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HYPERCONTRACTIVITY FOR PERTURBED DIFFUSION

SEMIGROUPS.

PATRICK CATTIAUX

Ecole Polytechnique and Université Paris X

Abstract. µ being a nonnegative measure satisfying some Log-Sobolev in-
equality, we give conditions on F for the Boltzmann measure ν = e−2F µ to
also satisfy some Log-Sobolev inequality. This paper improves and completes
the final section in [6]. A general sufficient condition and a general necessary
condition are given and examples are explicitly studied.

Résumé. µ étant une mesure positive satisfaisant une inégalité de Sobolev

logarithmique, nous donnons des conditions sur F pour que la mesure de
Boltzmann ν = e−2F µ satisfasse également une telle inégalité (améliorant
et complétant ainsi la dernière partie de [6]). Les conditions obtenues sont
illustrées par des exemples.

Key words : Hypercontractivity, Boltzmann measure, Girsanov Transform.

MSC 2000 : 47D07 , 60E15, 60G10.

1. Introduction and Framework.

In [6] we have introduced a pathwise point of view in the study of classical
inequalities. The last two sections of this paper were devoted to the transmission
of Log-Sobolev and Spectral Gap inequalities to perturbed measures, without any
explicit example. In the present paper we shall improve the results of section 8
in [6] and study explicit examples. Except for one point, the present paper is
nevertheless self-contained. In order to describe the contents of the paper we have
first to describe the framework.

Framework. For a nonnegative measure µ on some measurable space E, let us
first consider a µ symmetric diffusion process (Px)x∈E and its associated semi-group
(Pt)t≥0 with generator A. Here by a diffusion process we mean a strong Markov
family of probability measures (Px)x∈E defined on the space of continuous paths
C0(R+, E) for some, say Polish, state space E, such that there exists some algebra
D of uniformly continuous and bounded functions (containing constant functions)
which is a core for the extended domain De(A) of the generator (see [7]).
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2 P. CATTIAUX

One can then show that there exists a countable orthogonal family (Cn) of local
martingales and a countable family (∇n) of operators s.t. for all f ∈ De(A)

(1.1) Mf
t = f(Xt) − f(X0) −

∫ t

0

Af(Xs) ds =
∑

n

∫ t

0

∇nf(Xs) dC
n
s ,

in M
2
loc(Pη) (local martingales) for all probability measures η on E.

One can thus define the “carré du champ” Γ by Γ(f, g) =
∑

n ∇nf ∇ng
def
=

(∇f)2 , so that the martingale bracket is given by < Mf >t =
∫ t

0 Γ(f, f)(Xs) ds . In
terms of Dirichlet forms, all this, in the symmetric case, is roughly equivalent to the
fact that the local pre-Dirichlet form E(f, g) =

∫

Γ(f, g) dµ f, g ∈ D is closable,
and has a regular (or quasi-regular) closure (E , D(E)), to which the semigroup Pt

is associated. Notice that with our definitions, for f ∈ D

(1.2) E(f, f) =

∫

Γ(f, f) dµ = −2

∫

f Af dµ = −
d

dt
‖ Ptf ‖2

L2(µ) |t=0 .

It is then easy to check that Γ(f, g) = A (fg) − f Ag − g Af , that D is stable for
the composition with compactly supported smooth functions and satisfies the usual
chain rule.

Content. The aim of this paper is to give conditions on F for the perturbed
measure νF = e−2Fµ to satisfy some Logarithmic Sobolev inequality, assuming
that µ does. As in the final section of [6] these conditions are first described in terms
of some martingale properties in the spirit of the work by Kavian, Kerkyacharian
and Roynette (see [13]) (see section 2 Theorem 2.10).

We shall then study in section 3 how this general criterion can be checked in
the same general situation . Here again we are inspired by [13] (Well Method). It
turns out that the Well Method can be generalized to other F -Sobolev inequalities
(see [5]).

Since sections 2 and 3 are concerned with the hyperbounded point of view, and
following the suggestion of an anonymous referee, we study in section 4 the log-
Sobolev point of view (i.e. the perturbation point of view is analyzed on log-Sobolev
inequalities). We show that both point of view yield (almost) the same results.

In the final section we study some examples, namely Boltzmann measures on
R

N . Explicit examples and counter examples are given, and some comparison with
existing results is done.

Acknowledgements. I wish to thank Michel Ledoux for his interest in this
work and for pointing out to me Wang’s results. I also benefited of nice discussions
with Franck Barthe, Cyril Roberto and Li Ming Wu.

Some notation and general results

The material below can be found in many very good textbooks or courses see
e.g. [3], [4], [9], [11], [12], [16].

