[igr1h > hOg — ch?.

5.2 Eigenspaces

It results from the previous theorem that, according to repetitions of the same values in A\ €
{M1,..., Ak, }, the corresponding eigenvalues /i, ,, are gathered into clusters, because they
are exponentially close to the same value h\. We are going to prove that the corresponding
eigenvectors are exponentially close to linear combinations of quasi-modes. Let us first
introduce the definition of distance between subspaces £ and F' of a Hilbert space. The (a
priori) non-symmetric distance d(E, F') is defined as

d(E,F) = |[Ig — plE||x,

where IIp and IIx denote the orthogonal projections on E and F' respectively. If both
E and F are finite dimensional, and if they have the same dimension, then d(E, F) =
d(F,E).

To prove that eigenvectors of P, are close to linear combinations of quasi-modes, we
use the following refinement of [29] more adapted to clustered eigenvalues:

17



Theorem 5.4 ([[15, Prop. 4.1.1] [19]). Let A be an unbounded self-adjoint operator in
a Hilbert space H. Let 11,...,%N be N linearly independent vectors in D(A) and
Wi,-.., N be N real numbers such that

Apy = pgpj + 1y with ||rilln <. (45)

Let I C R be a compact interval containing i1, . . ., iy . We assume that there exists a > 0
such that o(A) N (I + B(0,2a) \ I) = 0. Then, if E is the space spanned by 1, ..., N
and if F is the spectral space associated with o(A) N I, we have

VN
ay /ﬂ?in’

where /iglin is the smallest eigenvalue of the Gram matrix S = ((%, ¢k>H> .

d(E,F) < (46)

Let us now introduce some notation for the cluster of eigenspaces and quasi-modes.

Notation 5.5. e Using Notation 5.l we denote by {A; < --- < Aps} the set of distinct
values in {\1,..., Ak, }. Forany m < M, we define the distance

R, =r(Ap).

e Forany n < Kq, we denote by (jt4pn, up ) the n-th eigenpair of P,.
e For any m < M, we define the m-th cluster of eigenspaces of P}, by

Fym= span{uhm for any n such that A\, = Am},
and the corresponding cluster of quasi-modes, cf. @9)-@0),
Epm = Span{wh,sk = XSTZJh,S,k forany s € ¥,k > 1 such that ju(as) = Am}‘

A positive real number ¢ is attached to these spaces of quasi-modes: J is such that for all
s € 3, the cut-off function xs is equal to 1 on B(s, R, — ¢).

Theorem 5.6. With Notation Bl and B3 for any € > 0, there exists C. such that for any
m < M,

d(Epm s Frm) < Ce exp (-% (R~ )v/@0 — B — a)> .

Proof. For any m < M, we define
E;kn:{(s,k)EEX{17 ,KQ}, /’Lk(as):Am}

(i) If the set X, is reduced to one element, then Theorem 5.6 comes from Lemma 3

18



(ii) We assume that X, is not reduced to one element. We denote by »™" the smallest
eigenvalue of the matrix

<<7;Z)h,s,ka ¢h,s',k’>>

((s:k)(s' )€, x5,
Let (s, k) # (s, k') e XF, . If s=¢/, QZh,s,k and &h@k, are orthogonal, and thus
/Q¢h,s,k Eh,s,k’ de = /Q(|XS|2 —1) 1st,k szh,s,k’ dx.

Then, by Cauchy-Schwarz inequality and decay of eigenfunctions,

< / wh,s,k
Q\B(s,Rm—0)

< caexp<_%(2<3m_a>m_5)>.

If s # ¢/, since eigenfunction Ypsk and 1y, ¢ - are localized near distinct corner, we have

<,

<

dx

/ Vhse Upspr AT
0

‘T/Jh,s,k'

Xs¢h,s,k

/ Vhsk Vhs g Ao
0

Xs'Uh,s' k' ‘ dx

Yhsk| |Vhsk| dv

/Q\(B(S,Rm—6) UB(s', Ry —35))
1
< N - —Ap—c) ).
< C.exp ( v (2(Rm 8)v/00 — A, a)>
Using also @), we deduce that
- 1
min < - _ _ _ ]

| 1] < Ccexp ( N (2(Rm NV O — Ay 6))
Let us now apply Theorem B4l with A = P,. Relation @33) in Lemma E3] gives @3)) with
n = C.exp(—((Rm — 0)vV/Og — Ay, — €)/Vh). Let us define T = [hA,, — 0, hA,, + 7).
According to Theorem 5.2] there exists C' > 0 such that for h small enough,

o(Py) N (I+ B(0,2Ch)\ I) = 0.

