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Growth kinetics of a nanoprotuberance under the action of an oscillating nanotip

J. P. Aimé,* D. Michel, R. Boisgard, and L. Nony
CPMOH, Universite´ Bordeaux I, 351 Cours de la Libe´ration, F-33405 Talence Cedex, France

~!

The atomic force microscope is a versatile tool that allows many routes to be used for investigating the
mechanical properties of soft materials on the nanometer scale. In the present work, experiments were per-
formed on polystyrene polymer films of various molecular weight by approaching a vibrating nanotip towards
the surface. The variation of the oscillating amplitude of the cantilever is interpreted as the result of the growth
process of a nanoprotuberance. The growth rate is found to be dependent of the magnitude of the oscillating
amplitude and of the molecular weight. A model is developed describing in a very simple way the action of the
tip and a viscoelastic response of the polymer. The numerical simulation helps in understanding the nonlinear
relation between the growth rate and the vibrating amplitude of the microlever and describes qualitatively most
of the experimental features. For the softer material, experimental situations are found that allow the experi-
mental results to be amenable with an analytical solution. The analytical solution provides a fruitful compari-
son with the experimental results showing that some of the nanoprotuberance evolution cannot be explained
with the approximation used. The presents results show that there exists a new and fascinating route to better
understand the mechanical response at the local scale. PUBLISHED IN Phys. Rev. B 59(3), 2407-2416 (1999)
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I. INTRODUCTION

The atomic force microscope~AFM! is frequently used to
investigate surface properties through the study of the os
lating behavior of a cantilever. The mechanical vibration o
cantilever was first used to provide an image of the fo
gradient variations above the surface. A linear analy
shows that force gradients are detected as shifts in the r
nant frequency.1 Taking advantage of the tip-surface intera
tion, this mode of analysis has a variety of applications,
cluding noncontact surface profilometry,2,3 imaging localized
charge,4,5 and, recently, providing a contrast at the atom
scale.6–9 Nevertheless, when the tip is very close or sligh
touches the surface the system is highly nonlinear.10–13 This
nonlinear behavior increases the complexity of the cantile
response, and the physical origin of the contrast at the ato
scale becomes more difficult to describe, but in turn the
stable behavior of the cantilever can be used to improve
sensitivity of the AFM.

In Ref. 13 it was shown that the attractive interacti
between the tip and the surface is able to strongly modify
oscillating behavior of the tip-cantilever system. As soon
the tip is near the surface, typically for a tip-surface distan
of approximately 1 nm and for a drive frequency sligh
below the resonance frequency, the oscillator shows a b
cation from a monostable to a bistable state. The bifurca
leads to a cycle of hysteresis. The attractive force field in
duces nonlinear coupling terms that make the magnitud
the drive amplitude a key parameter. An analytical expr
sion is derived showing that the shape of the hysteresi
dependant of the drive amplitude through a cubic law.13 A
well-defined cycle of hysteresis can be experimentally
tained, but this happens strictly for surfaces that are in
mechanically, or that have a local stiffness large enough
an elastic displacement not to be induced.

The scope of the present work is to investigate what h P
PRB 590163-1829/99/59~3!/2407~10!/$15.00
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pens when a sample has a mechanical susceptibility, the
ciprocal of a stiffness, that allows the surface to exhibi
sizable elastic displacement under the action of the tip. T
aim is to explore a new route to probe the mechanical
sponse of a surface at the nanometer scale without touc
or only slightly touching the surface.

The paper is organized as follows, in a second section
detail the experimental methodology and give the exp
mental results. In the third section the main ideas of
theoretical simulation that describes the kinetics of a na
protuberance are introduced. In the last section we disc
the usefulness and the limits of the hypothesis that sus
the simulation and introduce a simple rheological model. T
phenomenological model is essentially heuristic and sho
help us to define new experiments and further quantita
analysis.

II. EXPERIMENTAL SECTION

A. Methodology

The experiments have been performed in air and reco
ings were made by approaching the surface towards the
using the tapping mode of a nanoscope III.14 Two piezoac-
tuators are needed to perform an experiment in the tapp
mode. A small piezo allowing the microlever to be vibrat
at a frequency close to its resonance frequency and a se
piezo moving the sample. The piezoactuator holding
sample is a piezo with a maximum vertical displacement
660 nm giving a low noise signal with a good resolution.

At a fix position of the plane surface, the sample is a
proached towards the tip. It then is retracted when the tip
near the surface. To get a simple criterion, the drive f
quency is slightly below the resonance frequency, such
the vibrating amplitude is below the resonant one. With t
2407 ©1999 The American Physical Society
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condition, the amplitude of the vibrating cantilever increas
when the attractive force field between the tip and the surf
becomes large enough. Therefore, as soon as an increa
the amplitude is observed, the sample is retracted and
range of the tip-sample distance is restricted to the dom
represented by the circle drawn in Fig. 1.

