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Abstract

This paper is a theoretical and a numerical investigation of the stability of a tip—cantilever system used in noncontact atomic
force microscopy (NC-AFM) when it oscillates close to a surface. No additional dissipative force is considered. The theoretical
approach is based on a variational method exploiting a coarse grained operation that gives the temporal dependence of the
nonlinear-coupled equations of motion in amplitude and phase of the oscillator. Stability criterions for the resonance peak
are deduced and predict a stable behavior of the oscillator in the vicinity of the resonance. The numerical approach is based on
the results obtained with a virtual NC-AFM developed by our group. The effect of the size of the stable domain in phase is
investigated. These results are in particularly good agreement with the theoretical predictions. Also they show the influence of the
phase shifter in the feedback loop and the way it can affect the damping signal.

Keywords: Non-linear dynamics; Dynamic force microscopy; Stability analysis

1. Introduction

In the recent years, the use of the noncontact
atomic force microscopy (NC-AFM) mode has
shown that contrasts at the atomic scale could be
achieved on semiconductors and insulators surfaces
[1-5]. Experimental and theoretical features dedi-
cated to the description of this dynamic mode have
been widely discussed in the previous papers [6—12].
In particular, it was shown that the high sensitivity
of the oscillating tip—cantilever system (OTCS) was
based on the value of the quality factor and on its
nonlinear dynamics in the vicinity of the surface
[10,13]. Current works of the authors focus on the
origin of the increase of the damping signal when the
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tip comes close to the surface, in the range of a few
angstroms. Some initial claims suggested that the
origin of this apparent increase could be due to an
hysteretic behavior of the OTCS [10,14]. These
interpretations rise the question of the stability of
the OTCS at the proximity of the surface. Recently,
few authors have performed analytical and numerical
works taking into account the time dependence of the
equations of motion of the OTCS and have deduced
stability criterions [15-17].

This work completes the analytical and numerical
approaches developed in Refs. [16,17], respectively.
Its aim is to show that the nonlinear dynamics of the
OTCS leads to various stable branches on the reso-
nance peak that may help to understand the reason
why the NC-AFM mode, while being so sensitive,
keeps a stable behavior. The influence of the phase
shifter in the feedback loop and the way it can affect
the damping signal is also investigated.
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2. Theoretical approach of the NC-AFM
2.1. Theoretical frame

To describe the interaction between the tip and the
surface, the attractive coupling force is assumed to
derive from a sphere—plane interaction involving the
disperse part of the Van der Waals potential [18]:

HR
6[D — z(1)]

where H, R and D are the Hamaker constant, the tip’s
apex radius, and the distance between the surface and
the equilibrium position of the OTCS, respectively.
The complete theoretical approach of the stability
of the OTCS was developed elsewhere [16]; here are
given the main results. We search a solution to the
temporal evolution of the OTCS by using a variational
solution based on the principle of least action:

Vin[z(1)] = — (D

5S:6[/b$(z,z,t)dt} =0 )

& is the Lagrangian of the system and z(¢) the position
of the tip with time:

1
PL(z,2,0) = >m"3(t)’

2
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where wg, Q, m* and k. = m*w% are the resonance
pulsation, quality factor, effective mass and cantilever
stiffness of the OTCS, respectively. # ¢ and w are the
external drive force and drive pulsation, respectively.
Due to the large quality factor, we assume that a
typical temporal solution is of the form:

2(1) = A(1) cos[or + (1) @)

A(r) and ¢(t) are assumed to be slowly varying func-
tions with time compared to the period T = 2n/w. The
underlined variables of () in Eq. (4), e.g. A(?), ¢(1),
A(r) and ¢(1), are calculated along the physical path,
thus theyzre not varied into the calculations [19]. The
equations of motion in amplitude and phase of the
OTCS are obtained by considering the following
coarse-grained operation. Let us assume a long dura-
tion At = t, — t, with Ar > T and calculate the action

as a sum of small pieces of duration T

=%/,
1 (n+1)T
=y <T/ L(z,2,1) dt) T=Y 2T (5

(n+1

)T
L(z,z,1)dt

T

where Z is the mean Lagrangian during one period and
appears as an effective Lagrangian for a large time scale
compared to the period. Owing to the quasi-stationary
behavior of the amplitude and the phase over the period,
the effective Lagrangian is calculated by keeping them
constant during the integration. The calculations give

