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Abstract

Assume that (Xt)t∈Z is a real valued time series admitting a common marginal density f

with respect to Lebesgue measure. Donoho et al. (1996) propose a near-minimax method based
on thresholding wavelets to estimate f on a compact set in an independent and identically
distributed setting. The aim of the present work is to extend this methodology to different
weakly dependent cases. Bernstein’s type inequalities are proved to be sufficient to extend
near-minimax results. Assumptions are detailed for dynamical systems and under the η-weak
dependence condition from Doukhan & Louhichi (1999). The threshold levels in our estimator
integrates the dependence structure of the sequence (Xt)t∈Z through one parameter γ. The
near minimaxity is obtained for L

p-convergence rates (p ≥ 1). An estimator of γ is obtained
by a cross-validation procedure. The procedure is illustrated via a simulation study of some
dynamical systems and non Markovian η-weakly dependent sequences.
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Introduction

Let (Xt)t∈Z be a real valued time series admitting a common marginal density f that is com-

pactly supported. The general purpose of this paper is to estimate f by a wavelet estimator f̂n

constructed from n observations (X1, . . . , Xn). We refer to Vannucci (1998) [27] for a survey of
the use of wavelet bases in density estimation. Wavelets are interesting because they are localised
both in time and frequency. Donoho et al. (1996) [8] showed that projection-like linear estimators
are not optimal in a minimax approach, i.e. that their rates of convergence are slower than the
minimax one. Introducing nonlinearity by thresholding wavelet coefficients allow them to obtain
quasi-optimal results. The corresponding estimators are called near-minimax because their rates
differ from the minimax one only up to a logarithm term. The present work extends wavelet
density estimation from the independent and identically distributed (iid for short) framework to
cases where dependence between variables occurs. Many kind! s of thresholding exist, such as for
example Hall and Patil’s (1995) [16] or those presented in Antoniadis and Fan (2001) [2], but we
restrict ourselves to hard-thresholding.

Several ways of quantifying dependence have already been worked out. One of the most popular is
the notion of mixing. For β-mixing, Tribouley and Viennet (1998) [26] have proved the optimality

of an estimator f̂n for which the Mean Integrated Square Error (MISE for short) is the minimax one.
Comte and Merlevède (2002) [5] obtain a near-minimax result for more general α-mixing models,
paying the gain of generality by a logarithm loss in the convergence rate. However, the class of
α and β-mixing models is quite restrictive. Andrews (1984) [1] exhibits the simple non-mixing
process

Xt =
1

2
(Xt−1 + ξt) , where (ξt)t∈Z iid with law Bern(p). (0.1)

New coefficients have been recently introduced to study such non mixing models. Via a time re-
version, the Markov chain (0.1) is distributed as the dynamical system (Yt = T tY0)t∈Z, where Y0

follow the uniform distribution on [0, 1] and T (x) = 2x mod1 (see Barbour et al. (2000) [3] for
more details). As noted by Dedecker and Prieur (2005) [7], such dynamical systems (and associated
Markov chains) are dependent but not mixing. The above cited authors introduce the notion of
φ̃-weak dependence to quantify dependence of such processes. Another (eventually) non-mixing
class of models is the one of non-causal Bernoulli shifts –Xt = H(ξt−j , j ∈ Z))t∈Z where (ξt)t∈Z

is an iid process–. These models belong to the class of η-weak dependent processes (see Doukhan
and Louhichi, 1999, [11]).

The estimation scheme is based on Donoho et al. (1996)’s procedure, in [8], and it is adaptative

with respect to the regularity of f . The hard-threshold levels of the estimator f̂n integrate the
dependence of the observations via a parameter γ. If the weak dependence context is known, the es-
timator is near minimax: in the case of dynamical systems the same rate as in iid setting is achieved
thanks to inequalities obtained by Collet et al. (2002) [4] and for non-causal η-weakly dependent
observations another logarithmic loss appears. If the weak dependence context is unknown, a cross
validation procedure gives an estimator γ̂n. The resulting estimator f̂ γ̂n

n is adaptative with respect
to the dependence and it is available for a large weak dependence range in an unified approach.
We believe that this is a real improvement on existing results because no restrictive mixing as-
sumptions on the observations are required.

The paper is structured as follows. The context of estimation is presented in the next section.
Examples of different weakly dependent sequences of interest are given in Section 2. Section 3
is devoted to the main results where relevent probability inequalities and near minimax rates
are obtained. In Section 4 some numerical applications are discussed and near minimax density
estimators are given by a new cross validation procedure. The proofs are relegated in the last
Section.
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1 Estimation framework

Without loss of generality f is considered supported by [0, 1]. Let us recall some useful facts
about wavelet estimation (see Hardle, Kerkyacharian, Picard and Tsybakov (1998) [17] for more
details on wavelet estimation). For all p ≥ 1, L

p denotes in the sequel the space of all functions f
supported by [0, 1] such that ‖f‖p

p =
∫
|f(x)|pdx <∞.

Definition 1. An orthogonal multiresolution analysis of L
2 is an increasing sequence (Vj)j∈N of

closed subsets of L
2 satisfying

(i)
⋂

j∈N
Vj = {0} and

⋃

j∈N
Vj = L

2,

(ii) ∀ f ∈ L2, ∀ j ∈ N, f ∈ Vj if and only if x 7→ f(2−jx) belongs to Vj+1,

(iii) There exists a function φ, called father wavelet, such that {x 7→ φ(x − k)}k∈Z forms an
orthonormal base of V0.

If Wj denotes the orthogonal supplement of Vj in Vj+1, i.e Vj+1 = Vj ⊕Wj , then there exists a
function ψ –called mother wavelet– such that {x 7→ ψ(x − k)}k∈Z forms an orthonormal basis of
W0. At every resolution level j ≥ 0 the families {φj,k : x → 2j/2φ(2jx − k)}k∈Z and {ψj,k : x 7→
2j/2ψ(2jx− k)}k∈Z are orthonormal bases of respectively Vj and Wj . Assume that φ is supported
by [0, 1] and has a zero-moments property of order N ∈ N

∗, i.e.:

∀k = 0 . . .N,

∫

φ(x)xkdx = δ0,k,

∫
∣
∣φ(x)xN+1

∣
∣ dx <∞, (1.1)

and x 7→
∑

k

|φ(x − k)| ∈ L
2, (1.2)

(here δ0,k = 1 if k = 0 and else δ0,k = 0). The above assumptions imply that the associated mother
wavelet ψ also satisfies

∀k = 0 . . .N,

∫

ψ(x)xkdx = 0,

∫
∣
∣ψ(x)xN+1

∣
∣ dx <∞.

Wavelet bases on [0, 1] proposed by Daubechies (1992) [6] are considered with a sufficient number
(N ≥ 4) of vanishing moments to be Lipschitz functions. Recall that a Lipschitz function h : R

u →
R for some u ∈ N

∗ is a function such that Lip (h) <∞ with

Lip (h) = sup
(a1,...,au) 6=(b1,...,bu)

|h(a1, . . . , au) − h(b1, . . . , bu)|
|a1 − b1| + · · · + |au − bu|

.

Note that wavelets φ and ψ are bounded as Lipschitz functions supported by [0, 1].

For any fixed integer j0, an arbitrary function f ∈ L
2 can be decomposed as

f =
2j0−1∑

k=0

αj0,kφj0,k +
∞∑

j=j0

2j−1∑

k=0

βj0,kψj0,k,

where αj,k =
∫ 1

0 f(x)φj,k(x)dx, βj,k =
∫ 1

0 f(x)ψj,k(x)dx. The projection-type estimator is

f̃n =

2j0−1∑

k=0

α̂j0,kφj0,k +

j1(n)
∑

j=j0

2j−1∑

k=0

β̂j,kψj,k,

where α̂j,k = 1/n
∑n

i=1 φj,k(Xi) and β̂j,k = 1/n
∑n

i=1 ψj,k(Xi) are the empirical estimators of

the coefficients αj,k and βj,k. Such density estimators can be write on the form: f̃n(x) =
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∑n
i=1Kn(x,Xi), with (Kn)n≥1 sequence of kernels defined byKn(x, y) =

∑2j0−1
k=0 φj0,k(x)φj0,k(y)+

∑j1(n)
j=j0

∑2j−1
k=0 ψj,k(x)ψj,k(y). The kernels Kn are linear (they can be written as an integral with

respect to the empirical distribution) and thus the estimator f̃n is linear.