Far from the surface, the vibrating amplitude of the ca
tilever, here after noted the free amplitudeAf , is given by
the well-known expression

Af~v!5
av r

2

A~v r
22v2!21~2bv!2

, ~1!

where a and v are the drive amplitude and the drive fr
quency of the small piezo,v r andb the resonance frequenc
and the damping factor of the cantilever.

The variation of the amplitude as a function of the ti
surface distance depends on the magnitude of the free am
tude. For large free amplitudesAf a cycle of hysteresis fol-
lows, while for small amplitudesAf the same variation is
observed during the approach and the retraction of
sample~Fig. 2!. In other words, for smallAf , whatever the
distance between the tip and the sample, the variation of
amplitude is reversible, while a cycle of hysteresis is o
served for largeAf values. Theoretically, the whole feature
can be described as a function of the magnitude of the
amplitude.13 At small Af values, the effect of the nonlinea
coupling terms vanishes and the oscillating behavior of
cantilever is satisfactorily described by a linear analys
Thus, for a surface that is mechanically inert, a typical
sponse of the tip-cantilever system will be identical either
the one shown in Fig. 2~a! or in 2~b!.

The samples are polystyrene~PS! films. Several PS films
have been prepared with molecular weights varying betw
284 000 and 1890 and polydispersities ranging between
and 1.07@Fluka, Chemika, Buchs/Switzerland#. The baseline

FIG. 1. TypicalS shape of the oscillations as a function of th
distance between the surface and the position at rest of the
crolever.Af is the amplitude of the oscillations far from the surfac
typically for distance above 20 nm1Af . For infinitely hard surface,
the amplitude decreases linearly with the distance as soon a
intermittent contact happens~domain 2!. When the distance be
tween the equilibrium position at rest of the microlever and
surface is zero, the amplitude becomes zero~domain 3!. Experi-
ments have been performed in the domain defined by the c
corresponding to distances larger thanAf ~domain 1!.
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idea is that an organic material interacts with the tip uniqu
through the van der Waals London dispersive force so
the strength of the attractive interaction is simply given
the product of the radius of the tip and the Hamaker cons
@see Eq.~4!#. The Hamaker constant is a function of th
chemical composition and of the density of the two intera
ing materials,15 thus does not depend of the molecul
weight. Consequently, by using the same tip to investig
samples of various molecular weights, thus keeping the s
radius of curvature of the tip, the strength of the attract
interaction between the tip and the surface is a constan
dependent of the molecular weight.

Besides, at the local scale, the mechanical propertie
the surface were shown to be molecular weight depende16

The smaller the molecular weight, the softer the mater
Therefore, if any change of the oscillating behavior occurs
a function of the PS films properties, one expects that it w
correspond to the change of the mechanical properties o
PS films and not to the change of the tip-PS attractive in
action.

B. Experimental results

The resonance frequency of the cantilever isn r
5293.23 kHz, the quality factor isQ5450. The damping
factor of the damped oscillator isb5n r /2Q. Most of the
data reported were obtained with a scan size of 20 nm an
scan frequency of 10 Hz; a few of them were obtained w

i-
,

an
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FIG. 2. The usual approach-retracting curve giving the variat
of the oscillating amplitude as a function of the vertical displac
ment of the surface. The sample displacement is performed wi
scan size of 20 nm at a scan frequency of 10 Hz. The empty sq
and empty circle correspond to the approach and the retraction
tion of the sample.~a! Af544 nm, ~b! Af52 nm. The sample is the
polymer film of Mw5150 000.



FIG. 3. Variations of the amplitude of the oscillation during the retraction of the surface as a function of the free amplitudesAf for
different samples. Scan size 20 nm, scan frequency 10 Hz.
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a scan frequency of 0.5 Hz. The drive frequencyn
5292.57 kHz is kept the same throughout the experimen

For the sake of clarity, we report selected experimen
data corresponding to the retracting displacement of
sample. These data have been selected from among 1
experiments for each sample, withAf varying from 5 up to
44 nm. To be more easily compared, the experimental d
have been subtracted from theirAf values~Fig. 3!.

In Figs. 3~a!–3~c! are reported the variation of the osc
.
l
e
20

ta

lating amplitudes obtained with a silica surface and the
films of high molecular weights, respectively,Mw

5284 000 andMw5150 000. The silica surface has bee
prepared as described in Ref. 17. The silica surface is use
a hard reference surface from which we do not expect
elastic response. The three surfaces give similar variation
the amplitude as a function of the vertical displacement
the sample. Irrespective of the magnitude of the free am
tude, down toAf55 nm, the experimental results are in goo
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agreement with the theoretical predictions and the wh
variations can be ascribed with the effect of the attract
tip-surface interaction.13

For the sample of molecular weightMw595 000 a drastic
change is observed at the smallAf values 10 and 6 nm@Fig.
3~d!#. In place of the usual loop, the amplitudes abrup
decrease, almost down to a zero value. One can also n
variation of the amplitude showing a slight perturbation
the beginning of the cycle for the intermediate values ofAf .

