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NON-EXTENDABILITY OF SEMILATTICE-VALUED MEASURES

ON PARTIALLY ORDERED SETS

FRIEDRICH WEHRUNG

Abstract. For a poset P and a distributive 〈∨, 0〉-semilattice S, a S-valued

poset measure on P is a map µ : P×P → S such that µ(x, z) ≤ µ(x, y)∨µ(y, z),

and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P . In relation with
congruence lattice representation problems, we consider the problem whether
such a measure can be extended to a poset measure µ : P ×P → S, for a larger
poset P , such that for all a, b ∈ S and all x ≤ y in P , µ(y, x) = a∨ b implies
that there are a positive integer n and a decomposition x = z0 ≤ z1 ≤ · · · ≤
zn = y in P such that either µ(zi+1, zi) ≤ a or µ(zi+1, zi) ≤ b, for all i < n.

In this note we prove that this is not possible as a rule, even in case the
poset P we start with is a chain and S has size ℵ1. The proof uses a “monotone
refinement property” that holds in S provided S is either a lattice, or count-
able, or strongly distributive, but fails for our counterexample. This strongly
contrasts with the analogue problem for distances on (discrete) sets, which is
known to have a positive (and even functorial) solution.

1. Introduction

In the paper [5], the author proved that for any lattice K, any distributive
lattice S with zero, and any 〈∨, 0〉-homomorphism ϕ from the 〈∨, 0〉-semilattice
Conc K of all finitely generated congruences of K to S, there are a lattice L, a
lattice homomorphism f : K → L, and an isomorphism α : Conc L → S such that
ϕ = α ◦Conc f . In the paper [4], J. Tůma and the author proved that for a 〈∨, 0〉-
semilattice S, this statement characterizes S being a lattice. The proof of this
negative result strongly uses the lattice structure of the hypothetical lattice L, see
the proof of [4, Corollary 1.3].

In the present paper, we show that for a certain semilattice S of cardinality ℵ1,
the poset structure alone is sufficient to get a related counterexample. More pre-
cisely, for a 〈∨, 0〉-semilattice S, a S-valued poset measure on a poset P is a map
µ : P × P → S such that µ(x, z) ≤ µ(x, y) ∨ µ(y, z) (triangular inequality) and
x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P . We say that µ is a V-measure,
if for all x ≤ y in P and all a, b ∈ S, if µ(y, x) ≤ a ∨ b, then there are a positive
integer n and a decomposition x = z0 ≤ z1 ≤ · · · ≤ zn = y in P such that either
µ(zi+1, zi) ≤ a or µ(zi+1, zi) ≤ b for all i < n. This yields the following poset
analogue of the abovementioned lattice-theoretical problem.

Problem. Let S be a distributive 〈∨, 0〉-semilattice. Does any S-valued poset mea-

sure on a given poset extend to some S-valued poset V-measure on a larger poset?
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2 F. WEHRUNG

A version of this problem for so-called distances (instead of measures) on discrete
sets (instead of posets) is stated in [3]. The answer to this related question turns
out to be positive (and easy). More surprisingly, this positive solution can be made
functorial.

Nevertheless, we prove in the present paper that the problem above has a nega-

tive solution. Unlike what is done in [4], we do not reach here a characterization of
all lattices among distributive 〈∨, 0〉-semilattices. Our counterexample, denoted by
F(ω1) (see Corollary 4.9) is obtained as an application of a certain “free construc-
tion” used by M. Ploščica and J. Tůma in [2]. The semilattice D of [4, Section 2],
which is the simplest example of a 〈∨, 0〉-semilattice which is not a lattice, does not
satisfy the negative property used here. This is because D is countable, while we
prove in Proposition 4.10 that no countable distributive 〈∨, 0〉-semilattice can have
the required negative property. On the other hand, in relation to [4, Problem 4], the
proof of our counterexample uses very little of the Axiom of Choice (namely, only
the Axiom of countable choices), while the proof of the negative property of the
abovementioned semilattice D established in [4, Corollary 2.4] uses the existence of
an embedding from ω1 into the reals.