Let (s, π, r) be a triplet such that s > 0, 1 ≤ π, r ≤ ∞. The expression

‖f‖s,π,r = |α0,0| +






∑

j∈N

2j(s+1/2−1/π)r





2j−1∑

k=0

|βj,k|π




r/π





1/r

,

defines a semi-norm on L
2 (see Härdle et al. (1998) [17] for more details). Besov spaces and Besov

balls are respectively denoted

Bs
π,r := {f ∈ L

2 such that ‖f‖s,π,r < +∞}, Bs
π,r(M) :=

{
f ∈ Bs

π,r, ‖f‖s,π,r ≤M
}
.

Note that Besov spaces do not depend on φ and ψ. For f ∈ Bs
π,r(M), the L

p-mean error of an
estimator fn is defined by E‖fn − f‖p

p. The associated minimax rate verify

inf
f∈Bs

π,r(C)
sup

fn estimator of f
E‖fn − f‖p

p = O
(
n−α

)
,

with

α =

{

s/(1 + 2s) ǫ ≥ 0,

(s− 1/π + 1/p)/(1 + 2s− 2/π) ǫ ≤ 0,
where ǫ = sπ − (p− π)/2. (1.3)

Linear estimators, including f̃n, do not achieve such rates for f ∈ Bs
π,r(M) with π ≤ p. In

order to bypass this drawback, Donoho et al. (1996) introduce in [8] non-linear estimators f̂n via
thresholding. Let Tλ(β) = β11|β|>λ be the hard-threshold function of level λ > 0; given n they
consider integers j0, j1 and parameters (λj)j=j0...j1 and define

f̂n =

2j0−1∑

k=0

α̂j0,kφj0,k +

j1∑

j=j0

2j−1∑

k=0

Tλj (β̂j,k)ψj,k,

In order to achieve a minimax rate –up to a logarithmic term– the paramters defining f̂n have to
be chosen appropriately. Donoho et al. (1996) obtain in the iid framework the following result:

Theorem 1 (Donoho et al., 1996). Suppose that f belongs to a Besov ball Bs
π,r(M) with

1/π < s ≤ N/2, 1 ≤ π ≤ p, 1 ≤ r ≤ ∞,

where N is the regularity of the wavelet. If (Xt)t∈Z is an iid sequence, there exists a constant
C0(N, p, s, π,M) such that

E‖f̂n − f‖p
p ≤ C0







(
log n

n

)pα

, if ǫ 6= 0
(

log n

n

)pα

(logn)(p/2−π/r)+ , if ǫ = 0,

where the minimax rate α and ǫ are given in (1.3) and

2j0 ≃ n1/(1+N), (1.4)

2j1 ≃ n/ logn, (1.5)

λj = K
√

j/n, for a suitable constant K > 0. (1.6)

In a regression framework, Donoho and Johnstone (1995) [9] fix the constant K =
√

2 for practical
implementation. Hereafter, we will adopt the same choice.
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2 Dependent models

Models of this section satisfy the conditions of the theorems stated in Section 3.

2.1 Expanding maps

Dynamical systems (Xt)t≥0 are defined through a function T : [0, 1] → [0, 1] by

Xi = T i(X0), ∀i ∈ N (2.1)

where X0 is distributed as a Lebesgue dominated measure µ on [0, 1] and T i denotes T ◦ T ◦ · · · ◦ T
︸ ︷︷ ︸

i terms.
Expanding maps (Xt = T t(X0))t∈N (or equivalently Lasota-Yorke functions T ) are dynamical
systems such that

• (Regularity) The function T is differentiable, with a continuous derivate T ′ and there exists
a grid 0 = a0 ≤ a1 · · · ≤ ak = 1 such that |T ′(x)| > 0 on ]ai−1, ai[ for each i = 1, . . . , k.

• (Expansivity) For any integer i, let Ii be the set on which the first derivate of T i, (T i)′, is
defined. There exists a > 0 and s > 1 such that infx∈Ii{|(T i)′(x)|} > asi.

• (Topological mixing) For any nonempty open sets U , V , there exists i0 ≥ 1 such that T−i(U)∩
V 6= ∅ for all i ≥ i0.

The class of dynamical systems has remarkable properties (see Viana, 1997, [28]). Its members
admit an invariant measure µ0 with a density f ∈ BV1 where BV1 is the set of bounded variation
functions h defined on [0, 1] such that

sup
n∈N

sup
a0=0<a1<···<an=1

n∑

i=1

|h(ai) − h(ai−1)| = ‖h‖BV < +∞.

Note that B1
1,1 ⊂ BV1 ⊂ B1

1,∞ (see e.g. Donoho et al. (1996), [8]). Expanding maps are also
geometrically ergodic in mean, i.e. there exists constants α,C > 0 with α < 1 such that E|Xt −
X̃t| ≤ Cαt for all t ≥ 0, where (X̃t)t≥0 is the stationary expanding map (X̃t = T t(X̃0))t∈N

obtained with X̃0 following a distribution µ0. These models are not mixing (see Dedecker and
Prieur, 2005, [7]).

2.2 η-weakly dependence

Doukhan and Louhchi have introduced this notion in 1999 in [11].

Definition 2 (Doukhan and Louhichi, 1999). The stationary process (Xt)t∈Z is η-weakly
dependent if there exists a sequence of non-negative real numbers (ηr)r∈N satisfying ηr → 0 when
r → ∞ and such that:

∣
∣Cov

(
h (Xi1 , . . . Xiu) , k

(
Xiu+1

, . . . , Xiu+v

))∣
∣ ≤ (uLip(h) + v Lip(k)) ηr

for all (u + v)-tuples, (i1, . . . , iu+v) with i1 ≤ · · · ≤ iu ≤ iu + r ≤ iu+1 ≤ · · · ≤ iu+v, and for all
h, k ∈ Λ(1) where

Λ(1) =

{

h : ∃u ≥ 0, h : R
u → R, Lip (h) <∞, ‖h‖∞ = sup

x∈Ru

|h(x)| ≤ 1

}

.

The η-dependence refers to non-causal situations because information “from the future” (i.e. on
the right of the covariance) contributes as much as information “from the past” (i.e. on the left)
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in the dependence scheme. This notion of dependence includes general models which may be
non-mixing. We will consider a subgeometric decay, meaning that:

There exist a, b, C > 0 such that ηr ≤ C exp(−arb), (2.2)

and we will also assume that the joint densities fj,k of (Xj , Xk) exist and are uniformly bounded
for j 6= k.

2.3 Bernoulli shifts

Let H : R
Z → R be a measurable function. If the sequence (ξt)t∈Z is iid on R, a Bernoulli shift

with input process (ξt)t∈Z is defined as

Xt = H ((ξt−i)i∈Z) , t ∈ Z.

Such Bernoulli shifts are η−weakly dependent (see Doukhan and Louhichi, 1999, [11]) with ηr ≤
2δ[r/2] if

E
∣
∣H (ξj , j ∈ Z) −H

(
ξj11|j|≤r, j ∈ Z

)∣
∣ ≤ δr. (2.3)

Different values of b in equation (2.2) arise naturally for specific functions H .

2.3.1 Infinite moving average

The most simple case of infinitely dependent Bernoulli shift is the infinite moving average process

Xt =
∑

i∈Z

αiξt−i. (2.4)

Doukhan and Lang (2002) [10] prove they are η-weakly dependent with

ηr =

√
∑

|j|>[r/2]

a2
j . (2.5)

If (aj)j 6=0 satisfies aj ≤ Kα|j| for j 6= 0, K > 0 and 0 < α < 1 then equation (2.2) holds with
b = 1.

