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Bât. Léonard de Vinci, 21 av. Jean Capelle

69621 Villeurbanne cedex, France
sebastien.martin@insa-lyon.fr

Julien Vovelle

ENS Cachan Antenne de Bretagne / IRMAR, CNRS UMR 6625
Avenue Robert Schuman, Campus de Ker Lann,

F-35170 Bruz, France julien.vovelle@bretagne.ens-cachan.fr

Received (Day Mth. Year)
Revised (Day Mth. Year)

Communicated by [editor]

Abstract. We study the large-time behaviour of the entropy solution of a scalar con-
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1. Introduction

1.1. Statement of the problem

We study the large-time behaviour of the solution of the one-dimensional non-

autonomous conservation law with boundary conditions




ut(x, t) + (A(x, u))x(x, t) = 0, (x, t) ∈ (0, 1) × (0,+∞),

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = ū0(t), t > 0,

u(1, t) = ū1(t), t > 0.

(1.1)

This study was initially motivated by the analysis of a problem which arises

in lubrication theory. The behaviour of a thin film flow of two non-miscible fluids

between two surfaces in relative motion has been derived by Paoli [Pao03], and
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further developped by Bayada, Martin and Vázquez [BMV05]. In these papers, it

is stated that the saturation of the reference fluid satisfies a scalar conservation law

as the one described in Problem (1.1) (the so-called generalized Buckley-Leverett

equation). As it was already pointed out in [BMV05], this model is of great interest

in lubrication theory, especially for the understanding of cavitation phenomena in

devices such as journal bearings of infinite width. Cavitation, which is defined as

the rupture of the continuous liquid lubricant film due to the formation of gaseous

bubbles (see [Do63,EA75] for precise physical explanations) may be approached

using the generalized Buckley-Leverett model, by considering the bifluid as a liquid-

gas mixture. Finally, for practical convenience, it is also relevant to focus on steady-

state regimes which are particularly studied in the field of tribology.

References on the large-time behaviour of the entropy solution of scalar con-

servation laws with boundary conditions are quite few, to our knowledge. See the

work of Mascia and Terracina [MT99] and references therein in case the equation

has a source term. On the contrary, numerous works are devoted to the study of

the large-time behaviour of the entropy solution of a scalar conservation law posed

on the whole space (Cauchy problem). See in particular the results of decay of the

entropy solution to N-waves, as studied in [Lax57,IO60,DiP75,LP84,Daf85,Kim03].

Consider also the studies on the stability of profiles for scalar conservation laws on

the line, in particular in [KM85,MN94,LN97,FS01,Ser04]. We emphasize in partic-

ular the works of Serre and co-workers, who developped a general strategy for the

study of the stability of profiles of scalar conservation laws which inspired us for

the present analysis.

To the specific framework of lubrication theory is associated precise hypotheses

on the flux A and on the data. Among these hypotheses, we have selected the

following ones:

Assumption 1 (Data). The boundary and initial data satisfy the following:

(i) Initial conditions:

u0 ∈ L∞(0, 1) 0 ≤ u0 ≤ 1 a.e. , (1.2)

(ii) Boundary conditions:

ū0 = ū1 = ū ∈ [0, 1]. (1.3)

Remark 1.1. The unknown u, as a saturation, takes value in [0, 1], and so do the

data. Furthermore ū0 and ū1 are constant functions: this allows to deal with realistic

boundary conditions in infinite journal bearings as it will be discussed further.

Assumption 2 (Flux function). The flux function A ∈ C1([0, 1]2) satisfies the
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following properties:

∀x ∈ [0, 1], A(x, ·) = A(1 − x, ·), A(x, 0) = 0, A(x, 1) = Q ≥ 0, (1.4)

∀x ∈ [0, 1], ∃α(x) ∈ (0, 1],

{
Au(x, ·) > 0 on [0, α(x)),

Au(x, ·) < 0 on (α(x), 1],
(1.5)

∀u ∈ [0, 1], x 7→ A(x, u) is non-increasing on [0, 1/2]. (1.6)

Remark 1.2 (Lubrication theory). In lubrication, a plain cylindrical journal

bearing is made of an inner rotating cylinder and an outer cylinder. The two cylin-

ders are closely spaced and the annular gap between the two cylinders is filled with

some lubricant. The radial clearance is very small, typically ∆r/r = 10−3 for oil lu-

bricated bearings so that the smallness of this ratio allows for a Cartesian coordinate

to be located on the bearing surface. When cavitation occurs, the two-phase flow is

described by Problem (1.1), with a flux A(x, u) = Q f(u) + v0 H(x) u(1 − f(u)),

where u denotes the (unknown) saturation of the liquid phase, f is a S-shaped

function (with f(0) = 0, f(1) = 1), H is the normalized converging-diverging gap

between the two close surfaces in relative motion, v0 is the shear velocity of the

lower surface (the upper one being fixed) and Q is the flow input. Hypothesis (1.3)

(see Assumption 1) is natural in infinite journal bearings: indeed, the annular gap

is filled with some lubricant at the supply groove which is located at the maximum

gap [BMV05], the saturation of the liquid phase being imposed in this located area

(corresponding to each extremity in the Cartesian coordinates). Let us emphasize

that the non-autonomous property of the flux function comes from the shear ef-

fects and/or the converging-diverging profile of the normalized gap. This affects the

mathematical analysis of the large-time behaviour of the solution (mainly because

balance effects appear, owing to the dependence on x of the flux and the possibility

of more stationary profiles than in the case of an autonomous flux). However the

non-zero shear velocity of the lower surface and the specific profile of the gap are

characteristic features of realistic lubrication regimes.

Remark 1.3 (Model case). A model case of flux function is given by

A(x, u) = Qu+H(x)u(1 − u)

where, according to the strength of H(x)/Q, α(x) = 1 (A(x, ·) increasing on [0, 1])

or α(x) ∈ (0, 1) (A(x, ·) has one strict maximum at α(x)).

Remark 1.4. Hypothesis (1.3) can be relaxed ((1.2) still being satisfied). Notice

also that, under Hypotheses (1.2) and (1.4)–(1.6), Problem (1.1) models two-phase

flows in porous media under a gravity field (see, e.g., [Kaa99,EGV03]) or two-phase

flow in a pipe [EGV03].

To achieve the discussion on Hypotheses (1.2)–(1.6), let us emphasize the ne-

cessity to restrict the possible shapes of the data and of the flux. Indeed, consider

the case where A = 0. The solution of (1.1) is then u(x, t) = u0(x), whose behav-

iour in large-time cannot be expected. Similarly, in the case where A(x, u) = u, the
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solution of (1.1) is, for t > 1, u(x, t) = ū0(t− x) and u(·, t) converges to a function

of L∞(0, 1; [0, 1]) in the L1-norm at t→ +∞ only if the means of ū0 converge to a

constant.

