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From heavy ions to exotic atoms

P. Indelicato∗ and M. Trassinelli
Laboratoire Kastler Brossel,́Ecole Normale Supérieure et Université P. et M. Curie,

Case 74, 4 place Jussieu, F-75252, Cedex 05, France

We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which
aim at providing informations on fundamental interactions. Among those are propositions of experiments for
parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in
highly charged ions. We also describe recent experiments onpionic atoms, that make use of highly-charged ion
transitions to obtain accurate measurements of strong interaction shift and width.

PACS numbers:

I. INTRODUCTION

In the last 30 years, accelerators and heavy ion sources around the world have been used to produce highly charged heavy ions
to provide accurate tests of quantum electrodynamics in strong Coulomb fields. Indeed, the work of Lamb and Retherford [1] and
of Kush and Foley [2] have been at the origin of quantum Field Theories in the first place. But atomic physics experiments have
proven valuable also as a tool to study fundamental physics way beyond the realm of Quantum Electrodynamics. In particular
the study of parity violation in atoms [3] provided constraints on the electro-weak model, which for a while were completing the
LEP results, with a comparable accuracy [4]. Accurate measurements of the electron electric dipole moment in atoms are also
providing interesting limits to time-reversal violation (see, e.g., [5] for a recent review).

Exotic atoms and ions are formed when a heavy particle is captured on an atomic nucleus. In the process, many or all
electrons of the atom are ejected and one obtains a highly charged heavy ion, with properties that depend on the captured particle.
Measurements in exotic atoms or ions have lead to accurate long-lived particle mass measurements, and to strong-interaction
studies (using pionic, kaonic and antiprotonic atoms) at very low energy. Muonic atoms have also been used for precise studies
of nuclear structure (nuclear charge distribution radius and shapes). Finally the availability of antiprotonic helium atoms [6] and
of antihydrogen [7, 8] is leading to new tests of the CPT theorem.

In this paper we review some theoretical and experimental work, that exemplifies this aspect of atomic physics, restricting
ourselves to problems concerning heavy ions and exotic atoms. In Sec. II, we describe proposals that concern parity violation
in heavy ions. In Sec. III, we will show how the physics of exotic atoms and of highly charged heavy ions have come together
to provide at the same times accurate spectrometer calibrations that were mandatory to obtain a significant result on thestrong
interaction broadening in pionic hydrogen, while showing prospects for very accurate measurements with highly-charged heavy
ions.

II. PARITY VIOLATION IN HEAVY IONS

Parity violation in atoms results from the exchange ofZ0 bosons (the so-called neutral currents) between atomic electrons and
nucleons in the nucleus. From that assumption, one can derive the Hamiltonian

Hpv =
GF

2
√

2
(1−4sin2 ϑW − N

Z
)ργ5 . (1)

whereGF denotes Fermi’s constant,ϑW the Weinberg angle,N the neutron number,Z the proton number, andρ the nuclear
density normalized toZ andγ5 = iγ0γ1γ2γ3. Theγµ are Dirac matrices. This formula also demonstrates why highly charged heavy
ions with few electrons are proper candidates for investigating parity non–conservation effects: The wave function admixture
coefficientηpv between leveli and f , which is given by

ηpv =
〈i| GF

2
√

2
(1−4sin2 ϑW − N

Z )ργ5| f 〉
Ei −Ef

=
〈i|HPV| f 〉
Ei −Ef

, (2)
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is very large (typically orders of magnitude larger than forthe outer shell in neutral atoms) due to the big overlap between the
nucleus and the electron states. In order to get even larger enhancement, one has to find quasi-degenerate states, so that

∣

∣Ei −Ef
∣

∣

is very small. This is a rather general scheme. For example, the coupling by the hyperfine Hamiltonian of a long-lived and of
a short-lived state can lead to very large effects on the short-lived state lifetime, a phenomenon known as hyperfine quenching.
The use of the quasi-degeneracy between the 1s2p3P0 and 1s2p3P1 fine -structure states in heliumlike ions, as proposed in 1989
[9] has lead to a very fruitful study of the fine structure splitting over a large range of atomic numbers[10, 11, 12, 13, 14,15].

The search for a similar enhancement in the case of parity violation has lead to a proposal [16] to use the accidental quasi-
degeneracy between the 1s2p3P0 and 1s2s1S0 opposite parity levels in Heliumlike ions forZ≈ 92. In that case,

∣

∣Ei −Ef
∣

∣≈ 1 eV
can be very small compared to the energy of the transitions tothe ground state (≈ 100 keV) or to then = 2 shell binding energy
(≈ 25 keV). The idea was to compare the rate of the parity-violating 2E1 transition between the 1s2p3P0 and 1s2s1S0, excited
by a laser, to theE1M1 rate. At the time the required laser intensity (1021 W/cm2), obtained with a theoretical 1s2p3P0 and
1s2s1S0 energy splitting of -0.9 eV, were out of reach. There is stilla large uncertainty on the energy splitting. A summary of
the different calculations is presented on Fig. 1. The valueof Z closest to the crossing point can vary by one or two units, and
the uncertainty, due in particular to nuclear finite size andshape corrections are large. A direct measurement of this splitting
for several elements would be very valuable as it would provide simultaneously information on QED corrections and nuclear
structure.