LA A 0. 0)
o m_* <2 2 SO\ kcA2 yech Cos (QD)
=T W+ A0+ 07 - 2
1 T m*wo .
7 Vil =2 A cos (0 - )
—AA(o + @) sin (¢ — ¢)] (6)

Note that the effective Lagrangian is now a function of
the new generalized coordinates A, ¢ and their asso-
ciated generalized velocities A, ¢. At this point,
remembering that the period is small regardless to
At = t, — t, during which the total action is evaluated,
the continuous expression of the action is:

Ty .
S=/ LA A, 0, ) dr ™
ta

where the measure dt is such that 7 < dt < At.
Applying the principle of least action S = 0 to the
functional ¥, we obtain the Euler—Lagrange equations:

. .2 a cos(p) ak,
a=[(u+ ¢) ,l]a,§+ 0 +3(d2—a2)3/2’
a1\, sinle)

b= (24 g)wra - ®

In the above equation, specific notations were used.
d = D/Ay is the reduced distance between the loca-
tion of the surface and the equilibrium position of
the OTCS normalized to the resonance amplitude
Ao = OF exc/ke. a = A/Ay is the reduced amplitude,
u = w/wy the reduced drive frequency normalized to
the resonance frequency of the free OTCS and k, =
HR/k.A} is the dimensionless parameter that charac-
terizes the strength of the interaction.
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2.2. Resonance frequency shift

The equations of motion of the stationary solutions
a and ¢ are obtained by setting ¢ = ¢ =0 and
a = @ =0 in Eq. (8) and lead to two-coupled equa-
tions of the sine and cosine of the phase of the OTCS
previously calculated [20]:

_ 2 aQx,
cos (¢) = Qa(l —u”) —W7

sin (¢) = —ua )

Solving the above equation gives the relationship
between the frequency and the amplitude at a given
distance d [10]:

OTCS to remain on the same branch. Qualitatively,
one may expect that around a = 1, the branch u_ is
unstable and u. is stable (see Fig. 1(a)). If this is true,
any small fluctuation of the oscillation amplitude
might produce a jump from one branch to the other
one as discussed in Refs. [10,14]. Since the branch u_
seems to be unstable, a jump to this branch should lead
to an abrupt decrease of the amplitude, which in turn
might produce an apparent abrupt increase of the
damping signal as a consequence of the nonlinear
behavior.

Because such a jump is never observed, it becomes
useful to determine more accurately the stability of the
two branches.

17 1
az 402

us(a) = !

The signs plus and minus are deduced from the sign of
cos (@) and correspond to values of the phase ranging
from 0 to —n/2(u_, cos (¢) > 0) or from —=n/2 to
—n(uy, cos (¢) <0), in agreement with the sign
convention of the phase in Eq. (4). From Eq. (10) is
calculated the resonance peak at any reduced distance
for a given strength of the sphere—surface interaction,
and Eq. (9) gives the associated phase variations. The
two branches define the distortion of the resonance
peak as a function of d. u_ gives the evolution of
the resonance peak for frequency values below the
resonance one and u for frequency values above the
resonance (see Fig. 1(a)).

Using Eq. (10), the resonance frequency shift as
a function of the distance d is obtained by setting
a = 1. This former condition ensures the required
condition for the NC-AFM mode. Thus, the normal-
ized frequency shift (v —vg)/vo is given by u — 1
[10]:

2
1 [ 4 o,

)

As d decreases, the branches u, and u_ become
closer and closer in the vicinity of the resonance.
Therefore question rises about the ability of the

1F 14Q2<1EW> (10)

2.3. Stability criterions

The stability of the branches u. is deduced by
linearizing the equations of motion of the OTCS
(see Eq. (8)) around the stationary solution (now
identified by the index “‘s”) and using classical con-
siderations of the linear theory. A similar approach
leading to equivalent results was developed by
Gauthier et al. [15]. The stability criterions can be
expressed from the derivatives dag/duy of the
branches and reduced to the simple expression [16]:

da a

— — 12
e 0 and cos(g,) > 20) or (12a)
das ds

— — 12
i S 0 and cos (@) < 20) (12b)

Figs. 1(a) and (b) show the distortion of the resonance
peak and associated phase curve, respectively. Figs. 2(a)
and (b) are zooms on the region o of Figs. 1(a) and (b),
respectively.

