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1. Introduction

We construct a locally geometric ∞-stack MHod(X,Perf) of perfect complexes on X with
λ-connection structure (for a smooth projective variety X). This maps to A := A1/Gm,
so it can be considered as a filtration. The stack underlying the filtration, fiber over 1, is
MDR(X,Perf) which parametrizes complexes of D-modules which are perfect over OX . The
associated-graded, or fiber over 0, is MDol(X,Perf) which parametrizes complexes of Higgs
sheaves perfect over OX , whose cohomology is locally free, semistable with vanishing Chern
classes. One of the motivations for this question is that if p : X → Y is a smooth morphism,
we can define the higher direct image functor

Rp∗ : MHod(X,Perf) → MHod(Y,Perf),

which is a way of saying that the higher direct image functor between de Rham moduli stacks
preserves the Hodge filtration.

Key words and phrases. λ-connection, perfect complex, D-module, de Rham cohomology, Higgs bundle,
Twistor space, Hochschild complex, Dold-Puppe.
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2 C. SIMPSON

Glueing to MHod(X,Perf) we obtain Hitchin-Deligne’s twistor space for perfect complexes.
This has prefered sections corresponding to O-perfect mixed Hodge modules over X. Conjec-
turally, the formal neighborhood of a prefered section should be a nonabelian mixed Hodge
structure.

This work is part of a general research project with L. Katzarkov, T. Pantev, B. Toen
(and more recently, G. Vezzosi, M. Vaquié) about nonabelian mixed Hodge theory. The
main result in the present note is that the moduli stack MHod(X,Perf)) is locally geometric
(Theorem 4.4). Its proof relies heavily on a recent result of Toen and Vaquié that the moduli
stack Perf(X) of perfect complexes onX is locally geometric. We are thus reduced to proving
that the morphism

MHod(X,Perf) → Perf(X ×A/A) = Perf(X) ×A

is geometric. It seems likely that geometricity could be deduced from J. Lurie’s repre-
sentability theorem, and might also be a direct consequence of the formalism of Toen-Vaquié.
Nonetheless, it seems interesting to have a reasonably explicit description of the fibers of the
map: this means that we fix a perfect complex of O modules E over X and then describe the
possible structures of λ-connection on E. The notion of λ-connection is encoded in a sheaf
of rings of differential operators Λ (which is just DX when λ = 1). Our construction works
for more general Λ so it should also serve to treat examples such as the case of logarithmic
connections.

Our description of the Λ-module structures on E passes through a Kontsevich-style
Hochschild weakening of the notion of complex of Λ-modules. In brief, the tensor algebra

TΛ :=
⊕

Λ ⊗OX
. . .⊗OX

Λ

has a differential and coproduct, and for O-perfect complexes E and F , this allows us to
define the complex

Q(E,F ) := Hom(TΛ ⊗OX
E,F )

with composition. A weak structure is a Maurer-Cartan element η ∈ Q1(E,E) with d(η) +
η2 = 0. This works on affine open sets, and we need a Čech globalization (again using a
Maurer-Cartan equation as done by Toledo-Tong, Hinich, . . . ) to get to X. The idea that
we have to go to weak structures in order to obtain a good computation, was observed by
Kontsevich [63] [7] [64], and has now become a classical remark (most recently see [17]).
Looking at things in this way was suggested to me by E. Getzler, who was describing his
way of looking at some other related questions. The application to weak Λ-module struc-
tures is a particularly easy case since everything is almost linear (i.e. there are no higher
product structures involved). Our argument is structurally similar to Block-Getzler [14]. An
important step in the argument is the calculation of the homotopy fiber product involved in
the definition of geometricity, made possible by Bergner’s model category structure on the
category of simplicial categories [10].

This is a very preliminary version: many proofs are only sketched, and some are left out
entirely. At a minimum, at least we have broken up the proof into a collection of more
manageable steps which need to be filled in.
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2. λ-connections and the Hodge filtration

Suppose X is a smooth projective variety over C. Let MDR(X,GL(n)) denote the moduli
stack of rank n vector bundles with integrable connection. Let MHiggs(X,GL(n)) denote the
moduli stack of rank n Higgs bundles, and let MDol(X,GL(n)) denote the open substack
of Higgs bundles which are semistable with vanishing Chern classes. Deligne suggested the
notion of λ-connection as a way of building a bridge between MDR and MDol. For any
parameter λ ∈ A

1 (or any function on the base scheme if we are working in a relative
setting), a λ-connection ∇ on a vector bundle E is a connection-like operator

∇ : E → E ⊗OX
Ω1

X

which satisfies the Leibniz rule multiplied by λ:

∇(ae) = λe⊗ da+ a∇(e).

The curvature is the tensor ∇2 and we will mostly (without further specification) consider
only flat λ-connections i.e. ∇2 = 0.

We obtain a moduli stack MLam(X,GL(n)) → A1 whose fiber over λ is the moduli stack of
λ-connections which when λ = 0 are required to be semistable with vanishing Chern classes
(more precisely, we make this requirement over any closed point in the base scheme where
λ = 0).

There is a natural action of Gm on MLam(X,GL(n)) covering its action on A1. Let
A := A1/Gm denote the quotient stack. Note that A has just two points, which we denote 0
and 1, corresponding to substacks denoted [0] and [1]. The closed substack [0] is isomorphic
to BGm whereas the open substack [1] is just Spec(C).

Let MHod(X,GL(n)) denote the quotient stack of MLam by Gm. We have a morphism

MHod(X,GL(n)) → A

and the fiber over [1] is MDR(X,GL(n)) whereas the fiber over 0 is MDol(X,GL(n)) with its
natural action of Gm (multiplying the Higgs field).

This situation should be thought of as the Hodge filtration on MDR with associated-graded
stack MDol.

Next we recall Deligne’s glueing. Let X denote the complex conjugate variety. It is defined
by taking the complex conjugates of the coefficients of the equations defining X. Complex
conjugation of the coordinates defines a real analytic homoemorphism

γ : XB

∼=
→ XB

where XB denotes the usual topological space underlying the complex analytic manifold Xan

(and the same for X).
Let MB(X,GL(n)) denote the moduli stack of rank n local systems over X. The Riemann-

Hilbert correspondence is an analytical isomorphism

MB(X,GL(n))an ∼= MDR(X,GL(n))an.

On the other hand, the homeomorphism given by complex conjugation gives

MB(X,GL(n)) ∼= MB(X,GL(n)).
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Combining these together, we have an analytic isomorphism

γDR : MDR(X,GL(n))an ∼= MDR(X,GL(n))an.

Now recall from above that MDR(X,GL(n)) is an open substack of MHod(X,GL(n)).
Therefore

MDR(X,GL(n))an ⊂MHod(X,GL(n))an

is an analytic open substack and we can use the isomorphism γDR to glue together
MHod(X,GL(n))an and MHod(X,GL(n))an. This gives the Deligne glueing which is the col-
imit

MDR(X,GL(n))
→
→MHod(X,GL(n))an ⊔MHod(X,GL(n))an →MDel(X,GL(n)).

If we let P denote the stack theoretic quotient of P1 by the action of Gm then it can also be
expressed as a colimit glueing similar to above:

Gm
→
→ A⊔A → P.

Glueing the two maps λ from MHod to A we obtain a map

MDel(X,GL(n)) → Pan.

Pulling back by the map P1 → P we get Deligne’s construction of Hitchin’s twistor space:

MHit(X,GL(n)) := MDel(X,GL(n)) ×Pan (P1)an.

It is easier to describe the glueing in this way which doesn’t involve the parameter λ, or to
put it another way, with our notation that MHod is the quotient of the stack of λ-connections
by the action of Gm, we are implicitly making the identification between λ-connections for
λ 6= 0, 1, with usual connections (λ = 1). Thus we don’t have to go back to this identification
at the time we do the glueing.

Recall that a harmonic bundle on X gives what Deligne refers to as a “prefered section”
of the twistor space, that is a (P1)an →MHit(X,GL(n)) such that the composition with the
projection back to (P1)an is the identity. A complex variation of Hodge structure is a descent
of a prefered section to a map Pan → MDel(X,GL(n)) again projecting as the identity back
to Pan.

The space MDel(X,GL(n)) encapsulates the Hodge filtration and its complex conjugate
on the nonabelian cohomology stack (whose easiest Betti version is MB(X,GL(n))). It is
natural to ask where the weight filtration fits into this picture. This is a somewhat mysterious
question which was attacked in joint work with L. Katzarkov and T. Pantev [59], but for
which we don’t claim to have a full answer.

The main remark we could make was that the phenomenon of the weight filtration seemed
to be concentrated around points of the moduli stack (as opposed to the Hodge filtration
which is in a certain sense concentrated at infinity, because the Hodge filtration can be
used to compactify MDR). This is seen in the fact that the formal completion of MDR at
a point corresponding to a variation of Hodge structure, admits a mixed Hodge structure
(closely related to Hain’s mixed Hodge structure on the relative Malcev completion [47]). At
a general harmonic bundle, the formal completion admits a mixed twistor structure [86].

Our way of thinking of these mixed structures in [59] is inspired by Fulton’s construction
of “deformation to the normal cone” [31], applied along the prefered section. Consider the



GEOMETRICITY OF THE HODGE FILTRATION 5

scheme T consisting of two crossing copies of A1, mapping to A1 by the identity on each
factor. Let T be the quotient by the action of Gm. It consists of two crossing copies of A
and maps to A. Fix one of the copies as the “basepoint” A → T . Now if X is any stack
and x ∈ X we can form

DN(X; x) := Hom(T /A, X ×A/A) ×X×A {x} × A.

We have a morphism DN(X; x) → A and the fiber over 1 is X whereas the fiber over 0 is
the normal cone of X at x, since the fiber of T → A over 0 is Spec(C[ε]/(ε2)). The same
construction may be done in the analytic category.

Given a morphism X → Y and a section x : Y → X we can form the relative version

DN(X/Y ; x) → Y ×A.

If ρ is a preferred section of MDel(X,GL(n)) corresponding to a variation of Hodge structure,
the mixed Hodge structure along ρ is encoded by

DN(MDel(X,GL(n))/Pan; ρ) → (P ×A)an.

The Hodge filtration and its complex conjugate are given by the two copies of A ⊂ P
while the weight filtration corresponds to the additional copy of A introduced by the DN
construction. The same construction works along the prefered section of the twistor space
corresponding to a harmonic bundle, to give the mixed twistor structure on the formal
neighborhood of the prefered section:

DN(MHit(X,GL(n))/(P1)an; ρ) → (P1 ×A)an.

It is obvious that one could say that these constructions vary in a family when we move the
prefered section ρ (although it would be necessary to elucidate exactly which good properties
this family would have). But other than that, it is not clear what more global version of the
weight filtration could be constructed.

3. Variation of cohomology—an example

Consider a simple example as in Green and Lazarsfeld [40]. Let A be a three dimensional
abelien variety and let X ⊂ A be a smooth hypersurface. The diamond of Hodge numbers
of X looks like

3 + a 3 1
3 9 + b 3
1 3 3 + a

.