FIG. 1: comparison of different calculations of the 1s2p3P0 and 1s2s1S0 energy splitting. MCDF: [17, 18, 19] and this work; Planteet al:
[20]; Artemyevet al: [21]; Andreevet al: [22]; Drake: [23]

More recently, a number of other proposals addressing otherobservables have been proposed, either on Be-like ions [24],
or making use again of the quasi-degeneracy in heliumlike ions mentioned above but this time at the other crossing, around
gadolinium and europium [25].

III. THE STRONG INTERACTION SHIFT AND BROADENING IN PIONIC HYDROGEN

A. The new pionic hydrogen experiment

Exotic atoms are atoms that have captured a long-lived, heavy particle. This particle can be a lepton, sensitive only to the
electromagnetic and weak interactions, like the electron or the muon, or a meson like the pion, or a baryon like the antiproton.
An other kind of exotic atom is the one in which thenucleushas been replaced by a positron (positronium, an e+e− bound
system) or a positively charged muon (muonium, aµ+e− bound system).

The capture of a negatively charged, heavy particleX− by an atom, occurs at a principal quantum numbern≈ ne

√

mX−
me

where

ne is the principal quantum number of the atom outer shell, andme, mX− are respectively the electron and particle mass. This
leads ton = 14, 16 and 41 for the capture on hydrogen or helium of muons, pions and antiprotons respectively. The capture
process populatesℓ sub-states more or less statistically. During the capture process of an heavy, negatively charged particle,
many or all of the electrons of the initial atoms are ejected by Auger effect. As long as electrons are present, Auger transition
rates are very large and photon emission is mostly suppressed except for the low lying states. For light elements, or veryheavy
particles like the antiproton, the cascade can end up with anhydrogenlike ion, with only the exotic particle bound to thenucleus
[26].
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The spectroscopy of exotic atoms has been used as a tool for the study of particles and fundamental properties for a long time.
Exotic atoms are also interesting objects as they enable to probe aspects of atomic structure that are quantitatively different from
what can be studied in electronic or “normal” atoms. For example, all captured particles are much heavier than the electron, and
thus closer to the nucleus, leading to a domination of vacuumpolarization effects over self-energy contributions, in contrast to
normal atoms.

Pions are mesons, i.e., particles made of a quark-antiquarkpair. They are sensitive to strong interaction. They decay into a
muon and a muonic neutrino. The lifetime of the charged pion is 2.6×10−8 s. The mass of the pion is 273 times larger than the
electron mass. Contrary to the electron, it has a charge radius of≈ 0.8 fm and is a spin-0 boson.

Quantum Chromodynamics is the theory of quarks and gluons, that describe the strong interaction in the Standard Model.
It has been studied extensively at high-energy, in the asymptotic freedom regime, in which perturbation theory in the coupling
constant can be used. This does not work in the low-energy limit. Weinberg proposed Chiral Perturbation Theory (ChPT)
[27] to deal with this problem. More advanced calculations have been performed since then, that require adequate testing (see,
e.g., [28]). The lifetime of the pionium (a bound pion-antipion system) has been studied at CERN [29], because it is the most
elementary object for studies of ChPT. Yet the accuracy is not very good because of the difficulty of the experiment, and pionic
hydrogen is the best candidate for accurate test of ChPT. Theshift and width of np→1s transition in pionic hydrogen due to
strong interaction can be connected respectively to theπ−p→ π−p andπ−p→ π0n cross-sections, which can be evaluated by
ChPT, using a Deser-type formula [30].

Pionic hydrogen has thus been subjected to a 10 year experimental program [31], completed a few years ago, that has yielded
a 9 % accuracy for the strong interaction broadening (of the order of 1 eV) and a 0.6 % accuracy on the energy shift (of the order
of 7 eV). Yet, after such an effort, the knowledge of the widthwas not good enough for an accurate test of ChPT and it was
worthwhile to consider new ways of doing the experiment [32,33, 34, 35].