We shall say that µ satisfies a Log-Sobolev inequality LSI if for some universal
constants a and b and all f ∈ D ∩ L1(µ),

(1.3)

∫

f2 log
( f2

‖ f ‖2
L2(µ)

)

dµ ≤ a

∫

Γ(f, f) dµ + b ‖ f ‖2
L2(µ) .
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When b = 0 we will say that the inequality is tight (TLSI), when b > 0 we
will say that the inequality is defective (DLSI). So we never will use (LSI) without
specifying (TLSI) or (DLSI).

Note that when µ is bounded (1.3) easily extends to any f ∈ D(E). It is not the
case when µ is not bounded, in which case it only extends to f ∈ D(E) ∩ L

1(µ) or
to f ∈ D(E) but replacing log by log+ in the left hand side of (1.3). An example

of such phenomenon is f = (1 + |x|)−
1
2 logα(e+ |x|) for 1 < 2α < 2, E = R and

dµ = dx.

These inequalities are known to be related to continuity or contractivity of the
semigroup Pt. We shall say that the semigroup is hyperbounded (resp. hyper-
contractive) if for some t > 0 and p > 2, Pt maps continuously L

2(µ) into L
p(µ)

(resp. is a contraction). In this case we shall denote the corresponding norm
‖ Pt ‖L2(µ)→ Lp(µ) , or simply ‖ Pt ‖2,p when no confusion is possible. It is well
known that hyperboundedness (resp. hypercontractivity) is equivalent to (DLSI)
(resp. (TLSI)) (see e.g. [4] Theorem 3.6 or [6] Corollary 2.8). Gross theorem tells
next that boundedness or contraction hold for all p > 2 for some large enough t.
Replacing p by +∞ in the definition we get the notion of ultracontractivity exten-
sively studied in the book by E.B. Davies [8]. Links with Log-Sobolev inequalities
are especially studied in chapter 2 of [8].

Finally recall that (TLSI) is equivalent to (DLSI) plus some spectral gap con-
dition (as soon as we will use spectral gap properties we shall assume that µ is
a probability measure). The usual spectral gap (or Poincaré) inequality will be
denoted by (SGP). A weaker one introduced by Röckner and Wang (see [18]) called
the weak spectral gap property (WSGP) is discussed in [1] and in section 5 of [6].
In particular (DLSI)+(WSGP) implies (TLSI) originally due to Mathieu ([17]) is
shown in [6] Proposition 5.13.

2. Hypercontractivity for general Boltzmann measures.

We introduce in this section a general perturbation theory. In the framework of
section 1 let F be some real valued function defined on E.

Definition 2.1. The Boltzmann measure associated with F is defined as νF =
e−2F µ.

When no confusion is possible we may not write the subscript F and simply
write ν.

The transmission of Log-Sobolev or Spectral Gap inequalities to Boltzmann
measures has been extensively studied in various contexts. The first classical result
goes back to Holley and Stroock.

Proposition 2.2. Assume that µ is a probability measure and F is bounded.
Then if µ satisfies (DLSI) with constants (a, b), νF satisfies (DLSI) with constants
(a eOsc(F ) , b eOsc(F )) where Osc(F ) = sup(F ) − inf(F ).

This result is often stated with 2Osc(F ) i.e. with a useless factor 2 (see [20]
Proposition 3.1.18).

When F is no more bounded, general (though too restrictive) results have been
shown by Aida and Shigekawa [2] (also see [6] section 7). Other results can be
obtained through the celebrated Bakry-Emery criterion. As in section 8 of [6] we
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shall follow a beautiful idea of Kavian, Kerkyacharian and Roynette (see [13]) in
order to get better results (with a little bit more regularity). The main idea in
[13] is that ultracontractivity for a Boltzmann measure built on R

N with µ the
Lebesgue measure and F regular enough, reduces to check the boundedness of one
and only one function.

The aim of this section is to improve these results. First let us state the hy-
potheses we need for F .

2.3 Assumptions H(F)

(1) νF is a probability measure, F ∈ D(E) ,
(2) for all f ∈ D, EF (f, f) =

∫

Γ(f, f) dνF < +∞ ,
(3) for all f ∈ D, Af ∈ L

1(νF ) ,
(4)

∫

Γ(F, F ) dνF < +∞ .

The Girsanov martingale ZF
t is then defined as

ZF
t = exp {−

∫ t

0

∇F (Xs).dCs −
1

2

∫ t

0

Γ(F, F )(Xs) ds} .(2.4)

When H(F) holds, we know that ZF
. is a Px martingale for νF , hence µ almost

all x. Furthermore νF is then a symmetric measure for the perturbed process
{ZF

. Px}x∈E, which is associated with EF (see (2.3.2)). For all this see [6] (especially
Lemma 7.1 and section 2).

