N

N

Relationship between the non linear dynamic behaviour
of an oscillating tip-microlever system and the contrast
at the atomic scale

Jean-Pierre Aimé, Gérard Couturier, Rodolphe Boisgard, Laurent Nony

» To cite this version:

Jean-Pierre Aimé, Gérard Couturier, Rodolphe Boisgard, Laurent Nony. Relationship between the
non linear dynamic behaviour of an oscillating tip-microlever system and the contrast at the atomic
scale. Applied Surface Science, 1999, 140, pp.333-338. hal-00011235

HAL Id: hal-00011235
https://hal.science/hal-00011235
Submitted on 13 Oct 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00011235
https://hal.archives-ouvertes.fr

Relationship between the non linear dynamic behaviour of an
oscillating tip—microlever system and the contrast at the atomic
scale

JP. Aimé *, G. Couturier, R. Boisgard, L. Nony

CPMOH Université Bordeaux 1, 351 Cours de la Libéartion, 33405 Talence, France

PUBLISHED IN Appl. Surf. Sci. 140, 333-338 (1999)

Abstract

In this paper, the dynamic behaviour of an oscillating tip—microlever system at the proximity of a surface is discussed.
The attractive tip—surface interaction is simply described with a Van der Waals dispersive term and a sphere—plane
geometry. We show that the non linear behaviour of the oscillator is able to explain the observed shifts of the resonance
frequency as a function of the tip—surface distance without the need of introducing a particular short range force.

PACS: 07.79.Lh; 61.16.Ch; 68.35.Bs
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1. Introduction

Few years ago, the resonant non contact mode has
been found as a way to map tip—surface interaction
as shifts of the resonance frequency [1,2]. Since then,
numerous technical and experimental efforts had been
performed showing that measurements of shifts were
able to produce images at the atomic scale [3-6].
The ‘routinely’ achievement of the atomic resolution
by several different teams and on different types of
surface were thought as a real breakthrough in the
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field of the scanning probe microscopy. Moreover,
the increase of experiments using the resonant non
contact mode with a high vibrating amplitude and
the systematic use of the intermittent contact (the so
called tapping mode) produced numerous stimulating
experimental results [7-9]. Therefore, theoretical
works dedicated to a non linear analysis of the
oscillating behaviour in an attractive and repulsive
field were greatly stimulated [10-16].

Before going a step further, it is worth to discuss
general ideas at a qualitative level. Leaving aside the
technical point that the use of a high amplitude
reduces the influence of the fluctuations in frequency
[2], a first, counter intuitive, result is the use of a
large vibrating amplitude allowing the atomic resolu-
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tion to be achieved. The most common and shared
idea is that to probe an attractive field with an
oscillator requires to use a small amplitude in order
to keep the force field nearly constant throughout the
vibrating amplitude. This comes from the idea that
shifts in resonance frequency were uniquely due to
the gradient force variations.

An image with the atomic resolution based on a
repulsive interaction appears quite easily understand-
able, but getting the same resolution when the attrac-
tive Van der Waals forces are involved is much
puzzling. The smooth variation of the Van der Waals
atom—atom interaction and the finite size of the
interacting objects requires a further summation,
leading to a tip—sample interaction smoothly varying
as a function of the tip—sample distance. For in-
stance, the sphere—plane interaction leads to an at-
tractive force with a d 2 power law. The force
gradient variations, with a power law d~3, should
normally not be able to produce features at the
sub-atomic scale. This can be straightforwardly de-
duced within the framework of alinear analysis from
which shifts of the resonance frequency as a function
of the force gradient is unable to predict the ob-
served shape of the frequency changes as a function
of the tip sample distance (see below).

The key point with an AFM is that the recorded
information comes from the tip—sample interaction,
thus the tip is the collector but that which is mea
sured is the cantilever response. In other words,
when the microlever is externally periodically ex-
cited, the recorded image is a measure of the oscillat-
ing behaviour of the tip—microlever system, which in
turn can be very sensitive to change of the strength
of the surrounding field either attractive or repulsive.

As a consequence, one can expect to find the
experimental conditions for which a small change of
the strength of the interacting field induces a spec-
tacular change of the oscillating properties. Such a
situation occurs if a non linear dynamic behaviour is
observed, such that the oscillator acts as an amplifi-
cation of a small perturbation. That means that those
variations will be able to produce a high contrast on
an image even for a small variation of the surface
properties.