Look at the moduli space MDR(X,GL(1)). This parametrizes line bundles with connection
(L,∇) over X. It is an extension

1 → C
3 →MDR(X,GL(1)) → Â→ 1.

Let’s look at how the de Rham cohomology varies as a function of the point in MDR. If
(L,∇) = (OX , d) then

hi
DR(X, (L,∇)) =





1 i = 0, 4
6 i = 1, 3
15 + 2a + b i = 2.
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If we assume that A is simple, then (by the generic vanishing result of Green and Lazarsfeld
[40], for example) for any (L,∇) different from (OX , d) the de Rham cohomology vanishes
except in the middle degree. The Euler characteristic is invariant so in this case

hi
DR(X, (L,∇)) =

{
0 i = 0, 1, 3, 4
5 + 2a+ b i = 2.

The de Rham cohomology bundle in degree 2 defines a vector bundle of rank 5 + 2a+ b on

MDR(X,GL(1)) − {0}.

However, in general this bundle will not have an extension across the origin (interestingly
enough, it seems that the singularity at the origin depends on the cohomology class [Y ]).

Clearly what is happening here is that we obtain a natural perfect complex H ·(X,−) on
MDR(X,GL(1)), whose restriction to the complement of the origin is a vector bundle of rank
5 + 2a+ b placed in degree two, whereas the fiber over the origin is a complex taking up the
full interval [0, 4].

4. Perfect complexes over XDR

Recall that a perfect complex over a scheme Y is a complex of quasicoherent sheaves on Y
which is locally quasiisomorphic to a bounded complex of vector bundles. Here, we make the
convention that “perfect” always means “of bounded amplitude”. The interval of amplitude
is the smallest interval [a, b] in which the complex of vector bundles can be chosen. It may
also be seen as the interval where the cohomology groups of the fibers Ey := E⊗OY

k(x) are
nonzero at closed points y ∈ Y (on the other hand it is bigger in general than the interval
where the cohomology sheaves of E are nonzero).

There are several different options for how to construct the n-stack Perf [a,b] of perfect
complexes with amplitude in [a, b], which was suggested to me by A. Hirschowitz. Here

n = 1 + b − a. One possibility is to say that Perf [a,b](Y ) is the simplicial localization of
the subcategory of fibrant and cofibrant objects which correspond to perfect complexes with
amplitude in [a, b], in an appropriate closed model category of complexes. In the next section
below, we give a different point of view where we apply the Dold-Puppe construction to the
differential graded category of perfect complexes, defined for example by Bondal-Kapranov
[16]. As a matter of notation, we let Perf denote the union of the Perf [a,b]. Since n depends
on a, b, this is an ∞ stack. It may be seen as a Segal 1-stack because the Hom objects are
simplicial sets which means ∞-groupoids. Note that even with the notation Perf we are still
only considering perfect complexes of bounded amplitude, we are just not specifying which
amplitude.

Toen and Vaquié have shown that Perf [a,b] is a locally geometric n-stack, with geometric
charts given by fixing bounds on the dimensions of the cohomology groups [93]. If d(i) is a
function with d(i) = 0 for i outside the interval [a, b] then let Perf(≤ d) be the open substack
of perfect complexes with hi(Ey) ≤ d(i). The result of Toen and Vaquié can be stated

Theorem 4.1. The n-stack Perf(≤ d) is geometric.

Proof: [93].
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In the example of the previous section, the perfect complex of cohomology H ·(X,−) may
be considered as a map

MDR(X,GL(1)) → Perf [0,4].

Suppose now that we are in a relative situation, with a smooth projective morphism
p : X → S between smooth projective varieties (ideally one would want to treat open
varieties and singular maps too but this is farther off). Given a vector bundle with integrable
connection (E,∇) on X, we will obtain an object Rp∗(E,∇) which encodes the family of
perfect complexes

s ∈ S 7→ H ·(Xs, (E,∇)|Xs
).

This family has a “Gauss-Manin connection” in a certain sense. It can be seen, for exam-
ple, as an object in the derived category of D-modules on S, with the higher direct image
calculated in terms of D-modules. Another way of looking at it is as a map

SDR → Perf [0,m]

where m = 2dim(X/S) and SDR is the de Rham sheaf Y 7→ Hom(Y red, S).
How does the direct image vary as a function of (E,∇)? The map giving this variance is

Rp∗ : MDR(X,GL(n)) → Hom(SDR,Perf [0,m]).

The example in the previous section may be seen as the case where S is a single point.
We would like to think of the higher direct image Rp∗ as a map between moduli stacks; this

means that we would like to think of Hom(SDR,Perf [0,m]) as being a moduli stack; rename
it to

MDR(S,Perf [0,m]) := Hom(SDR,Perf [0,m]).

In order to be precise, the n-stack Hom here is the internal Hom in the world of n-stacks
over the etale site of schemes of finite type over Spec(C). In order to give some substance
to this notation, our main result (in the de Rham case) is the following theorem.

Theorem 4.2. If X is a smooth projective variety over Spec(C) then MDR(X,Perf [0,m]) is
locally geometric, covered by open geometric substacks MDR(X,Perf(≤ d)).

The higher direct image functor can now be seen as a morphism between locally geometric
n-stacks, and indeed it is a good idea to extend its definition to our new moduli stacks so
that the map becomes

Rp∗ : MDR(X,Perf [a,b]) →MDR(S,Perf [a,b+2dim(X/S)]).

It should be stressed that this map is not at all new: it is just the higher derived direct
image functor on complexes of D-modules. We are just investigating the properties of some
possible choices for the domain and range of the functor.

Points in MDR(X,Perf [a,b]) will be called perfect complexes over XDR. In the D-module
point of view, these are complexes of D-modules which are perfect as complexes of OX-
modules. The existence of the flat connection guarantees that the cohomology sheaves are
actually vector bundles and they inherit flat connections. Thus a perfect complex over XDR is
obtained by successive extensions (these can be realized as mapping cones) of vector bundles
with integrable connection.
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One observation to make here is that for cohomology we are only allowing D-modules
which are OX -coherent. Of course it would be interesting to look at more singular objects
too but that goes outside our present scope. On the other hand, a priori the D-modules
appearing as terms in the complex are only quasicoherent over OX , indeed the general case
is where the terms of the complex are free D-modules. The main idea of our proof will be to
use a Hochschild weakening in order to be able to work directly with complexes whose terms
are coherent (and locally free) over OX . This type of reasoning was used by Kontsevich in
the calculation of the deformations of various objects by going to their weak versions (e.g.
A∞-categories). Hinich also cites Drinfeld, and historically it also goes back to Stasheff’s
A∞-algebras, Toledo and Tong’s twisted complexes, the theory of operads and many other
things. We had a feeling, in the work of [59], that something of this sort would probably be
useful. It was brought more into focus in discussions I recently had with Ezra Getzler upon
his visit to Nice. The present argument is only a fairly elementary example of this type of
reasoning, applied to perfect complexes which are fairly linear objects (i.e. they don’t have
any homotopy operations).

Looking at a perfect complex over XDR seems a bit oxymoronic, since the classical pur-
pose of perfect complexes was to speak of resolutions of coherent sheaves which were not
vector bundles; whereas here the cohomology sheaves are automatically locally free because
of the integrable connection. It was Bertrand Toen who first pointed out to me that per-
fect complexes over XDR remain interesting objects, essentially because they encode higher
cohomological data. He has exploited these objects in his notion of complex homotopy type
X ⊗ C. His basic idea is that tensor product provides the ∞-category of perfect complexes
over XDR with a Tannakian structure, and X ⊗ C is the Tannaka dual of this Tannakian
∞-category. As this calls upon notions which are not necessarily well grounded yet, Toen
came up with one (or several) more concrete constructions in order to get to X ⊗ C [91]
[61]. Nonetheless it is philosophically important to look at the original Tannakian idea. The
main problem with the construction is that the category of perfect complexes over XDR (or
XB) is considered as a discretized object. On the Tannaka dual side this gives an algebraic
object which is the pro-algebraic completion of the homotopy type of X. This is “too big”
in the same sense that the pro-algebraic completion of the fundamental group is too big.

Toen’s Tannakian theory could be seen as one motivation for looking at the locally geo-
metric n-stacks MDR(X,Perf [a,b]) we consider here. If one wants to define a tensor product
operation it is probably better to go to the locally geometric ∞-stack MDR(X,Perf) of per-
fect complexes of bounded amplitude over XDR (but where we don’t fix the length of the
interval). Locally this ∞-stack is an n-stack but n varies depending on the open set. In any
case, it is 1-groupic so it can be thought of as a Segal 1-stack. Tensor product provides a
monoidal structure on MDR(X,Perf). A basepoint x ∈ X gives a fiber-functor

ωx,DR : MDR(X,Perf) → Perf .

It is unclear what Aut⊗(ωx,DR) would look like; probably not really anything too good, due
to the fact that the basic de Rham spaces of representations MDR(X,GL(n)) don’t have
enough algebraic functions. The corresponding Betti version Aut⊗(ωx,B) should be better.
In particular, starting from the de Rham side it would be better to go to the analytic
category before taking the Tannaka dual. These Tannaka duals of continuous objects could
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be expected to be “discrete” in some sense, or at any rate “more discrete” than the pro-
algebraic completion X ⊗ C.

Katzarkov, Pantev and Toen provide the schematic homotopy type X ⊗ C with a mixed
Hodge structure [60] [61]. This leads to Hodge-theoretic restrictions on the homotopy type of
X, and should be related to the nonabelian mixed Hodge structure on the formal completions
of MDR(X,Perf) in much the same way as Hain’s mixed Hodge structure on the relative
Malcev completion is related to the mixed Hodge structure on the formal completion of
MDR(X,GL(n)).

A natural question is whether the direct image functor Rp∗ is compatible with the Hodge
filtration. Of course the answer is yes, for purely formal reasons; the only problem is how
to state the question. In order to give the statement, we want to introduce the notion of
perfect complex with λ-connection over X, which is defined to be a map

(XHod)λ → Perf [a,b].

In keeping with the fact that the cohomology sheaves of perfect complexes on XDR are vector
bundles with integrable connection, we require that over points in the base scheme where
λ = 0, the cohomology sheaves should be locally free, and furthermore semistable Higgs
bundles with vanishing Chern classes. Requiring this condition, we obtain a moduli functor
which is the relative Hom stack

MHod(X,Perf [a,b]) := Homlf,se,ci=0(XHod/A,Perf [a,b] ×A/A) → A.

Theorem 4.3. Suppose p : X → S is a smooth morphism between smooth projective va-
rieties. Then the higher direct image functor induces a map of n-stacks (for appropriate
n),

Rp∗ : MHod(X,Perf [a,b]) →MHod(S,Perf [a,b+2dim(X/S)]).

We don’t go into the proof of this here; it is basically just an observation about formal
categories as described in [84]. It is the motivation for our main result which is geometricity
of the moduli n-stacks entering into the above statement.

Theorem 4.4. If X is a smooth projective variety over Spec(C) then MHod(X,Perf [0,m]) is
locally geometric, covered by open geometric substacks MHod(X,Perf(≤ d)).