2. Basic concepts

For posets (i.e., partially ordered sets) P and Q, a map f : P → Q is isotone,
if x ≤ y implies that f(x) ≤ f(y), for all x, y ∈ P . In addition, we say that f is
join-preserving, if for any subset X of P , whenever the join

∨

X of X exists in P ,
∨

f [X ] exists in Q, and
∨

f [X ] = f
(
∨

X
)

. For a subset X of a poset P , we shall
put ↓X = {p ∈ P | ∃x ∈ X such that p ≤ x}, and then ↓a = ↓{a}, for all a ∈ P .
We say that X is a lower subset of P , if X = ↓X .

A 〈∨, 0〉-semilattice S is distributive, if c ≤ a ∨ b in S implies that there are
x ≤ a and y ≤ b in S such that x ≤ a, y ≤ b, and c = x∨y. A distributive 〈∨, 0〉-
semilattice S is strongly distributive, if every element of S is the join of a finite set
of join-irreducible elements of S; equivalently, S is isomorphic to the semilattice of
all finitely generated lower subsets of some poset.

We shall denote by otpP the order-type of a well-ordered set P . Hence otp P
is an ordinal. We shall also use standard set-theoretical notation and terminology,
referring the reader to [1] for further information. In particular, we shall denote
by ω1 the first uncountable ordinal. A subset C of ω1 is closed unbounded, if C is
unbounded in ω1 and the join of any nonempty bounded subset of C belongs to C.
It is well-known that the closed unbounded subsets form a countably complete
filterbasis on ω1, see [1, Lemma 7.4]. Hence containing a closed unbounded is a
notion of “largeness” for subsets of ω1.

3. Free distributive extension of a 〈∨, 0〉-semilattice

There are several non-equivalent definitions of what should be the “free distribu-
tive extension” of a given 〈∨, 0〉-semilattice. The one that we shall use is introduced
in [2, Section 2]. Let us first recall the construction.

For a 〈∨, 0〉-semilattice S, we shall put C(S) = {〈u, v, w〉 ∈ S3 | w ≤ u ∨ v}. A
finite subset x of C(S) is reduced, if it satisfies the following conditions:

(1) x contains exactly one diagonal triple, that is, a triple of the form 〈u, u, u〉;
we put u = π(x).

(2) 〈u, v, w〉 ∈ x and 〈v, u, w〉 ∈ x implies that u = v = w, for all u, v, w ∈ S.
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(3) 〈u, v, w〉 ∈ x \ {〈π(x), π(x), π(x)〉} implies that u, v, w � π(x), for all
u, v, w ∈ S.

We denote by R(S) the set of all reduced subsets of C(S), endowed with the
partial ordering ≤ defined by

x ≤ y ⇐⇒ ∀〈u, v, w〉 ∈ x \ y, either u ≤ π(y) or w ≤ π(y). (3.1)

Furthermore, we shall identify x with the element {〈x, x, x〉} of R(S), for all x ∈ S.
For set-theoretical purists, this can for example be done by replacing R(S) by the
disjoint union of S with the set of non-singletons in R(S). The disjointness can
easily be achieved by a suitable modification of the standard definition of a triple.
We shall use the symbol ⊲⊳ to denote the canonical generators of R(S), so that

⊲⊳(u, v, w) =

{

u, if u = v = w,

{〈0, 0, 0〉 , 〈u, v, w〉}, otherwise,
for all 〈u, v, w〉 ∈ C(S).

Observe that the canonical map π : R(S) ։ S is isotone and that the restriction
of π to S is the identity. Furthermore, π(⊲⊳(u, v, w)) = 0, for any non-diagonal
〈u, v, w〉 ∈ C(S). The following is an easy consequence of (3.1).

x ≤ y ⇐⇒ x ≤ π(y), for all 〈x, y〉 ∈ S ×R(S). (3.2)

We recall the standard facts established in [2] about this construction.

Proposition 3.1.

(1) For any 〈∨, 0〉-semilattice S, R(S) is a 〈∨, 0〉-semilattice, and the inclusion

map from S into R(S) is a 〈∨, 0〉-embedding.