Am_i\mfl, Am*z_Am} with the convention Ag = 0.

Assumptions of Theorem B4 are filled and this ends the proof of Theorem 5.6 O

For example, we choose C' = min{

Remark 5.7. 1. Theorem 5.6 shows that any eigenfunction of P, associated with /iy, ,
is exponentially close to a linear combination of the quasi-modes corresponding to
A, = A, for the model operators. This result is particularly interesting when the
polygon €) has several angles with the same opening. When the polygon presents
symmetries, these linear combinations are non trivial, as exhibited by numerical ex-
periments on a square, see [[6].
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2. Using Proposition TheoremsB.2land 5.6 can easily be generalized to the Schrodin-
ger operator with constant magnetic field equal to B. The eigenvalues are multiplied
by B and we use Proposition B8] to construct adapted quasi-modes.

3. Theorems and B.6] are still valid for a non convex polygon, even if the domain
of the operator P, is not contained in H?(§2) any more (a finite number of singular
functions have to be added to H2((2) if non convex angles are present). Moreover,
we do not expect the first eigenfunctions of P, to be localized in a non convex corner,
since it is reasonable to conjecture that the bottom of the spectrum of Q< is equal to
O for openings « between 7 and 27 (cf. Remark B3).

6 Quasi-modes for the Schrodinger operator in a curvilinear
polygon
Let €2 be a bounded curvilinear polygon with a piecewise smooth boundary. As previously,

we denote by X the set of the vertices s of €2, and by «s the opening of () at s. For the
sake of simplicity (cf. Remark 5.7), we assume that as € (0, 7) for any s € X.

Let 5 be a smooth positive magnetic field and let .A be a potential associated with B, i.e.
B = curl A on Q. As in Sections HlB] we are interested in the behavior of the eigenpairs of
the Neumann realization P}, on €2, for the Schrodinger operator —(hV — i.4)? as h — 0.

The associated sesquilinear form py, is defined on H'(f2) by
pa(u,v) = / (WY — iA)u(z) - (BN —iA)o(a) da. @)
Q

The operator P, = —(hV — i.A)? is defined on its domain D(P,), with
D(Py) = {uec H*(Q), v-(hV —iA)ul,, =0}. (48)
Now, the values of the magnetic field B(s) at corners s play a key role in the eigenvalue
asymptotics. We introduce:

Notation 6.1. e We denote by i, ,, the n-th eigenvalue of P, counted with multiplicity.
e We define infimum numbers for the magnetic field by

b= inf B(z) and b = inf B(z).
e €0

e We denote by )\, the n-th eigenvalue of the model operator

P Bs) Q*,

sEX
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counted with multiplicity as defined by the min-max principle, and let K 5 be the largest
integer K such that
Ag < min(©gb’, b).

We assume that Ko 5 > 1.

For simplicity of the quasi-modes construction, we make the following assumption.

Assumption 6.2. For any s € ¥ and k < K,,_ such that B(s)u(as) < min(Ogb’,b), we
assume that pi;(as) is a simple eigenvalue of Q<.

The case of the curvilinear polygon is quite different from the polygonal case since a
series in power of v/h appears now. At each corner s € 3, we perform the construction
of asymptotic quasi-modes in several steps: Section [e.]is devoted to a change of variables
which maps a corner neighborhood to a plane sector. We use a gauge transform in Sec-
tion to reduce to a magnetic field equal to 1 at the vertex. In Section we perform
a scaling together with a Taylor expansion, and introduce a formal series expression of the
eigenmode problem. We solve the formal series equations in Section and define subse-
quently our quasi-modes in Section 6.3

6.1 Change of variables

Let s € ¥. We consider the change of variables x — & = Rs(x — s) which sends s into 0
and QN B(s, ps) onto G* N Us . Here Us is a neighborhood of 0. This change of variables
gives a new magnetic potential A satisfying

Aidz1 + Asdze = A\ldi’l + A\Qdi’Q,
where A = (A1, Ag) and A = (A}, Ay). This leads to define the new operator