Since the mid-ninety a large collaboration has developed a technique to measure with great accuracy X-ray spectra from light
exotic atoms, formed in a low-density gas. This techniques involves the cyclotron-trap, a small cyclotron that can decelerate
and focus a particle beam on a gas target located at its center, with the help of degrader foils. The second version of this device
can efficiently decelerate antiprotons and pions, and also secondary beams like muons, which originate in pions’ decay.The
techniques involves also a high-resolution high-luminosity spherically-curved crystal spectrometer equipped witha 6-chip X-ray
CCD camera, that enable a high level of background rejection. A sketch of the experiment is presented on Fig. 2. More details on
the experimental set-up can be found in [32, 35, 36]. After a successful study of antiprotonic hydrogen and deuterium at LEAR
(CERN) [36], and a measurement of the pion mass [37], a first attempt at studying pionic deuterium provided in a very short time
a sizable improvement over previous experiments [38]. It was then decided that such an apparatus could lead to improvements
in pionic hydrogen measurement of a factor 3 in the accuracy of the shift and of one order of magnitude in the accuracy of the
width.

FIG. 2: Principle of X-ray spectrocopy of exotic atoms with the cyclotron trap and a spherically curved crystal spectrometer. The bidimensional
X-ray detector is a 6-chips cooled CCD detector and is located on the Rowland circle of radiusR/2, whereR is the radius of curvature of the
crystal (≈ 3 m)

B. He-like heavy ions and pionic hydrogen

The main difficulty in the experiment is to separate the strong interaction broadening of the pionic hydrogen lines from
other contributions, namely the instrumental response function, Doppler broadening due to non-radiative de-excitation of pionic
hydrogen atoms by collisions with the H2 molecules of the gas target and from possible transitions inexotic hydrogen molecules.

The Doppler broadening and the role of exotic molecules can be estimated by systematic studies as a function of target density
and of the initial level of the transition. We have thus measured the width of the transitionsnp→ 1s, with n = 2, 3 and 4. A
detailed theoretical study of the cascade processes has also been performed [39].This calculations provides the kinetic energy
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distribution of pionic hydrogen atoms in the different levels, thus enabling to correct the width. With that correctionwe obtain
similar width from transitions originating from all threenp levels. We also measured similar transitions in muonic hydrogen, in
a case where there is no strong interaction broadening, to check our ability to analyze properly cascade and Doppler broadening.

The determination of the instrumental response, which depending of the crystal varies from≈ 0.28 meV to≈ 0.4 eV, was
difficult. X-ray emitted by neutral atoms in solid or gas target, ionized in inner shells cannot be used because of their natural
width (≈ 1 eV). Exotic atoms do not provide as good a response functioncalibration as most lines, coming from molecules like
N2, are broadened by Doppler effect due to the Coulomb explosion during the atom formation process [40]. Finally the rate is
much lower and the statistic usually not sufficient.

The instrumental response has then been studied using a transition in helium-like ions [41], emitted by the plasma of a
high-performance Electron-Cyclotron Resonance Ion Trap (ECRIT) build at PSI [42], using the cyclotron trap and a permanent
magnet hexapoles.

With this ECRIT, we have obtained high-intensity spectra ofhighly charged sulfur, chlorine and argon. For these elements the
relativistic M1 transition 1s2s3S1 → 1s2 1S0 is very bright and very narrow, due to the very low kinetic energy of the ions in the
source (Doppler width≤ 40 meV, natural width is negligible). The M1 transitions in each of these elements are located nearby
then = 2, 3 and 4 transitions in pionic hydrogen. They thus allow forsystematic study of instrumental response. An example of
the relativistic M1 transition spectrum in He-like argon ispresented on Fig. 3.

FIG. 3: High-statistic X-ray spectrum of helium-like argon(center line) from the PSI Electron-Cyclotron Resonance Ion Trap, acquired using
the instrument in Fig. 2. The width of the M1 3.1 keV line is 0.4eV. It is used as an energy reference.

C. High-precision measurements in highly charged ions

Apart from the characterization of the spectrometer, one ofthe most important results of this ongoing project is in a series of
high-precision measurement of the X-ray spectra of argon, chlorine and sulfur. With 1–2 hours maximum acquisition time, we
obtained high-statistics spectra of He-, Li- and Be-like ionic states of these elements. This new approach may lead to a better
understanding of a fundamental problem that arose recently: after several decades of high-precision work on He and helium-
like ions, there are still difficulties in comparing theory and experiment. In He there is a strong disagreement (six times the
combined error bars) between the calculations [43, 44, 45, 46] and recent very accurate measurements [47, 48, 49]. In He and
light elements, the theory makes use of an expansion of the Bethe and Salpeter equations in operators of successive orders in α,
the fine structure constant, andZα. For heavier elements one uses all-orders methods, in whichseries of diagrams are summed
up, and QED calculations to all orders inZα are available. One way to understand this very important discrepancy, is then to
study more accurately heavier elements.