(2) For 〈∨, 0〉-semilattices S and T , every 〈∨, 0〉-homomorphism f : S → T
extends to a unique 〈∨, 0〉-homomorphism R(f) : R(S) → R(T ) such that

R(f)(⊲⊳(u, v, w)) = ⊲⊳(f(u), f(v), f(w)), for all 〈u, v, w〉 ∈ C(S).
(3) The assignment S 7→ R(S), f 7→ R(f) is a functor.

The extension R(S) is defined in such a way that ⊲⊳(u, v, w) ≤ u and w =
⊲⊳(u, v, w) ∨ ⊲⊳(v, u, w), for all 〈u, v, w〉 ∈ C(S). Hence, putting R0(S) = S and
Rn+1(S) = R(Rn(S)) for each n, we obtain that the increasing union D(S) =
⋃

(Rn(S) | n < ω) is a distributive 〈∨, 0〉-semilattice, extending S. Furthermore,
putting D(f) =

⋃

(Dn(f) | n < ω) for each 〈∨, 0〉-homomorphism f , we obtain
that D is a functor. The proof of the following lemma is straightforward.

Lemma 3.2. Let S be a 〈∨, 0〉-semilattice and let 〈Si | i ∈ I〉 be a family of 〈∨, 0〉-
subsemilattices of S. The following statements hold:

(1) R
(
⋂

i∈I Si

)

=
⋂

i∈I R(Si) and D
(
⋂

i∈I Si

)

=
⋂

i∈I D(Si).

(2) If I is an upward directed poset and 〈Si | i ∈ I〉 is isotone, then R
(
⋃

i∈I Si

)

=
⋃

i∈I R(Si) and D
(
⋃

i∈I Si

)

=
⋃

i∈I D(Si).

Definition 3.3. For a 〈∨, 0〉-semilattice S and an element x ∈ D(S), we define the
rank of x, denoted by rkx, as the least natural number n such that x ∈ Rn(S),
and the complexity of x, denoted by ‖x‖, by ‖x‖ = 0 if x ∈ S, and

‖x‖ =
∑

(‖u‖ + ‖v‖ + ‖w‖ + 1 | 〈u, v, w〉 ∈ x) , for all x ∈ D(S) \ S.
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4. The semilattices S(Λ) and F(Λ)

For any chain Λ, we shall denote by S(Λ) the 〈∨, 0〉-semilattice defined by gen-
erators a, b, and ci, for i ∈ Λ, and relations ci ≤ a ∨ b and ci ≤ cj , for all i ≤ j
in Λ. Hence the elements of S(Λ) either belong to S(∅) = {0, a, b, a ∨ b} or have
the form ci, a ∨ ci, or b ∨ ci, for some i ∈ Λ. We shall identify S(X) with the
〈∨, 0〉-subsemilattice of S(Λ) generated by S(∅) ∪ {ci | i ∈ X}, for any X ⊆ Λ.

For chains X and Y , any isotone map f : X → Y gives raise to a unique 〈∨, 0〉-
homomorphism S(f) : S(X) → S(Y ) fixing a and b and sending ci to cf(i), for all
i ∈ X . Of course, the assignment Λ 7→ S(Λ), f 7→ S(f) is a functor.

We denote by F = D ◦ S the composition of the two functors D and S.
The proof of the following lemma is straightforward.

Lemma 4.1. Let Λ be a chain and let 〈Xi | i ∈ I〉 be a family of subsets of Λ. The

following statements hold:

(1) S
(
⋂

i∈I Xi

)

=
⋂

i∈I S(Xi).

(2) If I is an upward directed poset and 〈Xi | i ∈ I〉 is isotone, then S
(
⋃

i∈I Xi

)

=
⋃

i∈I S(Xi).

As an easy consequence of Lemmas 3.2 and 4.1, we get the following.

Lemma 4.2. Let Λ be a chain. Then for any x ∈ F(Λ), there exists a least (with

respect to the inclusion) subset X of Λ such that x ∈ F(X); this subset is finite.