With this geometricity statement it seems reasonable to make the Deligne glueing in
exactly the same way as before, to get an analytic moduli stack

MDel(X,Perf) → Pan,

whose pullback to (P1)an is the twistor space of perfect complexes

MHit(X,Perf) := MDel(X,Perf) ×Pan (P1)an.

These have prefered sections which are mixed Hodge modules [76] or mixed twistor modules
[75] over X (whose cohomology objects are required to be OX-coherent). We conjecture
that the relative deformation to the normal cone along such a prefered section, should be a
variation of nonabelian mixed Hodge structure in the sense of [59]. Saito (in the Hodge case)
and Sabbah (in the twistor case) show that the higher direct image functor sends prefered
sections to prefered sections.
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5. Dold-Puppe of differential graded categories

In order to get the best possible control over the Segal stacks we are working with, the
point of view of differential graded categories is optimal. The relationship between complexes
and simplicial sets is given by the Dold-Puppe construction. In order to apply this to the

enrichment of a category, giving a construction we shall denote by D̃P going from differential
graded categories to simplicial categories, we have to verify that Dold-Puppe is compatible
with the multiplicative structure (used for composition of morphisms in a d.g.c.). Of course
this is classical, but I don’t know of a good reference beyond [55] which is very succinct, so
we do it explicitly here.

By a chain complex A, we mean a collection of An with differential d : An → An−1. Denote
by sK the simple construction of a chain complex out of a simplicial abelian group.

Define the following chain complex which we denote D(n). Let D(n)k denote the free
abelian group generated by the inclusions ϕ : [k] →֒ [n], for 0 ≤ k ≤ n, with D(n)k = 0
otherwise. Denote the generator corresponding to ϕ by just ϕ.

Define the differential d : D(n)k → D(n)k−1 by

dϕ :=

k∑

i=0

(−1)i(ϕ ◦ ∂i)

where ∂i : [k − 1] → [k] is the face map skipping the ith object. The differential going from
D(n)0 to D(n)−1 is declared to be zero.

We define a coproduct κ : D(n) → D(n) ⊗D(n) as follows. Let lti : [i] → [k] denote the
inclusion of the first i + 1 objects, and gti : [k − i] → [k] the inclusion of the last k + 1 − i
objects. Note that these overlap, both including object number i.

For ϕ; [k] →֒ [n], put

κ(ϕ) :=

k∑

i=0

(ϕ ◦ lti) ⊗ (ϕ ◦ gti).

This is co-associative: we have (κ⊗ 1) ◦ κ = (1 ⊗ κ) ◦ κ.
Also κ is compatible with the differentials on D(n) and D(n) ⊗D(n). We have

(d⊗ 1 + σ ⊗ d)(κϕ) =

k∑

i=0

i∑

j=0

(−1)j(ϕ ◦ lti ◦ ∂j) ⊗ (ϕ ◦ gti)

+
k∑

i=0

k∑

j=i

(−1)j(ϕ ◦ lti) ⊗ (ϕ ◦ gti ◦ ∂j−i).

In this expression the terms i = 0, j = 0 in the first line and i = k, j = k in the second line
which don’t make sense, are defined as zero. This sum contains all of the terms of κ(dϕ)
plus some additional terms. The additional terms include ones where various segments are
removed; but each removed segment is counted twice, one for each endpoint, with opposite
signs, so these terms all cancel. To do this formally, note that

lti ◦ ∂j = ∂j ◦ lti−1, j ≤ i
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gti ◦ ∂j−i = ∂j ◦ gti, j > i,

whereas

∂j ◦ gti−1 = gti, j ≤ i− 1

and

∂j ◦ lti = lti, j > i,

finally, when they make sense we have

lti ◦ ∂i = lti−1, gti ◦ ∂0 = gti+1.

Thus our sum above becomes
k∑

i=1

i−1∑

j=0

(−1)j(ϕ ◦ ∂j ◦ lti−1) ⊗ (ϕ ◦ ∂j ◦ gti−1)

+

k∑

i=0

k∑

j=i+1

(−1)j(ϕ ◦ ∂j ◦ lti) ⊗ (ϕ ◦ ∂j ◦ gti)

+

k∑

i=1

(−1)i(ϕ ◦ lti−1) ⊗ (ϕ ◦ gti)

+

k−1∑

i=0

(−1)i(ϕ ◦ lti) ⊗ (ϕ ◦ gti+1).

Here the first and second lines combine to give κ(dϕ) while the third and fourth lines cancel.
Our collection of complexes D(n) forms a cosimplicial object in the category of complexes.

Namely, for any map ψ : [n] → [m] we obtain a map D(n) → D(m). This sends ϕ to ψ ◦ϕ if
the latter is injective, and to zero otherwise. This operation is functorial: suppose we have
maps ψ : [n] → [m] and τ : [m] → [p]. Then the combined operation sends ϕ to ψ ◦ ϕ or
zero; subsequently to τ ◦ψ ◦ϕ if the latter is injective or zero otherwise. At the intermediate
step, if τ ◦ ψ ◦ ϕ was injective then ψ ◦ ϕ had to be injective too so this works correctly.

On a theoretical level, let N denote the normalized complex functor from simplicial abelian
groups to chain complexes of abelian groups. If we let D denote the degenerate subcomplex
then N(A) = s(A)/D(A). The Dold-Kan theorem and Dold-Puppe construction say that
N gives an equivalence of categories between simplicial abelian groups and chain complexes.
Let Z∆(n) denote the simplicial abelian group generated by the standard n-simplex. Then
for any simplicial abelian group A we have that An is the set of maps from Z∆(n) to
A. By the equivalence of categories this is the same as the set of maps from NZ∆(n) to
N(A). Therefore, if we want to invert the functor N we should use the chain complexes
D(n) := NZ∆(n) which are exactly those we have described explicitly above. In particular,
one should think of D(n)k as being generated by all ϕ : [k] → [n], modulo the degenerate
ones, which explains the formula for functoriality in the preceding paragraph.

The advantage of the explicit formulation is that we could write down explicitly the co-
product. One should note that the description of the Dold-Puppe operator given in [66] for
example relies on formally adjoining degeneracies, which in turn is based on the description
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of N as a subcomplex of normalized chains rather than the more canonical description as a
quotient by D(A). In terms of this description it is hard to write down a nice coproduct.

We can now define the Dold-Puppe functor as the functor which to a chain complex A
associates the simplicial abelian group which in degree n has

DP (A)n := Hom(D(n), A)

(the group of morphisms of complexes from D(n) to A). This is a simplicial object by
functoriality of D(n) in n. Elements of DP (A)n may be considered as functions a(ϕ) ∈ Ak

for each ϕ : [k] →֒ [n], satisfying d(a(ϕ)) =
∑

(−1)ia(ϕ ◦ ∂i).
We will check that N(DP (A)) ∼= A so that DP is a one-sided inverse of N , but as we know

from the literature that N has an inverse it follows that our functor DP is the inverse. To
verify this, go back to the description of N as the normalized subcomplex. Thus N(DP (A))n

is the subgroup of Hom(D(n), A) consisting of maps a such that a ◦ ∂i = 0 for i = 1, . . . , n.
Explicitly this means that a(ϕ ◦ ∂i) = 0 for i = 1, . . . , n. It follows that the only nonzero
values of a are a(1[n]) ∈ An and a(gt1) ∈ An−1. On the other hand, the formula saying that
a is a map of complexes from D(n) to A says that a(gt1) = d(a(1[n])), so an element of
N(DP (A))n corresponds to a choice of arbitrary a(1[n]) ∈ An. This isomorphism respects
the differential, to give the claim and hence the fact that our functor as defined above is
inverse to N .

Now the coproduct gives the composed map

Hom(D(n), A) ×Hom(D(n), B) → Hom(D(n) ⊗D(n), A⊗B) → Hom(D(n), A⊗B).

Therefore we obtain maps of simplicial sets (which however are not linear)

DP (A) ×DP (B) → DP (A⊗ B).

This product is associative, because of co-associativity of κ. Note also that if Z[0] denotes
the complex with Z in degree 0 then DP (Z[0]) is the constant simplicial abelian group Z.
With respect to this isomorphism, the product above is unital too.

W have defined DP (A) for chain complexes, which are the same as cochain complexes
concentrated in negative degrees. If A is an unbounded cochain complex then let τ≤0 be the
intelligent truncation which replaces A0 by ker(d : A0 → A1), keeps the Ai for i < 0 and
replaces Aj by 0 for j > 0. Then denote again by DP (A) the result of DP applied to the
truncation τ≤0A. Note that truncation is also compatible with tensor products: indeed we
have

τ≤0A→ A,

hence

(τ≤0A) ⊗ (τ≤0B) → A⊗ B

and this factors through a map

(τ≤0A) ⊗ (τ≤0B) → τ≤0(A⊗ B).

This is associative too. Thus we obtain

(DPτ≤0A) × (DPτ≤0B) → (DP (τ≤0A⊗ τ≤0B)) → DP (τ≤0(A⊗ B))
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which is an associative product. This justifies replacing DPτ≤0A by the simpler notation
DP (A): we retain our associative product for arbitrary complexes

DP (A) ×DP (B) → DP (A⊗ B).

If R is a commutative base ring and A and B are complexes of R-modules then we have
a map A⊗ B → A⊗R B. This gives

DP (A) ×DP (B) → DP (A⊗R B),

which remains associative and unital.
These facts allow us to use DP to create a simplicial category out of a differential graded

category. A differential graded category over a ringR is a category C enriched in complexes of
R-modules. Applying the functor DP to the enrichment, with the product maps constructed

above, yields a category which we denote by D̃P (C). The objects of this category are the
same as the objects of C, whereas if x, y are objects then by definition

HomD̃P (C)(x, y) := DP (HomC(x, y)).

The composition of morphisms is given by the above product maps:

DP (HomC(x, y)) ×DP (HomC(y, z)) → DP (HomC(x, y) ⊗R HomC(y, z))

→ DP (HomC(x, z)).

Recall that an equivalence in a d.g.c. is a morphism u (that is, an element of Hom0(x, y)
with d(u) = 0) which admits a quasi-inverse, that is a morphism v in the other direction
such that and homotopies r, s of degree −1 such that d(r) = uv− 1 and d(s) = vu− 1. Note

that the morphisms of D̃P (C), i.e. the points in the degree 0 part of the simplicial mapping
sets, are the same as the morphisms of C. A morphism of C is an equivalence if and only if

its image is an equivalence in D̃P (C).

The construction D̃P corresponds to forgetting some of the structure of C. For example,
the positive-degree parts of the complexes HomC(x, y) are truncated off, and also the fact
that they are complexes is lost when we forget that DP (HomC(x, y)) are simplicial abelian
groups (or actually simplicial R-modules in this case) and consider these just as simplicial
complexes. The product maps for defining the compositions don’t respect the abelian group
structure of DP (HomC(x, y)) in any way which is easy to codify (actually they are quadratic
maps in a certain sense but we forget that). So, all of this structure on C is lost when we go

to the simplicial category D̃P (C). Under some circumstances there might be ways to get it
back, for example if C has enough shift operators à la [16], but we don’t consider that here.