1.2. Structure of the paper and main results

The paper is organized as follows: in Section 2, we recall the notion of entropy

solution (also sub- and super-solution) for Problem (1.1) and its properties. In Sec-

tion 3, we analyse the stationary solutions of Problem (1.1) to give their description

in Theorem 3.8. In Section 4, we study the large-time behaviour of the entropy solu-

tion of (1.1). Our main result, Theorem 4.4, states that the entropy solution to (1.1)

converges to a stationary solution in L1. In Section 5, we present some numerical

tests which illustrate the theoretical results.

2. Entropy Solutions

2.1. Definitions

Definition 2.1. Assume that (1.2)–(1.4) hold. A function u ∈ L∞((0, 1)×(0,+∞))

is said to be an entropy sub-solution (respectively super-solution) of Problem (1.1)

if for all κ ∈ [0, 1], for all ϕ ∈ C∞
c ([0, 1] × [0,+∞)), ϕ ≥ 0,

∫ 1

0

∫ ∞

0

(u− κ)± ϕt + Φ±(x, u, κ)ϕx − sgn±(u− κ)Ax(x, κ)ϕdxdt

+

∫ 1

0

(u0 − κ)± ϕ(0, x) dx (2.1)

+L

∫ ∞

0

((ū0 − κ)±ϕ(t, 0) + (ū1 − κ)±ϕ(t, 1)) dt ≥ 0.

The functions u 7→ (u−κ)± are the so-called “semi Kružkov entropies” (see [Car99,

Ser96,Vov02]), defined by

(u − κ)+ =

{
u− κ, if u ≥ κ,

0, otherwise.
and (u− κ)− = (κ− u)+.

The functions Φ±(x, u, κ) are the corresponding “semi Kružkov fluxes” defined by

Φ±(x, u, κ) = sgn±(u − κ)(A(x, u) −A(x, κ)),

and L is a Lipschitz constant of A(0, ·).

Definition 2.2. Assume that (1.2)–(1.4) hold. A function u ∈ L∞((0, 1)×(0,+∞))

is said to be an entropy solution of Problem (1.1) if it is a sub-solution and a super-

solution of Problem (1.1).
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2.2. Properties of the entropy solution

Theorem 2.3 (Existence, L
∞ bound). Assume that (1.2)–(1.4) hold. The prob-

lem (1.1) admits at least one entropy solution u ∈ L∞((0, 1)× (0,+∞)). Moreover,

any entropy solution satisfies: 0 ≤ u ≤ 1 a.e.

Proof. Existence of entropy solutions of Problem (1.1) is given by the convergence

of approximations (parabolic or numeric ones), see the following references [BLN79,

Ott93,Ott96,MNRR96,Vov02,Mar05]. The bounds are directly deduced from the

weak entropy formulation, using appropriate choices of entropy/flux pairs and values

of κ.

Theorem 2.4 (Uniqueness). [BLN79,Ott93,Mar05] Assume that (1.2) and (1.4)

hold. Let u, v ∈ L∞((0, 1) × (0,+∞)) be, respectively, entropy sub- and super-

solutions of Problem (1.1) associated to respective data u0, ū0, ū1 and v0, v̄0, v̄1.

Then, for all ϕ ∈ C∞
c ([0, 1] × [0,+∞)), ϕ ≥ 0, u and v satisfy the comparison

inequality

∫ 1

0

∫ ∞

0

(u − v)+ϕt + Φ+(x, u, v)ϕx dx dt+

∫ 1

0

(u0 − v0)
+ ϕ(0, x) dx

L

∫ ∞

0

((ū0 − v̄0)
+ ϕ(t, 0) + (ū1 − v̄1)

+ ϕ(t, 1)) dt ≥ 0. (2.2)

In particular, entropy solutions of Problem (1.1) are uniquely determined by the

initial and boundary data.

Remark 2.5 (Localisation of the comparison). If u, v ∈ L∞ are entropy so-

lutions in the interior of (0, 1) × (0,+∞)), in the sense that (2.1) holds for non-

negative test-functions ϕ ∈ C∞
c (ω× (t1, t2)) where ω is an open subset of (0, 1) and

0 < t1 < t2, then (2.2) remains true on ω× (t1, t2), i.e. (2.2) holds for non-negative

ϕ ∈ C∞
c (ω × (t1, t2)).

We have also the following properties:

Lemma 2.6 (Continuity w.r.t. time). Assume that (1.2)–(1.4) hold. The en-

tropy solution u ∈ L∞((0, 1)×(0,+∞)) of Problem (1.1) is continuous from [0,+∞)

in L1:

u ∈ C([0,+∞);L1(0, 1)) and lim
t→0

u(t) = u0 in L1(0, 1).

Remark-Definition 1. In particular, and by Lemma 2.3, Problem (1.1) defines a

semi-group S(t) : (u0, ū) 7→ u(t) from L∞(0, 1; [0, 1]) × [0, 1] into L∞(0, 1; [0, 1]),

which associates to (u0, ū) the value at time t of the entropy solution of Problem

(1.1) with initial datum u0 and boundary data ū0 = ū1 = ū. We have

lim
t→0

S(t)(u0, ū) = u0 in L1(0, 1).
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A classical consequence of (2.2) is the fact that, for ū ∈ [0, 1], S(t)(·, ū) is non-

expansive on L1: for every u0, v0 ∈ L∞(0, 1; [0, 1]), one has

∀t > 0, ‖S(t)(u0, ū) − S(t)(v0, ū)‖L1(0,1) ≤ ‖u0 − v0‖L1(0,1). (2.3)

In particular, S(t)(·, ū) is continuous on L∞(0, 1; [0, 1]) endowed with the topology

of the L1-norm.

There are several ways to prove Lemma 2.6. Either by proving the convergence

of an approximation in C([0, T ];L1(0, 1)), T arbitrary positive time (this uses the

uniqueness of the entropy solution): we refer to [Mar05] for such a result; or by a

direct proof on the basis of the entropy formulation. The critical step is then to

prove the continuity at t = 0 and to recover the initial condition, see [CR00,Vas01]

for analysis of the problem of the initial layer in scalar conservation laws.

To complete Remark-Definition 1, we give the following proposition:

Proposition 2.7. Assume that (1.4) holds ((1.2) and (1.3) may be relaxed, the data

being L∞ functions). Let v ∈ L∞(0, 1; [0, 1])
⋂
C([0,+∞);L1(0, 1)) (respectively w ∈

L∞(0, 1; [0, 1])
⋂
C([0,+∞);L1(0, 1))) be an entropy sub- (resp. super-)solution of

(1.1) with data (v0, v̄) (resp. (w0, w̄)) and let

(u0, ū) ∈ L∞(0, 1; [0, 1])× [v̄, w̄].

Let S(t) be the semi-group defined in Remark-Definition 1. Then

t 7→ ‖(v(t) − S(t)(u0, ū))
+‖L1(0,1) and t 7→ ‖(S(t)(u0, ū) − w(t))+‖L1(0,1)

are non-increasing. In particular, if v0 ≤ u0 (resp. u0 ≤ w0), then v(t) ≤ S(t)(u0, ū)

(resp. S(t)(u0, ū) ≤ w(t)) a.e. on (0, 1).