2

Pos=— Y (hds, —iA;) /Aet T, Ty ji. (hds, — iAy),

J,k=1

where 7o = dR; ! (dR;1)! and 7 jj, are the coefficients of the matrix 7. The boundary
operator Ty, = v - (hV —i.A) is sent onto

2
Ths= > vj Tojr(hds, —iAg),
j?k:]‘
where (1, 2) is the unit outer normal to the boundary of G.

‘We observe that

94, dA,

det 7o(0) o jx(0) = &, A(0) = A(s) and B(s)
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For u € H%(Q N B(s, ps)), let U be defined on G N U by
(z) = u(z) = w(RIH(Z) + ).
There holds
{ Pou = pu in QN B(s,ps) — { ]3h7sﬁ = pu in G*NUs
Thu = 0  on 92N B(s,ps) Thsu = 0 on 9G*NUs.

6.2 Gauge transform

To apply Proposition we define

ayp = Ai(s) = A1(0), an = 8—3:1(3) = 55
~ oA DA dA dA
a0 = Ao(5) = A(0), an = FHE) = FEE0), az = FNE) = G (0)

COA 04
(0), a2 = a—@(s = 8—3%2(0)’

We also define the gauge function

. 1 R . A R .
Gs(2) = B (6111213% + 612233% + (a12 + a21)$1$2> + a10x1 + agpT2.

In accordance with Proposition we consider the gauge transform which associates with
any function u defined on G* N Us, the function 1) such that

2(2) = VB exp (z gs@)) 7 (VBE2). (49)

The function {bv is defined on G N (75 now, where (75 = /B(s)Us. This leads to consider
the new coordinates y = \/B(s) &, together with the new magnetic potential

Aly) = ﬁ (A-va.) (%) . (50)

A(0)=0, curl A(0)=1 and A(y) = Ao(y)+O(y?) as y — 0.
Introducing the operator QV;LS defined on G N U by

Thus

Grem—B6) Y. (hoy, = i) gogew) (hDy —iA)) 6D

jk=1
with gs jx(y) = (\/det’Z; ’Z;,jk) (y B(s)_1/2), and the corresponding boundary operator
th,s, we check that
Posi = pti in GNU, — Qnst = p in G*NU,
T\msﬁ =0 on 90G% NUs fh,s{/; = 0 on 0G* ﬂﬁs.
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6.3 Scaling and formal series expression

In order to homogenize the powers of h in the leading part of @h,s at 0, we have to perform
the scaling

y B(s)

Y=—"—2-=4/—F7"2.
vh h
Now appear the terms JZ(\/EY) and gs,jk(\/ﬁ Y), which are not homogeneous functions
any more, in general. We represent them as asymptotic series of homogeneous functions
thanks to a Taylor expansion at 0. We denote

ye = yflyéz for y= (y1,y2) and ¢ = ({1,43) € N2,

We write the Taylor expansion of the potential A and of the change of variables gs ;1 : For
any j,k € {1,2}, there exist sequences (a§)£21 and (g§7k)520 satisfying, in the sense of
asymptotic series

Aily) = > aly,
>1

gs,ik(y) Z Qf,k y*  with g?,k = 0j k-
[€/>0

(52)

With the scaling y = VhY, we have
A;(VRY) = 37 ht2 ab vt

l6>1

and a similar formula for g j, (\/ﬁ Y). Then the operator @h,s defined in (&) can be written
in the form of a formal series of \/E as

@h,s = hB(S) Qs[h] where Qs[h] = Z hé/2Q£ with Qg — Qas.

>0

We note that, for any ¢ > 1, Qﬁ is a second order operator whose coefficients are polyno-
mial functions. We do the same with the boundary operator:

Thﬁ ~ \/hB(s) Ts[h] where Tsh] = ZhéﬂTf with  TO = v - (V —iAp).
>0

Putting all together we obtain:

Lemma 6.3. Let us suppose that there exists a family of solutions (,uh, {Eh) to

0<h<hg

Qnstn = hB(s) unin in G N U,
Thﬁ {/; 0 on 0G* N [75,
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such that py, and vy, have power series expansions wlh] and " [h] in powers of \/h. Then
there holds the formal series equation:

Qs = plRlY[R]  in G, 53)
Ti[h]y[h] = 0 on 0G*,
which means that for all integer L > 0 there holds
L B L B
Z Qf—@ ¢£ — Z ML—Z ¢£ in Gas’
ZzO - =0 (54)
Z TE A9t = 0 on 0G.
=0
Conversely, our quasi-modes are obtained from particular solutions of (&3).
6.4 Solutions of the formal series equation (33)
The first problem in &4) (for L = 0) is
0,0 _— 070 in Gos
Qs v p in G, 55)
oY = 0 on 0G“s.