2.3.2 LARCH(∞) inputs

A vast literature is devoted to the study of conditionally heteroscedastic models. A simple equation
in terms of a vector valued process allows a unified treatment of those models, see [13]. Let (ξt)t∈Z

be an iid centered real valued sequence and a, aj , j ∈ N
∗ be real numbers. LARCH(∞) models are

solutions of the recurrence equation

Xt = ξt



a+

∞∑

j=1

ajXt−j



 . (2.6)

Assume that Λ = E|ξ0|
∑

j≥1 |aj | < 1 then one (essentially unique) stationary solution of eqn.
(2.6) is given by

Xt = ξt



a+

∞∑

k=1

∑

j1,...,jk≥1

aj1ξt−j1aj2 · · · ajk
ξt−j1−···−jk

a



 . (2.7)

The solution (2.7) of equation (2.6) is geometrically η−weakly dependent with b = 1/2 if there
exists 0 < α < 1 and K > 0 such that aj ≤ Kαj−1 for all j > 0 and E|ξ0| < 1 − α.
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2.3.3 Non-Causal LARCH(∞) inputs

The previous approach extends for the case of Non-Causal LARCH(∞) inputs

Xt = ξt



a+
∑

j 6=0

ajXt−j



 .

Doukhan, Teyssière and Winant (2005) prove in [13] the same results of existence of a stationary
solution as for the previous causal case (only replace summation for j > 0 by summation for j 6= 0).
This solution satisfies equation (2.2) with b = 1/2 if there exists K,α > 0 and α < 1 such that
aj ≤ Kα|j| for all j 6= 0.

3 Main results

In all this section, let (Xt)t∈Z be a stationary real valued sequence, φ a father wavelet in L
2 sat-

isfying (1.1) for N ≥ 4 and the condition (1.2), and {ψj,k, j ∈ N, k ∈ Z} the wavelet functions
associated with. A probability inequality is given in an unified way for the different cases of de-
pendence introduced in Section 2. Theorem 3 gives near-minimax estimators for weakly dependent
observations.

3.1 Probability inequalities

Under weakly dependent conditions on (Xt)t∈Z, we may find that there exists a constant C > 0
such that for all (j, k) ∈ N

2, n ∈ N
∗ and q > 0

E

∣
∣
∣
∣
∣

1√
n

n∑

i=1

(ψj,k(Xi) − Eψj,k(Xi))

∣
∣
∣
∣
∣

q

≤ C. (3.1)

Here, the constant C increases with the order of the moment q. In iid framework, this inequality
easily follows from Rosenthal’s one. Under some additional assumptions, C could be bounded by
qq/2, proportional to the moment of order q of a Gaussian. For expanding maps, the moment
inequality (3.1) also holds (see Dedecker and Prieur, 2005, [7]). For η-weakly dependent sequences,
Ragache and Wintenberger (2006) prove in [25] such inequality under condition (2.2). They also
bound the constant C ≤ Kqq+q/b where K is a constant that does not depends on k, j and q.
The rate qq/2 is not obtained because covariance terms appears in the development of the moments.

These bounds of q-th moments are linked to probability inequalities by the following useful lemma:

Lemma 1 (Ragache and Wintenberger, 2006). If the variables {Vn}n∈Z satisfy, for all k ∈ N
∗

‖Vn‖2k ≤ Φ(2k)

where Φ is an increasing function with Φ(0) = 0 and lim
x→+∞

Φ(x) = +∞, then:

P(|Vn| > δ) ≤ e2 exp
(
−Φ−1(δ/e)

)
.

Taking Vn = 1√
n

∑n
i=1 ψj,k(Xi)−Eψj,k(Xi) and Φ(x) = Kx1+1/b leads directly to the first assertion

of the following Theorem:

Theorem 2. There exists constants B,C > 0 and γ ≥ 1/2 such that for all (j, k) ∈ N
2 and n ∈ N

∗

P

(∣
∣
∣
∣
∣

1√
n

n∑

i=1

(ψj,k(Xi) − Eψj,k(Xi))

∣
∣
∣
∣
∣
≥ δ

)

≤ B exp
(

−Cδ1/γ
)

, (3.2)

for all δ ≥ 0 such that there exists K ′ > 0 with δ2l‖ψj,k‖2
∞ ≤ K ′n for some constant l ≥ 0. More

precisely
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1. γ = 1+1/b and l = 0, if coefficients ηr of (Xt)t∈Z satisfy (2.2) and if for all j 6= k the joints
densities fj,k of (Xj , Xk) exist and are uniformly bounded.

2. γ = 0.5 and l = 1, if (Xt)t∈Z is an iid process.

3. γ = 0.5 and l = 5, if (Xt)t∈Z is a stationary expanding map.

Assertions 2 and 3 of Theorem 2 follow directly from the following Bernstein’s type inequality: for
all λ > 0

P

(∣
∣
∣
∣
∣

n∑

i=1

ψj,k(Xi) − Eψj,k(Xi)

∣
∣
∣
∣
∣
≥ λ

)

≤ B exp



−C λ2

σ2
n + λ

2l
l+1 ‖ψj,k‖

2
l+1

∞



 , (3.3)

where σ2
n = Var

∑n
i=1 ψj,k(Xi) and B,C > 0 do not depend on j and k. From equation (3.1) in

the case q = 2, we know that σ2
n has the rate n. Fixing δ = λ/

√
n and under δ2l‖ψj,k‖2

∞ ≤ K ′n,

λ2l/(l+1)‖ψj,k‖2/(l+1)
∞ ≤ K ′′n with K ′′ > 0, the result of Theorem 2 with γ = 0.5 follows. Equation

(3.3) with B = 2 and C = 1 is the classical Bernstein’s one in the iid case, see for instance Petrov
(1995), [23]. The result is new for expanding maps and its proof is given in the last section.

3.2 Near-minimaxity of the estimation scheme

This result extends the one of Donoho et al. (1996), [8], to dependent settings.

Theorem 3. Suppose that f belongs to a Besov ball Bs
π,r(M) with

1/π < s ≤ N/2, 1 ≤ π ≤ p, 1 ≤ r ≤ ∞,

where N ≥ 4 is the regularity of the wavelet. Suppose that there exists a couple (γ, l) and that
conditions of dependence on (Xt)t∈Z hold such that the inequalities (3.1) and (3.2) are satisfied.
Then there exists a constant C0(N, p, s, π,M) such that

E[‖f̂n − f‖p
p] ≤ C0







(
log2γ n

n

)pα

if ǫ 6= 0
(

log2γ n

n

)pα

(logn)(1−π/r)+ if ǫ = 0

where the minimax rate α and ǫ are given in (1.3) and

2j0 ≃ n1/(1+N), (3.4)

2j1 ≃ n/ log2γl n, (3.5)

λj = Kjγ/
√
n, for a well chosen constant K > 0. (3.6)

The above result takes into account the dependence of the observations through the threshold.
The dependence of the observations presently changes the behavior of the moments of wavelet
coefficients, determined by Theorem 2. The idea of adapting the threshold level to the behavior
of the moments of the wavelet coefficients estimators is not new but it is usually developped in
ill-posed inverse problems. As it is put in evidence in the Theorem 5.1 of Kerkyachrian and Picard
(2000), [20], the quality of the estimator relies on an adapted threshold level, that is given by
moments and probability inequalities on the estimators of the wavelet coefficients. For example,
Johnstone et al. (1998) apply this principle in an ill-posed inverse problems in [19]. Here the idea
is exactly the same, but the moment inequalities obtained relie on the dependence of the setting
rather than on the inversion of the problem.

The result for γ = 0.5 is the same as in Donoho et al. (1996), [8]. As noted previously, such values
of γ arise in iid context and for dynamical systems. Consequently, Donoho et al. (1996) result is
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extended to dynamical systems. It is also extended to expanding maps, where the assertion 1. of
Theorem 2 holds, but the rate obtained differs from a logarithmic term.