Proof. Proposition 2.7 is a direct consequence of Theorem 2.4: choose a test func-

tion ϕ independent of x to get, in the weak sense

ρ′(t) ≤ 0, ρ(t) =

∫ 1

0

(v(t) − S(t)(u0, ū))
+ dx ≤ 0.

Besides, ρ is a continuous function, it is therefore non-increasing.

Lemma 2.8 (BV bound). [BLN79] Assume that (1.4) holds. Then there exists

a non-negative function CBV from R+ to R+ such that, for ū ∈ [0, 1],

||S(t)(u0, ū)||BV (0,1) ≤ CBV (||u0||BV (0,1)) (2.4)

for all u0 ∈ BV (0, 1) ∩ L∞(0, 1; [0, 1]).

In the context of Lemma 2.8, u(t) := S(t)(u0, ū) ∈ BV (0, 1) for every t. In

particular the traces u(0, t) and u(1, t) make sense and the boundary conditions are

given by the so-called BLN inequalities [BLN79].
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Lemma 2.9 (Boundary conditions). Assume that (1.2)–(1.4) hold. Suppose

u0 ∈ BV (0, 1) ∩ L∞(0, 1; [0, 1]) and ū ∈ [0, 1]. Then, a function

u ∈ C
(
[0,+∞);L1(0, 1)

)
∩ L∞ (0,+∞, BV (0, 1))

is the entropy solution of (1.1) (i.e. u(t) = S(t)(u0, ū)) iff it satisfies the entropy

inequalities inside (0, 1): for all κ ∈ [0, 1], for all ϕ ∈ C∞
c ((0, 1) × [0,+∞)), ϕ ≥ 0,

∫ 1

0

∫ ∞

0

(u− κ)±ϕt + Φ±(x, u, κ)ϕx − sgn±(u − κ)Ax(x, κ)ϕdxdt

+

∫ 1

0

(u0 − κ)± ϕ(0, x) dx ≥ 0. (2.5)

and if, furthermore, it satisfies the BLN boundary conditions ([a, b] denotes the

interval of extremities a and b):
{
∀t > 0, ∀κ ∈ [u(0, t), ū0], sgn(u(0, t) − ū)(A(0, u(0, t)) −A(0, κ)) ≤ 0,

∀t > 0, ∀κ ∈ [u(1, t), ū1], sgn(u(1, t) − ū)(A(1, u(1, t)) −A(1, κ)) ≥ 0.

Let us pause here to analyse the above BLN condition. Denote temporarily

F (u) = A(0, u). In case F is monotonous on [0, 1], the BLN condition at x = 0

translates the intuitive fact that for transport equations (e.g. with constant speed),

the boundary condition is active (resp. inactive) on the part of the boundary that

is enlightened (resp. in the dark), otherwise speaking: u(0, t) = ū0 if F is increasing

while the whole range of values [0, 1] is admissible for u(0, t) if F is non-increasing.

In the general case of regular function F , classical studies of boundary layers

show that the admissibility of u(0, t) with respect to the BLN condition at x = 0 is

equivalent to the solvability of the o.d.e.




ẇ = F (w) − F (u(0, t)),

w(y0) = ū0,

w(+∞) = u(0, t)

with y0 = −∞ if F (ū0) = F (u(0, t)) (complete orbit), y0 = 0 otherwise (positive

orbit). On the basis of this result, or by direct inspection of the BLN condition, one

can see that this means:

(1) either ū0 is in a non-increasing part, say [u−, u+], of the graph of F , and, as

in the case where F is monotonous, admissible values of u(0, t) consists of the

interval [u−, u+],

(2) either ū0 is in an increasing part of the graph of F (F ′(ū0) > 0), in which case

u(0, t) is admissible iff the segment joining (ū0, F (ū0)) to (u(0, t), F (u(0, t)))

has non-positive slope and does not intersect the graph of F except at its

extremities.

Since A(0, ·) = A(1, ·) is an increasing function on (0, α(0)) and a decreasing

function on (α(0), 1), i.e. A(0, ·) has the shape of a dome, we can associate to each

z ∈ [0, 1] its A-conjugate zA defined by symmetry with respect to the height of
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the dome: α(0)A = α(0), A(0, zA) = A(0, z), zA 6= z if A(0, z) ≥ Q and z 6= α(0),

zA = 1 if 0 ≤ z ≤ θ(0). Then, at x = 0, the BLN condition is equivalent to
{

either 0 ≤ ū ≤ α(0) and (u(0, t) = ū or ūA ≤ u(0, t) ≤ 1,

or α(0) ≤ ū ≤ 1 and α(0) ≤ u(0, t) ≤ 1,
(2.6)

and, at x = 1,the BLN condition is equivalent to
{

either 0 ≤ ū ≤ α(0) and 0 ≤ u(1, t) ≤ α(0),

or α(0) ≤ ū ≤ 1 and u(1, t) = ū or 0 ≤ u(1, t) ≤ ūA.
(2.7)

3. Stationary solutions

3.1. Constant flux

Recall that S(t) is defined in Remark-Definition 1.

Definition 3.1. Assume that (1.2) and (1.4) hold. A function w ∈ L∞(0, 1; [0, 1])

is said to be a stationary solution of Problem (1.1) if there exists a boundary datum

ū ∈ [0, 1] such that w = S(t)(w, ū) for all t > 0.

We begin the analysis of stationary solutions of (1.1) by the inversion of the

equation A(x,w) = c ∈ R.

Proposition 3.2. Let w ∈ L∞(0, 1; [0, 1]) be a stationary entropy solution of Prob-

lem (1.1). Then A(x,w) is constant a.e.

Proof. An entropy solution is a weak solution: (A(x,w))x = 0 in D′((0, 1) ×

(0,+∞)). Since w = w(x), this remains true in D′(0, 1). This last fact implies

A(x,w) = c ∈ R by the following Lemma 3.3 (classical in the theory of distribu-

tions).

Lemma 3.3. Let T ∈ D′(0, 1) be such that T ′ = 0. Then T = c ∈ R (i.e. T is a

function of L1(0, 1) which is constant a.e.).

We will also use the following lemma of the theory of distribution:

Lemma 3.4. Let T ∈ D′(0, 1) be such that T ′ ≥ 0. Then T ∈ L1
loc(0, 1) and T is a

monotone non-decreasing function. If, besides, T is a function with values in {0, 1},

then there exists x0 ∈ [0, 1] such that T (x) = sgn+(x − x0).

