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UV AND IR behaviour for QFT and LCQFT with fields as Operator

Valued Distributions: Epstein and Glaser revisited
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b Institut für Theoretische Physik,
Universität Regensburg,
D−93040,Regensburg, Germany.

Following Epstein-Glaser’s work we show how a QFT formulation based on operator valued distributions
(OPVD) with adequate test functions treats original singularities of propagators on the diagonal in a mathemat-
ically rigourous way.Thereby UV and/or IR divergences are avoided at any stage, only a finite renormalization
finally occurs at a point related to the arbitrary scale present in the test functions.Some well known UV cases
are examplified.The power of the IR treatment is shown for the free massive scalar field theory developed in the
(conventionally hopeless) mass perturbation expansion.It is argued that the approach should prove most useful
for non pertubative methods where the usual determination of counterterms is elusive.

1. INTRODUCTION

Since the developments of Quantum Fields
Theory (QFT) of the early sixties [1,2] it is al-
most a trivial statement to mention that fields
are operator valued distributions (OPVD). How-
ever it is soon forgotten as one starts multiply-
ing fields at the same space-time point as if they
were regular functions.The results are mathemat-
ically undefined expressions,divergences and the
chase for counter terms etc...However the use of
distributions cannot be separated from the class
of test functions necessary to give a well defined
functional integral and to validate all the usual
operations (translation,derivations,Fourier trans-
forms,etc...) in the distributional context.In QFT
there are many reasons to use test functions.In
Light Cone QFT (LCQFT) one reason is particu-
larly compelling: it has to do with the consistency
of the canonical quantization scheme itself.It is
best seen for the massive scalar field.The LC-
Laplace operator is linear in the light-cone time
and initial data on two charateristics are neces-
sary. Canonical quantization in terms of initial
field values in the light cone time is possible pro-

vided [3] limp+→0
χ(p+)

p+ = 0,where χ(p+) is the

field amplitude at p+ = p0 + p1. With fields

as OPVD this relation becomes limp+→0
f(p+)

p+ ,
which is surely satisfied for the class of test func-
tions f(p+) in accordance with the nature of dis-
tributions in use.It is only recently that we re-
alize the filiation of our LCQFT approach with
test functions[4,5] to the early work of Epstein
and Glaser [6].Following some recent develop-
ments in mathematical physics [7,8,9] it is our aim
here to show how Epstein and Glaser’s treatment
of mathematically undefined expressions carries
over with important simplications when using test
functions which are partitions of unity,as advo-
cated in earlier publications and LC-workshops.

2. FIELDS AS OPVD

To introduce fields as OPVD one may con-
sider,without loss of generality, the free massive
scalar field in D-dimension.The Klein-Gordon
(KG) equation , (2x +m2)ϕ(x) = 0, writes, after
a Fourier transform, (p2 −m2)ϕ̃(p) = 0. The so-
lution is a distribution ϕ̃(p) = δ(D)(p2−m2)χ(p),
with χ(p) arbitrary. The solution of the KG-
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equation is therefore also a distribution, ie an
OPVD, which defines a functional with respect
to a test function ρ(x), which is C∞ with com-
pact support,

Φ(ρ) ≡< ϕ, ρ >=

∫
d(D)yϕ(y)ρ(y). (1)

Here Φ(ρ) is an operator-valued functional with
the possible interpretation of a more general func-
tional Φ(x, ρ) evaluated at x = 0.Indeed the
translated functional is a well defined object [10]
such that

TxΦ(ρ) = < Txϕ, ρ >=< ϕ, T−xρ >

=

∫
d(D)yϕ(y)ρ(x− y) (2)

Now the test function ρ(x− y) has a well defined
Fourier decomposition

ρ(x − y) =

∫
d(D)q

(2π)D
expiq(x−y) f(q) (3)

It follows that

TxΦ(ρ) =

∫
d(D)p

(2π)D
e−ipxδ(p2 −m2)χ(p)f(p). (4)

Due to the properties of ρ , TxΦ(ρ) obeys the KG-
equation and is taken as the physical field with
quantized form

ϕ1(x) =

∫
d(D−1)p

(2π)D−1

f(p, ωp)

(2ωp)
[a+

p e
ipx + ape

−ipx].