5.1. Homotopy fibers. In the course of our proof we will need to understand the homotopy

fiber of a map between D̃P constructions. Suppose f : A → B is a functor of differential
graded categories, and suppose b ∈ ob(B). We would like to understand the homotopy fiber

of D̃P (f) defined as

Fib(D̃P (f)/b) := D̃P (A) ×h
D̃P (B)

{b}.
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Recall from [92] that f is fibrant if it satisfies the following two conditions:
(1) for each pair of objects x, y of A, the map

HomA(x, y) → HomB(f(x), f(y))

is a surjection of complexes of abelian groups; and
(2) for x ∈ ob(A) and y ∈ ob(B) and u an equivalence in B between f(x) and y, then u
lifts to an equivalence ũ in A, between x and a lift ỹ of y.

If f is fibrant in the above sense, then D̃P (f) is a functor between simplicial categories
which is fibrant in Bergner’s model structure [10], namely

(1) D̃P (f) induces a Kan fibration on mapping complexes; and

(2) equivalences in D̃P (B) lift to D̃P (A) with one endpoint fixed in the same way as above.

In particular, once we have Bergner’s fibrancy condition, we can use D̃P (f) directly to
form the homotopy fiber product:

Fib(D̃P (f)/b) = D̃P (A) ×D̃P (B) {b}.

We don’t propose an explicit model for the homotopy fiber Fib(D̃P (f)/b) other than in the
fibrant case, so it will cause no confusion to say that this formula for the homotopy fiber

holds in the case f fibrant. The objects of Fib(D̃P (f)/b) are the objects of A which map to

b, and the simplicial mapping sets are the subsets of the mapping sets in D̃P (A) of objects
mapping to (the degeneracies of) the identity of b.

We can construct the fiber on the level of differential graded categories. However, the
fiber is not itself a Dold-Puppe construction but only a closely related affine modification,
because of the condition that the morphisms map to the identity of b. In order to define
this structure, first say that an augmented differential graded category (C, ε) is a dgc C with
maps

ε : Hom0
C(x, y) → C

for all pairs of objects x, y, such that ε(dv) = 0 when v has degree −1, and such that
ε(uv) = ε(u)ε(v) and ε(1x) = 1. It is the same thing as a functor to the dgc (∗, cc[0]) of one
object whose endomorphism algebra is C in degree 0.

If (A, ε) is an augmented dgc, define the affine Dold-Puppe D̃P (A, ε) to be the sub-

simplicial category of D̃P (A) whose simplices are those which project to degeneracies of the
unit 1 ∈ C in DP (C[0]) which is the constant simplicial group C∆.

If f is fibrant in the above sense, define an augmented dgc Fibdgc(f/b) as follows. The
objects are the objects of A which map to b. The mapping spaces are the subcomplexes
of HomA(x, y) consisting of elements which map to 0 in degree 6= 0 and which map to a
constant multiple of the identity 1b in degree 0. The augmentation ε is the map to the
complex line of multiples of 1b.

Lemma 5.1. If f : A → B is a functor of differential graded categories which is fibrant in

the above sense, and if b ∈ ob(B), then the homotopy fiber of D̃P (f) over b is calculated by
the affine Dold-Puppe of the augmented dgc fiber of f ,

Fib(D̃P (f)/b) = D̃P (Fibdgc(f/b), ε).
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�

5.2. Maurer-Cartan stacks. Suppose Z is an augmented differential graded algebra (i.e.
associative but not necessarily unitary) over a commutative ring R, with augmentation
ε : Z → C[0] compatible with the product and differential. Then we obtain the differential
graded category MC(Z, ε) of Maurer-Cartan elements η ∈ Z1 such that d(η)+ η2 = 0. Give
this a structure of d.g.c. by defining HomMC(Z)(η, ϕ) := Z as a graded group; but with
differential

dη,ϕ(a) := d(a) + ϕa− (−1)|a|aη.

This has square zero. The composition of morphisms is given by the algebra structure on
Z, and it is compatible with the differentials. The augmentation gives an augmentation
on the simplicial category. Applying the above construction we get a simplicial category

D̃P (MC(Z), ε). This construction should be basically equivalent to the simplicial Deligne
groupoid constructed by Hinich [50].

If B is a commutative R-algebra then we can make the same construction for Z⊗RB. Let
MC(Z, ε) denote the Segal stack on the big etale topology over Spec(R), associated to the
prestack

B 7→ D̃P (MC(Z ⊗R B), ε).

We will be interested in this construction under the following hypothesis which we call
“quasi-nilpotent accessory cograding”. Note first as a matter of notation that we call a
cograding a decomposition like a grading but with direct product instead of direct sum.

Hypothesis 5.2 (Quasi-nilpotent accessory cograding). Suppose R is a k-algebra of finite
type with k a field of characteristic zero. Suppose that Z is a differential graded algebra over
R, with an accessory cograding Z =

∏
k≥0Zk, such that the differential preserves Zk and the

product structure sends Zk ⊗ Zl to Zk+l. Assume that ε is an isomorphism from Z0 to C[0].
The quasi-nilpotence assumption is that there exists k0 such that Zk is acyclic for k > k0.

This hypothesis provides a certain type of nilpotence which replaces the use of Artinian
local rings as coefficients in [36] for example. One consequence is homotopy invariance such
as in [37].

Lemma 5.3. Suppose ψ : Q→ Z is a morphism of differential graded R-algebras, such that
both Q and Z have quasi-nilpotent accessory cogradings and ψ preserves the accessory cograd-
ings. If ψ is a quasiisomorphism then it induces an equivalence of stacks from MC(Q, ε) to
MC(Z, ε).

Proof: It suffices to note the same result on the level of differential graded categories
MC(−). The quasi-nilpotence hypothesis allows us to solve the necessary equations auto-
matically at all orders beyond k0. An example is the proof of quasi-essential surjectivity.
Suppose η = (. . . , ηk, . . .) is a Maurer-Cartan element for Z. Construct a corresponding
Maurer-Cartan element ϕ ∈ Q1, along with a morphism called 1 + α ∈ Z0, with ϕ and α in
orders ≥ 1, step by step with respect to the cograding. The equations are

d(ϕ) + ϕ2 = 0,

d(α) + (ψϕ)(1 + α) − (1 + α)η = 0.
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Once we have chosen ϕ and α up to and including degrees k − 1, then choose ϕk and αk so
that

d(ϕk) + (ϕ2)k = 0,

and
d(αk) + ψ(ϕk) − ηk + ((ψϕ)α− αη)k = 0.

This is possible at each step because of the condition that ψ be a quasiisomorphism (it
requires some calculation but formally these equations are the same as in the theory of
Schlessinger-Stasheff-Deligne-Goldman-Millson [36] [37]). A similar type of argument shows
the quasiisomorphisms on the level of mapping complexes. �

Corollary 5.4. Suppose Z is a differential graded algebra with quasi-nilpotent accessory
grading, such that the Zk are acyclic for k > k0. Let Z≤k0

be the differential graded algebra
obtained by dividing by the ideal of elements whose projections to Zk are zero for k ≤ k0.
Then the map Z → Z≤k0

induces an equivalence of Maurer-Cartan stacks.

Proof: Apply the previous lemma; acyclicity exactly means that Z → Z≤k0
is a quasiiso-

morphism. �

Theorem 5.5. With the accessory cograding hypothesis, suppose that each Zk is composed of
free R-modules of finite rank, concentrated in cohomological degrees ≥ −n. Then MC(Z, ε)
is a geometric n + 1-stack over Spec(R).

Proof: Using Corollary 5.4 we can assume that Zk = 0 for k > k0. The Hom complexes of
the Maurer-Cartan stack are obtained by Dold-Puppe of perfect complexes with amplitude
in [−n,∞]. Since DP truncates at 0, the unboundedness in positive degrees is not a problem.
By [85] these Hom complexes are geometric. It remains just to be seen how to define the
smooth chart. But in this case the equation d(η) + η2 = 0 defines a closed subvariety V of
an affine space of finite dimension over R. The map from

V → MC(Z, ε)

is obviously surjective. To prove that it is smooth, suppose Y → MC(Z, ε) is another map
from an affine scheme Y . It corresponds to a Maurer-Cartan element η ∈ Z1 ⊗R OY (Y ). We
want to show that the map

V ×MC(Z,ε) Y → Y

is smooth. We already know that this is geometric, so we just need to provide it with a chart
which is smooth over Y . Take as chart the set of all α ∈ Z0 with ε(α) = 0. For any such α,
there is a unique solution ϕ ∈ V with

d(ϕ) + ϕ2 = 0

dα+ ϕ− η + (αϕ− ηα) = 0.

This is by the same argument of induction on the order k that was used in Lemma 5.3 above.
One needs to check that the map from this chart to the fiber product is smooth; for this,
use the expression of the Hom complexes as perfect complexes over V × Y . The equation
for the first term of the truncated perfect complex is exactly the second equation written
above. Thus, our chart is actually the same as the standard one for Dold-Puppe of a perfect
complex [85]. �
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The strategy of the proofs of Theorems 4.2 and 4.4 will consist of letting Spec(R) →
Perf(X) be a smooth chart, and then expressing the stack MDR ×Perf(X) Spec(R) (or simi-
larly for MHod) as being Maurer-Cartan stacks of a finite differential graded algebra over R
and applying the above theorem.

6. Complexes over sheaves of rings of differential operators

We would like to understand the points of MHod(X,Perf). A “point” of course means a
point with values in a scheme (which we may suppose to be affine) S = Spec(A). Suppose
given λ : S → A1 (i.e. λ ∈ A) and look at S-valued points projecting to λ. By definition,
such an S-point is a morphism

XHod ×A S → Perf .

Recall that XHod is given by a formal groupoid (basically, the “deformation to the normal
cone” of the usual formal groupoid corresponding to XDR). The underlying space is X ×A.
The fiber product with S over A is again a formal category, this time with underlying space
X×S. It corresponds to a sheaf of rings of differential operators Λ on X. For typical values
of λ we have

Λ = DX , λ = 1; Λ = Sym·(TX), λ = 0.

If λ is a general function, we can construct Λ explicitly as follows. It depends on the Rees
construction which will also be one of the main techniques of our proof later.

Start with an almost polynomial sheaf of rings of differential operators Λ filtered by
Λr. The almost polynomial condition means that Gr(Λ) is isomorphic to a polynomial ring
Sym·(K) for a vector bundle K = Λ1/Λ0. We can form the Rees ring with a formal variable
t:

ξΛ :=
⊕

r

tr · Λr.

This contains the polynomial ring OX [t] (corresponding to Λ0 = OX).
Now, back to the situation of a function λ : S → A1, we can construct the sheaf of rings

of differential operators corresponding to XHod ×A S, as

Λ = (ξDX×S/S) ⊗OX [t] OX = (ξDX×S/S)/(t− λ).

It is also a split almost polynomial sheaf of rings of differential operators on X ×S (and OS

is in the center).