For the branch u,, das/du being always negative
and the associated value of the phase being always
defined beyond —7/2 (see Section 2.2), the criterion
(12b) implies that u is always stable, whatever the
value of as.

For u_, the sign of the derivative changes twice.
For this branch, the phase is always defined above
—n/2. Therefore on the lower part of the branch
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Fig. 1. (a) Distortion of the resonance peak computed from
Eq. (10). The numerical parameters are d = 1.05, Ap = 10 { nm},
Q =500and x, = 2.5 x 10~*. The stability criterions foresee that
uy is always stable, whereas u_ exhibits two stable domains
(continuous lines, see also Fig. 2) and one unstable (dashed lines).
The domains are separated by the spots where the derivative
da/du_ diverges (see text). (b) Distortion of the phase curve
computed from Eq. (9) associated to the resonance peak. As a
consequence of the stability of u, ¢, is always stable whereas
@_ exhibits two stable domains and one unstable.

a=A/A
0

1.0015 -
Resonance, u = u,
1.001 | Second stable domain
: of u
1.0005 | 1
‘\‘ Unstable domain
of u_
1 L
0.99866 0.99868 0.9987
u=v/v
0
(a)
d
15 20 .
152 | . ]
.=~ Unstable domain
- —
ofgp
-1.54 ¢t E
Second stable domain
- ;
-1.56 | Bk 1
Resonance,
-1.58 cp(mo) =-1/2 1
-1.6 -
0.99866 0.99868 0.9987
u=v/v
0
(b)

Fig. 2. (a) Zoom in the region o of the resonance peak given in Fig. 1.
As da/du_ diverges again, this defines a new domain of u_ which is
predicted to be stable (see text). The resonance is located where
uy = u_.(b) Zoom in the region o of the phase curve. The resonance
is located at —n/2 where ¢ = ¢_ and belongs to a stable domain.

(small a), das/du_ > 0 and the criterion (12a) indi-
cates that the branch is locally stable. When da,/du_
becomes negative (see Fig. 1(a)), because ¢, > —7/2
(see Fig. 1(b)), the criterion (12a) is no more filled.
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As a consequence, u_ is locally unstable and the
instability is precisely located where the infinite tan-
gent appears. On the upper part of the resonance peak,
the curvature of u_ changes again and dag/du_ > 0
(see Fig. 2(a)), implying that it is again a locally stable
domain. Thus the branches u_ and ¢_ exhibit two
stable domains and one unstable.

Note also that the resonance condition is deduced
from da/du = 0 which implies cos (@) = as/20Q, or
equivalently u_ = u,, or again ¢_ = ¢ . This equal-
ity is the usual resonance condition of a free harmonic
oscillator. If a3 = 1, e.g. without any coupling, the
resonance phase is therefore ¢, = arccos [1/20]. For
the OTCS we used, Q ~ 500, and so ¢, = —=n/2. But
taking into account the fact that the coupling
only slightly modifies the value of the resonance
amplitude, a; ~ 1.0013 (see Fig. 2(a)), we still obtain
@, = —n/2 so that we can consider that the nonlinear
resonance is always given by the relationship
o, = —mn/2.

The theoretical approach foresees that i, is always
stable but that also a small domain of u_ around
the resonance value remains stable. If the resonance
value would have been located at the point where
das/du_ is infinite, an infinitely small fluctuation
would have been able to generate an abrupt increase
of the damping signal as discussed previously and
suggested in Ref. [10], or more recently in Ref. [14].
Experimentally, an electronic feedback loop keeps
constant the amplitude of the OTCS so that its phase
is located around —n/2 (see the below section). As
a consequence, question rises about the size of the
stable domain in phase around —n/2. If any fluctua-
tion around —=/2 makes the phase going beyond the
stable domain, the OTCS behavior becomes unstable.
For Q =500, the size of the stable domain is of
about 2.6 x 1072 rd (see Fig. 2(b)) whereas it is
reduced to 2.6 x 1073 rd for Q = 5000 (data not
shown). Thus, if the electronic loop is able to control
the phase locking with a better accuracy than
2.6 x 1073 rd, the OTCS will be locked on a stable
domain.

3. Virtual NC-AFM results

In a recent paper, we have described a virtual
NC-AFM machine built using the Matlab language

and the Simulink toolbox [21]. This machine is very
similar to our own experimental hybrid machine built
with Digital Instruments [22] and Omicron [23]
blocks. The virtual machine has been extensively used
to study the frequency shift and the damping signal in
the approach-retract mode.