We denote by supp(x) the subset given by Lemma 4.2, and we call it the support

of x.

Notation 4.3. For a chain Λ, isomorphic well-ordered subsets X and Y of Λ such
that otpX ≤ otp Y , and x ∈ F(X), we set x[Y/X ] = F(eX,Y )(x), where eX,Y

denotes the unique embedding from X into Y whose range is a lower subset of Y .

Hence x[Y/X ] belongs to F(Y ), for all x ∈ F(X).

Lemma 4.4. Let Λ be a chain and let X, Y be well-ordered subsets of Λ such that

otpX ≤ otp Y and X ∩ Y is a lower subset of both X and Y . Then x[Y/X ] = x,

for all x ∈ F(X ∩ Y ).

Proof. As the set Z = X∩Y is a lower subset of both X and Y , the homomorphism
F(eZ,X) (resp., F(eZ,Y )) is the inclusion map from F(Z) into F(X) (resp., F(Y )).
In particular, x = F(eZ,X)(x) = F(eZ,Y )(x). Therefore,

x[Y/X ] = F(eX,Y )(x) = F(eX,Y ) ◦ F(eZ,X)(x) = F(eZ,Y )(x) = x. �

We are now reaching a crucial lemma.

Lemma 4.5 (Interpolation Lemma). Let Λ be a chain, let X, Y be finite subsets

of Λ, and let 〈x, y〉 ∈ F(X)×F(Y ). If x ≤ y, then either there exists z ∈ F(X∩Y )
such that x ≤ z ≤ y or (Y 6⊆ X and cmin(Y \X) ≤ y).

Proof. We shall denote by πl
k the canonical map from RlS(Λ) onto RkS(Λ), for all

natural numbers k ≤ l. Put m = rkx and n = rky. Observe that supp(x) ⊆ X
and supp(y) ⊆ Y . We argue by induction on ‖x‖ + ‖y‖. If either supp(x) ⊆ Y
or supp(y) ⊆ X then either z = x or z = y belongs to F(X ∩ Y ) and satisfies
the inequalities x ≤ z ≤ y, so we are done. So suppose that supp(x) 6⊆ Y and
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supp(y) 6⊆ X . In particular, X 6⊆ Y and Y 6⊆ X , and both supp(x) and supp(y)
are nonempty. We put ξ = min(Y \ X).

Suppose that m = n = 0, that is, x, y ∈ S(Λ). Pick i ∈ supp(x). As
ci ≤ x ≤ y, we obtain that either y = a∨b (a contradiction, as then supp(y) = ∅)
or y ∈ {cj , a ∨ cj, b ∨ cj} for some j ≥ i. If i = j, then supp(x) = supp(y) = {i},
a contradiction. If i < j, then ξ = j and so cξ ≤ y.

Suppose now that m < n. Then x ≤ y means that x ≤ πn
m(y) (use (3.2)).

As πn
m(y) has support contained in Y and rank at most m, it follows from the

induction hypothesis that either cξ ≤ πn
m(y) (thus, a fortiori, cξ ≤ y) or there

exists z ∈ F(X ∩ Y ) such that x ≤ z ≤ πn
m(y) (thus, a fortiori, z ≤ y).

So suppose from now on that m > 0 (i.e., x /∈ S(Λ)) and m ≥ n. If x =
∨

i<k xi

where k ≥ 2 and each xi has support contained in X and complexity less than ‖x‖,
then we apply the induction hypothesis to each inequality xi ≤ y, for i < k. If
cξ � y, then for all i < k, there exists zi ∈ F(X∩Y ) such that xi ≤ zi ≤ y. Hence
x ≤ z ≤ y, where z =

∨

i<k zi belongs to F(X ∩ Y ). This reduces the problem to
the case where x = ⊲⊳(u, v, w), where 〈u, v, w〉 is a non-diagonal triple of elements
of Rm−1S(X) of complexity less than ‖x‖.