If in addition F ∈ D(A), it is enough to apply Ito’s formula in order to get
another expression for ZF

t , namely

(2.5) ZF
t = exp {F (X0) − F (Xt) +

∫ t

0

(

AF (Xs) −
1

2
Γ(F, F )(Xs)

)

ds} .

If PF
t denotes the associated (νF symmetric) semi-group, it holds νF a.s.

(2.6) (PF
t h)(x) = eF (x) E

Px
[

h(Xt) e
−F (Xt)Mt

]

,

with

Mt = exp
(

∫ t

0

(

AF (Xs) −
1

2
Γ(F, F )(Xs)

)

ds
)

.

When µ is a probability measure, eF ∈ L
2(νF ), and a necessary condition for

νF to satisfy (DLSI) is thus

(2.7) PF
t (eF ) = eF

E
Px [Mt] ∈ L

p(νF )

for all (some) p > 2 and t large enough. When µ is no more bounded one can
formulate similar statements. For instance, if eF ∈ L

r(νF ) for some r > 1, then
(2.7) has to hold for some (all) p > r and t large enough. One can also take r = 1
in some cases. Since the exact formulation depends on the situation we shall not
discuss it here.

A remarkable fact is that the (almost always) necessary condition (2.7) is also
a sufficient one. The next two theorems explain why. Though the proof of the first
one is partly contained in [6] (Proposition 8.8) we shall give here the full proof for
completeness.

Theorem 2.8. Assume that Pt is ultracontractive with ‖ Pt ‖p,∞= K(t, p) for
all p ≥ 1. Assume that H(F) is in force, F ∈ D(A) and Mt is bounded by some
constant C(t). Then a sufficient condition for νF to satisfy (DLSI) is that

PF
t (eF ) = eF

E
Px [Mt] ∈ L

q(νF )
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for some t > 0 and some q > 2.

Proof. Pick some f ∈ D. Since |f |e−F ∈ L
2(µ) and using the Markov property, for

t > 0, q > 2 it holds
∫

(PF
t+s(|f |))

q dνF =

∫

eqF
(

E
Px [Mt E

PXt [Ms

(

e−F |f |
)

(X ′
s)]]

)q

dνF ,

≤

∫

eqF (C(s))q
(

EPx [Mt (Ps(|f | e
−F ))(Xt)]

)q

dνF

≤ (C(s))q (‖ Ps ‖2,∞)q ‖ f ‖q
L2(νF )

∫

(

eF
E

Px [Mt]
)q
dνF .

Hence

(2.9) ‖ PF
t+s ‖2,q ≤ C(s)K(s, 2) ‖ eF

E
Px [Mt] ‖Lq(νF ) ,

and we are done. �

Recall that if in addition either µ is a probability measure, or eF ∈ L
p(νF ) for

some p > 1, condition in the Theorem is also necessary.

When Pt is only hyperbounded, the previous arguments are no more available
and one has to work harder to get the following analogue of Theorem 2.8

Theorem 2.10. Assume that Pt is hyperbounded. Assume that H(F) is in force,
F ∈ D(A) and that Mt is bounded by some constant C(t). Assume in addition
that eF ∈ L

r(νF ) for some r > 1 (we may choose r = 2 when µ is a Probability
measure).

Then a necessary and sufficient condition for νF to satisfy (DLSI) is that

PF
t (eF ) = eF

E
Px [Mt] ∈ L

p(νF )

for some p > 2 and some t > 0 large enough.

Proof. The proof is based on the following elementary consequence of Girsanov
theory and the variational characterization of relative entropy (see [6] section 2) :
if

∫

f2 dνF = 1 and f is nonnegative, then

(2.11)

∫

(
∑

j

log hj) f
2dνF ≤

t

2
EF (f, f) + log

∫

f2 h1 P
F
t (h2) dνF .

Choose j = 1, 2 , h1 = fα−1 and h2 = fβ. (2.11) becomes

(2.12)
(α+ β − 1)

2

∫

f2 log(f2) dνF ≤
t

2
EF (f, f) + log

∫

f1+α PF
t (fβ) dνF .