When the tip—microlever system experiences a
purely attractive field, the oscillator exhibits a non
linear behaviour [10—12,14]. When the oscillator is

set at a drive frequency dightly below the resonance
one, a bifurcation from a monostable to a bistable
state occurs as soon as the vibrating amplitude is
large enough [14]. Such an instability makes the
tip—cantilever system very sensitive to any dight
change of the tip sample interaction. Indeed, the
occurrence of an instability gives an infinite sensitiv-
ity with the undesirable effect that the tip can snap
the surface. Keeping the amplitude constant, the
shifts in resonance frequency show a continuous,
monaotonous, variation as afunction of the tip—surface
distance which can be very large when non linear
effects take place, and in turn amplifies small changes
of the strength of the interaction.

This is the am of the present work to show that
taking into account the non linear behaviour of an
oscillator and a Van der Waals like interaction be-
tween the tip and the surface could be enough to
describe most of the results obtained at the atomic
scale. As soon as a high amplitude is used, a non
linear behaviour is expected, the larger the ampli-
tude, the sharper is the bifurcation, or more pro-
nounced is the dependence of the shift in frequency
as a function of the tip—surface distance. As a conse-
guence, to explain the recorded images a complete
understanding of the oscillating behaviour is neces-
sary whenever possible. The paper is organised as
follows, in the first part we present the differential
equation aiming to describe the resonance behaviour
of a non linear oscillator, to do so we discuss the
Duffing oscillator that exhibits the main features
expected. Then we turn on a more general treatment
based on a variationa principle from which we do
get an exact analytical expression of the harmonic
solution. This harmonic solution is discussed and
simplified in order to better compare the shift of the
resonance frequency as a function of the tip—surface
distance given by the linear and the non linear
analysis.

2. Perturbation theory, approximate solution of
the harmonic ansazt

Most of what is given below, can be found in Ref.
[17] or Ref. [18], therefore we just recall the basic
ideas and underline the most interesting results. The
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linear equation describing the resonance curve of an
oscillator gives the relationship between amplitude
and frequency:

f/m
V(03— 0?) + (2B0)°

with B the damping factor giving a quality factor
Q=wy/2B. f and w are the externa drive force
and the drive frequency, respectively. When the tip
is far from the surface, the resonance curves are
described in Eq. (D).

To take into account a possible non linear be-
haviour of the oscillator, particularly when attractive
or repulsive interaction occur, the Duffing oscillator
is a pedagogica and suitable model:

Alw) = (1)

5&+2[3>’<+w§x+aw§x3=%cos(wt) (2)
where ¢ < 0 corresponds to the attractive case and
£ > 0 corresponds to the repulsive case. The use of
the trial function Acos(wt — ¢) gives shiftsin reso-
nance frequency as a function of ¢ and of the
magnitude of the vibrating amplitude through the
relationship [17]:

w” =w0(1+%8A2), (3)

The shift becomes a function of the amplitude, the
larger is the amplitude the larger is the resonance
frequency shift (see below). The relationship be-
tween the amplitude and the frequency becomes[17]:

f/m

\/(wg(l + %8A2)2 - w2)2 + (ZBw)2

Alw) =

(4)

3. Variational method, principle of least action

A variational method can be developed based on
the principle of least action [14]. The action S(x) is
afunctiona of the path x(t) and is extremal between
two instants.

s[x(H)] = [“L(xxt)dt (5)

a

Where L is the Lagrangian of the system. The
main aim of the use of the variationa principle is to
employ a trial function that allows us to perform an
analytical treatment. As for the treatment of the
Duffing oscillator, we focus on the behaviour of the
harmonic solution of the form x(t) = A(D) cos( wt
— ¢(D)). Using a sphere—plane interaction [19], the
Lagrangian is:

L=T—U+W=21mx?