(5)

f(p, ωp) acts as regulator [5,7] with very specific
properties 1. This expression for ϕ1(x) is partic-
urlarly useful on the LC because the Haag-series
can be used [4] and is well defined in terms of the
product of ϕ1(xi). In Euclidean metric,relevant
for the sequel,there is no on-shell condition and
ϕ1(x) stays a D-dimensional Fourier transform
with f(p) → f(p2). It may appear that there
would be as many QFT as eligible test func-
tions.However the paracompactness property of

1f(p) is also C∞ with fast decrease in the sense of L.
Schwartz [10]

the Euclidean manifold permits using test func-
tions which are partition of unity [12] and the re-
sulting operator-valued functional is indepedent
of the way this partition of unity is constructed
[10].Then f(p2) is 1 except in the boundary re-
gions where it is C∞ and goes to zero with all
its derivatives.The dimensionless nature of f(p2)
implies the presence of an arbitrary scale directly
related to the renormalization group analysis of
the physical observables.

2.1. The Euclidean Epstein and Glaser ap-
proach in a nutshell. The magic of
Lagrange’s formula for the Taylor re-
mainder.

Epstein and Glaser chose working in
Minkowskian metric.There are two main aspects
to their original work.The first one relates to the
implementation of causality in their building up
of the S-matrix leading to the generic name of
”Causal Pertubation Theory” [13].The second
one deals with the treatment of specific diver-
gences encountered when multypling fields at
the same space-time point.Since this is our main
concern here, and to avoid causal issues, we shall
work in Euclidean metric where the use of test
functions as partition of unity is well founded
[12].
In standard massive scalar field theory the prop-
agator ∆(x − y) is a well known example of a
divergence occuring when x = y.Using the Eu-
clidean counterpart of the definition of Eq.(4) for
the fields,∆(x − y) reads

∆(x − y) =

∫
dDp

(2π)D

e[−ip.(x−y)]f2(p2)

(p2 +m2)
. (6)

At D = 2..4 and for x 6= y ∆(x − y) is finite and
f2(p2) may be taken to 1 everywhere.One of our
aims is to understand the role of the partition of
unity in the extension of ∆(x−y) to the diagonal.
We turn now to Epstein and Glaser analysis
of singular distributions.Consider a distribution
T (X) singular at the origin of Rd. Then T (X) ∈
(S′(Rd)\{0}).Its singular order k is defined as

k = inf{s : lim
λ→0

λsT (λX) = 0} − d (7)

The aim is to extend T (X) to the whole domain
S′(Rd).If f(X) ∈ S(Rd) is a general test function
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Epstein and Glaser perform a Taylor series sugery
by throwing away a weigthed k−jet of f(X) at
the origin and deal with the Taylor remainder
Rk

0f .The following operation [9]

Pwf(X) = (1−w(X))Rk−1
0 f(X)+w(X)Rk

0f(X),

defines now a new bona fide test fuction in S(Rd)
which regulate at the origin the singular be-
haviour of T (X).Here w(X) is Epstein-Glaser’s
weight function such that w(0) = 1, w(α)(0) =

0, 0 <| α |≤ k The extension T̃ (X) of T (X) is
defined from the relations

< T̃ , f >=< T,Pwf >=

∫
ddXT (X)Pwf(X). (8)

The important observation [8,9] is that La-
grange’s expression for the Taylor remainder Rk

0f
permits the necessary partial integrations in the
above integral to extract T̃ (X).They are given re-
spectively by

Rk
0f(X) = (k + 1)

∑

|β|=k+1

[Xβ

β!

