Article Dans Une Revue ESAIM: Probability and Statistics Année : 2010

Adaptive density estimation under dependence

Résumé

Assume that $(X_t)_{t\in\Z}$ is a real valued time series admitting a common marginal density $f$ with respect to Lebesgue's measure. Donoho {\it et al.}~(1996) propose a near-minimax method based on thresholding wavelets to estimate $f$ on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are detailed for different examples. The threshold levels in estimators $\widehat f_n$ depend on weak dependence properties of the sequence $(X_t)_{t\in\Z}$ through the constant. If these properties are unknown, we propose cross-validation procedures to get new estimators. These procedures are illustrated via simulations of dynamical systems and non causal infinite moving averages. We also discuss the efficiency of our estimators with respect to the decrease of covariances bounds.
Fichier principal
Vignette du fichier
GannazWintenberger08.pdf (894.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00012077 , version 1 (14-10-2005)
hal-00012077 , version 2 (18-12-2006)
hal-00012077 , version 3 (15-10-2008)

Identifiants

Citer

Irène Gannaz, Olivier Wintenberger. Adaptive density estimation under dependence. ESAIM: Probability and Statistics, 2010, 14, pp.151-172. ⟨10.1051/ps:2008025⟩. ⟨hal-00012077v3⟩
332 Consultations
188 Téléchargements

Altmetric

Partager

More