Proof. The non-negative distribution T ′ is of order 0: for every compact subsetK of

(0, 1), there exists a constant CK such that for every ϕ ∈ D(0, 1) with supp(ϕ) ⊂ K,

|T ′(ϕ)| ≤ CK ||ϕ||L∞ (choose a non-negative ψ ∈ D(0, 1) such that ψ = 1 on K and

write that T ′(ϕ ± ||ϕ||L∞ψ) is non-negative (respectively non-positive) to get the

result with CK = T ′(ψ)). By the Riesz representation theorem T ′ is represented by

a Radon measure µ on (0, 1). Let x0 ∈ (0, 1). By the green formula for BV functions,

T and the BV function T̃ : x 7→ µ((x0, 0, x)) have the same derivative in D′(0, 1). By
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Lemma 3.3, we conclude that T = T̃ + cte. Since BV (0, 1) ⊂ L∞(0, 1) ⊂ L1
loc(0, 1),

T is a function, which is non-decreasing. If, furthermore, T takes values in {0, 1},

then, by monotony of T , T−1(0) and T−1(1) are connected, hence are subintervals

of [0, 1] and T (x) = sgn+(x− x0) with x0 := supT−1(0) = inf T−1(1).

Now we examine the inversion of the identity A(x,w) = c ∈ R. Denote by

q the value of A(x,w). Under Hypotheses (1.4)–(1.5), the equation A(x,w) = q

may have zero, one or two branches of solutions according to the value of q (by

branch of solution, we mean a continuous function w from [0, 1] into itself such that

A(x,w(x)) = q for all x). Actually, we are looking at the intersection between the

surface S := {A(x,w) = z} of [0, 1]2 × R+ and the horizontal plane z = q and two

possible shapes of the surface S are possible according to the value of the parameter

qlim := min{A(x, α(x)), x ∈ [0, 1]} = A(1/2, α(1/2)).

If qlim > Q (see Fig. 1 and 3), then the surface S is saddle-shaped with a saddle

point at (x = 1/2, w = α(1/2), z = qlim); if qlim = Q (see Fig. 2 and 4), then the

surface S is slide-shaped (it ressembles to the top of a small children slide, or part

of a monkey-saddle).

Definition 3.5. If qlim > Q, we say that we are in the saddle case; if qlim = Q, we

say that we are in the slide case.

The intersection of S and {z = q} is described in the following lemma.

Lemma 3.6. Assume that (1.4)–(1.6) hold. We focus on the solutions of

A(x,w(x)) = q ∈ R, x ∈ [0, 1], w : [0, 1] → [0, 1] continuous (3.1)

i.e. on the intersection I between the surface S := {A(x,w) = z} and the horizontal

plane z = q in [0, 1]2 × R. There are bifurcations at q = 0, Q, qlim:

if q < 0 the intersection is empty; if 0 ≤ q < Q the intersection I defines one

continuous curve w = λ(x); then:

• if Q < qlim (saddle case): for Q ≤ q ≤ qlim, the intersection I defines two curves

w = λ(x) and w = µ(x) (with, by convention, λ ≤ µ); for qlim < q ≤ A(0, α(0)),

the intersection I consists of two cusps and for q > A(0, α(0)) the intersection

is empty;

• if Q = qlim (slide case), then, for Q = q = qlim, the intersection is parametrized

by two curves w = λ(x) and w = µ(x) which coincide on an interval centered

on x = 1/2. Actually, µ is the constant function 1. If q > qlim, there are no

solutions to (3.1).

Notice that, in the saddle case, the curves λ and µ are distinct if Q ≤ q < qlim
and intersect each other when q = qlim. Therefore, whatever the case is (saddle or

slide), the intersection I consists of two intersecting branches exactly when q = qlim
(which will be the value of the flux for which the large-time behaviour of the entropy

solution is the more complex one).
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Notice also that, in the saddle case, when qlim < q ≤ A(0, α(0)), the two cusps

of I can be parametrized with the help of two functions λ(x) ≤ µ(x) defined on

[0, 1] \ (xq , 1 − xq) for a given xq ∈ (0, 1/2): this will be used later.

To continue the analysis of the stationary solutions to (1.1), notice that, in

case the equation A(x,w(x)) = q has more than one elementary solution, any

function constructed by introducing jumps between two elementary solutions is also

a solution, in L∞((0, 1); [0, 1]), of the equation A(x,w(x)) = q. To specify the set of

stationary solutions, we use the entropy condition and the boundary conditions.

3.2. Entropy and boundary conditions

Lemma 3.6 shows that, for 0 ≤ q ≤ qlim, the equation A(x,w(x)) = q has one or

two branches of solutions. We call them λ and µ, λ ≤ µ, with the convention λ = µ

if there is actually only one branch.

Lemma 3.7. Assume that (1.4)–(1.6) hold. Let q ∈ [0, qlim]. Let λ and µ be the

branches of solutions to (3.1). Let us introduce an increasing jump between λ and

µ by defining

wz := λ1[0,z) + µ1(z,1]

for 0 ≤ z ≤ 1, and (in the case λ and µ intersects each other) let us introduce a

second increasing jump by defining

wz,z′ := wz1[0,1/2] + wz′1[1/2,1]

for 0 ≤ z ≤ 1/2 ≤ z′ ≤ 1.

Then any stationary solution w to Problem (1.1) such that A(x,w(x)) = q a.e. is

one of the wz, z ∈ [0, 1] or one of the wz,z′ , 0 ≤ z ≤ 1/2 ≤ z′ ≤ 1, the last possibility

being restricted to the case where λ and µ intersects each other (i.e. 0 ≤ q ≤ qlim).

Proof. In the case where λ = µ, the statement and its proof are obvious. We

suppose therefore that λ and µ are distinct functions.

• Let us first suppose that Q ≤ q < qlim. Let w ∈ L∞(0, 1; [0, 1]) be a stationary

entropy solution of (1.1) with flux q. Choose q̃ ∈ (q, qlim). We denote by λ̃, µ̃

the corresponding stationary solutions constructed as above. On the one hand,

by comparison (see Remark 2.5 – we consider the case ω = (0, 1) here), we have

∫ 1

0

Φ+(x, λ̃, w)ϕx dx ≥ 0

for all non-negative ϕ ∈ C∞
c (0, 1). It follows that ∂xΦ+(x, λ̃, w) ≤ 0 in D′(0, 1).

On the other hand, we have

Φ+(x, λ̃, w) = sgn+(λ̃− w)(A(x, λ̃) −A(x,w)) = sgn+(λ̃− w)(q̃ − q)
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and, therefore, ∂xsgn+(λ̃−w) ≤ 0 in D′(0, 1). Now, by Lemma 3.4, there exists

some x0 ∈ [0, 1] such that

sgn+(λ̃− w)(x) = 1 − sgn+(x− x0), x ∈ (0, 1).

For every x ∈ [0, 1], u 7→ sgn+(λ̃(x) − u)A(x, u) is an homeomorphism from

[0, λ̃(x)) onto [0, q̃); therefore the identity

sgn+(λ̃(x) − w(x))A(x,w(x)) = q, x ∈ (0, x0)

implies that w = λ on (0, x0). Similarly, we would prove that there exists some

x1 ∈ [0, 1] such that w = µ on (x1, 1). Finally, since λ < µ, we have x0 ≤ x1.