The parameter γ determines the convergence rates through Theorem 3. It also calibrates the degree
of dependence of the observations through Theorem 2. The optimal γ0 corresponds to the smallest
error of estimation. This value could change with the dependence of the observations. Theorem
2 gives us a theoretical value γ in inequality (3.2) (see section 3.1) that leads to near minimax
estimators. Such probability inequality exhibits a bound γ0 ≤ γ but not necessarily the optimal γ0.

4 Numerical results

In the next section, we propose to estimate numerically the optimal parameter γ0 by an estimator
γ̂n obtained by a cross-validation procedure.

4.1 Cross-validation procedure

According to Theorem 3, near-minimax estimators f̂γ
n with hard-threshold of the form λj =

Kjγ/
√
n (with K, γ > 0) are considered in the sequel. Let us fix K =

√
2, 2j0 = n1/(1+N)

and 2j1 = n/ logn as in Donoho and Johnstone (1995), [9], in order that f̂γ
n depends only on γ.

The MISE, corresponding to the L
p-mean error for p = 2, is:

MISE(f̂γ
n ) = E

∫ (

f̂γ
n (x) − f(x)

)2

dx = EL(f̂γ
n ).

Note that

L(f̂γ
n ) =

∫ (

f̂γ
n (x)

)2

dx− 2

∫

f̂γ
n (x)f(x)dx

︸ ︷︷ ︸

J(f̂γ
n )

+

∫

f2dx

︸ ︷︷ ︸

constant

.

Minimizing the MISE is then equivalent to minimize EJ(f̂γ
n ). Following Hart and Vieu (1990), [18],

we define a leave-out procedure. Let bn be positive integers and X−i, i = 1 . . . n, be the associated
sub-sampling:

X−i = {Xj, 1 ≤ j ≤ n, |i− j| ≥ bn}.
We define the “leave-out b cross validation function” by:

CVb(γ) =

∫ (

f̂γ
n (x)

)2

dx− 2n−1
n∑

i=1

f̂γ
−i(Xi),

where f̂γ
−i is the hard threshold estimator based on the sub-sampling X−i.

The idea is to break the dependence by considering blocks of size 2 ∗ bn + 1 →n→∞ ∞ around the
observationXi in order to obtain n−1

∑n
i=1 f̂

γ
−i(Xi) ∼n→∞ Ef̂γ

−i(X) ∼n→∞
∫
f̂γ

n (x)f(x)dx. Lahiri
(2003) shows in [21] the efficiency of such sub-sampling methods in a weakly dependent context.
Hall et al. (1995) prove in [15] that for kernel estimators the bandwith chosen by minimizing the
corresponding “leave-out b cross validation function” is a good estimator of the optimal bandwith.
Theoretical results are not developed here but we conjecture that such result remains true for two
reasons:

• all cases considered here are (sub-)geometrically weakly dependent and restrictions on decays
of coefficient ensure asymptotic results as law of large numbers,

• as shown by Theorem 3, our parameter γ plays a fundamental role on the convergence rates
as much as the classical bandwith does.
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According to remark 2.1 of Hart and Vieu (1990), [18], we fix 2 ∗ bn ∼ n1/3. Note that the
orthonormality of wavelets basis gives

CVb(γ) =

2j0−1∑

k=0

α̂2
j0,k +

j1∑

j=j0

2j−1∑

k=0

T 2√
2jγ/

√
n
(β̂j,k) − 2n−1

n∑

i=1

f̂γ
−i(Xi).

Our proposed procedure consists in choosing γ̂n = argminγ=0,0.05,...,1.95,2CVb(γ).

The implementation has been done in Matlab using the package Wavelab, heely available on the
net on [29]. In order to implement numerically the procedure, we have used some approximations;
indeed, computation is based on an equispaced grid, while the data considered is not equispaced.
In order to reduce the resulting approximation error, we consider a finre grid than the number n
of observations. Here I = 4n in order to increase the precision without araising too much calculus
time. Actually, we will consider in implementation values of the form ψj,k(li/I), wether than
ψj,k(Xi), with li the integer part of XiI. The bias caused by implementation is not studied here.

4.2 The estimator γ̂
n

This section illustrates and evaluates our estimation procedure on simulated examples.

Consider first the case of an iid sample (X1, . . . , Xn) generated according to the cumulative dis-
tribution function F (x) = 2/π arcsin(

√
x) for x ∈ [0, 1]. The criteria is minimized for γ = 0.5

in Figure 1. Thus, the cross validation procedure selects γ̂n near 0.5 for n = 210 (see Figure 2).
For a sufficiently large number of observations this estimator γ̂n obtained numerically has value
concording with γ = 0.5 chosen by Donoho et al. (1996) in [8].

Let us now consider the case of an expanding map T (x) = 4x(1 − x). The invariant measure
has the same distribution F as in the previous iid case (see Prieur, 2001, [24]). We then first
simulate X̃1, . . . , X̃n such that X̃1  F and then X̃i = T i−1(X̃1) for 2 ≤ i ≤ n. As for the iid
case, the cross validation criteria in Figure 1(a) chooses γ̂n = 0.5. Figure 2 corroborates this value:
for high values of n, the distribution of γ̂n obtained by croos-validation is centered on the value 0.5.

The assumption of stationarity could be irrelevant in many cases. Simulating the first observation
X̃1  F to estimate the (unknown) distribution F of the invariant measure of a given transforma-
tion T is impossible. Thus we simulate Xi = T i(X0) for 2 ≤ i ≤ 2n with X0  U([0, 1]) and retain
only the n last terms. The process (Xt)t≥1 is geometrically ergodic in mean and the error with
respect to the stationary case is negligeable regarding with the error of the density estimation.
Results remain valid and the procedure acts as in previous cases of stationary and iid cases, see
Figures 1(b) and 2.

Study now a non-Markovian extension of Andrews’ example (0.1)

Xt = 2(Xt−1 +Xt+1)/5 + 5ξt/21 where (ξt)t∈Z are iid with the common law Bern(1/2). (4.1)

A stationary solution of this AR(2) equation is the non-causal process (Xt)t∈Z

Xt =
∑

j∈Z

ajξt−j ,

where aj = 1/3∗(1/2)|j|. This solution belongs to [0, 1] and its density is the one of (U+U ′+ξ0)/3
where U and U ′ are independent variables following U([0, 1]). As in Andrews’ example such
processes are not mixing. However, using equation (2.5) there exists a, C > 0 such that ηr ≤
C exp(−ar). Assumption (2.2) is satisfied with b = 1.
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(b)  Stationary dynamical system case
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Figure 1: Cross validation criterion’s evolution with respect to γ for n = 210 observations. The
curves represent the evolution of the mean of the criteria calculated on 100 simulations with respect to
γ = 0, 0.05 . . . 1.95, 2. Four cases were considered: in (a) the observations are iid, in (b) we simulate
stationary dynamical system, in (c) a non stationary dynamical system and in (d) we consider a η-weak
dependent case.
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Figure 2: Empirical distribution of γ̂n. The figures represent the boxplots (the black cross is the
mean) of the empirical ditribution of γ̂n obtained on 100 simulations for different initial sample sizes:
n = 27, 28, 29, 210. For each value of n, we abut the boxplots of differents cases; From left to right :
(a) iid case, (b) stationary dynamical system case, (c) non-stationary dynamical system case and (d) the
η-weak dependent case.
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Perfect simulation is not available in this framework and Gibbs algorithm is appropriate for ap-

proching the true distribution of (X1, . . . , Xn). A vectorial Markov Chain (X
(t)
1 , . . . , X

(t)
n+2)t∈N∗ is

simulated by:

forall j ∈ {1 . . . 2n}, the distribution of X
(0)
j is uniform on [0, 1],

X
(t)
j = 2(X

(t)
j−1 +X

(t−1)
j+1 )/5 + 5 ∗ ξt/21.