The solutions of this problem are the eigenpairs (ju;(cs), U3*) of the operator ®¢, which
we take as starting values for our construction of solutions of the whole system @4)). We fix
k < K,, and set

W= pnlas) and D, = w

Then (p,, ¥?,) is a particular solution of (B3). For simplicity, we assume that p5(cs) is
a simple eigenvalue of Q% (see Assumption 8.2 and Remark [Z2]). We determine succes-
sively the terms \Ilﬁ ;. and ,uﬁ ;. of the formal series

Uoplh] => hPUL, and  poulh] =Y BPul,
0 0
by solving successively each problem in the sequence of problems G&4), L = 1,2, ...
For L = 1, the problem is
{ Qi‘PS,k + Qg‘l’i,k = :ui,kqlg,k + Ng,k‘l’i,kv
T, + 90, = 0.

We can rewrite it as

{ (Qd — (@) WLy, = (ngy, — Qa)T}", 56)

v, = T
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This problem has the form of problem @IJ) considered in Lemma B.7] with the right hand
side
L) = ((pig — QU 0) oy + (TIUT0) 5, -

We choose ,ui ;. S0 that the compatibility condition ([9) is satisfied, i.e.

ph = (QIUE, We) o, — (THUR U)o

By decay of W}* and since Q! is an operator of order 2, the right hand side £ satisfies the
decay condition @0). Thus Lemma B provides the existence of a solution !, satisfying

B8 and, furthermore, there exists 61 > 0 such that e51‘x|\II§ w € V(™).

Next, the problem for L = 2 can be written as

Q9 - Nk(as))‘ljik = (/‘ik - Q?)‘Pis + (H;k - Q_}.)\Ili,kv
ov:, = T Wl — T2

We choose NS . to satisfy ([9). Due to the decay of \Ili p and Wie 20) is satisfied and
we apply Lemma B to determine \Ifg - We do the same successively and so determine
coefficients \Ifﬁ ; and ,uﬁ ;.- Construction is summed up in the following lemma.

Lemma 6.4. Let s € X. We fix k < K, and set
Ok = d W), =V
Hs k pi(as) — an s,k k-

We assume that ju,(as) is simple for Q% (see Assumption[6.2).
For any £ > 1, there exist ,uﬁk e R, \Ilﬁ w € V(q) such that for any L > 0,

L L
Z Qe L, = Z plt Wl in GO,
ZzO /=0 (57)

0 on 0G%.

Z TSL_Z \Ilg,k

£=0

Furthermore, there exists 6 > 0 such that e5|x‘\II§’/LC € V(¢*) forany £ > 0.

6.5 Sequences of quasi-modes for P, near the corner s

We are now ready to introduce sequences of quasi-modes:

Notation 6.5. e Lets € ¥ and let xs be a smooth cut-off function with support in B(s, ps),
equal to 1 in B(s, ps/2).
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o Let £ < K, . For any integer L > 0, using the numbers ,uﬁ  and functions \Ilﬁ i
exhibited in Lemmal&.4] we define

Nﬂ ) = hB(s Z he/z/is ks (58)

L
hanle) = ?exp( Ga(Ra(w );hmﬁfﬁ%\/?m@—s)) (59)

and, applying the cut-off

wf[LLik(x):XS(x)zzf[LLik(x) on . (60)

For each fixed corner s and £ < K, all the functions Q,Z)f[ﬂ p for L = 1,2,... are
quasi-modes, more and more accurate as L — oo, as proved in the following lemma:

Lemma 6.6. Let s € ¥ and k < K,_. For any L > 1, there exists C, > 0 such that

@&I)-@2) hold.
(i) The L?-norm of T,Z)}[lLi ;. Is nearly 1:

Wh e (0,ho), 1~ CoVh < [ Ilr2i0) < 1+ OV, 61)

(ii) The Rayleigh quotient of wLLl i is nearly uﬂ 5

[L] [L]

L+3
Vh € (07 h0)7 ph(qﬁhﬁ,kﬂ/);[f;k) Hh s k <Crh= (62)

Proof. (i) Thanks to Lemmalg.4l we have
> 1 — Ce %Py ﬁ.

