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Nonlinear Dynamic Behavior of an Oscillating Tip-Microlever System and Contrast
at the Atomic Scale
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In this paper the dynamic behavior of an oscillating tip-microlever system at the proximity of a
surface is discussed. We show that the nonlinear behavior of the oscillator is able to explain the
high sensitivity of the oscillating tip microlever and the observed shifts of the resonance frequency as
a function of the tip surface distance without the need of introducing a particular short range force.
PUBLISHED IN Phys. Rev. Lett. 82(17), 3388-3391 (1999).
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A few years ago, the resonant noncontact mode (he
after noted NC-AFM) was developed to map tip sur
face interaction as shifts of the resonance frequency [1,
Since then, numerous experimental efforts have been p
formed showing that measurements of shifts were able
produce images at the atomic scale [3–7]. The “routine
achievement of the atomic resolution with the NC-AFM
[7] is thought of as a real breakthrough in the field of th
scanning probe microscopy. Moreover, the use of a hig
vibrating amplitude of the cantilever (CL) with the NC-
AFM and the development of the intermittent contact (th
so-called tapping mode) [8–10] have boosted theoretic
works dedicated to a nonlinear analysis [11–14].

Before going a step further, it is worth discussing gen
eral ideas at a qualitative level. Leaving aside the tec
nical point that the use of a high amplitude reduces th
influence of the fluctuations in frequency [2], a first, coun
terintuitive, result is the use of a large vibrating amplitud
allowing the atomic resolution to be achieved. Typically
the amplitudes used are 100 times greater than the verti
motion of the surface required, maintaining a given valu
of the frequency shift. The most common and shared id
is that to probe an attractive field with an oscillator re
quires the use of a small amplitude in order to keep th
force field nearly constant throughout the vibrating ampl
tude. The idea is that shifts in resonance frequency a
uniquely due to the gradient force variations.

An image with the atomic resolution based on
repulsive interaction appears quite easily understandab
but getting the same resolution when the attractive va
der Waals forces are involved is very puzzling. Th
van der Waals atom-atom interaction and the finite siz
of the interacting objects lead to a tip-sample interactio
smoothly varying as a function of the CL-surface distanc
For instance, the sphere-plan interaction leads to
attractive force with ad22 power law. The force gradient
dependence, with a power lawd23, gives a too smooth
variation of the resonance frequency and is unable
predict the observed shape of the frequency changes
a function of the tip-sample distance.
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The key point with an AFM is that the recorded infor
mation comes from the tip-sample interaction, but whe
the CL is externally periodically excited, the recorded im
age is a measure of the oscillating behavior of the C
When the tip-microlever system experiences an attract
field, the oscillator can exhibit a nonlinear behavior [14
16]. For an oscillator set at a drive frequency slight
below the resonance one, a bifurcation from a monosta
to a bistable state can occur as soon as the vibrating a
plitude is large enough [14]. Keeping the amplitude co
stant, the shifts in resonance frequency show a continuo
monotonous, variation as a function of the tip surface d
tance that can be very large when nonlinear effects ta
place, and in turn amplify small changes of the strength
the interaction.

Variational method, principle of least action.—A
variational method can be developed based on t
principle of least action [14]. The actionSfsxdg is a
functional of the pathxstd and is extremal between two
fixed instants.

Sfxstdg ­
Z tb

ta

Lsx, Ùx, td dt , (1)

whereL is the Lagrangian of the system. The main ai
of the use of the variational principle is to employ
trial function that allows us to perform a nonperturbativ
analytical treatment in which the dissipation is include
As for the treatment of the Duffing oscillator [15,16], we
focus on the behavior of the harmonic solution of th
form xstd ­ AsDd cosfvt 2 fsDdg. Using a sphere-plan
interaction [17], a Lagrangian is obtained,

L ­ T 2 U 1 W

­
1
2

m Ùx2 2

√
1
2

kx2 2 xf cossvtd 2
HR

6sD 2 xd

!
2 gx Ùx , (2)

where H is the Hamaker constant,R the radius of the
tip, D the distance between the surface and the C
at the equilibrium position at rest, andg the damping
coefficient. The parameters of the path areA andf, and
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the variational principledS ­ 0 becomes a set of two
partial differential equations,

≠S
≠A

­ 0 ,

≠S
≠f

­ 0 .

After some tedious calculations, two coupled nonline
equations are obtained,

cosf ­ Qas1 2 u2d 2
a

3
a

sd2 2 a2d3y2 , (3a)

sinf ­ au , (3b)

where the amplitude, the distance, and the frequency
expressed in reduced coordinatesa ­ AyA0 and d ­
DyA0, u ­ vyv0, wherev0 and A0 are the frequency
ar

are

and amplitude at the resonance far from the surfa
Finally, the dimensionless parametera is used,

a ­
HRQ

kcA3
0

, (4)

where kc ­ mv
2
0 is the CL stiffness. At a fixed drive

frequency, witha , 1 a bifurcation from a monostable
to a bistable state can be observed, while fora . 1,
the instabilities disappear [14]. When a molecule-pla
interaction is used, the dimensionless parameter becom
a ­

HR3Q
kcA5

0
and the power law issd2 2 a2d27y2 [18].