The response of the vibrating cantilever shows a co
pletely different behavior for the samples ofMw523 000
and Mw53250 @Figs. 3~e! and 3~f!#. Except for the highes
Af values, the cycles of the hysteresis show a marked
crease of the amplitude just after the retracting displacem
has been started. The smaller the free amplitude, the m
pronounced is the minimum of the amplitude. ForAf
510 nm, the amplitude decreases by about 6 and 7 nm
spectively, forMw523 000 andMw53250.

The results show that the oscillating behavior cannot
described by uniquely considering the attractive force fie
For example, let us compare the results obtained with
polymer of Mw53250. ForAf542 nm, a normal cycle of
the hysteresis is observed and the amplitude returns to itAf
value after a sample displacement of 10 nm has been m
For a smaller free amplitude, we normally expect a sma
width of the hysteresis as observed for higher molecu
weights and the silica surface~see Figs. 3–5!. Therefore the
oscillator should recover its free amplitude value at a sam
displacement smaller than 10 nm. The opposite behavio
observed, atAf514 nm, the oscillator goes back to itsAf
value after a sample displacement of 13 nm. Such a beha
is even more pronounced forAf510 nm. Similar observa-
tions, can be done for the sample ofMw523 000.

For the lowest molecular weight investigated,Mw
51890, we were unable, at least with a vertical scan size
20 nm, to get a complete cycle with a free amplitudeAf
smaller than 28 nm@Fig. 3~g!#.

In order to better understand what is really taking pla
we focus on the abrupt decrease of the amplitude at the
ginning of the retracting displacement. At the beginning
the abrupt decrease of the amplitudes, slopes can be
tracted and multiplied by the piezoactuator velocity to g

FIG. 4. Growth rates of the nanoprotuberance as a function
the starting amplitude. The growth rates are given by the fit
straight line at the beginning of the abrupt decrease of the osc
ing amplitude. Empty triangleMw595 000, filled triangleMw

523 000, empty circleMw53250, filled circleMw51890.
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the rates at which the amplitude varies. In Fig. 4 are repo
the measured rate of the variation of the oscillating am
tudes as a function ofAf for four molecular weights.

A general trend is easily extracted. The rate at which
amplitudes vary shows a nonlinear dependence onAf and
increases asAf decreases. Furthermore, from the highest
the lowest molecular weight, the velocity shows an increa
sensitivity to the magnitude ofAf . For Mw higher than
95 000, as noted above~Fig. 3!, no noticeable decreases o
the amplitude were measured allowing a measurement o
slope to be reported. Conversely, for the low molecu
weight Mw51890, even at a high value ofAf a measurable
decrease is observed. For example, the same velocity is m
sured for Af525 nm (Mw523 000) andAf535 nm (Mw
51890).

To interpret these evolutions requires consideration of
additional interaction in which the sample properties, ap
from the Hamaker constant, must be included. Conside
what is known about the intermittent contact,10,19–21we as-
sume that the tip touches the sample and that the true ver
position of the sample is not the one given by the verti
displacement of the piezoactuator holding the polymer fi
In other words, we assume a local elastic response creati
nanoprotuberance such that the tip touches the surface
vertical position higher than the one monitored by the pie
actuator. Such a situation is drawn in Fig. 5.

III. SIMULATION OF A LOCAL VISCOELASTIC
RESPONSE UNDER THE ACTION OF THE TIP

A. Preliminary remarks

It is worthwhile to examine first how a vibrating cantile
ver measures the growth of a nanoprotuberance. As the n
protuberance can grow rather quickly, the experimental
sults give velocities as large as 14 000 nm/s, one has
verify the ability of the oscillator to measure such a rate
perturbation.

Assuming that the variation of the oscillating amplitud
describes properly the growth process means that the o
lator adiabatically responds to the perturbation. Let us n
h(t), the height of the elastic displacement at timet. If the
oscillator follows exactly the change of the height the d
crease of amplitude is given by

A~ t !5A~ t50!2h~ t !. ~2!

of
d
t-

FIG. 5. Sketch of a nanoprotuberance created under the ac
of a oscillating nanotip. The geometry of the nanoprotuberanc
the simplest one: a cylinder of diameterf and heighth. G0 is the
associated elastic modulus.R is the radius of the tip.
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Equation~2! is true if and only if the perturbing process
slow in comparison to the dissipative processes leading
the establishment of equilibrium in the oscillator. The ad
batic condition writes

dh/dt!A~ t50!/t ~3!

for a resonance frequency of 293.23 kHz and a quality fac
of 450, the relaxation time of the oscillator isb215t54.9
31024 s. ForA510 nm, this leads to a maximum velocit
A/t523104 nm/s. Thus a growth rate of 104 nm/s will not
be measurable. Indeed, for intermittent contacts, as hap
for nonlinear phenomena, one can demonstrates rigoro
that the adiabatic criterion is not given by Eq.~3!. In the
nonlinear regime,t must be replaced by a value close to t
oscillating period, hereT53.4ms. The physical reason i
that the fluctuation-dissipation theorem, from which t
damping coefficientb of the oscillator is calculated, does n
apply when a nonlinear response must be considered. Th
fore the order of magnitude of the maximum velocity is no
better given byA/T533106 nm/s, making a growth rate o
104 nm/s measurable.