To end the proof of (@Il), we notice that w,[ﬂ E = wh sk T Vho, with

. L
v(z) = xs(x) 4/ ? exp <% Gs(Rs(x — s))> Z h(f—l)/2m§7k< /? Re(z — s)) .
(=1

Consequently, there exists Cp, such that |[v|[z2(q) < CL.

L= ||¢hsk||L2 2 ||¢hsk||L2(mB(s,ps/2))

(ii) Let us prove the quadratic form estimate. We have wh L €H 1(Q) and we observe, as

in (B4), that
L L . YIL YL
P il = /Q Xs(hV — iYL 2 da + b2 /Q L2V xs? dae

4 2h Re / Yo(hV =i )IE Ox B de 63)
Q 1~
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Due to the properties of ys and Lemma 6.4l we have

[ ety =i LR e < [0 =i AL do

IN

L+3 vl
(NgikJFCLh )wa[L,i,kH%Z(Q) (64)

and there exists ¢ > 0 such that

(ﬁmw—w%mwxz/ (B — i A 2 do
Q QNB(s,2) 7

B(s
> (uph — CLh ™) [l ) — Crexp (—6;)5 #) (65)

Still using the decay of \I/i 1 » we deduce also the estimate

‘ 2h Re /QXS(hV - ZA)?Z}[LLS]k -Vxs Eﬂk dx + h? /Q |1Z}[LLS],g 2|V xs|? do

< con / (1hY — iYL + 1042 e
O\B(s, %)

Putting together relation (63) with estimates (&4), @3)), @6l and using the estimate (@Il) for
L
||11Z)}[z,i7k| |12(0)» we deduce @2). >

As in Lemma EE3 we would like to propose an approximate eigenpair of P, from

(MLLIE, \I/[ }) But \I/[ | does not fulfill boundary condition and so we introduce a small cor-
rector by the followmg way:

Notation 6.7. Let s € ¥ and k& < K, . With Notation for any integer L > 0, we
consider wﬁ < the solution of the Neumann problem:

(hV — iA)Zw{;;k =0onQ and v-(hV — Z.A)(T/Jf[ﬂk + w,f’;k) = 0 on Of.

Then, we define
L L
Wk = Ve + Who ©67)

In the following lemma, we prove that w,f <1 18 small.

Lemma 6.8. With Notation there exists C such that

||whsk||L2 <Ch'T
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Proof. Forany v € H'(2), we have

/(—(hV—iA)Qw,ﬁik)@da: =0
Q

= ph(w,ﬁ;k, v) + / v-(hV — ZA)%LLS];C v dr.

[2)9]
This leads to

PR(Wh s pr Whs ) < |[v - (AV — iAWﬂkHH%/?(aQ) l|why s &l zr1/2 062)-
Using the lower bound of , 1 given in [5], there exists C' > 0 such that
Ph(waL,s,kawaL,s,k) > Ch waLL,s,kHz~
Furthermore, since  is bounded, we have
Ph(Wf g o wh s 1) = Ch| |wi€,s,k||§{1(ﬂ)'

By construction of Q,Zu)}[ﬂ .- localization of s and Lemmal@.4l there exists C’ > 0 such

L+42

v+ (B — i)Y 1200y < CRT

Consequently,
L-1
[whssll < ch 2.

that

O

Using the corrector w}fs 1> We will now establish that quasi-modes gbﬂ ; approximate

more and more accurately an eigenfunction of P}, as L — oo.

Lemma 6.9. Let s,s' € ¥ and k < K, k' < K,,. For any L > 2, there exists CJ,
such that gb%i x € D(Py) and @&8)-@3I) hold.
(i) Quasi-orthogonality:

[(@h e Sh o) = S O < CLBM,

with the convention 0ss =1 if s = s’ and 0 else.

(ii) The pair (,uﬂ s ﬂ i) is an approximate eigenpair of P,:

L+1

<Cph2.