Proposition 6.1. Suppose S is a base scheme with a function λ : S → A1. Let Λ be the
sheaf of rings of differential operators corresponding to XHod ×A S. Then the Segal category
of morphisms XHod ×A S → Perf is equivalent to the Dold-Puppe of the differential graded
category of complexes of Λ-modules on X × S which are perfect over O,

Hom(XHod ×A S,Perf) ∼= D̃P (CpxO−perf(Λ)(X × S)).

The Segal category of points of MHod(X,Perf)(S) lying over λ, is equivalent to the subcategory
of complexes whose cohomology sheaves are locally free and semistable with vanishing Chern
classes on any fiber X over a point s ∈ S with λ(s) = 0.
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We don’t give the full proof of this here. The basic idea of one possible proof is to note that
the cohomology objects of a complex on both sides are the same types of objects, namely
U -coherent sheaves on X × S with λ-connections; and the cohomology groups which govern
their extensions are calculated using the same de Rham complex, on both sides (as is well-
known in crystalline cohomology, see [12] for example). Another possible proof is to show
that points on the left side correspond to weak complexes on the formal category; then have
a coherence result showing that these are equivalent to strict complexes, and note that strict
complexes on the formal category are the same thing as complexes of Λ-modules.

Another alternative is simply to declare that the statement of Proposition 6.1 is the
definition of MHod(X,Perf).

One important observation is that the condition that the cohomology sheaves be vector
bundles, with semistable Higgs structure and vanishing Chern classes over closed points in
the base, is an open condition. This is true even in the context of perfect complexes, because
when the dimension jumps it means that a quotient of one cohomology bundle is being
cancelled by a subobject of the next one; the condition of semistability with vanishing Chern
classes implies that both the quotient and subobject must also be semistable with vanishing
Chern classes. (One can contrast this to the situation of a mixed Hodge or mixed twistor
complex, where we have a perfect complex over P1 whose components are semistable of
different weights—in which case the purity condition is not stable under small deformations.)

In view of the proposition, look at the following somewhat more general situation. It
should also serve to cover other cases such as logarithmic connections [71] and Esnault’s
τ -connections [29] [30] (which are connections over foliations).

Suppose that X → S is a smooth projective morphism, and Λ is an almost polynomial
sheaf of rings of differential operators on X/S (commuting with OS). Define the presheaf of
differential graded categories

CpxO−perf(Λ/S)

to be the assignment which to an S-scheme Z associates the differential graded category of
complexes of Λ|X×SZ-modules on X×S Z, which are perfect as complexes of O-modules. Let

M(Λ/S) := D̃P (CpxO−perf(Λ/S))

be the Segal stack associated to the presheaf of simplicial categories obtained by applying

the construction D̃P over each object Z → S.
The functor of forgetting the Λ-module structure induces a functor of presheaves of dif-

ferential graded categories

CpxO−perf(Λ/S) → Perfdgc(X/S)

to the presheaf which to Z → S associates the differential graded category of perfect com-

plexes on X ×S Z. Applying D̃P we get a morphism of Segal stacks

M(Λ/S) → Perf(X/S).

The result of Toen and Vaquié [93] in the relative setting is:

Theorem 6.2. The Segal stack Perf(X/S) is locally geometric.



GEOMETRICITY OF THE HODGE FILTRATION 19

We refer to [93] for the proof. Their proof is based on a Beilinson-style analysis of the
situation, expressing the derived category of perfect complexes as equivalent to the derived
category of modules over a finite dimensional differential graded algebra on the base S
obtained as the endomorphisms of the higher direct image of a generating object.

Our theorem is the following:

Theorem 6.3. The map
M(Λ/S) → Perf(X/S)

is a geometric morphism of Segal stacks.

The proof will occupy the remainder of the exposition.

Corollary 6.4. The Segal stack M(Λ/S) is locally geometric. The geometric open sets are
given as in [93] by fixing a bound on the cohomology dimensions.

Proof: A composition of geometric morphisms is geometric [85]. �

Corollary 6.5. Fix an interval [a, b] and a function r(i) nonzero only for i in [a, b]. Set
n = 1+b−a. Let MHod(X,Perfr) denote the moduli n-stack of perfect complexes on XHod/A

1,
such that in degree i the cohomology object has rank ≤ r(i) over X, and such that over λ = 0
the cohomology objects are semistable with vanishing Chern classes. Then MHod(X,Perfr) is
a geometric n-stack.

Proof: By the boundedness results of [83], the cohomology objects in question have
bounded dimensions of global cohomology over X; thus MHod(X,Perfr) falls (as an open
substack) into one of the geometric open sets of M(ξDX/A

1) in Corollary 6.4. �

This corollary implies the theorems 4.4 and 4.2 (the latter becauseMDR is an open substack
of MHod).

We don’t directly treat the proof of Theorem 6.3 but first make a reduction via a trick
based on the Rees construction. Let

Υ := ξΛ =
⊕

r

Λr.

Recall that this has a subalgebra OX [t] ⊂ Υ.
An O-perfect complex of Λ-modules may be considered as an O-perfect complex of Υ-

modules such that the element t acts by 1. Thus we can express

M(Λ/S) = M(Υ/S) ×M(OX [t]/S) Perf(X/S).

In particular, if we can prove Theorem 6.3 for Υ and OX [t] then we get it for Λ too.
Now Υ has the particularly nice property that it is actually a graded ring. Say that a

graded almost polynomial ring of differential operators is a sheaf of rings Υ over OX , graded
by pieces Υ :

⊕
k Υk, such that Υ = OX , such that the pieces are locally free of finite rank for

both their left and right module structures, and such that Υ admits an additional filtration
F compatible with the grading (i.e. coming from a filtration on each graded piece) such that
GrFΥ is isomorphic to a polynomial ring over OX on GrFΥ1.

Lemma 6.6. If Λ is an almost polynomial ring of differential operators over S in the sense
of [83], then its Rees ring Υ := ξΛ is a graded almost polynomial ring of differential operators
over X.
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Proof: The grading is given by the Rees construction; the filtration F comes from the
original filtration on each graded piece. �

Note of course that OX [t] is also a graded almost polynomial ring of differential operators
over X. We have reduced to the same statement as 6.3 but for a graded almost polynomial
ring.

Theorem 6.7. Suppose X → S is a smooth morphism. Suppose Υ is a graded almost
polynomial ring of differential operators over X, with OS central. Suppose E is a perfect
complex of OX-modules on X. Let M(Υ/S;E) denote the fiber product

M(Υ/S;E) := M(Υ/S) ×Perf(X/S) {E}

where {E} is the section S → Perf(X/S) corresponding to E. Then M(Υ/S;E) is a geo-
metric n-stack (where n is the amplitude of E plus 1).

Lemma 6.8. Theorem 6.7 implies Theorem 6.3, hence Corollary 6.5 and Theorems 4.4 and
4.2.

Proof: In the statement of Theorem 6.7 we have just made more explicit the statement of
Theorem 6.3 for the case of the ring Υ. As we have seen via the Rees construction above,
this special case implies the general case. �

In view of this reduction, we will now concentrate on proving Theorem 6.7. You will see
that the grading gives a significant help in many parts of the proof. To understand the places
where this helps, it is useful to go back to a basic situation: the moduli stack MDR of vector
bundles with connection. This maps to the moduli stack of vector bundles, and the fibers
are something like affine spaces. To express them as affine spaces it is useful to introduce
the Atiyah bundle construction, which looks like a jet-bundle construction. Another way of
putting this is that we can consider a connection as an OX -linear map

(DX)1 ⊗OX
E → E,

subject to the affine condition that the restriction to OX ⊂ (DX)1 be the identity.
Throughout our proof we will be using Maurer-Cartan type equations of the form d(η) +

η2 = 0 (as in the classical equation for a connection of zero curvature). In the Schlessinger-
Stasheff-Deligne-Goldman-Millson approach to deformation theory using the Maurer-Cartan
equation, some type of nilpotence is necessary in order to insure termination of the calcu-
lations involved. In the classical case, this nilpotence is achieved by looking at objects over
Artin local rings. The drawback is that we only get information about the formal neighbor-
hood of a point in the moduli space, this way. However, the fact that the fibers of the map
MDR → Bun are affine spaces suggests that we should be able to capture whole fibers in
a single coordinate chart. This is indeed the case, and it is basically because of a type of
“nilpotence” which says that we only need to consider differential operators of some bounded
order (up to order two for the classical case of connections). The same phenomenon will come
into play in our proof below. The graded structure of the ring Υ is crucial to controlling and
utilising this phenomenon. It eventually will yield a quasi-nilpotent accessory grading on a
differential graded algebra (Hypothesis 5.2) which will allow us to apply Theorem 5.5.
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7. The Hochschild complex and weak Υ-module structures

We have a fixed perfect complex E and we would like to understand the possible Υ-module
structures on E. The obvious definition is that a Υ-module structure on E is a complex of
Υ-modules E ′ plus a quasiisomorphism between E and E ′ over OX . This is unwieldy in that
it brings in an additional complex E ′ which will usually be fairly big (like a complex of free
Υ-modules). A much better way to attack this question is to try to define a notion of weak
structure of Υ-modules directly on E itself. For this we follow Kontsevich and use the basic
model of Stasheff’s definition of A∞-algebra where the higher homotopies are organized in
a natural way. In the present context, calculation of the first few terms quickly leads to a
Hochschild-type complex as the natural way to define a weak Υ-module structure. In this
section, we investigate this notion over an affine open piece of X, which we call Spec(R).

All the calculations are of course classical.
Suppose R is a commutative C-algebra of finite type and Υ is a graded k-algebra with

graded pieces Υk such that ΥjΥk ⊂ Υj+k. Suppose that Υ0 = R.
In particular, Υ (and indeed each Υk) has both left and right R-module structures. When

we write the tensor product
Υ ⊗R Υ,

use the right module structure on the left factor and the left module structure on the right
factor; there persist structures on the left (coming from the left structure of the left factor)
and on the right (coming from the right structure of the right factor).

We assume throughout that the Υk are flat of finite type over R (for both structures). In
fact we shall generally assume that there is a further filtration whose associated graded is a
polynomial ring over R.

Inductively we obtain the n-fold tensor product

T nΥ := Υ ⊗R · · · ⊗R Υ.

Again this has both left and right R-module structures. Let

TΥ :=
⊕

n

T nΥ

denote the tensor algebra (in this sense of contracting the interior R-module structures).
Again it has left and right R-module structures and we maintain the convention about
tensor products with these structures.

This has a Hochschild differential, and a coproduct, which we now describe (these struc-
tures are otherwise known as the bar complex and the tensor products can be replaced by
bars if one wants, although in some notations this induces a shift of indexing from what we
are using here). The differential is defined by the formula

δ(u1 ⊗ · · · ⊗ un) :=
n−1∑

i=1

(−1)i+1u1 ⊗ · · · ⊗ (uiui+1) ⊗ · · · ⊗ un.

Thus,

δ : T nΥ → T n−1Υ

(so with respect to the grading by powers of T , δ is a homological differential).
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A calculation gives δ2 = 0.
The coproduct

∆ : TΥ → TΥ ⊗R TΥ

is defined by the formula

∆(u1 ⊗ · · · ⊗ un) :=
n∑

i=0

[u1 ⊗ · · · ⊗ ui] ⊗ [ui+1 ⊗ · · · ⊗ un]

where we have put in brackets [] the terms going into the two factors of TΥ, and where by
convention the empty bracket denotes the object 1 ∈ T 0Υ.