This chain is uniformly geometrically ergodic and its invariant distribution is the true one of
(X1, . . . , Xn+2). The dependence on the initial values is then geometrically decreasing with the
number of iteration of the Gibbs sampler (see Guyon, 1995, [14]). One chooses to take as obser-

vations (X
(n)
2 , . . . , X

(n)
n+1) in order to reduce edge effects. The error coming from the simulation

compared with the error of estimation is negligable. The shape of the criteria in Figure 1 is com-
pletely different in this non Markovian context. The cross-validation procedure leads to larger
choices of γ̂n than before (see Figure 2).

This numerical procedure has a practical interest especially when dealing with density estimation
for time series. In practice, when the independence of the observations is not acquired, the cross-
validation estimator f̂ γ̂n

n seems more adapted than the classical one with γ = 0.5.

4.3 Numerical study of the convergence rates

This section does not deal directly with our cross validation procedure. We study numerically the
rates of convergence in different contexts by Monte Carlo simulations. The true densities of the
simulated sequences are known. The L

2-error rates is approximated by the Riemannian sum:

2−5
25−1∑

i=0

f̂γ
n (2−6 + i2−5) − f(2−6 + i2−5).

With the parameter γ fixed at 0.5, we estimate the MISE on 100 iterations using this formula
for the different cases of dependence. Figure 3 represents the evolution of the values of MISE
obtained with respect to the sample-size n in the cases of iid series, stationary and non stationary
expanding maps. We can observe that the evolution is the same for the differents cases considered
in this figure. Added to the fact that the value of γ given by Theorem 2 is the same and that
the evolutions of the criterion in Figure 2.(a) to (c) are very similar, compared with the η-weak
dependent case, this means that in our example, these kinds of causal dependence do not modify
the behaviour of the classical estimator from the iid case. In particular, we can note that the frame-
work of non stationnary expanding maps is very similar to the iid case for our estimation procedure.

As already mentioned by Tribouley and Viennet (1998) in [26], a safe strategy to avoid large errors
dealing with dependent data is to increase the threshold. A way to enlarge the threshold is to
choose a larger γ. The special shape of the criteria shows that γ = 0.5 is a critical value and larger
ones seems much more stable in the non causal context. In figure 4 are ploted estimations on 100
iterations of the MISE for three choices of γ = 0.5, 0.75, 2 and for various numbers of observations
n = 26, 27, . . . , 214, 215. The MISE is clearly the smallest for γ = 0.75.

Theorically Theorem 2 tolds us inequality (3.2) holds with γ = 2 (see Section 3.1 for more de-
tails). Actually, this Theorem only gives an upper bound of γ veryfing inequality (3.2) and smaller
choices of γ can be possible. Choosing a lower γ such that inequality (3.2) holds allows to reduce
the convergence rate via Theorem 3. But as we do not have a lower bound, we do not have access
to the optimal choice of such γ. Figure 4 confirms that γ = 2 is probably not the optimal choice of
γ in the studied example because we observe that the MISE of f̂2

n is always greater than the one

obtained with f̂0.75
n even for large values of n. The fact f̂0.5

n also have less satisfying results than
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Figure 4: Evolution of the MISE with respect to the sample size for η-weak dependent data. The
figure represents the estimation of the MISE obtained by 100 simulations for n = 26, 27, . . . , 214, 215 in a
log-log scale. Three values of γ were considered : γ = 0.5 (dash), γ = 0.75 (solid) and γ = 2 (dots)

f̂0.75
n means a priori that inequality (3.2) is not available with γ = 0.5 in this context.

This study put in evidence the limitation of our theorical study: Theorem 2 does not gives the
optimal choice of γ but only a possible choice. Using a cross-validation procedure allows us to
bypass this drawback, giving the value of γ the most adapted to the observations and leading to a
better estimation than an arbitrary choice of the threshold.

Conclusion

Probability inequalities give a γ that controls the logarithmic loss in the convergence rate. It leads
to near minimax estimators f̂γ

n . This value of γ is not necessarly the optimal one, i.e. the one

13



that minimizes the error of the estimator. The proposed estimator f̂ γ̂n
n , where γ̂n is obtained by

a cross-validation procedure, seems a better density estimator when dealing with time series. For
iid sequences or expanding maps the estimator γ̂n converges to 0.5 according to Theorem 3. Even
for non stationary expanding maps the previous result remains valid. In the η-weak dependence
case, larger values γ > 0.5 are preferable, like the ones given by the cross validation procedure.
Both theorical results and implementation on simulated examples tolds us that the behavior of
the hard-threshold density estimator is similar for expanding maps (stationary or not) than for
the iid case, while ! non causal η-weak dependence needs to calibrate differently the threshold. In
our opinion, the cross-validation procedure presented gives a satisfactory unified approach of these
different cases.

5 Proofs

In this section, proofs of Theorem 3 and inequality (3.3) are collected.

5.1 Proof of the Theorem 3

We restrict ourselves to the case of compactly supported distributions. We consider that f is
defined on [0, 1] without loss of generality. We assume furthermore that the function f we wish
to estimate belongs to a Besov Ball Bs

π,r(M) and that the assumptions on the indexes given in
Theorem 3 hold. The density f can be written as follows:

f =

2j
0
−1
∑

k=0

αj0,kφj0,k

︸ ︷︷ ︸

Ej0f

+

j1∑

j=j0

2j−1∑

k=0

βj,kψj,k

︸ ︷︷ ︸

Dj0,j1f

+
∞∑

j=j1+1

2j−1∑

k=0

βj,kψj,k

︸ ︷︷ ︸

Dj1,∞f

.

This decomposition is linked with the properties of the Besov Balls: the first term Ej0f repre-
sents the projection of f over the space generated by scale functions of order j0 whereas the part
Dj0,j1f +Dj1,∞f are the “details”, it is to say the projection over the wavelet spaces. (See Härdle
et al. (1998), [17]).

Let us recall below the form of the estimator:

f̂n =

2j
0
−1
∑

k=0

α̂j0,kφj0,k

︸ ︷︷ ︸

Êj0f

+

j1∑

j=j0

2j−1∑

k=0

γλj (β̂j,k)ψj,k

︸ ︷︷ ︸

D̂j0 ,j1f

,

where γλj is the hard-thresholding function with the level dependent threshold λj = K jγ

√
n
. The

functions j0 and j1 are given by j0 = log2(n
1/(1+N)) and j1 = log2(n/ log2γl n).

Thanks to Minkowski’s inequality, we can decompose the risk of f̂n in three parts:

E[‖f̂n − f‖p
p] ≤ 3p−1




E[‖Êj0f − Ej0f‖p

p]
︸ ︷︷ ︸

T1

+ E[‖D̂j0,j1f −Dj0,j1f‖p
p]

︸ ︷︷ ︸

T2

+ ‖Dj1,∞f‖p
p

︸ ︷︷ ︸

T3




 .

We may now study the convergence rate of each of these terms. We will not consider them in their
order of appearance but of difficulty.
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5.2 Some technical tools

We suppose the series (Xi) satisfy the conditions (3.1) and (3.2) with γ a positive constant. Those
assumptions provide us moments inequalities for the estimation of the scale and wavelet coefficients.
We have, for all j ∈ N and k ∈ Z:







α̂j,k − αj,k =
1

n

n∑

i=1

(φj,k(Xi) − Eφj,k(Xi)),

β̂j,k − βj,k =
1

n

n∑

i=1

(ψj,k(Xi) − Eψj,k(Xi)).

When we restrict ourselves to the cases where j ≤ j1, we can also control more generally the terms:
E|α̂j,k − αj,k|p and E|β̂j,k − βj,k|p for a fixed real p > 0 and uniformly for all j ≤ j1 and k ∈ Z.
Then ‖φj,k‖∞ and ‖ψj,k‖∞ are bounded, up to a constant, by 2j1/2, which is always smaller than√
n. Through the inequality (3.1) it leads there exists C > 0 such that

E|β̂j,k − βj,k|p ≤ Cn−p/2. (5.1)

The functions φ satisfy also the condition (1.1) and the same inequalities hold for each αj,k.