∫ 1

0

dt(1 − t)k

∂β

(tX)f(tX)
]
, (9)

and

T̃ (X) = (−)kk
∑

|α|=k

∂α
[Xα

α!

∫ 1

0

dt
(1 − t)k−1

tk+d
T (
X

t
)

(1 − w(
X

t
)
]
+ (−)k+1(k + 1)

∑

|α|=k+1

∂α

[Xα

α!

∫ 1

0

dt
(1 − t)k

tk+d+1
T (
X

t
)w(

X

t
)
]
. (10)

2.2. Partition of unity: example and prop-
erties.

With a test function f(X) reduced to a par-
tition of unity on a given domain of the Eu-
clidean manifold important simplifications in the
above formalism occur.Here the domain is the ball
B1+h(‖X‖) around ‖X‖ = 0 of radius 1 + h and
f (α)(0) = f (α)(1+h) = 0 , ∀α ≥ 0. In the bound-
ary regions the test function is strictly equal to
its Taylor remainder of any finite order k. ∀k ≥ 0

at ‖X‖ ≈ 1 + h it holds that

f(X) ≡ f>(X) ≡ −(k + 1)
∑

|β|=k+1

[Xβ

β!

∫ ∞

1

dt(1 − t)k

∂β

(tX)f(tX)
]
, (11)

and at ‖X‖ ≈ 0

f(X) ≡ f<(X) ≡ (k + 1)
∑

|β|=k+1

[Xβ

β!

∫ 1

0

dt(1 − t)k

∂β

(tX)f(tX)
]
. (12)

Hence f≷(X) give respectively the ultravio-

let and infrared extensions T̃≷(X) of T (X).
f>(X) is such that f>(X) = {1 for ‖X‖ ≤
1;χ(‖X‖, h) for 1 < ‖X‖ ≤ 1 + h; 0 for ‖X‖ >
1 + h}. Because of the indepedence of the proce-
dure on the specific construction of this partition
of unity [10] its precise expression is not neces-
sary. To fix ideas a possible choice of χ(‖X‖, h)
is

χ(‖X‖, h) = Nh

∫ h

‖X‖−1

e[−
h2

v(v−h)
]dv, (13)

where the requirement χ(1, h) = 1 fixes the nor-
malisation Nh. This function effectively builds up
unity because of the property that for (1− h) <
‖X‖ ≤ 1, χ(2 − ‖X‖, h)+χ(‖X‖ + h, h) = 1. Here
h is a parameter which may depend on ‖X‖.The
consequences are then

−i) ∃ ‖X‖max such that ‖X‖max =

1 + h(‖X‖max) ≡ µ2‖X‖maxg(‖X‖max) =⇒
g(‖X‖max) = 1

µ2 ,

−ii) h > 0 =⇒ µ2‖X‖g(‖X‖) > 1 ∀ ‖X‖ ∈

[1, ‖X‖max] =⇒ g(1) > g(‖X‖max),
−iii) from f>(Xt) present in Lagrange’s for-

mula one has t < 1+h(‖X‖)
‖X‖ = µ2g(‖X‖).

In the definition of h(‖X‖) a dimensionless scale
factor µ2 has been extracted from g(‖X‖) for the
purpose of later discussion.
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3. ULTRAVIOLET EXTENSION OF
T (X).

From the expression of f> the UV-extension
T̃>(X) of T (X) is such that

< T, f> > =

∫
ddXT (X)

{
− (k + 1)

∑

|β|=k+1

[Xβ

β!