Let (q, s) a pair of conjugate real numbers. Then

PF
t (fβ) ≤

(

PF
t (f q β e−

q
s

F )
)

1
q

(

PF
t (eF )

)
1
s ,

and accordingly

(2.13)

∫

f1+α PF
t (fβ) dνF ≤

∫

f1+α
(

PF
t (f q β e−

q
s

F )
)

1
q

(

PF
t (eF )

)
1
s dνF

≤
(

∫

f1+α e−qδ F PF
t (f q β e−

q
s

F ) dνF

)
1
q

(

∫

f1+α esδ F PF
t (eF ) dνF

)
1
s

≤
(

∫

e−
2qδ
1−α

F
(

PF
t (f q β e−

q
s

F )
)

2
1−α dνF

)
1−α
2q

(

∫

e
2sδ
1−α

F
(

PF
t (eF )

)
2

1−α dνF

)
1−α
2s
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where we have used Hölder’s inequality successively with f1+α dνF and dνF , and
we also used

∫

f2 dνF = 1 to get the last expression. We have of course to choose
α < 1. We shall also choose β = 1. The first factor in the latter expression can be
rewritten
∫

e−
2qδ
1−α

F
(

PF
t (f q e−

q
s

F )
)

2
1−α dνF =

∫

eθF
(

E
Px(f q(Xt) e

−(1+ q
s
) F (Xt)Mt)

)
2

1−α dµ ,

with

θ = −
2qδ

1 − α
+

2

1 − α
− 2 .

Hence if we choose α = qδ < 1, θ = 0. Furthermore q = 1+ q
s and f q e−qF ∈ L

2
q (µ)

with norm 1, provided q < 2. Using our hypotheses we thus obtain

(2.14)

∫

e−
2qδ
1−α

F
(

PF
t (f q e−

q
s

F )
)

2
1−α dνF ≤

(

C(t) ‖ Pt ‖ 2
q

, 2
1−α

)
2

1−α .

For the second factor we choose

2sδ

1 − α
< r ,

and since α = qδ, this choice imposes

δ <
r

2s+ rq
hence α <

rq

2s+ rq
.

Note that the condition α < 1 is then automatically satisfied. Applying Hölder
again we get
(2.15)
∫

e
2sδ
1−α

F
(

PF
t (eF )

)
2

1−α dνF ≤
(

∫

erF dνF

)
2sδ

r(1−α)
(

∫

(PF
t (eF ))p dνF

)

r(1−α)−2sδ

r(1−α) ,

if

p =
2r

r(1 − α) − 2sδ
hence α =

r(p− 2)

p(2(s− 1) + r))
.

It remains to check that all these choices are compatible, i.e

r(p − 2)

p(2(s− 1) + r))
<

rq

2s+ rq

which is easy.
Plugging (2.14) and (2.15) into (2.12) we obtain

(2.16) α

∫

f2 log(f2) dνF ≤ t EF (f, f) + 2A ,

where

A =
1

q
log

(

C(t) ‖ Pt ‖ 2
q

, 2
1−α

)

+
α

q
log

(

‖ eF ‖Lr(νF )

)

+
1

s
log

(

‖ PF
t (eF ) ‖Lp(νF )

)

.

For a fixed p we may choose any pair (q, s) with q < 2, and the corresponding α
yields the result for

t ≥
a

2
log

( q(1 + α)

(2 − q)(1 − α)

)

,

according to Gross theorem, if µ satisfies (DLSI) with constants (a, b). �

Remark 2.17. Unfortunately the previous methods cannot furnish the best con-
stants. In particular we cannot get (TLSI) even when µ satisfies (TLSI).
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In view of the previous remark it is thus natural to look at the spectral gap
properties too. The final result we shall recall is Lemma 2.2 in [1].

Theorem 2.18. Assume that µ is a probability measure satisfying (SGP).Assume
that H(F) is in force and Γ(F, F ) ∈ L

1(µ). Then νF satisfies (WSGP).

One can use Theorems 2.8 (or 2.10) and 2.18 together in order to show that the
general Boltzmann measure satisfies (TLSI) provided µ is a Probability measure.
Otherwise one has to consider various reference measures µ, as it will be clear in
the next sections.

3. The “Well Method”.

Our aim in this section is to get sufficient general conditions for (2.7) to hold. To
this end we shall slightly modify the “Well Method” of [13], i.e. use the martingale
property of the Girsanov density. In the sequel we assume that F ∈ D(A) satisfies
H(F).

The main assumption we shall make is the following, for all x

(3.1)
1

2
Γ(F, F )(x) − AF (x) ≥ −c > −∞ .

It follows that Mt ≤ ect = C(t).
Now we define λ(x) by the relation ,

1

2
Γ(F, F )(x) − AF (x) = λ(x)F (x) .

Note that if F (x) ≤ 0, PF
t (eF )(x) ≤ C(t) so that the contribution of the x′s with

F (x) ≤ 0 belongs to L
∞(νF ). So we may and will assume that F (x) > 0.