L L L
HPh‘bL,i,k - N%ik ‘bglik

L2(Q)
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Proof. By construction of \I/f i (cf. Lemma 6.4), the definition of w}[lLs] , and wﬁ <k 1IN

Notation [6.3 we have @%Ll w € D(Pr).

(i) Let us prove quasi-orthogonality:

L L
(Dha e Py )
L L L L
= ( L,s],kv L,s]’,k’> + <¢f[z,s};,k7 waL/,s’,k’> + <wflzj,s,k7 ¢L7i/,k/> + (waL/,s,lw wflzj,s’,k’>' (70)

With Notation g3l and Lemmalg.4l we have
L L
‘<w£hs],k’ wf[z,i’,k’> - 55,5’ 6k,k" < Cth/2.

By construction of wﬁ < and Lemmal6.8 we have also

L L L L L I L-1
W;[hs],k, Wy ¢ k) (Wh's s T/J;E,ir,w + (W s o W g g) | < CLh 2.
(ii) Let us prove the second estimate. We have
L L L L L L Il L
Ph¢£L,i,k - :“Hk Hk = (B — Mg,i,k)wf[z,s};,k + Phwy s — N%,l,kwh,s,k

L]\ yIL
= Xs(Pn— N%,l,k)wf[z,;k
YL vIL L
20V xs - (WY =AW L = WL Axe = it ks g
since Phwﬁ < = 0. By localization of the support of xs, we have

YIL L L L+3
Pt — Ll ey < O

By decay of \Ifﬁ & given in Lemma [6.4] and localization of the support of Vs and Axs,
there exists C';, > 0 such that

. v B(s
12V xs - (B — i A)Pn sk + B*ps kAXs||72(0) < Crexp <—5ps #) '

By Lemmal6.8 we have
L L Lt1
M%,;kHwh,s,kHL%Q) <Ch=.

7 Spectral asymptotics in a curvilinear polygon

In this section, we give the asymptotics of the low-lying eigenvalues of P, using the model
operators (Q®s. We also prove the related results for eigenspaces.
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7.1 Eigenvalue asymptotics

Theorem 7.1. Let L > 2. With Notation &1l and Assumption let EX(h) be the set of

the Ko 5 smallest eigenvalue asymptotics ,uﬂ .. as defined in Notation &3

El(n) = {,uﬂk, se€ X,k < K,, suchthat B(s)ur(as) < min(b'Gq,b)}.

Let n < Kq . There exists hg, s € X and k < K, such that ,uLLl 1. IS the n-th smallest

element of E*(h) for any h € (0, ho). We have, by construction

L

L .
ui e = hB(s) S Rl with )y = (as),
=0

and there holds ; -
than — s x| < CH7E, Vh € (0, ho).
Proof. (i) Using Lemmalg.9and due to the spectral theorem (cf. [25], Chap. VII]), it follows

d(o(Py), s ) < CRT. (71)

(ii) As in the polygonal case, we now prove a lower bound for the eigenvalues of P}, using
ideas of [9} 27]]. We give the sketch of the proof for the lower bound. This part is more
detailed in Section Bl for polygonal case. For s € 3, let x5 be cut-off functions with disjoint
support. We define x( on {2 by X(Z) =1-> s x2. Due to Lemma B4 we know that for
any u € H(Q),

pr(uu) = Y palxst, xsw) = B2 Y [[uVxsl[Fa - (72)
sexU{0} sexU{0}

Since suppxo N X = 0, we can apply the result of [T7]] for smooth domains which gives
that there exists ¢ > 0 so that

pr(xou, xou) = (hh'©g — ch™")||xoul|72(o- (73)

For any s € X, let T® be the restriction of () to the space spanned by the eigenfunctions
W corresponding to eigenvalues i (as) < A\p,—1. We denote by R;  the application

Ry H'(Q) — HY(G™)
Ups + Xsu such that

lips(7) = % exp (% Gs(Rs(x — S))) U ( @Rs(x — s)> .
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Then, using Lemma 6.3 and keeping the first order term in the expansion, we have

Pr(xstts Xst) = hB(S) q (R s(xst)s Riy s (xst)) — CHY2([ R o (xst) 1B o
> b MlIR ()] B2y — b (R s00), TRESOw)) (74)
— O [R5, (xst) g

Putting together (Z2)-([Z4) and considering the contribution of operator 7 on each corner
s, there exists an operator 7' whose rank is not greater then n — 1 such that

pi(u,w) > hallul[32q) — (u, Tu) — ch™[ul[32.q).