Solving Eqs. (3a) and (3b) gives the relationship
between the amplitude, the distance, and the frequency

d6 ­

vuuta2 1

√
a

3fQs1 2 u2d 7
p

1ya2 2 u2 g

!2y3

(5)

from which is derived the resonance curve at a give
distanced (Fig. 1).
d
ion
u ­

vuuut 1
a2 2

"
1

2Q

√
1 6

vuut1 2 4Q2

√
1 2

1
a2 2

a

3Qsd2 2 a2d3y2

! !#2

. (6)

In a NC-AFM experiment the amplitude is kept constant at the resonance valueA0 at any distance from the surface, an
this experimental condition is obtained by settinga ­ 1 in Eq. (6). The shift of the resonance frequency as a funct
of the distanced is given by the branchd1,

1 2 u ­
Dn

n0
­ 1 2

vuut1 2

√
1 1

p
1 1 4Qay3sd2 2 1d3y2

2Q

!2

. (7)
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Here it is useful to use an approximation allowin
Eq. (7) to be more tractable. Let us consider the ca
corresponding to

Q ¿
1

p
1 2 u2

. (8)

The inequality (8) means that the relative width of th
resonance curve is smaller than that of the relative sh
of the resonance frequency. For the large values of
amplitude A0, a further simplification can be done an
Eq. (7) gives the frequency shift

Dn

n0
,

HR

6kcA3
0sd2 2 1d3y2

. (9)

Equation (9) indicates that a high sensitivity can b
obtained ford values close to 1. Practically, the use o
Eq. (9) [or Eq. (7)] to fit the experimental results migh
help to decide whether or not the tip touches the surfac

Equation (9) gives a result similar to the one obtaine
with a perturbative approach, which does not consider t
dissipation [19]. Equation (13) of Ref. [19] predicts tha
Dn scales asA

23y2
0 , a power-law dependence which ca

be derived from Eq. (9) with the assumption thatA0 is
large andD is nearly equal toA0. Writing sd2 2 1d3y2 ­
A23

0 sD2 2 A2
0d3y2 for D ­ A0 1 ´ with ´ ø A0 one gets
g
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Dn , A
23y2
0 ´23y2, the validity of this expression being a

function of the ratió yA0. To measureDnsA0d, the tip-
sample distancé has to be kept constant while varyin
the amplitudeA0. As discussed in Ref. [19], the work per
formed by Kitamura and Iwatsuki [5] gives aDn of 10 Hz
at A0 ­ 10 nm and 150 Hz atA0 ­ 1.5 nm. Thus a ra-
tio lnfnsA0 ­ 1.5dyDnsA0 ­ 10dgy lnfsA0 ­ 1.5dysA0 ­
10dg ­ 21.43; this result shows the influence of the ap
proximation asA0 ­ 1.5 nm is a rather small value of the
amplitude. To evaluate the distance´, we use the value
calculated in Ref. [20] that gives the tip surface distan
at which a force image can be recorded in a pure attract
regime between a diamond tip and a NaCl surface. Ta
et al. found a tip-sample distancéof about 0.35 nm. In-
serting this value in Eq. (9), a linear fit of the log log plot o
LogsDnd versus logsA0d gives a slope of21.438 between
A0 ­ 1 nm andA0 ­ 15 nm and21.464 for resonance
amplitudes ranging between 1 and 40 nm, thus a rema
able agreement with the experimental data.

Because of the use of reduced coordinates, the pow
law dependence does not appear clearly from Eq. (9). T
use of reduced coordinates is an usual way to descr
the stationary state of an oscillator. But while with
linear behavior the amplitude of the forcing can be scal
out, when a nonlinear behavior occurs, the amplitude
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FIG. 1. Resonance curves calculated with Eq. (6) for differe
CL-surface distancesd, with Q ­ 20 000, HR ­ 10227 J m,
and A0 ­ 10 nm (continuous linekc ­ 11 N m21). The flat-
ness of the distorted curve gives a slopedaydn , 0, which
means that any small fluctuations of the amplitude can lead to
large variation of the measured frequency (see text and Fig.
Also shown is the influence of the cantilever stiffness on th
shape of the resonance curve (empty squareskc ­ 2 N m21).

the forcing becomes a new operative parameter that c
significantly alter the dynamical phenomena exhibited b
the oscillator. Nevertheless, it has been demonstrated t
the use of reduced coordinates is particularly fruitful t
describe experiments in which a fixed driven frequenc
is chosen [14,21]. The main interest is to exhibit
dimensionless parametera [Eq. (4)] being able to give
the conditions for which the bifurcation of the amplitude

FIG. 2. Shifts in resonance frequencyDnNL correspond to
shifts given by the black arrows. Because of the experimen
uncertainties and the flatness of the distorted curve (Fig. 1
even with a constant amplitude mode various situations c
occur. If the oscillator is trapped on the lower instable curv
(black circle on the dotted line), then a cycle of hysteres
following the pathA0BCD follows.
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and the phase are observed. The predictions given by
model were experimentally verified [14,21].