For 0 < ε < 1 define the stopping time τx as

(3.2)

τx = inf{ s > 0 , (
1

2
Γ(F, F ) − AF )(Xs) ≤ ε λ(x)F (x) or F (Xs) ≤ ε F (x)} .

First we assume that (1
2 Γ(F, F ) − AF )(x) > 0 . In this case τx > 0 Px a.s.

Introducing the previous stopping time we get

E
Px [Mt] = E

Px [Mt 1It<τx
] + E

Px [Mt 1Iτx≤t] = A+B ,

with

(3.3) A = E
Px [Mt 1It<τx

] ≤ exp −
(

ε t λ(x)F (x)
)

,

and

(3.4) B = E
Px [Mt 1Iτx≤t]

≤ ect
E

Px [exp
(

∫ t

0

(

AF − 1
2Γ(F, F ) + c

)

(Xs) ds
)

1Iτx≤t]

≤ ect
E

Px [exp
(

∫ τx

0

(

AF − 1
2Γ(F, F ) + c

)

(Xs) ds
)

1Iτx≤t]

≤ ect
E

Px [exp
(

∫ τx

0

(

AF − 1
2Γ(F, F )

)

(Xs) ds
)

1Iτx≤t]

= ect
E

Px [Mτx
1Iτx≤t].
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But e−F (Xs)Ms is a L
2 (thanks to 3.1) Px martingale. Hence, according to

Doob’s Optional Stopping Theorem

(3.5) E
Px [e−F (Xτx )Mτx

1Iτx≤t] ≤ E
Px [e−F (Xt∧τx )Mt∧τx

] = e−F (x) .

According to (3.2),

e−F (Xτx ) ≥ e− ε F (x) ,

so that thanks to (3.5),

E
Px [Mτx

1Iτx≤t] ≤ e−(1−ε)F (x) .

Using this estimate in (3.4) and using (3.3) we finally obtain

(3.6) E
Px [Mt] ≤ e− ε t λ(x) F (x) + ect e−(1−ε)F (x) .

Finally if (1
2 Γ(F, F ) − AF )(x) < 0 we certainly have

E
Px [Mt] ≤ ect e− ε t λ(x) F (x) ,

since in this case λ(x) < 0 while we assume F (x) > 0.

We have thus obtained choosing first ε = r/p,

Theorem 3.7. Assume that H(F) and (3.1) are fulfilled. Assume in addition that
there exists some 0 < r such that eF ∈ L

r(νF ). Then eF
E

Px [Mt] ∈ L
p(νF ) as soon

as
∫

e(p−2)F e−(rt/p) ( 1
2 Γ(F,F )−AF ) dµ < +∞ .

In particular νF satisfies (DLSI) as soon as
∫

eβF e−λ ( 1
2 Γ(F,F )−AF ) dµ < +∞ ,

for some β > 0 and some λ > 0. Furthermore if the previous holds for all pair
(β, λ) of positive real numbers, then PF

t is immediately hyperbounded (i.e. PF
t is

bounded from L
2(νF ) in L

p(νF ) for all t > 0 and all p > 2).

Remark 3.8. This result extends previous ones obtained by Davies [8] (especially
Theorem 4.7.1 therein) in the ultracontractive context, by Rosen [19] in the hy-
perbounded context (based on deep Sobolev inequalities available in R

N ) or by
Kusuoka and Stroock [15]. In addition it is an “almost” necessary condition too,
in the sense of the next result.

Theorem 3.9. Assume that H(F) holds and that there exists some 1 < r such that
eF ∈ L

r(νF ). A necessary condition for νF to satisfy (DLSI) is
∫

eβF (x) e−λ ( 1
2 Γ(F,F )− AF )(x)

P
2+β
x (τx > λ/2(2 + β)) dµ < +∞ ,

for some β > 0 and some λ > 0, where τx is the stopping time defined by

τx = inf {s ≥ 0 s.t. (
1

2
Γ(F, F ) − AF )(Xs) ≥ 2λ(x)F (x)} ,

λ(x) being defined as

1

2
Γ(F, F )(x) − AF (x) = λ(x)F (x) .
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Proof. It is enough to remark that τx = 0 if λ(x) ≤ 0 and then write for λ(x) > 0

Ex[Mt] ≥ Ex[Mt 1It<τx
]

≥ e−2tλ(x)F (x)
Ex[1It<τx

] ,

and then to apply the necessary part of Theorem 2.10.
�

4. A direct approach for the sufficient condition and others
consequences.

In the previous two sections we used the hyperbounded point of view. As sug-
gested by an anonymous referee, Theorem 3.7 can be directly obtained by using
logarithmic Sobolev inequalities.