5.3 Approximation error T3

This term is the bias introduced by the fact that in reality we do not estimate f but only its
projection over a space of scale functions of order j1. The fact that we observe dependent data
does not affect this term because it is deterministic, so we can apply the usual bounds. As in
the proof of Theorem 5 of Donoho et al. (1996), [8], or by applying Theorem 9.3 of Härdle et al.
(1998), [17], there exists a constant C > 0 such that

T3 ≤ C
(

2−j1s′

)p

where s′ = s− 1/π + 1/p.

The index s′ is coming from the Sobolev inclusion Bs
π,r ⊂ Bs′

p,r. Recall that we have taken 2−j1 =

log2γl n/n. Moreover, p ≥ π and s > 1/π implies s′ > α:

• If ǫ ≤ 0, α = s′/(1 + 2(s− 1/π)). Then α < s′ because s > 1/π by hypothesis.

• If ǫ ≥ 0, α − s′ = s/(1 + 2s) − s′ = −(2s2 + (1 + 2s)(1/π − 1/p))/(1 + 2s). As s > 0, we
conclude noting that s′ > α.

As a consequence T3 has always a smaller rate than the convergence one, i.e. T3 ≤ C
(

log2γl n/n
)s′p

≤
C′ (log2γ n/n

)αp
for a well chosen constant C′ > 0.

5.4 Bias of scale estimation T1

Paralleling the proof of Theorem 5 of Donoho et al. (1996),, [8], we can apply the result of Meyer
(1992), [22], for the scaling function φ satisfying a concentration assumption. It gives, for a suitable
C > 0

T1 = E

∥
∥
∥
∥
∥
∥

2j
0
−1
∑

k=0

(α̂j0,k − αj0,k)φj0,k

∥
∥
∥
∥
∥
∥

p

p

≤ C 2j0(p/2−1)
2j0−1∑

k=0

E|α̂j0,k − αj0,k|p.

Thanks to the inequality (5.1), the rate of convergence of T1 is bounded by

T1 ≤ C 2j0p/2n−p/2.

Note that the choice (3.4) of j0 implies that the order of the bound is (2j0/n)p/2 = n−pN/(2+2N).
We conclude that T1 is negligible thanks to the hypothesis N ≥ 2s.
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5.5 Details term T2

We apply the same result from Meyer (1992), [22], on the wavelet basis {ψj,k}:

T2 = E

∥
∥
∥
∥
∥
∥

j1∑

j=j0

2j−1∑

k=0

(γλ(β̂j,k) − βj,k)ψj,k

∥
∥
∥
∥
∥
∥

p

p

∼
j1∑

j=j0

2j(p/2−1)
2j−1∑

k=0

E|γλ(β̂j,k) − βj,k|p.

In order to prove that this term achieves the desired rate of convergence, we need to decompose
it again. We will need in particular to distinguish whether the estimation of the coefficients are
thresholded or not. We therefore introduce the following sets:

B̂j :=
{

k = 0 . . . 2j − 1, |β̂j,k| > λj

}

,

B+
j :=

{
k = 0 . . . 2j − 1, |βj,k| > 2λj

}
,

B−
j :=

{
k = 0 . . . 2j − 1, |βj,k| < λj/2

}
.

Then T2 ≤ T21 + T22 + T23 + T24 with:

T21 =

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

E

[

|β̂j,k − βj,k|p11B̂j∩B−

j

]

,

T22 =

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

E

[

|β̂j,k − βj,k|p11B̂j∩B−

j

c

]

,

T23 =

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|pP(B̂c
j ∩B+

j ),

T24 =

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|pP(B̂c
j ∩B+

j

c
).

where the exponent c denotes the complementary.

5.5.1 Term T23

Within the set B̂j ∩B−
j or the set B̂C

j ∩B+
j , we can notice that |β̂j,k − βj,k| is lower bounded by

λj/2. We then have for a constant C > 0:

T23 ≤ C

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|pP(|β̂j,k − βj,k| > λj/2).

We can have an upper bound of P(|β̂j,k − βj,k| > λj/2) thanks to Theorem 2, choosing δ =√
nλj/2 = Kjγ/2. With 2j1 = n(logn)−2γ , for a sufficiently large n:

δ2l‖ψj,k‖2
∞ ≤ K ′jγ2l2j1 ≤ K ′ logγ2l n ∗ n/ log2γl n ≤ K ′n.

We thus obtain that δ2l‖ψj,k‖2
∞ ≤ K ′n and consequently Theorem 2 can be applied with this

choice of δ. It leads to the following bound

P(|β̂j,k − βj,k| > λj/2) ≤ e−CK1/γj . (5.2)

Thus, there exists an increasing function of K denoted ν(K) such that

P(|β̂j,k − βj,k| > λj/2) ≤ 2−jν .
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Added to the fact that we control
∑

k |βj,k|p2jp(s′+1/2−1/p) since the assumptions in Theorem 3

imply that f belongs to a Besov space Bs′

p,∞ with s′ = s− 1/π + 1/p, we obtain for C > 0,

T23 ≤ C

j1∑

j0

2−j(s′p+ν).

It follows that T23 has the rate 2−j0(s
′p+ν) ≤ n−(s′p+ν)/(1+N).

Taking K sufficiently large, we can control as accurately as we want the parameter ν and then T23

becomes asymptotically negligible compared to the other terms.

5.5.2 Term T21

We first introduce P(|β̂j,k − βj,k| > λj/2) as we did it for the term T23. By the Cauchy-Shwarz
inequality there exists C > 0

T21 ≤ C

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

[

E|β̂j,k − βj,k|2p
]1/2

P(|β̂j,k − βj,k| > λj/2)1/2.

We achieve the following rate for T21 using (5.2)

j1∑

j0

2j(p/2−1−ν/2)
2j−1∑

k=0

[

E|β̂j,k − βj,k|2p
]1/2

.

Inequality (5.1) leads to the rate n−p/2
∑j1

j0
2jp/2−ν/2. As for T23, we may choose the constant K

large enough to get ν ≥ p. Then, we can write

T21 ≤ C n−p/22j1(p−ν)/2.

Here again, we can choose the constant K sufficiently large, in order to achieve a sufficiently large
ν such that T21 becomes negligible compared to the other terms.

5.5.3 Term T24

This term corresponds to the leading one, meaning it is the one which determines the convergence
rate. As

11
B̂C

j ∩B+

j

C ≤ 11|βj,k|≤2λj
,

there exists C > 0 such that

T24 ≤ C

j1∑

j=j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≤2λj}. (5.3)

We now must distinguish on the values of ǫ.

• If ǫ > 0, we introduce j0+ as the largest integer such that

2j0+ ≤
(

n

log2γ n

) 1
1+2s

. (5.4)

The hypothesis s ≤ N/2 implies j0+ ≥ j0. We decompose the inequality (5.3) as follows

T24 ≤
j0+∑

j=j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≤2λj}

︸ ︷︷ ︸

T241+

+

j1∑

j=j0+

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≤2λj}

︸ ︷︷ ︸

T242+

.

We study separately the behaviours of T241+ and T242+.
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Term T241+. This term satisfy the following inequality T241+ ≤ ∑j0+
j=j0

2j(p/2−1)2j(2λj)
p.

With λj given by (3.6), we have T241+ ≤ n−p/22j0+p/2(j0+)γp. The choice of j0+ in (5.4)
gives T241+ ≤ C(log2γ n/n)αp, with C positive constant.

Term T242+. As π − p < 0, we have the inequality

11|βj,k|≤2λj
≤
∣
∣
∣
∣

βj,k

2λj

∣
∣
∣
∣

(π−p)

. (5.5)

We thus can easily bound T242+ by

j1∑

j=j0+

2j(p/2−1)λp−π
j

2j−1∑

k=0

|βj,k|π. (5.6)

Replacing λj by its value,

T242+ ≤ C

(

j2γ
1

n

)(p−π)/2 j1∑

j=j0+

2j(p/2−1)
2j−1∑

k=0

|βj,k|π. (5.7)

Using the control of
∑

k |βj,k|π2jπ(s+1/2−1/π) given by the inclusion Bs
π,r ⊂ Bs

π∞

T242+ ≤ C

j1∑

j=j0+

2jp/2λp−π
j 2−j(s+1/2)π‖f‖π

s,π,∞ ≤ C

(

j2γ
1

n

)(p−π)/2 j1∑

j=j0

2−jǫ. (5.8)

Let us define v+
n := n−(p−π)/2

∑j1
j=j0+

2−jǫ.