If m > n, then, as ⊲⊳(u, v, w) = x ≤ y with supp(x) 6⊆ Y , u, v, w ∈ Rm−1S(X),
and y ∈ Rm−1S(Y ), it follows from (3.1) that either u ≤ y or w ≤ y. If, for
example, u ≤ y, then, by the induction hypothesis, either cξ ≤ y (in which case
we are done) or there exists z ∈ F(X ∩ Y ) such that u ≤ z ≤ y. In the second
case, x ≤ z ≤ y. The argument is similar in case w ≤ y.

The remaining case is m = n > 0. As ⊲⊳(u, v, w) = x ≤ y with supp(x) 6⊆ Y ,
u, v, w ∈ Rm−1S(X), and y ∈ RmS(Y ), it follows from (3.1) that either u ≤ πm

m−1(y)
or w ≤ πm

m−1(y). If u ≤ πm
m−1(y), then, by the induction hypothesis, either

cξ ≤ πm
m−1(y) (thus, a fortiori, cξ ≤ y) or there exists z ∈ F(X ∩ Y ) such that

u ≤ z ≤ πm
m−1(y) (in which case x ≤ z ≤ y). The case where w ≤ πm

m−1(y) is
similar. �

Lemma 4.6. Let Λ be a chain and let X be a nonempty subset of Λ admitting a

supremum, say, ξ, in Λ. Then cξ is the supremum of {ci | i ∈ X} in F(Λ).

Proof. Let x ∈ F(Λ) such that ci ≤ x for all i ∈ X , we prove that cξ ≤ x. Put
n = rkx and y = πn

0 (x). Let i ∈ X . From ci ≤ x and ci ∈ S(Λ) it follows
that ci ≤ y. This holds for all i ∈ X , hence, as cξ is clearly the supremum of
{ci | i ∈ X} in S(Λ), we obtain that cξ ≤ y. Therefore, cξ ≤ x. �

Now we can state the main technical result of the paper. It says that 〈cξ | ξ < ω1〉
is the only non-eventually constant isotone ω1-sequence in F(ω1) modulo the closed
unbounded filter on ω1.

Theorem 4.7. Let σ = 〈xξ | ξ < ω1〉 be an isotone ω1-sequence of elements of

F(ω1). Then either σ is eventually constant or there exists a closed unbounded

subset C of ω1 such that xξ = cξ for all ξ ∈ C.

Proof. Assume that σ is not eventually constant. We put Xξ = supp(xξ) and
nξ = |Xξ|, for all ξ < ω1. So xξ = x′

ξ[Xξ/nξ], for some x′
ξ ∈ F(nξ). As all sets Xξ

are finite, it follows from the ∆-Lemma (see [1, Lemma 22.6]) that there are an
uncountable subset I of ω1 and a finite subset X of ω1 such that Xξ ∩ Xη = X
for all distinct ξ, η ∈ I. We may further assume without loss of generality that
there are n < ω and x ∈ F(n) such that nξ = n and x′

ξ = x, for all ξ ∈ I. Hence
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xξ = x[Xξ/n], for all ξ ∈ I. As σ is isotone but not eventually constant, it follows
that X is a proper subset of Xξ, for all ξ ∈ I. Put Yξ = Xξ \X . Define ρ(ξ) as the
least element of Yξ.

For subsets U and V of ω1, let U < V hold, if u < v for all 〈u, v〉 ∈ U × V . By
further shrinking I, we might assume that X < Yξ, for all ξ <∈ I. In particular,
observe that X = Xξ ∩ Xη is a lower subset of both Xξ and Xη, for all ξ 6= η in I.

Let ξ < η in I and suppose that there exists z ∈ F(X) such that xξ ≤ z ≤ xη.
Applying the embedding F(eXξ,Xη

) to the inequality x[Xξ/n] ≤ z and using
Lemma 4.4, we obtain the inequality x[Xη/n] ≤ z, so xη = x[Xη/n] = z, a
contradiction since the left hand side has support Xη while the right hand side has
the smaller support X . Therefore, as xξ ≤ xη and by Lemma 4.5, we obtain the
inequality cρ(η) ≤ xη.