Indeed assume that

(4.1)

∫

f2 log f2 dµ ≤ C1

∫

Γ(f, f) dµ + C2 ,

for all nice f such that
∫

f2 dµ = 1 . Take f = e−F g for some g such that
∫

g2 dνF = 1 . Thanks to the chain rule, i.e.
∫

ϕ′(f)Af +
1

2
ϕ′′(f) Γ(f, f) dµ = 0

it is easy to see that (4.1) can be rewritten

(4.2)
∫

g2 log g2 dνF ≤ C1

∫

Γ(g, g) dνF +

∫

g2

(

2C1

(

AF −
1

2
Γ(F, F )

)

+ 2F

)

dνF +C2 .

Introducing some 0 < ε < 1, we write the second integral in the right hand side

ε

∫

g2 1

ε
H dνF ,

and use Young’s inequality in order to get

(4.3) (1 − ε)

∫

g2 log g2 dνF ≤

≤ C1

∫

Γ(g, g) dνF + ε e−1

∫

e
2C1

ε

(

AF − 1
2 Γ(F,F )

)

+2( 1
ε
−1)F dµ + C2 ,

and we recover Theorem 3.7 since we may choose ε arbitrarily close to 1 and inde-
pendently C1 arbitrarily large. Actually in Theorem 3.7, since (3.1) is fulfilled, we
may choose any λ′ > λ. The only difference here is that we do not need to assume
(3.1), but in contrast, we have to assume that λ is large enough.

The above proof is given with less details than the previous martingale proof.
Actually both are short and elementary. The main advantage of the martingale
point of view is to indicate how to get a necessary condition.

However it is interesting at this point to compare our condition for (DLSI)
and known results on (SGP) obtained by Gong and Wu [10] for Feynman-Kac
semigroups.
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The unitary transform U : L
2(E, dµ) → L

2(E, dνF ) defined by U(f) = eF f
satisfies

∫

Γ(U(f), U(g)) dνF =

∫

(

Γ(f, g) + VF fg
)

dµ

where VF = Γ(F, F ) − 2AF . The latter Dirichlet form is the one associated with
the Schrödinger operator HF = A + VF . Since U is unitary the spectrum of HF on
L

2(dµ) and the one of −AF on L
2(νF ) coincide. Hence the existence of a spectral

gap for νF follows from Corollary 6 in [10], namely

Proposition 4.4. Let µ be a probability measure satisfying (TLSI) (i.e. (4.1) with
C2 = 0) and assume that H(F) holds. If

∫

e(2 C1+ε)( 1
2Γ(F,F )− AF )− dµ < +∞

for some ε > 0 then νF satisfies (SGP). This result holds in particular when (3.1)
is satisfied.

It follows in particular that, provided F is bounded below, the condition in
Proposition 4.4 is implied by the condition in Theorem 3.7 without assuming (3.1),
but assuming that λ > 2C1.

Corollary 4.5. If µ satisfies (TLSI) (or equivalently Pt is hypercontractive) and
H(F) holds, then

∫

eβF e−λ ( 1
2 Γ(F,F )−AF ) dµ < +∞ ,

for some β > 0 and λ > 0 is a sufficient condition for νF to satisfy (TLSI) provided
in addition

(1) either 1
2 Γ(F, F ) − AF is bounded from below and eF ∈ L

r(νF ) for some
r > 0 ,

(2) or F is bounded below and λ > 2C1 where C1 is the optimal constant in
(TLSI) for µ.

The interested reader will find a stronger statement (Theorem 5) in [10], but
with less tractable hypotheses.

5. Examples: R
N valued Boltzmann measures.

In this section we shall deal with the R
N valued case, i.e. E = R

N , dx is
Lebesgue measure, A = 1

2 ∆ is one half of the Laplace operator and ∇ is the usual
gradient operator. Px is thus the law of the Brownian motion starting at x, whose
associated semigroup Pt is dx symmetric and ultracontractive with ‖ Pt ‖2,+∞=

(4π t)−
N
4 . D is the algebra generated by the usual set of test functions and the

constants.

(TLSI) can thus be written
∫

f2 log
( f2

‖ f ‖2
L2(νF )

)

e−2F dx ≤ a

∫

|∇f |2 e−2F dx .