We shall proceed as follows:~i! In a first step we de-
scribe the action of the tip on the polymer. A very simp
approach is employed, the aim being not to get a quantita
agreement with the experimental data, but to capture mos
the physical phenomena.~ii ! In a second step a possib
mechanical response of the polymer is given.

B. Description of the tip-surface interaction

The attractive interaction between a sphere and a p
surface is used as the external force acting on the polym15

Fext5
HR

6d2 , ~4!

whereH is the Hamaker constant,R the radius of curvature
of the tip, andd the distance between the tip and the samp
Taking the case where the distance between the surface
the equilibrium position of the cantilever at rest is equal
the free amplitudeAf , one gets the time dependence for t
force:

Fext~ t !5
HR

6@Af10.1652Afcos~vt !#2 , ~5!

wherev is the drive frequency and 0.165 nm is the ‘‘co
tact’’ distance for most of organic materials.15 The contact
distance is used in Eq.~4! to eliminate the diverging behav
ior. Let’s now define a distancedc between the tip and the
surface above which the action of the force becomes ne
gible. Typically, with H55310220 J andR510 nm, ford
between 1 and 0.165 nm,Fext varies between 0.1 and 3 nN
The approximation showing that the influence of the tip
negligible for values ofd abovedc is

Af@12cos~vt !#<dc ,

which leads to the definition of a maximum residence time
the tip near the surface given by
to
-

r
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ly

re-

e
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.
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t res5
T

p
cos21S 12

dc

Af
D . ~6!

The larger the amplitudeAf , the shorter the residence tim
t res.

A further approximation is to consider a periodic recta
gular function of widtht res and periodT52p/v @Fig. 6~a!#.
The Fourier transform of the rectangular function is

Fext~ t !5FextS t res

T
1(

1

pn
sin~nvt res!cos~nvt ! D . ~7!

The static part ofFext(t) is proportional tot res, which in turn
increases asAf decreases. Therefore, even within this rou
approximation, the main experimental result showing the
fluence of the magnitude ofAf is preserved.

C. Local viscoelastic response of the polymer

At room temperature, the PS film polymers investigat
are in the vitreous state and do have the same bulk ela
properties.21–23 Therefore, the experimental results shou
normally be identical and independent of the molecu
weight; besides, we did observe a large change in the fric
behavior as a function of the molecular weight showing t
the mechanical properties of the surface are different t
that of the bulk.16,21

Let us assume that for polymer chains at the surface
local viscoelastic response occurs when the intermediate
low molecular weights are studied. The main difficulty is
estimate the elastic modulus. Taking an elastic modulu
zero frequencyG(v50)5108 N m22, with a protuberance
of diameter F;10 nm, the stiffness of the protuberanc
scales ask05G0F and k051 N m21. The mechanical sus
ceptibility is given by

J05
1

G0F
. ~8!

Relaxation processes in polymer materials usually exh
several relaxation times. Here, to simplify, we uniquely co
sider one relaxation time and the viscoelastic response i

J~ t !5J0@12exp~2t/tN!#, ~9!

whereJ0 andtN are molecular weight dependent. The elas
displacement is given by

FIG. 6. ~a! Periodic rectangular function describing the action
the tip.T53.43106 s, the widtht res of the rectangular function is
given by Eq.~6!. ~b! Sketch of the action of the oscillating tip with
the assumption that the static part is the leading term@Eq. ~7!#. The
height of the step function is varying with time~see Appendix!.
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h~ t !5E
2`

t

J~ t2t8!Ḟ~ t8!dt8. ~10!

We further assume that the external force is given by
leading term of Eq.~7!. That is, the static part of the right
hand side~r.h.s.! Fextt res/T. The action of the tip becomes
simple steplike function@Fig. 6~b!# and the initial timet
50 is the time at which the protuberance starts the gro
process. With a step function, Eq.~10! gives an elastic dis-
placement at timet:

h~ t !5J0Fext

t res

T
@12exp~2t/tN!#. ~11!