If x0 < x1, then λ̃ ≤ w ≤ µ̃ on (x0, x1), which contradicts A(x,w(x)) = q a.e.

Therefore x0 = x1 = z ∈ [0, 1] and w = wz .

• Let us suppose that q = qlim. The proof of the result is similar, except that the

solutions λ̃ and µ̃ are not defined everywhere on (0, 1): let w ∈ L∞(0, 1; [0, 1])

be a stationary entropy solution of (1.1) with flux q. Suppose that z∗ is the

smallest element of [0, 1/2] such that λ = µ on [z∗, 1 − z∗]. Since λ and µ are

distinct, we have 0 < z∗ ≤ 1/2. By minimality of z∗, we have, for any ε > 0,

λ(z∗ − ε) < µ(z∗ − ε). In particular,

A(z∗ − ε, α(z∗ − ε)) > qlim.

Now, let us choose q̃ such that

qlim < q̃ < A(z∗ − ε, α(z∗ − ε)).

Then λ̃ exists on [0, z∗ − ε] and, as in the proof of the case Q ≤ q < qlim (using

Remark 2.5 with ω = (0, z∗−ε)), we can show that sgn+(λ̃−w) is non-increasing

on (0, z∗ − ε). Now, for every x ∈ [0, z∗ − ε], u 7→ sgn+(λ̃(x) − u)A(x, u) is an

homeomorphism from [0, λ̃(x)) onto [0, q̃) so that there exists xε ∈ [0, z∗] such

that w = λ on (0, xε). Letting ε tend to 0, we infer that there exists x0 ∈ [0, z∗]

such that w = λ on (0, x0). Similarly, we show that there exists x1 ∈ [0, z∗] such

that w = µ on (x1, z∗). If x0 < x1, we have x0 < x1 − ε for some ε > 0. Then

choosing again some q̃ ∈ (qlim, A(z∗ − ε, α(z∗ − ε)), we see that, necessarily,

λ̃ ≤ w ≤ µ̃ on (x0, x1), which contradicts A(x,w(x)) = q a.e. As a conclusion,

there exists z ∈ [0, z∗] such that w = wz on [0, 1/2]. Similarly, we can show

that there exists z′ ∈ [1 − z∗, 1] such that w = wz′ on [1/2, 1]. This shows that

w = wz,z′ and concludes the proof of the lemma.

Every function wz or wz,z′ is an entropy solution inside (0, 1) and admits traces

at x = 0 and x = 1. It is then straightforward to use the BLN condition (2.6)-(2.7)

to characterize the stationary solutions to (1.1). To depict the stationary solutions

with repect to a graph ((x, u(x)), or (x, u, z)) we say that a piecewise continuous

function u : [0, 1] → R starts (resp. ends) at λ if u(0+) = λ(0) (resp. u(1−) = λ(0)),

similarly with respect to µ.
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Theorem 3.8. Assume that (1.2)–(1.6) hold. Let u ∈ L∞((0, 1); [0, 1]) be a sta-

tionary solution of (1.1) with boundary datum ū (i.e. S(t)(u, ū) = u, ∀t > 0) and

set q̄ := A(0, ū). With the notations of Lemma 3.7, we have the following results.

1. The flux A(x, u(x)) is equal a.e. to a constant q and u is a function wz or wz,z′ .

2. According to the value of q̄, we have:

• if q̄ ≤ qlim, then q = q̄, i.e. ū = λ(0) or µ(0): if ū = λ(0), then u ends at

λ(0); if ū = µ(0), then u starts at µ(0);

• if q̄ > qlim, then q = qlim and u starts at µ(0) and ends at λ(0): u = w0,1 =

λ1[1/2,1] + µ1[0,1/2].

Observe that, in the case q̄ ≤ qlim, u ends at λ(0) if, and only if, (u = λ and

q = q̄ < qlim) or (u = λ1[0,z)∪[1/2,1] + µ1(z,1/2] = wz,1 for 0 ≤ z ≤ 1/2 and

q = q̄ = qlim) and u starts at µ if, and only if, (u = µ and q = q̄ < qlim) or

(u = λ1[1/2,z′) + µ1[0,1/2]∪(z′,1] = w0,z′ for 1/2 ≤ z′ ≤ 1 and q = q̄ = qlim).

Notice that discontinuous stationary solutions exist only in the case q̄ = qlim.

3.3. Sub- and super- stationary solutions

We have described the stationary solutions to the Problem (1.1). In the analysis

of the large time behaviour of the entropy solution in the next section, we use the

comparison principle and need to know enough sub- and super- stationary solutions

to Problem (1.1) to analyse the ω-limit sets of the trajectories. To that purpose, we

proceed as in the preceding paragraphs: first we examine the solutions inside (0, 1)

and focus on the entropy condition, then we examine the boundary conditions.

Let us build some sets of sub- and super- stationary solutions to (1.1): given

ū ∈ [0, 1], we set q̄ := A(0, ū), we denote by q := min(q̄, qlim) the flux of the

corresponding stationary solutions to (1.1) (see Theorem 3.8) and introduce the

function

µ̂ :=

{
1, if q < Q,

µ, if q ≥ Q

(the functions λ and µ̂ then describe the intersection between the plane {z = q} and

the surface Ŝ := S ∪ {x = 1} × {u = 1} × {0 ≤ z ≤ Q} which naturally completes

the graph S of A in the space (x, u, z).)

Piecewise continuous functions u with increasing jumps and such that x 7→

A(x, u(x)) is non-increasing (resp. non-decreasing) provide sub- (resp. super-) solu-

tions of (1.1) inside (0, 1). Such functions admit traces at x = 0 and x = 1 and, as

a consequence of Definition 2.1, are sub- (resp. super-) solutions of (1.1) as soon as

they satisfy

−Φ±(0, u(0+), k) + L(ū − k)± ≥ 0, 0 ≤ k ≤ 1, (3.2)

Φ±(1, u(1−), k) + L(ū − k)± ≥ 0, 0 ≤ k ≤ 1. (3.3)



Large-time behaviour for SCL on a finite domain 13

Straightforward computations then show that, in case 0 ≤ ū ≤ α(0), the sub-

stationary solutions are subjected to start from the region {A(0, u(0+)) ≤ q̄} and

end in [0, α(0)] while, in the case α(0) ≤ ū, the sub- stationary solutions are sub-

jected to end in [0, ū].

Similarly, in case 0 ≤ ū ≤ α(0), the super- stationary solutions are subjected to

start from the region [ū, 1] while, in the case α(0) ≤ ū, they are subjected to start

from [α(0), 1] and end in {A(0, u(1−)) ≤ q̄}.

With this elements at hands, we can prove the following lemma:

Lemma 3.9. Assume that (1.4)–(1.6) hold. Set q̄ := A(0, ū) and q := min(q̄, qlim).

Let λ and µ be the elementary solutions of A(x,w(x)) = q defined in Lemma 3.6.