Note that Lebesgue measure satisfies a family of logarithmic Sobolev inequalities
i.e. for all η > 0 and all f belonging to L

1(dx) ∩ L
∞(dx) such that

∫

f2 dx = 1
∫

f2 log f2 dx ≤ 2η

∫

|∇f |2dx +
N

2
log

(

1

4πη

)

,
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see e.g. [8] Theorem 2.2.3.
In the sequel we will consider functions F that are of class C2 and according to

Proposition 2.2 we shall then (if necessary) add to F some bounded perturbation.
Furthermore in this particular finite dimensional situation we may replace H(F) by
the following Lyapounov control:

(5.1) there exists some ψ such that ψ(x) → +∞ as |x| → +∞ ,

and ∆ψ(x) − (∇F .∇ψ)(x) ≤ K < +∞ for all x .

In order to complete the picture, we have to describe some sufficient conditions
allowing to tight the logarithmic Sobolev inequality.

One is given by Theorem 2.18. Indeed if νU (dx) = e−2U(x)dx is another Boltz-
mann measure satisfying (SGP) and

∫

|∇U |2 dνU < +∞

a sufficient condition for νF to satisfy (WSGP) is
∫

|∇F |2 dνU < +∞ ,

since dνF = e−2(F−U)dνU . It is thus not difficult to guess that (WSGP) holds for
any Boltzmann measure (such that F is smooth). This result is actually true and
shown (using another route) in [18] Theorem 3.1 and Remark (1) following this
theorem. Hence

Proposition 5.2. For a Boltzmann measure νF with F ∈ C2 , (WSGP) is satisfied.
Consequently (DLSI) and (TLSI) are equivalent.

It is nevertheless interesting, at least for counter examples to know some suffi-
cient conditions for the usual (SGP). If N = 1 a necessary and sufficient condition
was obtained by Muckenhoupt (see [3] chapter 6). We recall below a tractable
version due to Malrieu and Roberto of this result as well as its N dimensional
counterpart

Proposition 5.3. Let F of C2 class.

(1) (see [3] Theorem 6.4.3) If N = 1, |F ′(x)| > 0 for |x| large enough and
F ′′(x)
|F ′(x)|2 goes to 0 as |x| goes to ∞, then νF satisfies (SGP) if and only if

lim inf
|x|→+∞

|F ′(x)|2 = C > 0 .

(2) (see e.g. [14] Proposition 3.7) For any N , if

lim inf
|x|→+∞

(|∇F |2 − ∆F ) = C > 0 ,

then (SGP) holds for νF .

Now if we want to use Proposition 4.4 we may choose dµ = (1/Zρ) e
−2ρ|x|2 dx

which is known to satisfy (TLSI) with constant C1 = 1/2ρ, and is associated to the
generator

Aρ =
1

2
∆ − 2ρ x.∇ .
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We thus have to look at

(5.4)
1

2
|∇(F − ρ|x|2)|2 − Aρ(F − ρ|x|2) =

1

2

(

|∇F |2 − ∆F
)

− 2ρ2|x|2 + ρN .

Note thus that we cannot recover 5.3(2).

According to Proposition 5.2 and the previous sections we know that a sufficient
condition for (TLSI) to hold is the integral condition in Theorem 3.7 (assuming in
addition one of conditions (1) and (2) in Corollary 4.5), while a necessary one is
given in Theorem 3.8. Up to our knowledge, except the bounded perturbation
recalled in Proposition 2.2, three others family of sufficient conditions have been
given for νF :

• the renowned Bakry-Emery criterion saying that (TLSI) holds as soon as
F is uniformly convex, i.e. Hess(F ) ≥ K Id for some K > 0,

• Wang’s results (see [21] Theorem 1.1 for this final version) saying that
provided Hess(F ) ≥ −K Id for some K ≥ 0, a sufficient condition is

∫

eε|x|2 dνF ≤ +∞

for some ε > K ,
• the beautiful Bobkov-Götze criterion for N = 1, and its weak version due

to Malrieu and Roberto (see [3] Theorem 6.4.3) saying that if |F ′(x)| > 0

for |x| large enough and F ′′(x)
|F ′(x)|2 goes to 0 as |x| goes to ∞, then νF satisfies

(TLSI) if and only if there exists some A such that

F

|F ′|2
+

log |F ′|

|F ′|2

is bounded on {|x| ≥ A}.

It is not difficult to see that our results contain Malrieu-Roberto result.
It is also easy to see that if Hess(F )(x) ≥ ρ Id for some positive ρ and all x,

then
|∇F |2(x) ≥ 2ρF (x) − C ,

for some constant C. Hence if F is uniformly convex and such that

|∆F |(x) ≤ (1 − ε) |∇F |2(x) + c(F ) ,

for some ε > 0 , all x , and some constant c(F ), we recover the result by Bakry-
Emery. The same holds for Wang’s result if the perturbed F + 1

2 (K + ε)|x|2 is a
nice uniformly convex function as before.