This is associative in the sense that if we define in the obvious way maps ∆ ⊗ 1 or 1 ⊗ ∆
going

TΥ ⊗R TΥ → TΥ ⊗R TΥ ⊗R TΥ,

then we have

(∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆.

This is an easy calculation because all the signs are positive.
The coproduct is also compatible with the differential. More precisely, let σ denote the

sign operator which is 1 on T 2nΥ and −1 on T 2n+1Υ. We have a differential δ ⊗ 1 + σ ⊗ δ
on TΥ ⊗R TΥ, and

∆ ◦ δ = (δ ⊗ 1 + σ ⊗ δ) ◦ ∆.

To prove this, let’s apply it to an element u1 ⊗ · · · ⊗ un. On the left we get (omitting the
tensor product signs in an obvious way)

∆

n−1∑

i=1

(−1)i+1u1 · · · (uiui+1) · · ·un

=
n−1∑

i=1

i−1∑

j=0

(−1)i+1[u1 · · ·uj] ⊗ [· · · (uiui+1) · · ·un]

+

n−1∑

i=1

(−1)i+1[u1 · · · (uiui+1)] ⊗ [· · ·un]

+

n−1∑

i=1

n∑

j=i+2

(−1)i+1[u1 · · · (uiui+1) · · ·uj] ⊗ [· · ·un].

The first term on the right is

δ ⊗ 1

n∑

j=0

[u1 · · ·uj] ⊗ [uj+1 · · ·un]

=
n∑

j=0

j−1∑

i=1

(−1)i+1[u1 · · · (uiui+1) · · ·uj] ⊗ [· · ·un].
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This accounts for the second and third terms in the left hand side calculated above. The
second term on the right is

σ ⊗ δ

n∑

j=0

[u1 · · ·uj] ⊗ [uj+1 · · ·un]

=

n∑

j=0

n−1∑

i=j+1

(−1)(i−j)+1+j [u1 · · ·uj] ⊗ [uj+1 · · · (uiui+1) · · ·un].

This accounts for the first term on the left side as calculated above. Thus we see that the
left and right sides are equal.

The grading of Υ induces a second grading of TΥ denoted

TΥ =
⊕

k

(TΥ)k

with

(TΥ)k =
⊕

n

(T nΥ)k

for

(T nΥ)k :=
∑

j1+...+jn=k

Υj1 ⊗R · · · ⊗R Υjn
.

The differential δ preserves this grading:

δ : (T nΥ)k → (T n−1Υ)k.

The coproduct is multiplicative on the grading:

∆ : (TΥ)k → (TΥ ⊗R TΥ)k

where the lower grading of the tensor product is obtained from the lower grading of TΥ as

(TΥ ⊗R TΥ)k :=
⊕

i+j=k

(TΥ)i ⊗R (TΥ)j

(in a similar way we obtain the upper grading of the tensor product using the upper grading
T nΥ; the differential δ⊗1+σ⊗ δ is of degree −1 with respect to the upper grading whereas
it is of degree 0 with respect to the lower grading).

To simplify notation we will call the degree in the lower grading the order, thus an “element
of order k” means an element of ( )k.

We use the above constructions in order to define a differential graded category of com-
plexes with weak Υ-module structures. Suppose (E, d) and (F, d) are complexes of R-modules.
If necessary in case of confusion we can note the differentials dE and dF . Define a complex
denoted (Q′(E,F ), dQ) as

Q′(E,F ) := HomR(TΥ ⊗R E,F )

with the differential dQ combining the differentials on TΥ (defined above) with the differen-
tials dE and dF using the usual sign rules. Note that the upper indexing for TΥ with respect
to which the differential is homological, is changed to negative indexing with a cohomological
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differential when we do the construction of Q′. Thus (Q′)i, consists of morphisms a such
that

a(u1 ⊗ · · · ⊗ uk) : Ej → F i+j−k.

Let Q ⊂ Q′ be the subcomplex of morphisms a such that if u ∈ TΥ is a tensor of positive
degree but order zero (i.e. u ∈ (T iΥ)0 for some i > 0) then a(u) = 0. We use Q rather
than Q′ in what follows because we would like to maintain some control over the process of
“forgetting the weak Υ-module structure”. In particular, the complex HomR(E,F ) appears
as a subcomplex (and also a quotient complex) of (Q(E,F ), dQ); it is exactly the subcomplex
of elements of order zero.

The coproduct on TΥ gives us an associative product

Q(E,F ) ×Q(F,G) → Q(E,G),

compatible with the differentials. The product is denoted by simple juxtaposition in what
follows. It is also unitary with respect to the identity morphisms of complexes, thought of
as elements of order zero in the Q(E,E).

The grading by order is preserved by the differential dQ, and compatible with product (the
order of the product being the sum of the orders). The product is the usual composition on
the subcomplexes HomR(E,F ) of elements of order zero. Denote by Q(E,F )>0 the ideal of
elements of positive order.

A Maurer-Cartan element for a complex of R-modules E is an element

η ∈ Q1(E,E)

such that the order-zero term of η vanishes (i.e. η ∈ Q1(E,E)>0), and such that η satisfies
the MC equation

dQ(η) + η2 = 0.

If η is a Maurer-Cartan element for E and ϕ is a Maurer-Cartan element for F , then we
define a new differential dη,ϕ on Q(E,F ) as follows:

dη,ϕ(a) := dQ(a) + ϕa− (−1)|a|aη.

One can verify using the MC equation that d2
η,ϕ = 0.

With the new differential, the quotient map

(Q(E,F ), dη,ϕ) → (HomR(E,F ), dE,F )

is still a map of complexes; however HomR(E,F ) is no longer a subcomplex.
An MC complex is a pair (E, η) where E is a complex of R-modules and η is a Maurer-

Cartan element. We will usually require that E be bounded (that is, Ei = 0 outside of a
finite interval) and that E consist of flat R-modules in each degree.

One can verify that if (E, η), (F, ϕ) and (G, γ) are three MC complexes, the composition
map

Q(E,F ) ×Q(F,G) → Q(E,G)

is still compatible with the new differentials dη,ϕ, dϕ,γ and dη,γ . In this way, we obtain a
differential graded category of MC complexes denoted WpxR−perf(Υ). It has a functor to the
differential graded category of perfect complexes of R-modules Perf(R)dgc (see [16]) given by
the quotient map of morphism complexes considered above.
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Almost polynomial hypothesis on Υ: We suppose henceforth that Υ admits a further
filtration, compatible with the gradings by degree and order, such that the associated-graded
of this filtration is a polynomial ring over R. Thus Υ is a graded almost-polynomial sheaf of
rings of differential operators in the notation of §6.

Proposition 7.1. With the graded almost-polynomial hypothesis, the complex TΥ has co-
homology which is of finite type over R. In particular, there exists k0 such that for k > k0,
(TΥ)k is acyclic.

Proof: This follows from the Hochschild-Kostant-Rosenberg calculation of the Hochschild
homology of the polynomial ring [54], using the same spectral sequence argument as in
Wodzicki [97]. �

The following theorem should be viewed as a coherence result for weak Υ-module struc-
tures. In this sense it is a standard type of thing. Let CpxR−perf(Υ) denote the differential
graded category of complexes of Υ-modules which are perfect over R. Use free resolutions
to define the differential graded structure.

Theorem 7.2. The differential graded category of MC-complexes WpxR−perf(Υ) is quasi-
equivalent, relative to Perf(R)dgc, to the differential graded category CpxR−perf(Υ) of com-
plexes of free Υ-modules perfect over R.

We sketch the proof of the theorem here, but first point out that this should be consid-
ered as a “pre-theorem” in the sense of Adams, in that one might have to fiddle with the
boundedness conditions on the complexes, or else with the hypotheses on Υ, in order to
get all of the details right. In practice for the cases we will need, one can choose bounded
resolutions by free Υ-modules so we ignore the question of boundedness of our resolutions
in what follows.

The first thing to notice is the invariance of the morphism complexes of our differential
graded category, under quasiisomorphisms.

Lemma 7.3. Suppose f ∈ Q0(E,F ) such that dη,ϕ(f) = 0, and such that the underlying
morphism of complexes (which is the piece f0 of order zero) induces a quasiisomorphism
from E to F . Suppose as usual that E and F are projective over R. Then for any MC-
complex (G, γ), composition with f induces quasiisomorphisms (with respect to the MC-
twisted differentials)

Q(F,G) → Q(E,G)

and

Q(G,E) → Q(G,F ).

Proof: We can filter by a decreasing filtration made out of the grading by order (a level of
this filtration will consist of everything with order greater than a certain amount). The fact
that the MC elements have order > 0 means that they act trivially on the associated-gradeds
for this filtration. Also everything is acyclic in the pieces of high enough order by Proposition
7.1. So, up to passing to associated-graded objects we may assume that the MC elements
are zero. In this case the complexes become Q(E,F ) = HomR(TΥ ⊗R E,F ) and similarly
for the other cases. Note that by our hypothesis on Υ, it is a free R-module on either side,
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so TΥ is also free over R. Thus the hypothesis that E and F are projective gives the result
in question. �

Another important type of homotopy invariance (which really explains why we are inter-
ested in the notion of weak structure) is the following.

Lemma 7.4. Suppose (E, η) is an MC complex, and suppose F is a complex of R-modules.
Suppose both are projective over R. Suppose a0 : E → F is a morphism of complexes of
R-modules which is a quasiisomorphism. Then there exists an MC element ϕ for F , and

a ∈ Q0(E,F )

such that dη,ϕ(a) = 0, such that a lifts a0 in the sense that the piece of a of order 0 is equal
to a0. The same for an equivalence going in the other direction.

Proof: By the condition that the complexes are projective over R, we can choose a homo-
topy inverse b0 : F → E to a0. In particular there is K ∈ End(E)0 with d(K) = b0a0 − 1.
Put

ϕ := a0η(
∞∑

m=0

(Kη)m)b0.

We have

d(ϕ) =
∑

±a0η · · ·Kd(η)K . . . ηb0 +
∑

±a0η · · ·ηd(K)η . . . ηb0.

Here and in what follows, we leave it to the reader to fill in the signs. Using d(K) = b0a0 −1
and d(η) = −η2, the terms corresponding to b0a0 in d(K) give −ϕ2 whereas the terms
corresponding to −1 in d(K) and to d(η) = −η2 cancel. Thus,

d(ϕ) = −ϕ2.

Similarly, put

a := a0(

∞∑

m=0

(ηK)m).

The inner terms in d(a) work the same way as before; the term involving d(K) on the right
end gives aη so we get

d(a) + ϕa− aη = 0.

This says that a is a morphism from η to ϕ. �

The next step is to define the functor

CpxR−perf(Υ) → WpxR−perf(Υ).