However, even with this oversimplified approach, beca
t res varies as a function of the time, Eq.~11! cannot be used
as is. After each cycle the height of the protuberance
creases, consequently the amplitude of the oscillator
creases and the residence timet res increases. This makes th
source termJ0Fext(t res)/T highly nonlinear and induces a
avalanche effect. At thekth cycle, the residence timet res

k is
given by the amplitude of the oscillator at the (k21)th
cycle. The amplitude isAf

k215Af2hk21 , wherehk21 is the
height of the protuberance before thekth cycle. When the
sample moves downwards the quantity of interest reduc
the vibrating amplitude is not the height of the protuberan
but the vertical locationzk21 of the sample with respect t
the tip. Thus we subtract the vertical displacement of
piezoactuator which, at thekth cycle, is equal to the produc
kvpT. Equation~6! is replaced by

t res
k 5

T

p
cos21S 12

dc

~Af2zk21! D , ~12!

where zk215hk212kvpT or, equivalently, zk215zk22
1dhk212vpT.

An attempt to reproduce the influence of the avalan
effect is to differentiate Eq.~11! to give the elastic displace
ment per oscillation:

dhk5
T

tN
J0Fext

t res
k

T
expS 2

t res
k

tN
D . ~13!

Thus a height of the nanoprotuberance at thekth cycle hk
5hk211dhk and a sample location given by

zk5hk2kvpT. ~14!

The above numerical approach should be able to simulate
observed features for memory effects remaining neglig
within the short time scale of the fast part of the amplitu
variation.

Numerical results are reported in Fig. 7. The general tr
is quite well reproduced. Quantitatively, it is not useful
separate the magnitude ofFext and J0 . The crude approxi-
mation of a rectangular periodic force together with our
timation ofJ0 implies that it is not significant to separate th
two terms. Thus, it is the productJ0Fext, which is varied in
the simulation.

The influence of the velocity at which the piezoactua
retracts is illustrated in Fig. 8. Atvp520 nm/s, the minimum
is slightly below the one observed atvp5400 nm/s. Here
again, the simulation gives a good qualitative picture.
e

h

e

-
e-

g
,

e

e

he
e

d

-

r

An attempt to fit the variation of the growth rate as
function of Af is given in Fig. 9. The general trend is qui
well reproduced, but also is shown the inability of the sim
lation to quantitatively reproduce both the fast and slow r
regime. As discussed below~Sec. IV!, one reason is that the
productJ0Fext and the relaxation timeb are kept constan
whatever the protuberance height.

IV. DISCUSSION

The height dependence of the residence time does
enable us to solve analytically the growth process. Never
less, Eqs.~12! and~13! describing the fast part of the ampl
tude variations provide information about the relevant p

FIG. 7. Results of the numerical simulations using Eqs.~12!,
~13!, and ~14!. The parameters areJ0Fext515 nm, tN5143
31026 s, anddc53 nm. From the lower to the upper curve th
starting amplitudes are 8, 10, 12, 15, 18, 22, and 30 nm.

FIG. 8. Zoom of the fast part of the variation of the oscillatin
amplitude for two velocities of the piezoactuator.~a! Experimental
data Mw53250 andAf520 nm. Empty symbolvp5400 nm/s,
filled symbol vp520 nm/s.~b! Numerical simulation with the pa-
rametersJ0Fext514 nm,tN514331026 s, dc53 nm and the start-
ing amplitude 15 nm.



on
o

u
a
fo
t

an

st

o
e
e
e
o
,
o
o

f t

o

o
c

. A

o

a
ce
m
ea
.
e
u
rl

the
s
h a
cal
arly
the
to

ture
e
uld

n a
ge
can
ed,
tro-
e
ex-
nge

he
an
nce

time
ne
ing
ing

st
llat-
the
with

stic
he
be-
be
ccur
the
mo-

tely
ular

en

r-

ant

er-
-
m-
for

sic
al
ed.
e
am-

r

rameters that allow the growth process to take place.
At this stage, it is worth to discuss the crude assumpti

employed to describe the local mechanical susceptibility
the surface. The most interesting, but also the most diffic
is an appropriate estimation of this local response as m
parameters as the protuberance shape and the effective
are unknown. One assumption concerns the choice of
analytical expression of the attractive force@Eq. ~4!# here
was used a sphere-plane surface interaction. A protuber
ended with an hemispheric shape with a radiusR can also be
considered. In this case a sphere-sphere interaction mu
used. Following the Derjaguin approximation,15 the attrac-
tive interaction goes asymptotically towards a strength
interaction half that given by Eq.~4!. As a consequence th
attractive force becomes a function of the protuberanc
height and decreases as the height increases. This geom
cal effect has to be introduced with an expansion in term
h/R in expression~4!; including this effect does not make
however, any marked changes in the results presented ab