HR

— | 1kx2 —
skx? + xf cos( wt) 6(D—x)

— ¥ XX
(6)

where H is the Hamaker constant, R the radius of
the tip, D the distance between the surface and the
tip a the equilibrium position at rest and y the
damping coefficient. The parameters of the path are
A and ¢, and the variational principle 3S= 0 be-
comes a set of two partial differential equations:

IS
— =0
oA
IS
— =0
I

after some tedious calculation, we obtain the two
coupled non linear equations:

o a

cos ¢ = Qa(1l— u?) (7a)

3/2

3 (d?-a)
sin¢=au (7b)

where the amplitude, the distance and the frequency
are expressed in reduced coordinates a=A/A, and
d=D/A,, U=w/w, Where w, and A, are the
frequency and amplitude at the resonance. Findly,
we use the dimensionless parameter «:

HR
a= —Q (8)

- 2 A3
Mwg Ay

a is the ratio between a normalised attractive inter-
action and the external force. When o < 1, abifurca
tion from a monostable to a bistable state can be
observed, while when « > 1, ingtabilities are not
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observed and a linear analysis can be used [14].
When a molecule—plane interaction is used, the di-
mensionless parameter becomes o = (HR®Q) /(m
w2 A3) [20].

Solving Egs. (7a) and (7b) gives the relationships
between the amplitude, the distance and the fre-
quency:

2/3

4. Comparison with a simulation and different
approaches

Here it is useful to examine an approximation
alowing Eqg. (9) to be more tractable compared to
the one we get with a linear analysis. Consider the
case corresponding to:

1
Q> —=
V1—u?

Eg. (10) means that the relative width of the reso-
nance curve is smaller than that of the relative shift
of the resonance frequency. Assuming this condition
is fulfilled, when the amplitude is kept constant, Eq.
(9) allows a simple relation between the relative shift
and the tip—surface distance to be derived. Setting
a= 1 one gets from Eq. (9):

[1-u]~1 1
—Uul ~ — —
3mw3 A(d? — 1)3/2

(10)

(11)

Eg. (11) indicates that as soon as condition 10 is
fulfilled, the quality factor will not have any influ-
ence on the experimental results. In other words, the
thinness of the resonance peak does allow a small
frequency shift to be recorded, but you might also
expect to have the same behaviour even with a
smaller quality factor.

For a high amplitude A, a further simplification
can be done which gives an easy comparison with
the linear anaysis:

HR
emw2 A3(d2 —1)*°

[1—-u]~ (12)

while a linear analysis gives the frequency shift:
HR

1-u]l= —5—=—
(=l = ez Aed

(13)
Using the same experimental parameters, Egs. (12)
and (13) predict a completely different behaviour
emphasising the influence of the non linear terms in
achieving the atomic resolution (Fig. 1).

To go a step further, it is worth comparing the
results obtained with the Duffing oscillator and those

(a) Av(H)
0
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Fig. 1. (@ Comparison between the resonance frequency shift
calculated using Eq. (12) (continuous line) and Eq. (13) (dashed
line) (see text), with HR/ mw3 =2.8110"% Imkgs 2. A, ae
the resonance amplitudes. (b) Example of distortion of the reso-
nance peak as afunction of the tip—sample distance, the resonance
peaks are calculated with the help of Eg. (9).
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derived when an oscillator is in an attractive field.
To be directly compared, a Taylor's expansion with
x/D terms is written without using the reduced
coordinate:

f
X+ 2BX+ w2x=—cos( wt) +
Bx+ g m S(ot) 6mD?2

HR 1 HR
Xt 5 4
3mD 2 mD
2 HR
+ j—

3 mD°®
the term (HR) /(6mD?) is a static term displacing
the position at rest of the cantilever, (HR) /(3mD?)
is the force gradient term, which within the linear
analysis gives the frequency shift. Comparison with
Eqg. (2) gives:

2 HR

+ 2

X

X3+ ... (14)

e 3 mw3D® (15)
and with Eq. (3), we have:

1 HR )
w * =w0(1—§ mw? D ) (16)

thus, Eg. (16) gives an order of magnitude of the
frequency shift expected at a given tip—surface dis-
tance.