∫ µ2g(X)

1

dt
(1 − t)k

t(k+1)
∂β

Xf
>(tX)

]}

= < T̃>, 1 >, (14)

where in the last line the partial integrations in
X have been performed giving

T̃>(X) = (−)k(k + 1)
∑

|β|=k+1

∂β
X

[Xβ

β!
T (X)

∫ µ2g(X)

1

dt
(1 − t)k

t(k+1)

]
. (15)

An immediate application of this relation is for
the scalar propagator at x = y. Setting ‖X‖ ≡ X

from now on, we have X = p2

Λ2 ,T (X) = 1
XΛ2+m2

and at D = 2 the dimension in the X variable is
d = 1 and k = 0. Then

˜[ 1

(p2 +m2)

]

µ,D=2
= ∂X

[ X

(XΛ2 +m2)

∫ µ2g(X)

1

dt

t

]

=
m2 log[µ2g(X)]

(XΛ2 +m2)2

+
Xg′(X)

(XΛ2 +m2)g(X)
. (16)

It is clear that the choice g(x) = x(α−1) (up to
a multiplicative arbitrary constant already taken
into account as µ2) ie h(x) = µ2xα − 1 with
0 < α < 1 is consistent with the contruction of
χ(X,h). It implies also g(1) = 1 > g(Xmax) = 1

µ2

ie µ2 > 1 and Xmax = (µ2)(
1

(1−α)
).In the limit

α → 1 Xg′(X)
g(X) = 0 thereby eliminating the last

term of Eq.(16) and extending the upper inte-
gration limit in X to infinity. In this limit the
propagator at x = y is then given by

∆(0) =

∫
d2p

(2π)2
f2(p2)

(p2 +m2)
=

∫
d2p

(2π)2
m2 log(µ2)

(p2 +m2)2

=
1

(4π)
log(µ2), (17)

which is RG-invaraint with respect to the scale
parameter µ.At Euclidean dimension D = 4 one
has d = 2, k = 1.Then

˜[ 1

(p2 +m2)

]

µ,D=4
= lim

α→1
−∂

(2)
X

[ X2

(XΛ2 +m2)
∫ µ2g(X)

1

dt
(1 − t)

t2
]

(18)

=
2m4

µ2

[1 − µ2 + µ2 log(µ2)]

(XΛ2 +m2)3
.

Integrating over X (viz. p2) gives the familiar
result

∆(0)=

∫
d4p

(2π)4
2m4

µ2

[1 − µ2 + µ2 log(µ2)]

(p2 +m2)3

=
1

(8π2)

m2

2µ2
[1 − µ2 + µ2 log(µ2)]. (19)

There is an alternative form of T̃>(X) which is
quite instructive. It is obtained trough the change
of variable Xt→ Y in Eq.(14).It gives

T̃>(X)= (−)k(k + 1)
∑

|β|=k+1

∂β
X

[Xβ

β!

∫ µ2

1

dt
(1 − t)k

t(k+d+1)
T (X/t)

]
. (20)

The scalar propagator at D = 2 and x = y now
becomes

˜[ 1

(p2 +m2)

]alter

µ,D=2
= ∂X

[
X

∫ µ2

1

dt

t

1

(XΛ2 +m2t)

]

=
1

(p2 +m2)
−

1

(p2 +m2µ2)
(21)

This is a Pauli-Villars subtraction, however with-
out any additionnal scalar field.It is checked that
the final momentum integration gives the very
same result as in Eq.(17).The same analysis and
conclusion hold at D = 4.It is known [11] that in
φ4

4 theory the replacement of Eq.(21) makes every
diagram finite but the one loop tadpole which is
treated in Eqs(18,19).The OPVD treatment gives
therefore a completely finite perturbative expan-
sion.
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4. INFRARED EXTENSION OF T (X)

4.1. Test function in the infrared.
We consider a distribution T (X) singular at the

origin of Rd in the sense of the first paragraph and
homogeneous, that is T (X

t
) = t(k+d)T (X), where

k is the singular order defined in Eq.(7).The
test function which vanishes at the origin with
all its derivative can be written as f<(X) =
w(X)f>(X) with w(X) = χ(h − ‖X‖ + 1, h).
As for the UV-case w(X

t
) effectively cuts the t-

integration ie ‖X‖(µ2 − 1) ≡ µ̃‖X‖ < t < 1. It
gives

<T̃<, 1>=(−)k+1(k + 1)
∑

|β|=k+1

∫
ddX∂β

X

[Xβ

β!
T (X)