Another point is the local stiffness of the polymer. T
estimate the local stiffness we need to estimate the size o
local surface interacting with the tip. The diameterF of this
area is roughly defined by twice the radius of curvature
the tip. The local stiffness varies asG F, thus typical values
of the product J0Fext, between 5 and 10 nm, withR
510 nm andFext52 nN, give an elastic modulusG between
108 and 53107 N m22. Here again, because of the change
the geometry of the sample, we might consider that the lo
stiffness is a function of the height of the protuberance
simple structure, like a cylinder of diameterF and heighth
~Fig. 5!, provides an estimation of the influence of this ge
metrical effect. For a height large enough the stiffnessG F
must be replaced by a stiffness scaling asGF2/h. With F
520 nm, a change of the local stiffness becomes signific
for heights larger than 20 nm. The maximum height dedu
from the experimental data is found to be around 15 n
Thus considering the geometrical factors as having a w
effect on the growth process is a reasonable assumption

The third point is the intrinsic nonlinearities due to th
locality of the mechanical response. The experimental res
show two regimes in the kinetics, one very fast, particula

FIG. 9. Observed growth rates compared to the numerical
sults. Empty circleMw595 000, empty squareMw523 000. The
parameters areJ0Fext520 nm, tN514331026 s, dc54 nm, and
J0Fext58 nm, tN56731026 s, dc53 nm, respectively, forMw

523 000 andMw595 000.
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when low amplitudes are used, the second slower, when
amplitude returns to theAf value. The slow regime appear
unambiguously after the minimum has been reached wit
rather flat extremum. As demonstrated with the numeri
results, the height dependence of the residence time cle
account for the fast part, but gives a poor agreement for
slow domain or just after the minimum. This could be due
change of the characteristic timetN and of the stiffness dur-
ing the growth process of the nanoprotuberance. The pic
drawn in Fig. 5 gives an oversimplified description of th
nanoprotuberance properties. A more realistic picture sho
probably borrow ideas from models describing grazes i
vitreous polymer.24,25Because the polymer experiences lar
constraints at a local scale, the structure of the polymer
be different than that in the vitreous bulk state. This, inde
is implicitly assumed when a viscoelastic response is in
duced @Eq. ~9!#. Also, nothing is said about the way th
constraint is transmitted to the bulk. Therefore we may
pect a nonlinear response coming from the intrinsic cha
of the polymer properties at the local scale.

The change of the relaxation time as a function of t
height is difficult to assume. We might either consider
increase of the relaxation time as the size of the protubera
increases, which is the usual relation between size and
relaxation or, on the other hand, for a column structure o
can expect the stability of the structure to be a decreas
function of the height. Therefore a relaxation time decreas
as the protuberance height increases.

To end this qualitative analysis, another possibility mu
be discussed to explain the unusual variation of the osci
ing amplitude. A polymer neck could be created between
tip and the surface. Such a situation had been observed
the polysiloxane chains grafted on a silica surface.26 In that
case, using the static contact mode, the additional ela
force of entropic origin gives an additional deflection of t
microlever. However, the neck of polymer was created
cause of the capability of the polysiloxane chains to
grafted at the apex of the tip. Such a process cannot o
with the PS chains. In addition, as shown in this paper,
elastic response was uniquely observed for polymers of
lecular weight larger than that of the entanglement massMe .
The entanglement mass of the PS chains is approxima
10 000 and the polymer films showing the most spectac
variations correspond toMw53250 andMw51890. There-
fore an elastic contribution due to a neck of polymer betwe
the tip and the film is quite unlikely to occur.

In this work were also shown situations in which the su
face forces did have a significant contribution.26 Evaluations
were done showing that surface forces become signific
when the elastic modulus are below 106 N m22. Such values
are much lower than that of the PS films (109 N m22) and
the lowest elastic modulus estimated for the nanoprotub
ances, around 107 N m22. Nevertheless, at the very begin
ning, when the elastic deformation is small, one cannot co
pletely avoid a possible contribution of the surface forces
the most sensitive samples.

To answer the complex questions concerning the intrin
nonlinearity, it would be of great help to find experiment
situations for which an analytical expression could be us
The sample ofMw51890 gives such an opportunity, th
experimental results show a measurable variation of the
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plitude at largeAf , between 28 and 44 nm, with a protube
ance height varying between 1.7 and 4 nm within a f
milliseconds. Thus, the arccos function of the residence t
can be expanded as a function of the ratioz(t)/Af , giving
the opportunity to make further assumptions to extract
analytical expression. Wherez(t)5h(t)2vpt is the effective
vertical location of the sample,

t res

T
5

1

p
cos21S 12

dc

Af2@h~ t !2vpt# D
5

1

p
A2d

Af
S 11

1

2

h~ t !2vpt

Af
D

1OS 1

p
A2d

Af
S 11

3

2

h~ t !2vpt

Af
D D 3

. ~15!