Hence, we may assume that cρ(ξ) ≤ xξ for all ξ ∈ I. It follows that

cρ(ξ) ≤ xξ, for all ξ < ω1, (4.1)

where we put

ρ(ξ) =
∨

(ρ(η) | η ∈ I, η < ξ) , for all ξ < ω1.

As the range of ρ is unbounded, so is the range of ρ. Hence, as ρ is a complete
join-homomorphism from ω1 to ω1, the set C = {ξ < ω1 | ρ(ξ) = ξ} is a closed
unbounded subset of ω1. It follows from (4.1) that for all ξ ∈ C, the inequality
cξ ≤ xξ holds, and thus xξ = cξ by assumption. �

The following corollary expresses that F(ω1) fails a certain “monotone refinement
property”.

Corollary 4.8. There are no positive integer n and no finite collection of isotone

ω1-sequences 〈xi,ξ | ξ < ω1〉 of elements of F(ω1), for 0 ≤ i ≤ n, such that

(1) x0,ξ = 0 and xn,ξ = cξ, for all large enough ξ < ω1.

(2) xi,ξ ≤ cξ, for all i ≤ n and all large enough ξ < ω1.

(3) Either xi+1,ξ ≤ a ∨ xi,ξ or xi+1,ξ ≤ b ∨ xi,ξ, for all i < n and all ξ < ω1.

Proof. We prove that for all i ≤ n, there exists ηi < ω1 such that xi,ξ ≤ cηi
for

all ξ < ω1. We argue by induction on i. For i = 0 it holds by assumption, with
η0 = 0. Suppose that xi,ξ ≤ cηi

, for all ξ < ω1. Let ξ > ηi. Assume, for example,
that xi+1,ξ ≤ a ∨ xi,ξ; so xi+1,ξ ≤ a ∨ cηi

. Observing that cξ � a ∨ cηi
, we get

that cξ � xi+1,ξ. As this holds for all ξ > ηi and by Theorem 4.7, we obtain
that 〈xi+1,ξ | ξ < ω1〉 is eventually constant, and hence below some cηi+1

, therefore
completing the induction step.

In particular, for i = n, we obtain that the ω1-sequence 〈cξ | ξ < ω1〉 is eventually
dominated by the constant cηn

, a contradiction. �

Hence we get a negative extension property for posets.

Corollary 4.9. There are a poset measure µ : (ω1 + 1) × (ω1 + 1) → F(ω1) such

that µ(ω1, 0) = a ∨ b but there are no poset P containing ω1 + 1, no poset measure

µ : P × P → F(ω1) extending µ, no positive integer n, and no decomposition 0 =
z0 ≤ z1 ≤ · · · ≤ zn = ω1 in P such that either µ(zi+1, zi) ≤ a or µ(zi+1, zi) ≤ b for

all i < n.
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Proof. Define µ : (ω1 + 1) × (ω1 + 1) → F(ω1) by

µ(ξ, η) =











0, if ξ ≤ η,

cξ, if η < ξ < ω1,

a ∨ b, if η < ξ = ω1.

for all ξ, η ≤ ω1.

It is straightforward to verify that µ is a poset measure on ω1 +1. Suppose that P ,
µ, n, z0, . . . , zn satisfy the given conditions. We put xi,ξ = µ(ξ, zn−i), for all
ξ < ω1. It is not hard, using the triangular inequality, to verify that the elements
xi,ξ satisfy the assumptions (i)–(iii) of Corollary 4.8, a contradiction. �

More “amenable” semilattices do satisfy the “monotone refinement property”
that, because of Corollary 4.8, fails in F(ω1).

Proposition 4.10. Let S be a distributive 〈∨, 0〉-semilattice. If S is either a lattice,

or strongly distributive, or countable, then for all a, b ∈ S, every chain Λ, and every

isotone Λ-sequence 〈ci | i ∈ Λ〉 of elements of S such that ci ≤ a ∨ b for all i ∈ Λ,

then there are isotone Λ-sequences 〈ai | i ∈ Λ〉 and 〈bi | i ∈ Λ〉 of elements of S
such that ai ≤ a, bi ≤ b, and ci = ai ∨ bi, for all i ∈ Λ.

