Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over $X_{DR}$ - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over $X_{DR}$

Carlos Simpson

Résumé

We construct a locally geometric $\infty$-stack $M_{Hod}(X,Perf)$ of perfect complexes with $\lambda$-connection structure on a smooth projective variety $X$. This maps to $A ^1 / G_m$, so it can be considered as the Hodge filtration of its fiber over 1 which is $M_{DR}(X,Perf)$, parametrizing complexes of $D_X$-modules which are $O_X$-perfect. We apply the result of Toen-Vaquie that $Perf(X)$ is locally geometric. The proof of geometricity of the map $M_{Hod}(X,Perf) \rightarrow Perf(X)$ uses a Hochschild-like notion of weak complexes of modules over a sheaf of rings of differential operators. We prove a strictification result for these weak complexes, and also a strictification result for complexes of sheaves of $O$-modules over the big crystalline site.
Fichier principal
Vignette du fichier
geometricity.pdf (539.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00011204 , version 1 (13-10-2005)
hal-00011204 , version 2 (29-04-2008)

Identifiants

Citer

Carlos Simpson. Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over $X_{DR}$. 2008. ⟨hal-00011204v2⟩
153 Consultations
338 Téléchargements

Altmetric

Partager

More