Assumingt res nearly constant throughout the experime
givest res/T5(1/p)A2dc /Af and the elastic displacement
simply given by

h~ t !5J0Fext

1

p
A2dc

Af
@12exp~2bt !#, ~16!

taking into account the first order term of the Taylor expa
sion Eq.~15! gives a self consistent equation remaining a
lytically soluble ~Appendix, Eq. ~A7!. The solution does
have the same structure as the one given by the expres
~16! @Appendix, Eqs.~A9! and~A11!# and have been used t
fit the experimental data.

Not included in the above approach is taking into acco
the elastic contact between the tip and the sample. The e
of the contact between two elastic solids can be simply
pressed through the stiffness ratio between the cantile
stiffnesskc and the contact onekf5GF. In contact mode, a
linear relationship between the cantilever deflection and
sample displacement is observed and the slope can be
than 1 if the contact stiffness is of the same order or less t
the cantilever stiffness.27 The slopea between the cantileve
deflection and the piezoactuator displacementZp , A
5aZp , is given bya51/@11(kc /kf)#. Therefore, a change
of the cantilever deflection is given byaZp5avpt, and the
observed velocity becomesavp . For intermittent contact it
is not obvious that such an expression is straightforwar
applied, particularly when dissipation happens during
contact between the tip and the sample. It is far beyond
scope of the present paper to discuss in details the usefu
of the above equation to describe the intermittent contac28

The equation to fit the experimental data is of the form

z~ t !5Se@12exp~2bet !#2avpt, ~17!

whereSe andbe have the structure given in the Appendix
Fits of the experimental variations are reported in the F

10. Attempts to fit the results obtained for the sample
Mw523 000 andMw53250 at the highest amplitudes we
also done. Since the experimental curves are correctly fi
with Eq. ~17!, it becomes possible to check the validity of th
approximations used. For example, for free amplitudesAf
varying between 32 and 44 nm, the effective vertical locat
z(t) varies between 2.7 and 1.3 nm, corresponding to rela
variations of the amplitude of 8.4% and 3%, respective
e

n

t

-
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t
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e
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ess

.
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Furthermore, since these corrections are partly taken into
count with the first-order term of the expansion~15!, one can
expect that the fitted values of the productJ0FextA2dc and
the relaxation timetN5bN21 are independent ofAf and, in
turn, of the protuberance height. As shown in Fig. 11, th
quantities that aim to describe the intrinsic properties of
nanoprotuberance vary as a function of the free amplit
Af . Therefore, the attempt to fit the experimental curv
shows that Eq.~17! does have a too simple structure to d
scribe satisfactorily the whole kinetics of the nanoprotub
ance. The fact that these two quantities vary as a functio
the height of the protuberance can have two origins: on
the change of the intrinsic properties as function of the p
tuberance size as discussed above, the second is due t
use of a simple viscoelastic response@Eq. ~9!# assuming an
average homogeneous response of the protuberance in
of an heterogeneous one as it occurs with a pointlike fo
applied on an elastic medium.29

The numerical simulation shows the origin of the pure
experimental nonlinearity coming from the way the expe
ment is performed. For small protuberance height with
spect to the free oscillating amplitude of the cantilever,
analytical solution can be derived that allows fits to be fru
fully compared to the experimental results. In most case
simple rheological model is unable to describe the wh
growth process.

The above results show that by recording an image o
soft material with the tapping mode gives a topography t
is a function of the experimental conditions employed. F
example, the step height of a liquid film appears as a dir
function of the free amplitude used. The smaller the fr
amplitude, the higher the observed height of the step.30 Also,

FIG. 10. Comparison between the experimental data and c
puted curves given by the Eq.~A11! ~see Appendix!.
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the height of islands or aggregates of molecules grafted o
surface may become a function of their mechanical susc
tibility. Therefore, the image recorded becomes a mixing o
true topography and the mechanical response. Since the
ing term of the action of the tip varies asA1/Af , an easy way
to check the origin of the contrast will be given by recordi
two images with two different free oscillating amplitudes.

V. CONCLUSION

The aim of the present work was an attempt to investig
the ability of a vibrating tip-cantilever system, the Tappi
mode, to probe mechanical properties without or o
slightly touching the surface. On the one hand, to achieve
goal of minimizing the contact time between the tip and
surface, we use a criterion based on the study of the cycl
the hysteresis of the vibrating amplitude induced by an
tractive field. On the other hand, polystyrene polymer fil
of various molecular weights were chosen as model sam
exhibiting different mechanical properties at the surfa
Anomalous variations of the oscillating amplitude were
terpreted as a response of the vibrating lever to the growt
a nanoprotuberance. The smaller the molecular weight,
more sensitive is the polymer to the strength of the attrac
field due to the proximity of the tip. In addition, the small
the initial oscillating amplitude, the faster is the growth ra
of the nanoprotuberance.