For the present purpose, the structure of Eq. (6) su
gests that rather thana it is more suitable to seek for
critical values of the ratioayQ. The location of the bi-
furcation is given by the conditionduyda ­ 0 (point C in
Fig. 2). The resonance peak starts to distort when all t
pointsA, B, C,andD collapse in two points. For a given
u value two amplitudes are reached,asud anda ­ 1. Us-
ing this property we derived an analytical expression fro
Eq. (7) [22] giving the domain of bifurcation as a functio
of ayQ and d (Fig. 3). The curve determines the fron
tier between two domains, the domain in which the res
nance peak is slightly distorted and keeps approximatel
Lorentzian shape and the domain of bifurcation given b
the upper part of the curve. Note that the domain of bifu
cation is significantly reduced for low values ofQ. This
result illustrates a more general principle that the doma
of bifurcation and, if it occurs, a chaotic behavior are le
important with maximum dissipation [23].

As soon as the quality factor is large enough, th
sensitivity of the oscillating CL is given by the ratio
HRykcA3

0. For a given value of the productHR, the same
variation of the frequency as a function of the reduce
distance is expected when the productkcA3

0 is kept
constant. For example, for akc value 8 times smaller, to
get the same frequency shift at the same reduced dista
requires the use of an amplitudeA0 twice larger. In other
words, one gets the same sensitivity with a distanceD
and a closest distancétwice larger. This result can be
directly derived from Eqs. (7) or (9).

The description of the instabilities experienced by th
CL dynamical system is not straightforward. When th
CL oscillates, the oscillating behavior is described wi
two coordinates in the phase space. A consequence

FIG. 3. Determination of the domain of bifurcation calculate
for two values of the quality factorQ. The curves are
calculated with the equation given in Ref. [22]. The curve
acrityQ give the frontier above which the resonance peak sta
to distort.
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that the phase relationship between the oscillator and
attractive force varies as a function of the CL surfac
distance, and experimental situations were found whe
the attractive interaction acts as a repulsive one [14].
NC-AFM the amplitude is kept constant and equal t
the resonance one; thus the phase should normally
a constant. But as shown in Figs. 1 and 2, the abili
to follow the resonance frequency becomes more a
more difficult as the distortion of the resonance curv
increases. The fluctuations of the amplitude, even
the order of dA0yA0 ­ 1024, can induce a measured
frequency different than that of the resonance one, th
giving a value of the phase different from2py2 (Fig. 2).
Even worse is the fact that the oscillator has the possibil
of being in a state belonging to the lower instable curv
producing a phase jump.

While Eqs. (7) and (9) give qualitatively a similar be
havior to the ones observed experimentally [3,5–7], qua
titatively the use of such analytical expressions remai
questionable. As shown by various groups, spectacu
variations on the image were observed as a function
the chosen frequency shiftDn [7]. The larger the val-
ues ofDn, the smaller is the tip-sample distance at whic
the images are recorded. Therefore as a function of t
tip-sample distance, the surface can interact in a differe
manner with the tip. Not only the geometrical factors ma
vary for different values of the frequency shift, making th
whole dependence ofDn a mixing of different power laws
as a function of the tip-sample distance [18], but also, pa
ticularly when the resonance curve are strongly distort
(Figs. 1 and 2), one cannot be completely sure that t
resonance frequency is measured.

In conclusion, the present Letter aims to describe som
of the evolution of the vibrating tip-microlever system
Here we focus on shifts of the resonance frequency th
have been shown to be able to record images with t
atomic resolution. The theoretical description is able
predict the variation of the resonance frequency as
function of the tip-surface distance. It also shows th
a linear analysis cannot account for the frequency sh
variation and thus will be unable to explain the larg
change of the resonance frequency when the tip-sam
distance is slightly varied.

This paper also shows that there is no need to introdu
particular short range forces to explain the way the shif
of the resonance frequency is varying as a function
the tip-sample distance. In other words, depending
the surface investigated, the observed contrast at
atomic scale could be an image of tiny variations of th
fluctuating forces. Also we show that because of the hig
the
e
re
In
o
be

ty
nd
e
of

us

ity
e

-
n-
ns
lar
of

h
he
nt
y
e

r-
ed
he

e
.
at

he
to

a
at
ift
e
ple

ce
ts
of
on
the
e
h-

Q values used in the NC-AFM experiments distortion o
the resonant peak always occurs.
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