Set ŵz = λ1[0,z) + µ̂1(z,1] with

µ̂ :=

{
1, if q < Q,

µ, if q ≥ Q.

• If q̄ < qlim, then the functions ŵz, 0 ≤ z ≤ 1, are sub- stationary solutions

of Problem (1.1) if ū = µ(0), super- stationary solutions of Problem (1.1) if

ū = λ(0).

• If q̄ = qlim, then the functions w0,z′ , 1/2 ≤ z′ ≤ 1, are super-solutions while the

functions wz,1, 0 ≤ z ≤ 1/2 are sub-solutions of Problem (1.1).

Additionally, if q̄ = qlim, then the functions

w1/2,1/2 = λ1[0,1/2] + µ1[1/2,1], w0,1 = λ1[1/2,1] + µ1[0,1/2]

are, respectively, super- and sub-solution of the problem (1.1).

4. Large time asymptotic behaviour

Fix ū ∈ [0, 1]. Let X0 denote the set X0 := L∞(0, 1; [0, 1]) endowed with the topol-

ogy of the L1-norm (X0 is a Banach space for it is closed in L1 since any convergent

sequence of L1 has a subsequence which converges almost everywhere). Denote

by Sū(t) := S(·, ū) the semi-group which, to any u0 ∈ X0, associates the value

u(t) ∈ X0 at time t of the solution u to Problem (1.1) with data (u0, ū0 = ū1 = ū).

We study the behaviour of the trajectories Sū(t)u0 as t→ +∞.

4.1. Compactness

Proposition 4.1. Assume that (1.4) holds. Let u0 ∈ X0. Then (Sū(t)u0)t>0 is

relatively compact in X0.

Proof. Suppose first that u0 ∈ X0 additionally satisfies u0 ∈ BV (0, 1). By

(2.4), (Sū(t)u0)t>0 is bounded in L1 ∩ BV (0, 1) and therefore relatively com-

pact in L1(0, 1). In the general case, fix ε > 0, choose uε
0 ∈ X0 ∩ BV (0, 1) and

||u0 − uε
0||L1(0,1) ≤ ε (uε

0 := ũ0 ⋆ ρε where ũ0 is the extension of u0 by 0 out-

side [0, 1] and ρε a classical (non-negative) approximation of unity will do). Then
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||Sū(t)uε
0 − Sū(t)u0|| ≤ ε for every t by (2.3). Therefore, for every ε > 0, the set

E := {Sū(t)u0; t > 0} is at distance less than ε of a set Eε (= {Sū(t)uε
0; t > 0})

which is relatively compact in X0. Being relatively compact, each Eε is totally

bounded, therefore so is E. Since X0 is a Banach space, the set E is relatively

compact in X0.

As a consequence of Proposition 4.1, each ω-limit set

ω(u0) :=
⋂

t>0

{Sū(τ)u0; τ ≥ t}

is non-empty, for u0 ∈ X0. Let ω(X0) be the union of the ω-limit sets:

ω(X0) :=
⋂

t>0

{Sū(τ)X0; τ ≥ t}.

We now study ω(X0).

4.2. Bounds on the adherence values

Lemma 4.2. Assume that (1.4)–(1.6) hold. Let q̄ = A(0, ū), let q = min(q̄, qlim)

and let λ and µ be the elementary solutions of the equation A(x,w(x)) = q (see

Lemma 3.6). Then we have

ω(X0) ⊂ {w ∈ X0, λ ≤ w a.e.}. (4.1)

If, furthermore, Q ≤ q (in which case µ is different from λ), we have

ω(X0) ⊂ {w ∈ X0, λ ≤ w ≤ µ a.e.}. (4.2)

Proof. If q̄ = 0, then q = 0, λ = 0 and (4.1) is obvious. Therefore, suppose that

q̄ > 0. We have q > 0 and λ > 0. For small ε > 0, let q − ε < qε < q and let λε be

the first continuous branch of the equation A(x,w(x)) = qε. Since qε < q, we have

λε < λ, and since λ ≤ α, we have also λε < α on [0, 1]. From Hypothesis (1.5), it

follows that

Au(x, σ) > 0, ∀(x, σ) ∈ E := {(x, σ) ∈ [0, 1]2; 0 ≤ σ ≤ λε(x)}.

By continuity of λε, the set E is closed, hence compact in [0, 1]2. By continuity of

Au then defining γ := min(x,σ)∈E Au(x, σ) > 0, it follows that,

Φ+(x, λε(x), w) = sgn+(λε(x) − w)

∫ λε(x)

w

Au(x, σ)dσ ≥ γ (λε(x) − w)+, (4.3)

for all x,w ∈ [0, 1]. The function λε is a solution, hence a sub-solution of Prob-

lem (1.1) with the boundary datum λε(0). From (2.2) we deduce, for u0 ∈ X0, ϕ

non-negative test-function in C∞
c (R2),

∫ 1

0

∫ ∞

0

(λε−Sū(t)u0)
+ ϕt+Φ+(x, λε, Sū(t)u0)ϕx dx dt+

∫ 1

0

(λε−u0)
+ ϕ(0, x) dx

2L

∫ ∞

0

(λε(0) − ū)+ (ϕ(t, 0) + ϕ(t, 1)) dt ≥ 0. (4.4)
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Since q̄ ≥ q ≥ qε, and 0 ≤ λε(0) ≤ α(0), we have (λε(0) − ū)+ = 0 and the last

term in (4.4) vanishes.

Choosing ϕ(x, t) = α(t)e−x where α is a non-negative function of C∞
c (0,+∞),

we have
∫ 1

0

∫ +∞

0

((λε − Sū(t)u0)
+ αt − Φ+(x, λε, Sū(t)u0)α) e−x ≥ 0.

By use of the estimate (4.3), we get

∫ +∞

0

(∫ 1

0

(λε − Sū(t)u0)
+ e−x

)
(αt − γα) ≥ 0

which gives the exponential decrease
∫ 1

0

(λε − Sū(t)u0)
+e−xdx ≤

(∫ 1

0

(λε − u0)
+e−xdx

)
e−γt

and the inclusion ω(X0) ⊂ {w ∈ X0, λε ≤ w a.e.}. Since ω(X0) is closed, and

since λ → λε (uniformly on [0, 1]) when ε → 0, we get (4.1) at the limit ε > 0.

If q̄ = qlim = Q, then µ = 1 and the inclusion (4.2) is obvious. If qlim ≥ q̄ > Q,

then q = q̄ and the inclusion ω(X0) ⊂ {w ∈ X0, w ≤ µ a.e.} is obtained by similar

methods as (4.1), on the basis of the estimate

Φ+(x,w, µε(x)) ≤ −γ̃(w − µε(x))
+,

(x,w) ∈ [0, 1]2, γ̃ > 0, which holds as µε is an upper branch of solution for the

equation A(x,w(x)) = qε, q − ε < qε < q.

4.3. Convergence to stationary solutions

We first prove the following proposition.