A numerical simulation shows the nonlinear relation b
tween the oscillating amplitude and the growth rate, bes

FIG. 11. Parameters (J0Fext /p)A2dc. ~a! andb ~b! calculated
from the fits shown in Fig. 10. The parametersa remain constant:
a50.25 (2) (Mw51890), a50.53 ~2! (Mw53250), a50.50 ~1!
(Mw523 000). Filled circle, Mw51890; empty circle, Mw

53250; empty square,Mw523000.
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linear assumptions appear suitable enough to reprod
qualitatively the main features describing growth rates
tween 3000 and 15 000 nm/s. At high initial oscillating am
plitudes, or equivalently short residence time of the tip n
the surface, the growth process is found to be amenable
simple analytical solution. The main interest of the analyti
solution is to exhibit variation of the nanoprotuberance pro
erties during the growth process that our present descrip
is unable to describe. Further work is needed to investig
the nonlinearity of the mechanical response at the local sc

The present works show unambiguously that mechan
properties can be probed by simply approaching a vibra
tip. It is also shown that the action of the tip can be simp
described by considering uniquely the static componen
the force. A direct consequence is that the strength of
attractive interaction can be finely tuned by varying the a
plitude of the vibrating lever.

APPENDIX

The static part of the force acting on the sample is giv
by Eq. ~7!:

F5Fext

t res

T
~A1!

because the vibrating amplitude of the microlever varies a
function of the height of the protuberance, the static part
a time dependence through the relation

t res

T
5

1

p
cos21S 12

dc

Af2~h~ t !2vpt ! D
5

1

p
A2dc

Af
S 11

1

2

h~ t !2vpt

Af
D

1OF 1

p
A2d

Af
S 11

3

2

h~ t !2vpt

Af
D G3

. ~A2!

The height of the protuberance is given by

h~ t !5E
2`

t

J~ t2t8!Ḟ~ t8!dt8. ~A3!

Using the Laplace transform, we have

LS E
2`

t

J~ t2t8!Ḟ~ t8!dt8D 5pJ~p!F~p! ~A4!

and the following equation to solve

h~p!5pJ~p!F~p!. ~A5!

Taking the first-order term of the Eq.~A2! gives

F~p!5
Fext

p
A2dc

Af
S 1

p
1

h~p!

2Af
2

vp

2Af

1

p2D ; ~A6!

consequently the Laplace transform of the protubera
height is



e
n

h~p!5
Fext

p
A2dc

At
J~p!

S 12
vp

2Af

1

pD
S 12

Fext

p
A2dc

Af

2Af
pJ~p!D

.

~A7!

With a viscoelastic response of the formJ(t)5J0 @1
2exp(2bt)#, the Laplace transform is

J~p!5
J0b

p~p1b!
. ~A8!

Inserting Eq.~A8! into ~A7! and solving the inverse Laplac
transform gives the time dependence of the protubera
height:

h~ t !5Se@12exp~2bet !#2
J0Fext

p2Af
A2dc

Af

b

be
vpt

~A9!

with

be5bS 12
J0Fext

p2Af
A2dc

Af
D ,
.

.

g

,

ce

Se5
J0Fext

p
A2dc

Af

b

be
S 11

vp

2Afbe
D ;

thus a vertical location of the sample is given by

z~ t !5h~ t !2vpt

5Se@12exp~2bet !#2S 11
J0Fext

p2Af
A2d

Af

b

be
D vpt.

~A10!

The final equation used to fit the experimental data is

z~ t !5h~ t !2avpt

5Se@12exp~2bet !#2aS 11
J0Fext

p2Af
A2dc

Af

b

be
D vpt

~A11!

and the parameters fitted are the product (J0Fext/p)A2dc, b,
anda.
*FAX: 33 5 56 84 69 70.
Electronic address: jpaime@frbdx11.cribx1.u-bordeaux.fr

1T. R. Albrecht, P. Gru¨tter, D. Horne, and D. Rugar, J. Appl. Phys
69, 668 ~1991!.

2Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl
Phys.61, 4723~1987!.

3G. M. Mc Clelland, R. Erlandsson, and S. Chiang, Rev. Pro
Quant. Nondestr. Eval.6, 1307~1987!.

4B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Phys. Re
Lett. 63, 2669~1989!.

5S. Hudlet, M. SaintJean, B. Roulet, J. Berger, and C. Guthman
Appl. Phys.77, 3308~1995!.

6F. J. Giessibl, Science267, 68 ~1995!.
7Y. Sugarawa, M. Otha, H. Ueyama, and S. Morita, Science270,

1646 ~1995!.
8D. Anselmetti, R. Lu¨thi, E. Meyer, T. Richmond, M. Dreier, J. E.

Frommer, and H. J. Gu¨ntherodt, Nanotechnology5, 87 ~1994!.
9S. Kitamura and M. Iwatsuki, Jpn. J. Appl. Phys., Part 235, L668

~1996!.
10P. Gleyzes, P. K. Kuo, and A. C. Boccara, Appl. Phys. Lett.58,

2989 ~1991!.
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