To obtain a lower bound for pi, ,, we use the max-min principle. Let u1,...,u,—1 be-

long to the orthogonal space of ker(T"). Then for all 1 in {us,...,u, 1}, 1 belongs to

ker(T") and we have

W, But)
[[[]?

(iii) According to (ZI)), we know that there exists i, € o(P) such that

Kb > > hhn — ch?/*, (75)

L+1

L L+l
i — hatyd | < CR72
Using (Z3), we obtain that 1, belongs to the set {pp, 1, A\ = A} O

Remark 7.2. Without the Assumption 6.2 of simplicity, the result of Theorem [Z] is still
valid but requires a more technical proof, see [[10] for a construction of quasi-modes in the
case when the limiting problem may have multiple eigenvalues.

7.2 Eigenspaces

Notation 7.3. e Using Notation we denote by {A; < ... < Ay} the set of distinct
values in {\q,..., An}.

e Forany n < NN, we denote by (1, n, un ) the n-th eigenpair of P, .

e For any m < M, we define the m-th cluster of eigenspaces of P, by

Fy,.m = span{uy, ,, for any n such that \,, = A, },
and the corresponding cluster of quasi-modes for any L € N,
E,[len = span{qﬁﬂ i forany s € X,k > 1 such that B(s)ux(as) = A}
By using Theorem 5.4l we obtain:
Theorem 7.4. For any m < M and L > 2, there exists C > 0 such that

d(Fym, EL) < ORT
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Proof. Forany m < M, we define
Zjn:{(sak) GZX{L"' 7N}7 B(S)Mk(as):Am}

(i) If the set 37 is reduced to one element, then Theorem is obvious.

(ii) We assume that Y%, is not reduced to one element. We denote by x™" the smallest
eigenvalue of the matrix

(4014 0t )

According to Lemmalg.9l there exists Cy, such that

((s,k),(s' k') EXE, x 25,

i — 1| < Cph'/2,

Let us now apply Theorem B4l with A = P, . Relation (&9) of Lemma 8.9 gives @3)) with

n = Chs. According to Theorem [} there exists C; > 0 and Cy > 0 such that, if
we define 1 = [hB(s)ur (o) — C1R?2, hB(s) g (as) + Clh3/2] ,forany (s, k) € 37, , we
have for h small enough,

o(Py) N (I + B(0,2Coh) \ I) = 0.
F _ s Am_Amfl Am+l_Am : s _
or example, we choose Co = min 1 , 1 with the convention Ay = 0.
Assumptions of Theorem B4 are filled and this ends the proof of Theorem [Z4 O

Remark 7.5. With Notation[Z3] let m < M and L > 2. If there exist distinct values ,uLLl &

such that B(s)ug(as) = Ay, we may split E}[LLT]n into several sub-clusters determined by

the different values ,uLLl i.» and, accordingly, F}, ,,, splits into several sub-clusters.

8 Conclusion

As a consequence of Theorem [Z]] the smallest eigenvalue of the Schrodinger operator P,
tends to hA;, with A; the minimum over the corners s of €2 of the characteristic quantity
B(s)p1(as). Do we have a convergence of the corresponding ground state? If \; is attained
for one corner s only, then the ground state converges to the corresponding quasi-mode,
which is exponentially localized near this corner. If \; is attained for several corners, we
deduce from Theorem [Z4] that the ground state is a linear combination of quasi-modes
attached to these different corners. A priori, there is no reason that the coefficients in this
combination converge as h — 0. Moreover, a tunneling effect may happen, that is stronger
interaction between some members of the cluster.
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Refined information on the behavior of eigenpairs can be extracted from numerical ap-
proximation of the Schrédinger problem by finite element method, insofar such an approx-
imation is accurate enough. We can see from our formulas, see (Z9) and (&9)), that eigen-
modes have a two-scale structure: they concentrate near corners with the scale \/E but
they have a strongly oscillating term of the form exp(i®(z)/h) and their approximation
is very delicate. We investigate a finite element method using high degree polynomials in
[Z]. Numerical computations do exhibit tunneling effect with multiple crossings between
eigenvalues when the domain presents some symmetry (for example, in a square). We hope
to propose a theoretical interpretation by analyzing an interaction matrix in a future paper.
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