Proposition 4.3. Assume that (1.2)–(1.6) hold. The set ω(X0) is a subset of the

set of stationary solutions to Problem (1.1).

Proof. We use the result and notations of Lemma 4.2. Set µ̂ := 1 if q < Q, µ̂ := µ if

q ≥ Q, so that the conclusion of Lemma 4.2 reads ω(X0) ⊂ X1, X1 := {w ∈ X0, λ ≤

w ≤ µ̂ a.e.}. Let w ∈ ω(X0) and let ŵ be a stationary sub-solution of Problem (1.1)

with boundary datum ū. By Proposition 2.7, the function u 7→ ‖(ŵ−u)+‖L1 is non-

increasing along the trajectories drawned by Sū. Therefore, by LaSalle Principle,

t 7→ ‖(ŵ − Sū(t)w)+‖L1 is constant.

Similarly, if ŵ is a stationary super-solution of Problem (1.1) with boundary

datum ū, we see that t 7→ ‖(ŵ − Sū(t)w)−‖L1 is constant.

Now, we use Lemma 3.9 to show that Sū(t)w = w. If q < Q, for example, the

functions ŵz are stationary super-solutions and we have

‖(ŵz − Sū(t)w)−‖L1 = ‖(ŵz − w)−‖L1 , z ∈ [0, 1], t > 0.
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Besides w ∈ X1, therefore

‖(ŵ − w)−‖L1 =

∫ 1

z

(1 − w) dx.

By Proposition 2.7, the set X1 is invariant under Sū so that we also have

‖(ŵ − Sū(t)w)−‖L1 =

∫ 1

z

(1 − Sū(t)w) dx.

We deduce
∫ 1

z

w =

∫ 1

z

Sū(t)w,

for all z ∈ [0, 1], t > 0, i.e. Sū(t)w = w.

Similarly, for all the possible values of q and ū, we use the fact that Lemma 3.9

provides enough sub- (or super-)solutions to deduce Sū(t)w = w from the fact that

t 7→ ‖(ŵ− Sū(t)w)±‖L1 is constant: we therefore conclude that any w ∈ ω(X0) is a

stationary solution to (1.1) with boundary datum ū.

Theorem 4.4. Assume that (1.2)–(1.6) hold. For every u0 ∈ X0, the trajectory

Sū(t)u0 converges to a stationary state. Stationary states are described in Theo-

rem 3.8.

Remark 4.5. If q̄ := A(0, ū) is different from qlim, then there is only one stationary

solution (see Theorem 3.8) and Theorem 4.4 gives the asymptotic behaviour of

Sū(t)u0: for large time, it converges to the unique stationary solution. In case q̄ =

qlim, the asymptotic behaviour of the trajectories depends on their starting point.

It is however possible to precise the limit in some situations, see Proposition 4.6.

Proof. Let u0 ∈ X0. By Proposition 4.1, there exists w ∈ ω(X0). By Proposi-

tion 4.3, we know that w is a stationary sate. Together with the fact that Sū is

non-expansive (Equation (2.3)), this gives Sū(t)u0 → w in X0. Indeed, given ε > 0,

there exists a time tε at which ‖Sū(tε)u0 −w‖L1
< ε. Since Sū is L1 non-expansive

and w a fixed point of Sū, this remains true for every time t ≥ tε. Therefore

Sū(t)u0 → w in X0.

The following proposition completes the result stated in Theorem 4.4 in the case

q̄ = qlim (see Remark 4.5).

Proposition 4.6. Assume that (1.2)–(1.6) hold. Furthermore, we suppose that

q̄ := A(0, ū) = qlim.

Then, we have the following cases:

• if u0 ≤ λ, then Sū(t)u0 converges to λ,

• if u0 ≥ µ, then Sū(t)u0 converges to µ,
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• if λ ≤ u0 ≤ µ and ū = λ(0), then Sū(t)u0 converges to wz,1 where z is the

unique element of [0, 1/2] such that

∫ 1/2

0

(u0 − λ)dx =

∫ 1/2

0

(wz,1 − λ)dx,

• if λ ≤ u0 ≤ µ and ū = µ(0), then Sū(t)u0 converges to w0,z′ where z′ is the

unique element of [1/2, 1] such that

∫ 1

1/2

(µ− u0)dx =

∫ 1

1/2

(µ− w0,z′)dx.

Notice that if u0 is not ordered with respect to λ and/or µ, we cannot specify

the asymptotic stationary state.

Proof. In the first two cases, the convergence follows from Lemma 4.2 and the

fact that {w ≤ λ} and {w ≥ µ} are invariant under Sū. In case λ ≤ u0 ≤ µ and

ū = λ(0), we observe that

∫ 1/2

0

Sū(t)u0 − λ = constant. (4.5)

This uniquely determines the elements of ω(u0), already restricted to be functions

wz,1 by Proposition 4.3 and Theorem 3.7.

Similarly, in case λ ≤ u0 ≤ µ and ū = µ(0), the ω-limit set ω(u0) reduces to a

singleton by the constraint
∫ 1

1/2

µ− Sū(t)u0 constant. (4.6)

Let us prove (4.5) for example: by Lemma 3.9, the functions

w1/2,1/2 = λ1[0,1/2] + µ1[1/2,1], w0,1 = λ1[1/2,1] + µ1[0,1/2]

are, respectively, super- and sub-solution of the problem (1.1). From Proposition 2.7,

we deduce that the functions

t 7→

∫ 1

0

(Sū(t)u0 − w1/2,1/2)
+, t 7→

∫ 1

0

(w0,1 − Sū(t)u0)
+

are non-increasing. Since {λ ≤ w ≤ µ} is invariant by Sū, we have

∫ 1/2

0

Sū(t)u0−λ =

∫ 1

0

(Sū(t)u0−w1/2,1/2)
+ =

∫ 1/2

0

(µ−λ)−

∫ 1

0

(w0,1−Sū(t)u0)
+.

Therefore

t 7→

∫ 1/2

0

Sū(t)u0 − λ

is at the same time non-increasing and non-decreasing, i.e. is constant.
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5. Numerical results

In this section, we focus on the numerical approximation of Problem (1.1) with flux

A given by the formula

A(x, u) = Qu+H(x)u(1 − u).