If E is a complex of Υ-modules, define the corresponding MC element by η(u1) := u1e
whereas η(u1 ⊗ · · ·⊗uk)e = 0 for k 6= 1. Let 1 denote the unit of T 0Υ = R; in a moral sense
one should think of η(1) as being the differential dE, however we are keeping the differential
distinct in our notation (it came before the notion of MC element), so we require η(1) = 0
which is the case k = 0 in the above condition.

If E and F are complexes of Υ-modules then we obtain a map

HomΥ(E,F ) → Q(E,F )
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sending a morphism a to the same element a ∈ HomR(T 0Υ ⊗R E,F ). One calculates that
this respects the differential on the left and the dη,ϕ on the right where η and ϕ are the
MC elements corresponding as above to the module structure. This gives the functor from
CpxR−perf(Υ) to WpxR−perf(Υ).

The following lemma shows that this functor is a quasi-fully-faithful.

Lemma 7.5. Suppose E and F are bounded complexes of Υ-modules, such that in each
degree E is a free Υ-module. Then the above map

HomΥ(E,F ) → (Q(E,F ), dη,ϕ)

is a quasiisomorphism.

Proof: It suffices to prove this for E and F being just single modules concentrated in
degree 0, with E ∼= Υ. The map in question is the first map in the complex

F → HomR(T 1Υ, F ) → HomR(T 2Υ, F ) → . . . .

Note that the tensor powers are increased by one because of tensoring with E = Υ. A
calculation shows that the differential of this complex (including the first map which is the
map in question) has the formula (up to a potential sign error)

(da)(u0 ⊗ · · · ⊗ uk) = u0a(u1 ⊗ · · · ⊗ uk) +
k−1∑

i=0

(−1)ia(· · · ⊗ uiui+1 ⊗ · · · ).

We claim that this complex is acyclic. To see this, write down the homotopy

(Ka)(u1 ⊗ · · · ⊗ uk) :=

k∑

j=0

(−1)j(· · · ⊗ uj ⊗ 1 ⊗ uj+1 ⊗ · · · ).

Up to a sign error (which I am ignoring because this is a standard type of argument) we
have that Kd+dK is the identity. Thus the full complex is acyclic, and the map in question
which is the map from F to the rest of the complex, is a quasiisomorphism. �

To complete the proof, we have to argue that the functor is essentially surjective. Thus
we want to show that any MC complex is equivalent to a complex of free Υ-modules. For
this part, note first that there is a notion of mapping cone for WpxR−perf(Υ). If (E, η) and
(F, ϕ) are MC complexes, and if β ∈ Q1(E,F ) with dη,ϕβ = 0 then E ⊕ F can be given
the MC element whose matrix is triangular with entries η and ϕ on the diagonal and β in
the corner. This construction functions as a mapping cone. If we are given a map E → F
(that is, an element α ∈ Q0(E,F ) with dη,ϕα = 0) then we can form the mapping cone
Cone(α) = F ⊕ E[1] with a triangular MC element as described just before. We can think
of this as satisfying a universal property, in the sense that for any MC complex G we have

Q(G,Cone(α)) = Cone(Q(G,α))

where Q(G,α) is the map Q(G,E) → Q(G,F ). Similarly

Q(Cone(α), G) = Cone(Q(α,G)).

The cone constructions on the right in these two statements are kernels equal to cokernels in
the differential graded category of complexes, and in this sense the cone construction in our
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WpxR−perf(Υ) can be viewed as being defined, up to homotopy, by a universal property. We
don’t go into the theory necessary to make this precise. Kontsevich pointed out in a talk in
Luminy that Bondal and Kapranov had shown that triangles were intrisically defined in the
differential graded category of complexes; we later noticed that Gabriel and Zisman in their
book had made much the same observation although in a somewhat 2-truncated way.

For our present purposes we will just be happy with having the cone construction and its
effect on morphism complexes.

Here is how to prove essential surjectivity. It is done by induction on the length of the
amplitude interval. If this length is one, then the object is just a Υ-module. Suppose now
that we have treated the case of amplitude n − 1 and E is a MC complex of amplitude n.
Using the invariance property 7.4, we can replace E up to quasiisomorphism (which is the
same as quasi-equivalence by Lemma 7.3) by a complex which is bounded at the high end
of the interval of amplitude. Then choose a surjection from a free Υ-module ΥI to the last
cohomology module (note that the cohomology modules are Υ-modules). We can make this
correspond in a trivial way to a map α of MC complexes. The mapping cone Cone(α) has
amplitude n − 1, so it is equivalent to a complex B of free Υ-modules. We can get back E
as the cone on the map from B to ΥI . By Lemma 7.5, this map is equivalent to an actual
map of complexes of Υ-modules, and mapping cones of homotopic maps are equivalent, so
E becomes equivalent to the cone on a map of complexes of free Υ-modules. This completes
the induction, proving essential surjectivity and hence finishing the proof of Theorem 7.2.
�

We finish this section by noting that the functor of dgc’s

WpxR−perf(Υ) → Perfdgc(R)

is fibrant in the sense of §5.1. The first condition is clear by construction, indeed the Hom
complexes for Perfdgc are split subcomplexes of the Hom complexes of WpxR−perf(Υ). The
second condition is exactly Lemma 7.4.

The construction of the Maurer-Cartan differential graded category made in §5.2 is iden-
tical to the construction we have made above, except that above we consider all differ-
ent underlying complexes, and we include the complex of morphisms between underlying
complexes. These differences go away when we go to Fibdgc. However, we should use as
differential graded algebra the ideal Q(E,E)>0 plus the augmentation C · 1.

Lemma 7.6. The dgc fiber Fibdgc of the functor

WpxR−perf(Υ) → Perfdgc(R)

over E is equal to the augmented Maurer-Cartan dgc

MC(C · 1 ⊕Q(E,E)>0, ε).

�

8. Čech globalization

The arguments of the previous section concerned the case of an affine Zariski-open subset
of X. We obtained a new expression for the differential graded category of complexes of
Υ-modules. In this section we show how to put these together into a global expression over
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X; and at the end how to reduce to a finite dimensional differential graded algebra so as to
apply Theorem 5.5. These topics are closely related to Hinich’s work [49] [51] as well as to
the twisted complexes of Toledo and Tong [95].

There is a multiplicative Čech resolution for a sheaf of differential graded algebras.
Suppose X is a topoligical space, and U is an open covering. Think of U as being the

semicategory of multiple intersections in the covering, where the morphisms are only the
nontrivial inclusions (throw out the identity inclusions). Note that there is at most one
morphism between elements of U , so we leave the morphisms out of our notation.

Suppose A is a complex of sheaves on X.
Define the local sections of A over U to be the following complex of groups denoted

G = GUA. Let Gi be the set of functions

g(U0, U1, . . . , Uk) ∈ Ai−k(U0)

defined whenever U0 ⊂ U1 ⊂ . . . ⊂ Uk is a strictly increasing sequence of objects of U . Set

(dg)(U0, . . . , Uk) := d(g(U0, . . . , Uk)) +

k∑

j=0

(−1)jg(U0, . . . , Ûj , . . . , Uk)|U0
.

The restriction to U0 is necessary only for the single term j = 0 where the value starts out
in A(U1) and needs to be restricted to U0. This defines a differential with d2 = 0.

We have a product
µ : GU(A) ⊗GU(B) → GU(A⊗B)

defined by

µ(f ⊗ g)(U0, . . . , Uk) :=

k∑

j=0

f(U0, . . . , Uj) ⊗ g(Uj, . . . , Uk)|U0
.

This is associative, and compatible with the differential (for the same reason as before).
In particular, if A is a presheaf of differential graded algebras, then GU(A) has a natural
structure of differential graded algebra.

We can also define a sheaf-theoretic version of this construction, obtained by replacing
Ai−k(U0) by the direct image jU0/X(Ai−k|U0

) in the above definition. Call this GU(A). A
section a of Ai gives a section of GU(A) obtained by setting g(U0) := a and g(U0, . . . , Uk) := 0
for k > 0. This is compatible with the differential, so it gives a map of complexes of
presheaves

A→ GU(A).

It is easy to verify that this is a quasiisomorphism. Indeed, if X appears as part of the
covering U then A(X) → GU(A) is a quasiisomorphism by a classical calculation. Therefore
in general the above map of presheaves of complexes induces a quasiisomorphism on any
open subset contained in some element of the covering.

Suppose X is a quasi-separated scheme and U is an affine open covering (in particular all
of the open sets in U which includes the multiple intersections, are affine). Suppose that
A is a complex of quasicoherent sheaves. Then the elements of GU(A) are direct images of
quasicoherent sheaves via affine inclusions, so they are acyclic. In particular,

A→ GU(A)
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is an acyclic resolution. Again if A is a sheaf of quasicoherent differential graded algebras
then GU(A) is a quasicoherent differential graded algebra whose components are acyclic, and
the map is a map of sheaves of dga’s.

Note that GU(A) is the complex (or dga) of global sections of GU(A).
It is instructive to write down this resolution for the example of an open covering with two

elements denoted U, V , for the complex A := O. Denote by UV the intersection. Denote for
example by OUV the direct image from UV to X of the sheaf O. Then our resolution GU(O)
takes the form

OU ⊕OV ⊕OUV → OUV ⊕OUV .

Thus it is a little bit bigger than the standard Čech resolution, but equivalent (the difference
is the acyclic complex OUV → OUV ).

In a similar way we will define a Čech globalization of a presheaf of differential graded
categories. Suppose C is a presheaf of dgc’s. Then define a differential graded category
GU(C) as follows. An object can be denoted (E, η) where E is a collection of objects
E(U) ∈ ob(C(U)), and where for any strictly increasing sequence U0 ⊂ . . . ⊂ Uk in U ,
we have η(U0, . . . , Uk) an element of Hom1−k

C(U0)
(E(U0), E(Uk)|U0

) (for k ≥ 1) subject to a

Maurer-Cartan equation of the form d(η) + η2 = 0, where the differential and product are
defined much as previously. Define the complex of morphisms

HomGU (C)((E, η), (F, ϕ))

to be the complex whose piece of degree i consists of collections of functions a(U0, . . . , Uk) ∈
Homi−k(E(U0), F (Uk)|U0

), with differential denoted dη,ϕ obtained by a formula analogous to
the previous ones, and with composition product defined as before also.

Let Geq
U (C) denote the subcategory of objects where the principal restriction maps are

equivalences, i.e. the η(U0, U1) are equivalences from E(U0) to E(U1)|U0
in the dgc C(U0).

If (C, ε) is a presheaf of augmented dgc’s then define the augmented globalization GU(C, ε)
to be the subcategory of objects of GU(C) such that the transition maps are mapped to 1
by the augmentation; and with morphisms being those which map to a constant in C by the
augmentation. In our applications this condition will automatically put us into Geq

U (C).
Suppose now that we have a presheaf of augmented differential graded algebras Q. We

make the following hypthesis: that Q has an accessory grading preserved by the differential
and compatible with the product, for which Q0 = C[0] via the augmentation. We can
compare the globalization of the Maurer-Cartan dgc with the Maurer-Cartan dgc of the
globalization of the dga.

Lemma 8.1. With the above notations, the globalization GU(U 7→ MC(Q(U), ε), ε) is
equal to the differential graded category of Maurer-Cartan elements of the globalization
MC(GU(Q), ε).