As ǫ > 0, v+
n is bounded by n−(p−π)/22−j0+ǫ. So, it gives with j0+ as in (5.4): v+

n =
(log n)2γǫ/(1+2s)n−ǫ/(1+2s)−(p−π)/2. The equality ǫ/(1 + 2s) + (p − π)/2 = αp if ǫ ≥ 0

implies obtain that v+
n is equal to (log−2γ(n)n)−αp(logγ(p−π)(n).

Finally, we have
T242+ ≤ C (log2γ n/n)αp,

which is the rate we are looking for.

To conclude, when ǫ > 0, we obtain

T24 ≤ C (log2γ n/n)αp.

• If ǫ < 0, we introduce j1− as the largest integer satisfying

2j1− ≤
(

n

log2γ n

) α
s′

. (5.9)

When ǫ < 0, α < s′ and so j1− ≤ j1 for a sufficient n. We decompose the inequality (5.3) as
follows

T24 ≤
j1−∑

j=j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≤2λj}

︸ ︷︷ ︸

T241−

+

j1∑

j=j1−

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≤2λj}

︸ ︷︷ ︸

T242−

.

We consider separately T241− and T242−.
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Term T241−. Following the scheme used for T242+, the inequality (5.8) becomes

T241− ≤ C

j1−∑

j=j0

2jp/2λp−π
j 2−j(s+1/2)π‖f‖π

s,π,∞ ≤ C

(

j2γ
1

n

)(p−π)/2 j1−∑

j=j0

2−jǫ. (5.10)

Let us define v−n = n−(p−π)/2
∑j1−

j=j0
2−jǫ.

As ǫ < 0, v−n is bounded by n−(p−π)/22−j1−ǫ. Thanks to the choice of j1− this
bound is equal to (log2γl n)ǫn−ǫα/s′−(p−π)/2. Like above, we can notice that if ǫ ≤ 0,
we have the equality ǫα/s′ + (p − π)/2 = αp. Then v−n = (log(n)2γ)ǫα/s′

n−αp =
(log(n)2γ)αp−(p−π)/2n−αp. Together with (5.10), we obtain

T241− ≤ C (log2γ n/n)αp.

Term T242−. If h is defined as

h =

j1∑

j=j0

2j−1∑

k=0

(
βj,k11|βjk|≤2λj

)
ψj,k,

then h is a fonction belonging to the Besov ball Bs
π,r. Then we can write T242− as

T242− = E

[∥
∥
∥h− ĥ

∥
∥
∥

p

p

]

with

ĥ =

j1−∑

j=j0

2j−1∑

k=0

(
βj,k11|βjk|≤2λj

)
ψj,k.

This remark allows us to apply the same bound as for the term T3:

T242− ≤ C (2−j1−s′

)p.

The choice of j1− in (5.9) gives the exact bound (log2γ n/n)αp.

Combining the bounds of T241− and T242−, we have:

T24 ≤ (log2γ n/n)αp,

when ǫ < 0.

• We finally consider the case ǫ = 0. First, if ǫ = 0, inequality (5.7) becomes

T24 ≤ C

(

j2γ
1

n

)(p−π)/2 j1∑

j=j0

2j(s+1/2−1/π)π
2j−1∑

k=0

|βj,k|π.

– Noting that Bs
π,r is included in Bs

π,r′ for all r′ ≥ r, we first can control the term T24 by
‖f‖π

s,π,π if π ≥ r.

– When π < r, then we can apply Hölder inequality to obtain ‖f‖s,π,r. Let for every
integer j

tj = 2j(s+1/2−1/π)π
2j−1∑

k=0

|βj,k|π.

With this notation and using Hölder inequality:

T24 ≤ C

(

j2γ
1

n

)(p−π)/2 j1∑

j=j0

tπj ≤ C

(

j2γ
1

n

)(p−π)/2




j1∑

j=j0

trj





π/r



j1∑

j=j0

tr
′

j





π/r′

,
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with 1/r + 1/r′ = 1/π. As f belongs to Bs
π,r which is included in Bs

π,∞, we have:

T24 ≤ C

(

j2γ
1

n

)(p−π)/2

‖f‖π
s,π,r

(

(j1 − j0)‖f‖r′

s,π,∞

)π/r′

≤ C

(

j2γ
1

n

)(p−π)/2

j
(1−π/r)
1 .

To conclude, for a suitable constant C > 0

T24 ≤ C

(
log−2γ n

n

)−αp
{

1 if ǫ 6= 0,

(logn)(1−π/r)+ if ǫ = 0.
(5.11)

Actually, this rate is the one given in Theorem 3.

5.5.4 Term T22

The scheme of the proof of the convergence of this term is very similar to the term T24.

• If ǫ > 0, we introduce j0+ like in (5.4) and decompose T22 as follows:

T22 =

j0+∑

j=j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≥2λj}

︸ ︷︷ ︸

T221+

+

j1∑

j=j0+

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≥2λj}

︸ ︷︷ ︸

T222+

.

Term T221+. As told in Subsection 5.2, we bound E|β̂j,k − βj,k|p by n−p/2 uniformly in j
and k. We can deduce

T221+ ≤ Cn−p/2

j0+∑

j0

2jp/2 ≤ Cn−p/22j0+p/2.

Replacing j0+ by its value, we see that this rate is smaller than (log2γ n/n)αp.

Term T222+. Using the same method as in (5.5), we note that

11{|βj,k|≥λj/2} ≤
∣
∣
∣
∣

2βj,k

λj

∣
∣
∣
∣

π

. (5.12)

Recall the inequality : E|β̂j,k − βj,k|p ≤ n−p/2. There exists C > 0 such that

T222+ ≤ C n−p/2

j1∑

j=j0

2j(p/2−1)
2j−1∑

k=0

∣
∣
∣
∣

βj,k

λj

∣
∣
∣
∣

π

.

Replacing λj by its value the rate becomes

j−γπ
0

n(p−π)/2

j1∑

j=j0+

2j(p/2−1)
2j−1∑

k=0

|βj,k|π . (5.13)

At this step, we recognize a bound of the same form than the one obtained in inequality
(5.8) for T242+. Actually, for C > 0

T222+ ≤ C j−γπ
0+



n−(p−π)/2

j1∑

j=j0+

2j(p/2−1)
2j−1∑

k=0

|βj,k|π


 .

Considering the proof for the term T242+ this leads to

T222+ ≤ C j0+
−γπ(log2γ n/n)αp,

which converges faster than (log2γ n/n)αp.
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• When ǫ < 0, we decompose as follows:

T24 ≤
j1−∑

j=j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≥2λj}

︸ ︷︷ ︸

T241−

+

j1∑

j=j1−

2j(p/2−1)
2j−1∑

k=0

|βj,k|p11{|βj,k|≥2λj}

︸ ︷︷ ︸

T242−

,

with j1− defined in (5.9). We then consider the terms separately.

Term T221−. Exactly like for T222+, we can prove the inequality

T222+ ≤ C j−γπ
0



n−(p−π)/2

j1−∑

j=j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|π


 ,

Applying the same developments than for T241− we then obtain T221− ≤ j−γπ
0 (log2γ n/n)αp

which proves that T221− converges to 0 with a better rate than the one wanted.

Term T222−. Exactly like for the term T242−, this term can be seen as the Lp-risk of an
estimator and it can be bounded like T3. We obtain the same rate than for T242−.

• If ǫ = 0, inequality (5.12) leads to an inequality of the form (5.13)

T22 ≤ j−γπ
0 n−(p−π)/2

j1∑

j0

2j(p/2−1)
2j−1∑

k=0

|βj,k|p.

