Nicolas Champagnat 
  
Régis Ferrière 
  
Sylvie Méléard 
  
Individual-based probabilistic models of adaptive evolution and various scaling approximations

Keywords: Darwinian evolution, birth-death-mutation-competition point process, mutationselection dynamics, nonlinear integro-dierential equations, nonlinear partial dierential equations, nonlinear superprocesses, tness, adaptive dynamics, trait substitution sequence

We are interested in modelling Darwinian evolution, resulting from the interplay of phenotypic variation and natural selection through ecological interactions. Our models are rooted in the microscopic, stochastic description of a population of discrete individuals characterized by one or several adaptive traits. The population is modelled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation, and death, as inuenced by each individual's trait values, and interactions between individuals. An ospring usually inherits the trait values of her progenitor, except when a mutation causes the ospring to take an instantaneous mutation step at birth to new trait values. We look for tractable large population approximations. By combining various scalings on population size, birth and death rates, mutation rate, mutation step, or time, a single microscopic model is shown to lead to contrasting macroscopic limits, of dierent nature: deterministic, in the form of ordinary, integro-, or partial dierential equations, or probabilistic, like stochastic partial dierential equations or superprocesses. In the limit of rare mutations, we show that a possible approximation is a jump process, justifying rigorously the so-called trait substitution sequence. We thus unify dierent points of view concerning mutation-selection evolutionary models.

Introduction

In this paper, we are interested in modelling the dynamics of populations as driven by the interplay of phenotypic variation and natural selection operating through ecological interactions, i.e. Darwinian evolution. The fundamental property of living systems is the propensity of each individual to create and to select the diversity. This feature requires to trait implies that an ospring usually inherits the trait values of her progenitor, except when a mutation occurs. In this case, the ospring makes an instantaneous mutation step at birth to new trait values. We will refer to the state space parameterized by adaptive traits as the trait space, and will often (slightly abusively) call trait the actual trait value.

This process is dened as the solution of a stochastic dierential equation driven by point Poisson measures (Section 2.1). In Section 2.2, we give an algorithmic construction of the population point process and propose some simulations, for various parameters, of an asymmetrical example developed in Kisdi [START_REF] Kisdi | Evolutionary branching under asymmetric competition[END_REF]. Next, we prove that the point population process is a measure-valued semimartingale and compute its characteristics (Section 2.3).

Then we look for tractable approximations, following dierent mathematical paths. Our rst approach (Section 3) aims at deriving deterministic equations to describe the moments of trajectories of the point process, i.e. the statistics of a large number of independent realizations of the process. We explain the dicult hierarchy between these equations coming from competition kernels and preventing, even in the simple mean-eld case, decorrelations and tractable moment closure. The alternative approach involves renormalizations of the point process based on a large population limit. The measure-valued martingale properties of the renormalized point process allow us to show that, according to dierent scalings of birth, death and mutation rates, one obtains qualitatively dierent limiting partial dierential equations and the appearance or not of some demographic stochasticity. We show in Section 4.1 that by itself, the large-population limit leads to a deterministic, nonlinear integro-differential equation. Then, in Section 4.2.1, we combine the large-population limit with an acceleration of birth (hence mutation) and death according to small mutation steps. That yields either a deterministic nonlinear reaction-diusion model, or a stochastic measure-valued process (depending on the acceleration rate of the birth-anddeath process). If now this acceleration of birth and death is combined with a limit of rare mutations, the large-population limit yields a nonlinear integro-dierential equation either deterministic or stochastic, depending here again on the speed of the scaling of the birth-and-death process, as described in Section 4.2.2.

In Section 5, we model a time scale separation between ecological events (fast births and deaths) and evolution (rare mutations), for an initially monomorphic population. The competition between individuals takes place on the short time scale. In a large population limit, this leads on the mutation time scale to a jump process over the trait space, where the population stays monomorphic at any time. Thereby we provide a rigorous justication to the notion of trait substitution sequence introduced by Metz et al. [START_REF] Metz | How should we dene tness for general ecological scenarios[END_REF].

Population point process

Even if the evolution manifests itself as a global change in the state of a population, its basic mechanisms, mutation and selection, operate at the level of individuals. Consequently, we model the evolving population as a stochastic interacting individual system, where each individual is characterized by a vector of phenotypic trait values. The trait space X is assumed to be a closed subset of R d , for some d ≥ 1.

We will denote by M F (X ) the set of nite non-negative measures on X . Let also M be the subset of M F (X ) consisting of all nite point measures: M = n i=1 δ x i , n ≥ 0, x 1 , ..., x n ∈ X .

Here and below, δ x denotes the Dirac mass at x. For any m ∈ M F (X ), any measurable function f on X , we set m, f = X f dm.

We aim to study the stochastic process ν t , taking its values in M, and describing the distribution of individuals and traits at time t. We dene

ν t = I(t) i=1 δ X i t , (2.1) 
I(t) ∈ N standing for the number of individuals alive at time t, and X 1 t , ..., X I(t) t describing the individuals' traits (in X ).