D/A

0

1,00 1,05 1,10

Fig. 2. Fit (continuous line) with Eq. (11) of the numerical results
obtained with the simulation of an experiment. The input valuesin
the simulation gives a dimensionless parameter o =1.7x 1073,
with a quality factor Q =1000. The refined vaue with Eq. (12)
gives o =1.6x 1072,

To check the validity of the approach, a simula-
tion of the experiments were performed. This was
done with the Matlab simulink toolbox. The basis is
no more but the one suggested in the Albrecht paper
[2]. The blocks of the oscillator and the demaodul ator
needed to measure the frequency shift are smulated.
The beginning of the oscillation is provided by a
noise generator b(t). The open loop gain is higher
than unity, thus an automatic gain control G(u)
provides a constant excitation u(t) = BcoS wt). An
example of numerical results is reported and com-
pared to the theoretical prediction. The agreement is
excellent, the input experimental parameter was the
dimensionless parameter o = 0.00174 and the re-
fined value obtained from the equation derived from
Eq. (9) gives a = 0.0017, note also that using the
approximate expression given by Eq. (11), satisfacto-
rily describes the overall behaviour with « = 0.0016
(Fig. 2).

5. Conclusion

The present work aims to describe some of the
evolution of the vibrating tip—microlever system.
Here we focus essentially on shifts of the resonance
frequency that have been shown to be able to record
images with the atomic resolution. The theoretical
description is able to predict, with a good agreement,
the variation of the resonance frequency as a func-
tion of the tip—surface distance. It also shows that a
linear analysis cannot account for the frequency shift
evolution, thus, will be unable to explain large fre-
guency shift when the tip—sample distance is dlightly
varied. Nevertheless, it remains to transpose this type
of work to explain the atomic contrast observed.
When a tip is scanned over a surface within the
(X,Y) plane, the experiment is different than that
recording oscillator properties at a fixed location in
the surface and moving up and down aong the
vertical z axis. As the tip has a finite size and does
interact with a more or less extended part of the
surface, work has to be performed to explain how
small topographic corrugation could be equivalent to
what is observed by approaching the surface at a
fixed location.

In conclusion, the present paper shows that there
is no need to introduce particular short range forces
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to explain the way the shifts of the resonance fre-
guency is varying as a function of the tip—sample
distance.

References

[1] Y. Martin, C.C. Williams, H.K. Wickramasinghe, J. Appl.
Phys. 61 (1987) 4723.

[2] T.R. Albrecht, P. Griitter, D. Horne, D. Rugar, J. Appl. Phys.
69 (2) (1991) 668.

[3] F.J. Giessibl, Science 267 (1995) 68.

[4] Y. Sugarawa, M. Otha, H. Ueyama, S. Morita, Science 270
(1995) 1646.

[5] S. Kitamura, M. Iwatsuki, Jon. J. Appl. Phys. 35 (1996)
L668.

[6] M. Bammerlin, R. Luthi, E. Meyer, A. Baratoff, J. LU, M.
Guggisberg, Ch. Berger, L. Howald, H.J. Guntherodt, Probe
Microsc. 1 (1997) 3.

[7] W. Stocker, J. Beckmann, R. Stadler, JP. Rabe, Macro-
molecules (1996) 7502.

[8] S. Magonov, V. Eilings, M. Whangbo, Surf. Sci. 389 (1997)
201.
[9] D. Michel, Thesis Université Bordeaux |, 1997.

[10] P. Gleyzes, P.K. Kuo, A.C. Boccara, Appl. Phys. Lett. 58
(25) (1991) 2989.

[11] R. Bachelot, P. Gleyzes, A.C. Boccara, Probe Microsc. 1
(1997) 89.

[12] B. Anczykowski, D. Kriiger, H. Fuchs, Phys. Rev. B 53
(1996) 15485.

[13] J. de Weger, D. Binks, J. Moleriaar, W. Water, Phys. Rev.
Lett. 76 (1996) 213951.

[14] R. Boisgard, D. Michel, JP. Aimg, Surf. Sci. 401 (1998)
199.

[15] F.J. Giessibl, Phys. Rev. B 56 (1997) 16010.

[16] N. Sasaki et al., Jon. J. Appl. Phys. 37 (1998) L533.

[17] F. Kneubtihl, Oscillations and Waves, Springer-Verlag,
Berlin, 1997.

[18] L. Landau, L. Lifshitz, Theory of the Elasticity, 3 MIR,
Moscow, 1971.

[19] J. Israelachvili, Intermolecular and Surface Forces, Academic
Press, New York, 1992.

[20] R. Boisgard, L. Nony, J.P. Aimg, unpublished results.


laurent.nony
Rectangle