Proof. If S is a lattice the conclusion is trivial: put ai = a∧ ci and bi = b∧ ci, for
all i ∈ Λ.

Now assume that S is strongly distributive. Denote by Ci the (finite) set of
all maximal join-irreducible elements of S below ci, for all i ∈ Λ. Observe that
Ci ⊆ ↓Cj , for all i ≤ j in Λ. For every finite subset I of Λ, denote by XI the set of
all families 〈〈Ai, Bi〉 | i ∈ I〉 such that

(1) Ai ⊆ ↓a, Bi ⊆ ↓b, and Ai ∪ Bi = Ci, for all i ∈ I.
(2) For all i ≤ j in I, Ai ⊆ ↓Aj and Bi ⊆ ↓Bj .

We claim that XI is nonempty, for every finite subset I of Λ. We argue by induction
on |I|. The conclusion is obvious for I = ∅. For I = {i}, put Ai = ↓a ∩ Ci and
Bi = ↓b ∩ Ci. Now suppose that I = {i} ∪ J , where i < j for all j ∈ J and J
is nonempty. By induction hypothesis, there exists an element 〈〈Ak, Bk〉 | k ∈ J〉
in XJ . Put j = min J , Ai = ↓Aj ∩ Ci, and Bi = ↓Bj ∩ Ci. It is straightforward to
verify that 〈〈Ak, Bk〉 | i ∈ I〉 belongs to XI . This completes the induction step.

It follows that the set ΩI of all families 〈〈Ai, Bi〉 | i ∈ Λ〉 of elements of the Carte-
sian product Ω =

∏

(P(Ci) × P(Ci) | i ∈ Λ) (where P(X) denotes the powerset of
a set X) whose restriction to I belongs to XI is nonempty, for every finite subset I
of Λ. Endow Ω with the product topology of the discrete topologies on all (finite)
sets P(Ci)×P(Ci). By Tychonoff’s Theorem, Ω is compact. Hence the intersection
of all ΩI , for I a finite subset of Λ, is nonempty. Let 〈〈Ai, Bi〉 | i ∈ Λ〉 be an element
of that intersection. Then the collection of all elements ai =

∨

Ai and bi =
∨

Bi,
for i ∈ Λ, satisfies the required conditions.

Assume, finally, that S is countable. Define an equivalence relation ≡ on Λ by
i ≡ j iff ci = cj , for all i, j ∈ Λ, and denote by [i] the ≡-equivalence class of i, for
any i ∈ Λ. Putting c[i] = ci makes it possible to replace Λ by Λ/≡. In particular,
as S is countable, Λ becomes countable as well. Now write Λ =

⋃

(Λn | n < ω),
where 〈Λn | n < ω〉 is an increasing sequence of finite subsets of Λ with |Λn| = n, for
all n < ω. Denote by Yn the set of all families 〈〈al, bl〉 | l ∈ Λn〉 such that ai ≤ a,
bi ≤ b, ci = ai ∨ bi, and i ≤ j implies that ai ≤ aj and bi ≤ bj , for all i ≤ j in Λn.
Suppose that we are given an element of Yn as above, and denote by k the unique



8 F. WEHRUNG

element of Yn+1\Yn. Suppose, for example, that min Λn < k < maxΛn, and denote
by i (resp., j) the largest (resp., least) element of Λn below k (resp., above k). As
ck ≤ cj = aj ∨ bj , there are a′ ≤ aj and b′ ≤ bj such that ck = a′ ∨ b′. Put
ak = ai ∨ a′ and bk = bi ∨ b′. Then 〈〈al, bl〉 | l ∈ Λn+1〉 is an element of Yn+1. So
every element of Yn extends to an element of Yn+1. The proof is even easier in case
either k < min Λn or k > maxΛn. Hence we have constructed inductively a family
〈〈ai, bi〉 | i ∈ Λ〉 whose restriction to Λn belongs to Yn, for all n < ω. Therefore,
the elements ai and bi, for i ∈ Λ, are as required. �
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