Here we want to use the virtual machine to inves-
tigate the stability of the OTCS by looking accurately
at its phase variations within the electronic feedback
loop that maintains constant the amplitude of the
oscillations.

3.1. The phase shifter of the feedback loop

In Fig. 3 is drawn a simplified schematic diagram of
the feedback loop of our NC-AFM (for more details,
see Ref. [21]). Usually, the phase ¢(w) of the phase
shifter transfer function is adjusted to —37/2 so that
the loop oscillates at vy which is the free resonance
frequency of the cantilever, corresponding to a tip—
surface distance D — oo. The oscillations of the loop
are ruled by the relation:

P(®) + p(w) =0+ 2nn (13)

where 7 is an integer and ¢(w) the phase difference
between the oscillations and the excitation of the
cantilever. If the set point is fixed to the resonance
frequency, then ¢(wo) = —mn/2. The phase adjustment
in the Omicron electronics is obtained by changing the
bias of varicap diodes [24]. The phase shifter transfer

Damping signal Automatic Gain |

Control (AGC)

Phasc shifter
ej¢ (@)

Cantilever + tip +

surface under test | m——

phase @(w)

Fig. 3. Schematic diagram of the feedback loop used in the virtual
NC-AFM which is very similar to the one of the experimental
machine.
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function in terms of the p Laplace variable can be
written as

1— 2
H(p) = (1 +:§> (14)

The time constant 7 is experimentally adjusted such
that, at the resonance

3n
2

When the tip—surface distance D is reduced, due to
the coupling, g decreases. As a consequence, ¢ (wy)
and ¢(wg) are no more equal to —37/2 and —=n/2,
respectively. According to Eq. (13), the variation of
¢(w) is governed by the one of ¢(w). Assuming a small
variation around the resonance frequency Aw =
W — o, one gets

—3r 47

Bl) === (TwO)ZAw (16)

¢(wo) = —4arctan (twg) = — (15)

As D decreases, Aw is negative. Therefore ¢(w) be-
comes larger than —37/2 and ¢ (w) smaller than —7/2.
The decrease of ¢(w), ¢(w) < — 1/2, means that the
phase of the OTCS follows the phase branch associated
to uy, ¢, which is always stable (see Fig. 2(b)). Thus
the loop is always stable. Moreover, the hypothesis
implying that ¢(w) keeps a value close to —7/2 is a
very good assumption. To prove that, let us consider for
instance vy = 150 kHz, therefore © =2.56 x 107 ¢s
(see Eq. (15)). Assuming now a large frequency shift,
Av = —200 Hz, we get Ag(w) =1.9 x 1073 rd and
therefore Ap(w) = —1.9 x 1073 rd. Thus the typical
phase variations of the OTCS around the nonlinear
resonance are less than 2 x 1073 rd. This implies that
the machine properly follows the nonlinear resonance,
even when large frequency shifts are considered.

The curve [a] in Figs. 4 and 5 shows the phase ¢(w)
and the damping signal vs. the distance D, respec-
tively. As expected, the variations are very weak.

3.2. “Controlled” damping variations

To observe the phase instability predicted by the
theoretical calculations, the phase shifter transfer fun-
ction should have been in the form d¢(w)/dw >0
around wy. A possible expression of such a transfer
function would be H(p) = ((1+1p)/(1 —1p))>.
Experimentally, this form is not feasible and even if

Phase ¢ [rd]

-1.1
12} ]
13} ]
14 | ]
15 | .

[a]
-1.6 | ]

-1.7 + [b]

-1.8 1

19 L L L L
1.5 1.52 1.54 1.56 1.58 1.6
Tip-surface distance D[m] <108

Fig. 4. Variations of the phase of the OTCS ¢(w) within the feed-
back loop vs. the distance D computed from the virtual NC-AFM.
The numerical parameters are: resonance amplitude Ap = 15 nm,
spring constant k. = 40 N m~!, quality factor Q = 5000, tip’s radius
R = 10 nm and Hamaker constant H = 2 x 10719 J. Curve [a]: the
phase ¢(w) of the transfer function H(p) of the phase shifter is the
one given by Eq. (15), e.g. is similar to the experimental machine.
As D decreases, ¢(w) becomes weakly smaller than —7/2 (less than
2 x 1073 rd, see text), therefore follows the stable branch ¢, . The
machine follows accurately the set point, which is always stable,
even when the tip is in the very close vicinity of the surface. The
associated damping variation nearly not varies (see Fig. 5). Curve
[b]: ¢(w) is the phase of H(p) whose expression is given by Eq. (17).
Around —7/2, the slope d¢p(w)/dw is larger than in curve [a] so that
¢(w) decreases more quickly. As a consequence, the damping signal
increases.

it were, the loop would become unstable and therefore
no stationary state could be reached. The reason is that
the inverse Laplace transform of 1/(1 — tp) varies as
e’/” which diverges as t — oo.