A single crystal spectrometer like ours can only measure energy differences between atomic transitions. A reference isthus
needed. Due to the lack of high quality reference lines in neutral atom X-ray spectra (see, e.g., [50]) we used as a reference
He-like 1s2s3S1 → 1s2 1S0 M1 transition. All the transition energy provided in the present work are relative to the M1 theoretical
transition energy. The peaks in the spectra were fitted with asimulated spectrometer response function which was convoluted
to a Gaussian. The response function was obtained through a Montecarlo X-ray tracking simulation based on the theoretical
reflection function of the crystal obtained with the XOP code[51]. The reliability of the simulation had previously beentested
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during the crystal response function study [41]. The results obtained in highly-charged argon and sulfur spectroscopyhave an
unprecedented precision of the order of 10 meV and they agreewith the previous experimental values and theoretical predictions
(see Tables I, II).

Transition: 1s2p 1P1 → 1s2 1S0 1s2p 1P1 → 1s2s3S1

Costa [52] (th.) 3139.57 16.05

Plante [20] (th.) 3139.6236 16.0484

Lindgren [53] (th.) 16.048

Artemyev [21] (th.) 3139.5821(5) 16.0477(2)

Deslattes [54] (exp.) 3139.553(36) 16.031(72)

This Work 3139.537(10) 16.040(17)

(prelminary results)

TABLE I: Example of experimental determination of He-like argon transition energies in eV[55]

Transition: 1s2p 1P1 → 1s2 1S0 1s2p 1P1 → 1s2s3S1

P. Indelicato [17, 18, 56] (th.) 2460.6169 13.4875

Plante [20] (th.) 2460.6707 13.4857

Artemyev [21] (th.) 2460.6292(4) 13.4853(2)

Schleinkofer [57] (exp.) 2460.67(9) 13.62(20)

This Work 2460.608(9) 13.483(16)

(prelminary results)

TABLE II: Example of experimental determination of He-likesulfur transition energies in eV[55]

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, We have shown that the physics of highly charged ions can be used in several different circumstances to test
fundamental theories. We have first reviewed prospects of doing parity violation experiments with heliumlike ions. It is possible
that with the FAIR project at GSI (https://www.gsi.de/fair/index_e.html), such experiments become possible, but a
large effort must be done to understand better the structureof two-electron ions. We have described a new set-up, which reuses
instruments developed for exotic atoms, to build an ECRIT that generate highly-charged ions. The high-performance X-ray
spectrometer allows fro very accurate measurements of transition energy in two-electron ions, that could help solve the problem
in the fine structure of He. Thanks the high-intensity of the helium-like X-rays emitted by the ECRIT or by more conventional
ECRIS (Electron-Cyclotron Ion Source), it is now foreseen that absolute energy measurements of at least M1 transitionsare
possible, using metrology-grade two-crystal instruments. Such an instrument, dedicated to such experiments with highly charged
ions is now being completed in our laboratory (http://dirac.spectro.jussieu.fr/x-ray-metro.html).

On the exotic atom side, this set-up and the use of helium-like ions as high-quality X-ray standards, are leading to highly
improved measurements of the strong width and shift in pionic hydrogen and deuterium, as very precise tests of ChPT as a
model of strong interaction at low energy.
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Laboratoire Kastler Brossel is Unité Mixte de Recherche duCNRS n◦ 8552. The experiments on pionic hydrogen are pre-
sented on behalf of the pionic hydrogen collaboration (http://pih.web.psi.ch).

[1] W. E. Lamb and R. C. Retherford,Fine Structure of the Hydrogen Atom. Part I, Phys. Rev.79 (1950) no. 4 549–572.
[2] P. Kush and H. M. Foley,The Magnetic Moment of the Electron, Phys. Rev.74 (1948) no. 3 250–263.
[3] M. A. Bouchiat and C. C. Bouchiat,Weak neutral currents in atomic physics, Phys. Lett. B48 (1974) no. 2 111–14.

https://www.gsi.de/fair/index_e.html
http://dirac.spectro.jussieu.fr/x-ray-metro.html
http://pih.web.psi.ch


Heavy ions and exotic atoms 6

[4] C. S. Wood, S. C. Bennet, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman,Measurement of Parity Nonconserva-
tion and an Anapole Moment in Cesium, Science275 (1997) 1759–1763.

[5] J. S. M. Ginges and V. V. Flambaum,Violations of fundamental symmetries in atoms and tests of unification theories of elementary
particles, Phy. Rep.397 (2004) no. 2 63–154.

[6] T. Yamazaki, N. Morita, R. S. Hayano, E. Widmann, and J. Eades,Antiprotonic helium, Phy. Rep.266 (2002) no. 4-5 183–329.
[7] M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowek, C. Carraro, C. L. Cesar, M. Charlton, M. J. T. Collier, M. Doser, V. Filippiniq,

K. S. Fine, A. Fontanaq, M. C. Fujiwara, R. Funakoshi, P. Genovaq, J. S. Hangstk, R. S. Hayano, M. H. Holzscheiter, L. V. Jørgensen,
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