Unfortunately, it is not difficult to build uniformly convex functions such that

lim sup
|x|→+∞

(

∆F

|∇F |2

)

= +∞ .

Actually the counter examples built by Wang are such that the previous property
holds.

Remark 5.5. Assume that lim|x|→+∞ F (x) = +∞ .

Applying Theorem 3.7 we see that PF
t is hypercontractive in particular as soon

as
|∇F |2(x) − ∆F (x) ≥ η F (x) − c ,

for some constant c and some η > 0.
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As we remarked in Theorem 3.7, we can get conditions for immediate hypercon-
tractivity, for instance PF

t will be immediately hypercontractive as soon as

|∇F |2(x) − ∆F (x) ≥ G(F (x)) ,

for some function G such that

lim
y→+∞

G(y)

y
= +∞ .

One can also see from [13] that a condition like
∫ +∞ y

G(y) g′(g−1(y))
dy < +∞ for some g satisfying

∫ +∞

e− g(y) dy < +∞ ,

for the function G we have introduced above, implies that PF
t is ultracontractive.

This result with G(y) = yθ for some θ > 1 (take then g(y) = ey) is contained in [8]
Theorem 4.7.1.

As shown in [5] the same control but with 0 < θ < 1 yields a weaker form of
hypercontractivity.

As we discussed before, if our results can only be partly compared (at least
easily) with existing ones in the bounded below curvature case (i.e. when the
Hessian is bounded from below), they allow to look at interesting examples in the
unbounded curvature case. We shall below discuss such a family of examples. But
first we recall a basic estimate for the Brownian motion that allows us to give a
precise meaning to the necessary condition stated in Theorem 3.9.

Lemma 5.6. For a standard Brownian motion Bs on R
N , there exists a constant

θN such that

P ( sup
0≤s≤t

|Bs| < A) ≥ e−θN
t

A2 .

Example 5.7. Let us consider on R
+ the potential Fβ(x) = x2 + β x sin(x)

extended by symmetry to the full real line. We shall only look at its behaviour
near +∞.

The derivatives are given by F ′
β(x) = (2 + β cos(x))x+ β sin(x) and F ′′

β (x) =

−β x sin(x) + 2(1 + β cos(x)) . Hence −∞ = lim infx→+∞ F ′′(x).
For |β| < 2 we may apply Malrieu-Roberto result (or Theorem 3.7) and show

that (TLSI) holds.
For |β| ≥ 2 the hypotheses of Theorem 3.7 are no more satisfied. Indeed

F ′2(x) − F ′′(x) = (2 + β cos(x))2 x2 + (4 + 2β cos(x) − β sin(x))x + h(x)

where h is bounded, can be very negative for the x’s such that 2 + β cos(x) = 0.

We shall discuss below the case β = −2 in details. Instead of using Theorem
3.9 we shall directly study PF

t (eF ) for F = F−2.
Introduce xk = 2kπ. Then for k large enough one can find ε small enough and

some constant c such that

for all y such that 1/2 k−
1
2 ≤ y − xk ≤ 3/2 k−

1
2 it holds(5.8)

F ′′(y) ≥ (1 − ε)k
1
2 and |F ′(y)| ≤ c .
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Introduce the stopping times τk = inf {s ≥ 0 , |Xs − y| ≥ 1
4 k

− 1
2 } . Then according

to (5.8), for 3/4 k−
1
2 ≤ y − xk ≤ 5/4 k−

1
2

E
Py(Mt) ≥ E

Py(Mt 1It<τk
)

≥ e
t
2 ((1−ε)k

1
2 −c2)

Py(t < τk)

≥ e
t
2 ((1−ε)k

1
2 −c2) e− 4θtk

for the constant θ appearing in Lemma 5.6. It follows
∫ +∞

e(q−2)F
(

E
Px [Mt]

)q
dx ≥

1

2

∑

k

k−
1
2 e4π2 (q−2−ε) k2

e−4qθtk = +∞ .

Hence (DLSI) does not hold.

For β = 2 the discussion is similar, while for |β| > 2 it is a little bit different.

Indeed (again with β < 0) this time if F ′(xk) = 0, on 2k−
3
4 ≤ y − xk ≤ k−

3
4 we

have F ′′(y) ≥ (1 − ε)k while |F ′(x)| ≤ c k
1
4 . Hence we can prove as before that

E
Py(Mt) ≥ C e−c′θt k

3
2 for some constants C and c′ and conclude again that (DLSI)

does not hold.
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