�

Lemma 8.2. If C,C ′ are two presheaves of augmented dgc’s and if C → C ′ induces a
quasiequivalence at least over elements of the covering U , then GU(C, ε) → GU(C ′, ε) is a
quasiequivalence.
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Proof: Since the covering is finite, there is a finite amount of data of the form η(U0, . . . , Uk)
to consider. Also we only consider strict inclusions of open sets so the multiplication (even
of the degree zero piece) in something like the formula d(η)+η2, is nilpotent. Using this one
can obtain the invariance. �

Remark: Clearly one can define GU(C, ε) when C is defined only for the elements of the
covering U , for example C might only be defined for affine Zariski-open sets of a quasi-
separated scheme. The invariance result of Lemma 8.2 holds also in this case.

It is tempting to use the Čech globalization as a way of defining the notion of differential
graded stack. This would be a presheaf of differential graded categories C such that for any
open set U and open covering U of U , the morphism C(U) → GU (C) is a quasi-equivalence.
One would then like a compatibility result with the notion of Segal 1-stack, namely that

D̃P of a differential graded stack should be a Segal stack. A related point is that GU(C)
which we have defined explicitly here should be seen as a homotopy limit in the model
category of d.g.c.’s (see [92]). A similar remark we should have made earlier is that the
Čech globalization of a presheaf of d.g.a.’s should be the homotopy limit in Hinich’s model
category [49].

We don’t get into the details of these compatibility statements here. Instead, we make do
with the following much more concrete result (but which basically says the same thing in
the case we are interested in). See Toledo-Tong [95].

Lemma 8.3. Let Cpx
O−perf

(Υ) denote the presheaf of d.g.c.’s on the Zariski topology of X,

which associates to U ⊂ X the d.g.c. of complexes of Υ|U-modules which are O-perfect.
Then for any affine open covering U , the map

Cpx
O−perf

(Υ)(U) → Geq
U (Cpx

O−perf
(Υ))

is a quasi-equivalence of differential graded categories.

Proof: Given a Čech-twisted complex, one can define in a natural way its complex of
sections over an open set. This has a structure of complex of Υ-modules, and the natural
map from the original object to the new one is seen to be a quasiisomorphism over any
open subset contained in some element of the covering (according to the usual principle that
Čech-type resolutions including the full space are acyclic). �

This result fits in with the fact that D̃P (Cpx
O−perf

(Υ)) is a Segal stack [53].

The Čech globalization commutes with the dgc fiber when we have a collection of fibrant
functors of dgc’s over the open sets of the covering.

Lemma 8.4. If A→ B is a morphism of presheaves of dgc’s which is fibrant over each open
set of U , then GU(A) → GU(B) is fibrant. For a global section E of B(X), the fiber and
globalization operations commute:

Fibdgc(Geq
U (A) → Geq

U (B);E) = Geq
U (U 7→ Fibdgc(A(U) → B(U);E|U); ε).

�

8.1. A finite-dimensional replacement. The last step of the proof is to reduce from a
Čech complex to a complex involving sections with a bounded number of poles along the
complementary divisors of the affine open sets. This will give a finite dimensional complex.
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Suppose X → Spec(R) is a smooth projective map. (with R a commutative C-algebra
of finite type). Suppose that the open covering is defined by open sets Ui = X −Di where
Di is the divisor of a section si of a fixed very ample line bundle OX(1). Thus the multiple
intersections UI = Ui1,...,im are the complements of the divisors DI given by sections sI of
OX(m) where m = |I|. Let D denote this collection of divisors.

Suppose that each Qk is locally free over X.
We will fix a function m(k). In the definition of GU(Q), replace (Qk)UI

by

Qk(m(k)DI) := OX(m(k)DI) ⊗OX
Qk.

The m(k) can be chosen so that the product map is still defined here, because of the con-
dition that our graded ring Υ is almost-polynomial. We get an intermediate Beilinson-style
globalization called GmD(Q) which fits in between Q and the full Čech globalization

Q→ GmD(Q) → GU(Q).

These are quasiisomorphisms of complexes of sheaves (this is standard, in view of the fact
that we are basically dealing with Čech complexes plus pieces which are homotopic to zero).
We can assume that m(k) is big enough so that the terms of GmD(Q) are acyclic (and their
global sections are locally free over k). Then the local quasiisomorphism on the right induces
a quasiisomorphism on the dga’s of global sections

GmD/X(Q)
qis
→ GU(Q).

Furthermore, we can cut off after k0. With this cutoff, GmD/X(Q/A) becomes a differential
graded R-algebra which is locally free of finite rank over R. Its differential graded category
of Maurer-Cartan elements will be the geometric stack we are looking for.

8.2. The proof of Theorem 6.7. The problem is to show geometricity of

M(Υ/S;E) := M(Υ/S) ×Perf(X/S) {E}.

This is the Segal 1-stack which associates to an affine scheme Y → S the homotopy fiber of

D̃PCpxO−perf(Υ|XY
) → Perf(XY )

over EY := E|XY
where XY := X ×S Y . Recall that Perf(XY ) = D̃P (Perfdgc(XY ).

Fix an affine open covering U of X. We can be assuming that S is affine, so we get an
affine open covering UY of XY . Now, by Lemma 8.3,

CpxO−perf(Υ|XY
)

∼=
→ Geq

UY
(U 7→ CpxO−perf(Υ|U)).

We have a similar equivalence on the other side of the arrow (which is exactly [95])

Perfdgc(XY )
∼=
→ Geq

UY
(U 7→ Perfdgc(U)).

On the other hand by Lemma 8.2 and Theorem 7.2

Geq
UY

(U 7→ CpxO−perf(Υ|U)) ∼= Geq
UY

(U 7→ WpxO−perf(Υ|U)).

Thus M(Υ/S;E)(Y/S) is equivalent to the homotopy fiber over EY of

D̃PGeq
UY

(U 7→ WpxO−perf(Υ|U)) → D̃PGeq
UY

(U 7→ Perfdgc(U)).
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The underlying functor of dgc’s here is fibrant in the sense of §5.1. Therefore, by Lemma
5.1, M(Υ/S;E)(Y/S) is given by the augmented Dold-Puppe of the dgc fiber of

Geq
UY

(U 7→ WpxO−perf(Υ|U)) → Geq
UY

(U 7→ Perfdgc(U)).

This in turn is equivalent, by Lemma 8.4, to the augmented Dold-Puppe of the augmented
globalization

GUY
(U 7→ Fibdgc(WpxO−perf(Υ|U) → Perfdgc(U)/EY ), ε).

Recall that when we pass to the augmented globalization the superscript Geq is no longer
necessary (it is automatic).

Let Q(EY , EY ) be the sheaf of differential graded algebras defined in §7. It has an ideal
Q(EY , EY )>0. Let QY := C · 1 ⊕Q(EY , EY )>0. This is an augmented sheaf of dga’s on XY .
On each open set U , we have (Lemma 7.6)

Fibdgc(WpxO−perf(Υ|U) → Perfdgc(U)/E) = MC(QY (U), ǫ).

Thus, up to now

M(Υ/S;E)(Y/S) ∼= D̃P (GUY
(U 7→ MC(QY (U), ε), ε), ε).

Of course in this notation each ε is the augmentation of the object in question; they all
correspond to each other but are not actually the same.

By Lemma 8.1,

M(Υ/S;E)(Y/S) ∼= D̃P (MC(GUY
(QY , ε), ε), ε) = D̃P (MC(GUY

(QY , ε), ε), ε).

Finally, by the previous subsection, for an appropriate m we have a quasiisomorphism of
dga’s

GUY
(QY , ε) ∼= GmDY

(QY , ε).

Thus

M(Υ/S;E)(Y/S) ∼= D̃P (MC(GmDY
(QY , ε), ε), ε).

The sheaf of dga’s QY is the pullback to XY of Q := QX on X. Similarly, GmDY
(QY , ε) is

the pullback to Y of the dga GmD(Q, ε) over S. Thus

D̃P (MC(GmDY
(QY , ε), ε), ε) = M(GmD(Q, ε))(Y ).

Now GmD(Q, ε) satisfies the hypothesis of Theorem 5.5, so we can apply that theorem to
conclude that the Segal stack

Y 7→ M(GmD(Q, ε))(Y )

is geometric. We have shown in the preceding paragraphs that this Segal stack is equivalent
to M(Υ/S;E), so this concludes the proof of Theorem 6.7.
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[69] V. Navarro-Aznar. Sur la théorie de Hodge-Deligne, Inventiones Math. 90, (1987), 11-76.
[70] J. Neisendorfer, L. Taylor. Dolbeault homotopy theory. Trans. Amer. Math. Soc. 245 (1978), 183-210.
[71] N. Nitsure. Moduli of semistable logarithmic connections. J. Amer. Math. Soc. 6 (1993), 597-609.
[72] N. Nitsure, C. Sabbah. Moduli of pre-D-modules, perverse sheaves and the Riemann-Hilbert mor-

phism -I. Math. Ann. 306 (1996), 47-73.
[73] J. Pridham. Deformations via Simplicial Deformation Complexes. Preprint math.AG/0311168.
[74] D. Quillen. Homotopical algebra. Springer Lecture Notes in Mathematics 43 (1967).
[75] C. Sabbah. Polarizable twistor D-modules. Preprint, math.AG/0503038.
[76] M. Saito. Mixed Hodge modules. Publ. R.I.M.S. 26 (1990), 221-333.
[77] M. Saito. Mixed Hodge Complexes on Algebraic Varieties. Preprint math/9906088.
[78] M. Saito. On the Hodge Filtration of Hodge Modules. Preprint math.AG/0504177, report number

RIMS-1078.
[79] G. Segal. Categories and cohomology theories. Topology 13 (1974), 293-312.
[80] R. Schwänzl, R. Vogt. Coherence in homotopy group actions. Transformation Groups (Poznan, 1985),

Springer L.N.M. 1217 (1986), 364-390.
[81] J. Siegel. Cech extensions and localization of homotopy functors. Fund. Math. 108 (1980), 159-170.
[82] C. Simpson. Nonabelian Hodge theory. Proceedings of ICM-90, Springer (1991), 746-756.
[83] C. Simpson. Moduli of representations of the fundamental group of a smooth projective variety, I:

Publ. Math. I.H.E.S. 79 (1994), 47-129; II: Publ. Math. I.H.E.S. 80 (1994), 5-79.
[84] C. Simpson. The Hodge filtration on nonabelian cohomology. Algebraic Geometry (Santa Cruz, 1995).

A.M.S. Proceedings of Symposia in Pure Mathematics 62, Part 2 (1997), 217-281.
[85] C. Simpson. Algebraic (geometric) n-stacks, alg-geom 9609014.
[86] C. Simpson. Mixed twistor structures. Preprint alg-geom/9705006.
[87] J. Stasheff. Homotopy associativity of H-spaces. Trans. Amer. Math. Soc. 108 (1963), 275-312.
[88] D. Sullivan. Infinitesimal computations in topology. Publ. Math. I.H.E.S. 47 (1977), 269-331.
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