5.1. Finite volume method for scalar conservation laws

We present the numerical method that has been used for the simulation of the

model case. Let us consider a uniform mesh in space (with N + 1 elements). We

classically denote by h = 1/N the mesh size, k the time step, and T = {Ki}1≤i≤N

the family of the N control volumes. Let us define the following relationship:

un+1
i = un

i −
k

h

(
Fi+1/2(u

n
i+1, u

n
i ) − Fi−1/2(u

n
i , u

n
i−1)

)
, 1 ≤ i ≤ N − 1, (5.1)

under the boundary constraints un
0 = ū0 and un

N = ū1, for all n ∈ N and under

the CFL condition Lk/h < 1, L being the Lipschitz constant of A w.r.t. u. The

numerical solution is then defined by:

∀Ki ∈ T , ∀n ∈ N, uT ,k(t, x) = un
i , ∀(t, x) ∈ [n∆t, (n+ 1)∆t[×Ki. (5.2)

The choice of the scheme now relies on the numerical fluxes Fi±1/2, which should

satisfy properties of regularity, consistency, conservativity and monotonicity. Then,

the numerical solution converges to the entropy solution of (1.1) [Vov02]. For the

numerical simulations, the following scheme has been used:

Definition 5.1 (ENO scheme). Let ũ(x) ∈ (0, 1] be the maximum of u 7→ A(x, u)

on [0, 1]:

ũ(x) = min

(
1,

1

2

(
1 +

Q

H(x)

))

and let us define the partial fluxes:

A−(x, u) =

{
A(x, u) −A(x, ũ(x)),

0,

A+(x, u) =

{
A(x, ũ(x)),

A(x, u),

if u ≥ ũ(x),

else.

if u ≥ ũ(x),

else.

The ENO flux is defined by the following formula:

Fi+1/2(u, v) = A−(xi+1, u) +A+(xi, v). (5.3)

5.2. Numerical tests

In the whole section, simulations are performed with the ENO scheme. We also

apply the boundary condition ū0 = ū1 = ū = 0.35 and we use a normalized gap

which can be expressed as:

H(x) = (Hmax −Hmin)(2x− 1)2 +Hmin.
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As it was pointed out in Theorem 3.8, different cases can be obtained according to

the chosen values of Q, Hmin and Hmax:

• case I. : q̄ < qlim,

• case II. : Q < q̄ = qlim (II(a).) or Q = q̄ = qlim (II(b).),

• case III. : q̄ > qlim.

In Table 1, we present some data corresponding to each case, in order to illustrate

the behaviour of the weak entropy solution.

I. II(a). II(b). III.

Q 0.3500 0.2935 0.3500 0.2500

Hmin 0.7000 0.5871 0.1750 0.1250

Hmax 1.0000 1.0000 1.0000 1.0000

q̄ 0.3500 0.3302 0.3500 0.3150

qlim 0.3937 0.3302 0.3500 0.2500

Table 1. Numerical data

In order to illustrate the structural differences of the flux, Fig.3-4 provides the

graphs of u 7→ A(x, u), at different fixed x, for a given set of data (Hmin, Hmax, Q).

Actually, Fig.3 (resp. Fig.4) corresponds to case I. (resp. case III.).

Now, let us discuss the numerical results:

• In case I., we observe that the weak entropy solution converges to the sta-

tionary one, as described in Theorem 3.8. Moreover, the stationary solution is

continuous (therefore, numerical illustrations are omitted).

• In case II(a)., the stationary solution depends on the initial one. Computations

illustrate the theoretical results described in Theorem 3.8. In particular, ac-

cording to the choice of the initial solution, a discontinuous stationary solution

may appear:

• Fig.5-6 - The initial condition is defined by u0 = u
(1)
0 ≡ ū. Then, we

observe that S(t)(u
(1)
0 , ū) obviously converges to λ, since u

(1)
0 ≤ λ and

λ(0) = ū.

• Fig.7-8 - The initial condition is defined by u0 = u
(2)
0 with

u
(2)
0 (x) =

(
1 −

1

10
sin(2πx)

)
λ

(
1

2

)
, i.e. λ ≤ u0 ≤ µ.

As λ(0) = ū, S(t)(u
(2)
0 , ū) converges to some wz,1 = λ1[0,z)∪[1/2,1] +

µ1(z,1/2] with 0 ≤ z ≤ 1/2. The position of the stationary shock satis-
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fies:
∫ 1/2

0

wz,1 =

∫ 1/2

0

u
(2)
0 .

i.e. we obtain the conservativity of the mass on [0, 1/2] (see Proposi-

tion 4.6).

• In case II(b)., Fig.9-10 is a simulation in the critical case. The initial condition

is defined by u0 = u
(3)
0 with

u
(3)
0 (x) =





λ(x) + 3x(µ(x) − λ(x))(1 + sin(6πx)), if 0 ≤ x <
1

3
,

µ(x), if
1

3
≤ x <

9

10
,

λ(x), if
9

10
≤ x ≤ 1.

On [0, 1/2], the initial solution lies between λ and µ. As mentioned, the mass

is conserved on [0, 1/2]:

∫ 1/2

0

wz,1 =

∫ 1/2

0

u
(4)
0 .

On [1/2, 1], the initial solution is a (non-entropy) stationary solution, the dis-

continuity being decreasing (and, therefore, non-admissible). As a consequence,

this profile is not preserved as t tends to +∞.

• In case III., Fig.11-12 evidence the behaviour of the entropy solution, which

converges to w0,1. Indeed, λ(0) ≤ ū ≤ µ(0), starting from the initial solution

u0 ≡ ū, we may observe on (0, 1/2) the formation of an unstationary shock

which goes out from the domain: the discontinuity has been stabilized on the

boundary x = 0.

Finally, by Table 2, we illustrate Proposition 4.6. Notice that Table 2 includes

information on an additional numerical simulation (for which figures have been

omitted) falling into the scope of case II(a), with the initial solution u0 = u
(4)
0

defined by

u
(4)
0 (x) =





1

2
(λ(x) + µ(x)) , if 0 ≤ x <

1

2
,

1, if
1

2
≤ x ≤ 1.

More precisely, denoting

mi =

∫ 1/2

0

u0 − λ, mf =

∫ 1/2

0

wz,1 − λ,

we obtain the following results:

Among the chosen set of numerical simulations, we observe that
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II(a). u
(1)
0 II(a). u

(2)
0 II(b). u

(3)
0 II(a). u

(4)
0

mi −9.0791 10−2 8.5147 10−2 3.4918 10−2 8.8099 10−2

mf 6.3105 10−3 8.5060 10−2 3.4785 10−2 1.5205 10−1

(mf −mi)/mi −1.0695 −1.0259 10−3 −3.8318 10−3 7.2594 10−1

Table 2. Position of the stationary shock in case II.

• in the cases II(a). with u0 = u
(2)
0 and II(b). with u0 = u

(3)
0 , the integral equality

mi = mf is numerically satisfied with a relative error which is less than 0.5%.

Indeed, the initial solution satisfies the assumption λ ≤ u0 ≤ µ,

• in the cases II(a). with u0 = u
(1)
0 or u0 = u

(2)
0 , the integral equality mi = mf

does not hold, as the condition λ ≤ u0 ≤ µ is not satisfied.
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[EGH00] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of
numerical analysis, Vol. VII, North-Holland, Amsterdam, 2000, pp. 713–1020.
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Fig. 5. II(a). Entropy solution at different time steps (initial condition u
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Fig. 7. II(a). Entropy solution at different time steps (initial condition u
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Fig. 9. II(b). Entropy solution at different time steps (initial condition u
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Fig. 11. III. Entropy solution at different time steps (initial condition u
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