∫ 1

µ̃‖X‖

dt
(1 − t)k

t

]
. (22)

The t-integration is trivial giving [9]

T̃<(X)= (−)k(k + 1)
∑

|β|=k+1

∂β
X

[Xβ

β!
T (X) log(µ̃‖X‖)

]

+
(−)k

k!
Hk

∑

|β|=k

Cβδ(β)(X), (23)

with Hk =
k∑

p=1

(−1)(p+1)

p

(
k
p

)
= γ+ψ(k+1) and

Cβ =
∫
(‖X‖=1) T (X)XβdS.

4.2. Application: massive scalar field prop-
agator at D = 2 from perturbative
mass expansion.

The free massive scalar field propagator DF (x)
is a known function.Its zero mass expression
D0

F (x) is also known from Conformal Field The-
ory (CFT).However it is also a well-known fact
that any attempt to derive DF (x) from a per-
turbative expansion in the mass is convention-
naly hopeless because of crippling infrared diver-
gences.Taking into account the OPVD nature of
the field,DF (x) obeys the following mass expan-
sion

DF (x) =D0
F (x) −m2

∫
d2p

(2π)2
eip.x

p4
(f<(p2))4

+m4

∫
d2p

(2π)2
eip.x

p6
(f<(p2))6 + ... (24)

From T̃<(X) with X = p2

Λ2 one finds

˜[ 1

(p2)(k+1)

]
=

(−)k

k!

∂k+1

∂(p2)k+1

[
log(

p2

Λ2
)
]

+2
(−)k

k!
Hkδ

(k)(p2). (25)

The Fourier transform of this distribution writes
∫

d2p

(2π)2
eip.x

˜[
(p2)(k+1)

] =
(−)k

2π(k!)2
(
| x |2

4
)k

[
ψ(k + 1)

− log(
Λ | x |

2
)
]

(26)

For k = 0 this is − 1
2π

[
γ + log(Λ|x|

2 )
]
≡ D0

F (x),

giving Λ ≡ m.The overall expression for DF (x) is
then

DF (x) =
1

2π

∞∑

k=0

[
ψ(k + 1) − log(m|x|

2 )
]

(k!)2
[m2 | x |2

4

]k

=
1

2π
K0(m | x |) (27)

This gratifying exact result carries over to D = 4
as well.

5. CONCLUSIONS.

In Euclidean metric we have shown that treat-
ing fields as OPVD with appropriate test func-
tions leads to finite actions and well defined ob-
servables free of divergences.A finite RG-analysis
needs only to be performed with respect to the
scale parameter present in the test function.In
Minkowskian metric,where the implementation of
causality is the major issue,Epstein,Glaser and
followers [6,8,13] have shown that Taylor sub-
stractions are equivalent to symmetry preserv-
ing dispersion relations with,as we have shown
here,the possible interpretation in terms of Pauli-
Villars type of subtractions at the level of prop-
agators,but without the introduction of new
fields.The link with dimensional regularization
through analytic continuation of powers of propa-
gators has also been established [9] thereby show-
ing that all known symmetry- preserving regular-
izations are rooted in the proper OPVD treat-
ment of fields.It has an immediate application in



6

the calculation of abelian anomalies as reported
in our LC2004 meeting [14].Other important fea-
tures of the Bogoliubov-Epstein-Glaser construc-
tion are the absence of overlapping phenomena in
higher order contributions and the possibility to
implement arbitrary symmetries via the quantum
Noether method [15] without the otherwise un-
avoidable necessity to regularize infinite contribu-
tions. These recent developments of Epstein and
Glaser’s causal approach make it extremely plau-
sible that a finite symmetry-preserving LCQFT
could be envisaged on the basis of an iterative
construction of the S-matrix and a causality con-
ditioned finite regularization using the OPVD
treatments of fields advocated in this contribu-
tion.
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