When ǫ = 0, we have p/2 − 1 = s + 1/2 − 1/π. Consequently, using the Sobolev inclusion
Bs

π,r ⊂ Bs
π,∞, we have:

T22 ≤ j1j
−γπ
0 n−(p−π)/2‖f‖s,π,∞.

We can notice (p− π)/2 = αp because of the condition ǫ = 0 and thus

T22 ≤ C log(n)2γαp−(γ(π+2αp)−1)n−αp.

It is then sufficient to prove (γ(π − 2αp) − 1) ≥ 0. Replacing αp by (p − π)/2, we have
γ(π − 2αp) − 1 = γp − 1. As p/2 − 1 = s + 1/2 − 1/π > 0, we have p > 2, and γ is always
greater or equal to 1/2. Consequently, γp − 1 is always positive, which achieves the proof.
�

5.6 Proof of inequality (3.3)

We only consider the case of expanding maps and l = 5. The ϕ-dependence was introduced by
Dedecker and Prieur (2005) in [7]. It seems well-adapted to study Lasota-Yorke functions.

Definition 3 (Dedecker and Prieur (2005)). Let (Ω,A,P) be a probability space and M a
σ-algebra of A. For any random variable X ∈ R

d we define:

ϕ(M, X) = sup {‖E(g(X)|M) − E(g(X))‖∞, g ∈ BV1} ,

where, in our case, the coefficients (ϕr)r∈N are defined by

ϕr = sup
i+r≤s

{ϕ(σ({Xj/j ≥ i}), Xs)} .

The process is ϕ-dependent if ϕr tends to 0 as r tends to infinity.

Dedecker and Prieur (2005) prove in [7] that expanding maps are geometrically ϕ-weakly depen-
dent, with ϕr = O(exp(−ar)) with a > 0. In order to find our probability inequality we use the
following Bernstein’s inequality from Doukhan and Neumann (2006), [12], for weakly dependent
random variables.
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Theorem 4 (Doukhan and Neumann, 2006). Suppose that Y1, . . . , Yn are real-valued random
variables with E[Yi] = 0 and P (|Yi| ≤ M) = 1 , for all i = 1, . . . , n and some M < ∞. We
assume that there exist constants K <∞, µ ≥ 0 and a non increasing sequence of real coefficients
(ρn)n∈N0

such that, for all u-tuples (s1, . . . , su) and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤
su ≤ t1 ≤ · · · ≤ tv ≤ n the following inequality is fulfilled:

|Cov (Ys1
· · ·Ysu , Yt1 · · ·Ytv )| ≤ u K2 Mu+v−2 ρt1−su , (5.14)

and ∞∑

s=0

(s+ 1)k−2ρs ≤ (k!)µ. (5.15)

Then

P

(
n∑

i=1

Yi ≥ λ

)

≤ exp

(

− λ2/2

σ2
n + B

1/(µ+2)
n λ(2µ+3)/(µ+2)

)

,

where Bn = 2 (K ∨M)
(

24+µ n K2

σ2
n

∨ 1
)

and σ2
n = Var(

∑n
i=1 Yi).

We apply this inequality to Yi = ψj,k(Xi) − Eψj,k(Xi) for all i ∈ Z, with j ≤ j1 and K ∈ Z. It
is easy to check (see for instance Barbour et al. (2000), [3]) that (Y0, Y1, . . . , Yn) has the same
distribution as (Zn, Zn−1, . . . , Z0) where (Zt)t≥0 is a stationary Markov Chain. Then, following
Dedecker and Prieur (2005), [7], we can rewrite the covariance term in order to use the definition
of the ϕ-dependence:

|Cov (Ys1
· · ·Ysu , Yt1 · · ·Ytv )| ≤ E|(E(Ys1

· · ·Ysu) − E(Ys1
· · ·Ysu |Yt1 · · ·Ytv ))Yt1 · · ·Ytv |,

≤ ‖E(Ys1
· · ·Ysu) − E(Ys1

· · ·Ysu |Yt1)‖∞E|Yt1 · · ·Ytv |,

Using once more the Markov property of (Y0, Y1, . . . , Yn) under reverse time, we have:

‖E(Ys1
· · ·Ysu) − E(Ys1

· · ·Ysu |Yt1)‖∞
= ‖E(E(Ys1

· · ·Ysu |Ysu) − E(E(Ys1
· · ·Ysu |Ysu)|Yt1)‖∞,

= ‖E(g(Xsu)) − E(g(Xsu)|Xt1)‖∞,

with the following functions gk:

gk : x 7→ E((ψj,k(Xs1
) − E(ψj,k(X0))) · · · (ψj,k(Xsu) − E(ψj,k(X0)))|Xsu = x).

In order to apply the definition of ϕ-dependence, it remains to compute ‖gk‖BV . Reminding
that ψj,k(x) = 2j/2ψ(2jx − k) is null outside [2−jk; 2−j(k + 1)] for all 0 ≤ k ≤ 2j − 1, then the

same is true for gk. Thus h =
∑2j−1

k=0 gk is a function defined on [0, 1]. Applying the result in
higher dimension of Collet et al. (2002), [4], h has bounded variation. More precisely there exists
K > 0 and 0 ≤ σ ≤ 1 such that ‖h‖BV ≤ K

∑u
i=0 σ

iLi+1. The coefficients L1, . . . , Lu satisfy for
(x1, . . . , xu, y1, . . . , yu) ∈ [0, 1]2u:

|h(x1, . . . , xu) − h(y1, . . . , yu)| ≤ L1|x1 − y1| + · · · + Lu|xu − yu|.

A simple computation leads to:

‖h‖BV ≤ KLip (gk) ≤ Ku2ju/2+1‖ψ‖u−1
∞ Lipψ.

Recalling that the functions gk for k = 1, . . . , 2j−1 have distinct domains, ‖h‖BV =
∑2j−1

k=0 ‖gk‖BV .
Note that all gk are functions of dynamical systems with same characteristics; their bounds on
variation norms are equal to ‖gk‖BV ≤ u2ju/2‖ψ‖u−1

∞ Lipψ. We thence obtain a bound on the
covariance

E |ψj,k(Yt1), . . . , ψj,k(Ytv )| ‖gk‖BV ϕt1−su ≤ u2
j
2
u+v−1‖ψ‖u+v−2

∞ Lipψ E |ψj,k(X0)| ϕt1−su .
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It remains to control the order of E |ψj,k(X0)| = 2j/2
∫
|ψ(2jx − k)|f(x)dx. Classically, posing

u = 2jx − k, using the fact that f is uniformly bounded and that ψ is integrable, we obtain
E |ψj,k(X0)| ≤ C2−j/2 with C depending on

∫
|ψ| and ‖f‖∞. We apply Theorem 4 with M =

2j/2‖ψ‖∞, K2 as a well chosen constant depending on Lip (ψ), ‖ψ‖∞,
∫
|ψ| and ‖f‖∞ and ρ = ϕ.

We now study (5.15) in order to determine µ. Previous results on expanding maps imply that
φr ≤ exp(−ar) with a > 0. Quote that

n−1∑

r=0

(r + 1)q−2 exp(−ar) ≤
∫ ∞

0

rq−2 exp(−ar)dr.

Then, the change of variable u = ar gives

n−1∑

r=0

(r + 1)q−2 exp(−ar) ≤ 1

aq−1

∫ ∞

0

uq−2 exp(−u)du =
1

aq−1
Γ (q − 1) ≤ C

aq−1
(q − 1)!

The last inequality follows from Stirling’s formula which entails that for any constant A > 0,
and any ǫ > 0 there exists Bǫ > 0 such that Ak ≤ Bǫk!

ǫ. Thus, under this rate of dependence,
assumptions of Theorem 4 hold with µ = 1. It is easy to check that the order of Bn is smaller than
2j/2 ∝ ‖ψj,k‖∞ and Theorem 4 can be applied. �
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