Nevertheless, it is possible to exploit the phase
instability to investigate more accurately the damping
signal variations with the virtual machine. In the
virtual machine, it is possible to implement a phase
shifter with a slope d¢)(w) /dw larger than the one built
by Omicron. As an example, we have retained a
transfer function which is easy to do with electronic
components

_(P* = (01/Q))p + o7
Hip) = <p2 + (01/01)p + w%) a7
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Damping signal [V]

1.55

15 r =

145

1.5 1.52 1.54 1.56 1.58 1.6
Tip-surface distance D [m] <1078

Fig. 5. Variations of the damping signal vs. the distance D
correlated to the phase variations given in Fig. 4. Curve [a]: no
damping variation is observed if the phase of the virtual NC-AFM
phase shifter is similar to the one of the experimental machine. In
the very close vicinity of the surface, as ¢(wo) — n/2, e.g. the
amplitude of the oscillations slightly decreases, a weak increase is
observed. Curve [b]: as ¢(wy) varies more quickly than in curve [a]
due to the different expression of H(p), a larger increase of the
damping is obtained.

The parameters w; and Q; may be adjusted to obtain
for instance ¢(wg) = —37/2. The phase of the trans-
fer function is then:

O ) (18)

Q1(0f — @?)

¢(w) = —2arctan (

For a small frequency shift, d¢(w)/dw|, ~ —40,/
wy. Keeping the same values than previous vy = 150
kHz and Av = —200Hz and assuming Q; = 50,
we now obtain a change A¢(w) of about 0.26 rd.
Consequently, Ap(w) becomes larger (see the curve
[b] in Fig. 4) and we now observe an increase of the
damping signal as shown in Fig. 5, curve [b].

The previous examples are pedagogical cases. The
latter one considered an arbitrary large value of the
phase slope of the phase shifter. An ideal phase
shifter should maintain the phase ¢(wg) at —37/2
so that the frequency of the loop remains equal to
the resonance frequency of the cantilever. Practically,
this is not possible. However, it is clear that the
solution retained by Omicron is very close to the ideal

case ¢(wp) = —31/2 because do(w)/dw is very
weak.

4. Conclusion

A variational method based on a coarse-grained
operation has been used to investigate in details the
stability of an oscillating tip—cantilever system near a
surface. The tip—surface interaction is described by
Van der Waals potential. Results show that the reso-
nance peak of the oscillator can be described from two
branches. The first one, named u., corresponds to
frequencies larger than the resonance. Stability criter-
ions deduced foresee that it is always stable. The
second one, u#_, may be decomposed into three
domains: two are stable and one is unstable. The
second stable domain of u_ is small and is defined
at the upper extremity of the resonance peak. The
phase at the resonance ¢(wg) = —n/2 is at the overlap
of the u, and of this former second stable domain of
u_, thus the set point ¢(wy) = —7/2 belongs to a
stable zone.

This result is of great importance to understand the
stability in NC-AFM. In this technique, the phase of
the cantilever is adjusted to —7 /2 within an electronic
feedback loop as the tip—surface distance is large
enough to make the tip nonsensitive to the interaction.
In the approach mode, the frequency of the loop
decreases, consequently the phase becomes smaller
than —7/2 because the phase slope d¢(w)/dw of the
phase shifter transfer function is always negative.
Thus the oscillator always slides” along u, and
the system is unconditionally stable. This is what
usually observed experimentally and confirmed by
the results of the virtual NC-AFM we have built.
Because the slope d¢(w)/dw and the frequency shift
are very weak, we may consider that the phase ¢(wy)
of the oscillator is always very close to —7/2, typical
variations being less than 2 x 1073 rd. Consequently,
the damping signal keeps constant if no dissipative
force is introduced in the tip—surface interaction.
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