For a population ν = I i=1 δ x i , and a trait x ∈ X , we dene the birth rate b(x, V * ν(x)) = b(x, I i=1 V (x -x i )) and the death rate d(x, U * ν(x)) = d(x, I i=1 U (x -x i )) of individuals with trait x; V and U denote the interaction kernels aecting respectively reproduction and mortality. Let µ(x) and M (x, z)dz be respectively the probability that an ospring produced by an individual with trait x carries a mutated trait and the law of this mutant trait.

Thus, the population evolution can be roughly summarized as follows. The initial population is characterized by a (possibly random) counting measure ν 0 ∈ M at time 0, and any individual with trait x at time t has two independent random exponentially distributed clocks: a birth clock with parameter b(x, V * ν t (x)), and a death clock with parameter d(x, U * ν t (x)). If the death clock of an individual rings, this individual dies and disappears. If the birth clock of an individual with trait x rings, this individual produces an ospring. With probability 1 -µ(x) the ospring carries the same trait x; with probability µ(x) the trait is mutated. If a mutation occurs, the mutated ospring instantly acquires a new trait z, picked randomly according to the mutation step measure M (x, z)dz. When one of these events occurs, all individual's clock are reset to 0.

Thus we are looking for a M-valued Markov process (ν t ) t≥0 with innitesimal generator L, dened for real bounded functions φ by

Lφ(ν) = I i=1 b(x i , V * ν(x i ))(1 -µ(x i ))(φ(ν + δ x i ) -φ(ν)) + I i=1 b(x i , V * ν(x i ))µ(x i ) X (φ(ν + δ z ) -φ(ν))M (x i , z)dz + I i=1 d(x i , U * ν(x i ))(φ(ν -δ x i ) -φ(ν)). (2.2)
The rst term of (2.2) captures the eect on the population of birth without mutation; the second term that of birth with mutation, and the last term that of death. The densitydependence makes all terms nonlinear.

Process construction

Let us justify the existence of a Markov process admitting L as innitesimal generator.

The explicit construction of (ν t ) t≥0 also yields three side benets: providing a rigorous and ecient algorithm for numerical simulations (given hereafter), laying the mathematical basis to derive the moment equations of the process (Section 3), and establishing a general method that will be used to derive some large population limits (Sections 4 and 5).

We make the biologically natural assumption that the trait dependency of birth parameters is bounded, and at most linear for the death rate. Specically, we assume

Assumptions (H):

There exist constants b, d, Ū , V and C and a probability density function M on R d such that for each ν = I i=1 δ x i and for

x, z ∈ X , b(x, V * ν(x)) ≤ b, d(x, U * ν(x)) ≤ d(1 + I), U (x) ≤ Ū , V (x) ≤ V , M (x, z) ≤ C M (z -x).
These assumptions ensure that there exists a constant C, such that the total event rate, for a population counting measure ν = I i=1 δ x i , obtained as the sum of all event rates, is bounded by CI(1 + I) .

Let us now give a pathwise description of the population process (ν t ) t≥0 . We introduce the following notation.

Notation 2.1 Let

N * = N\{0}. Let H = (H 1 , ..., H k , ...) : M → (R d ) N * be dened by H ( n i=1 δ x i ) = (x σ(1)
, ..., x σ(n) , 0, ..., 0, ...), where x σ(1) ... x σ(n) , for some arbitrary order on R d ( for example the lexicographic order).

This function H allows us to overcome the following (purely notational) problem. Choosing a trait uniformly among all traits in a population ν ∈ M consists in choosing i uniformly in {1, ..., ν, 1 }, and then in choosing the individual number i (from the arbitrary order point of view). The trait value of such an individual is thus H i (ν).

We now introduce the probabilistic objects we will need. Denition 2.2 Let (Ω, F, P ) be a (suciently large) probability space. On this space, we consider the following four independent random elements:

(i) a M-valued random variable ν 0 (the initial distribution), (ii) independent Poisson point measures M 1 (ds, di, dθ), and M 3 (ds, di, dθ) on [0, ∞)×N * × R + , with the same intensity measure ds k≥1 δ k (di) dθ (the "clonal" birth and the death Poisson measures),

(iii) a Poisson point measure M 2 (ds, di, dz, dθ) on [0, ∞) × N * × X × R + , with intensity measure ds k≥1 δ k (di) dzdθ (the mutation Poisson measure).
Let us denote by (F t ) t≥0 the canonical ltration generated by these processes.

We nally dene the population process in terms of these stochastic objects.

Denition 2.3 Assume (H).

A (F t ) t≥0 -adapted stochastic process ν = (ν t ) t≥0 is called a population process if a.s., for all t ≥ 0,

ν t = ν 0 + [0,t]×N * ×R + δ H i (ν s-) 1 {i≤ ν s-,1 } 1 {θ≤b(H i (ν s-),V * ν s-(H i (ν s-)))(1-µ(H i (ν s-)))} M 1 (ds, di, dθ) + [0,t]×N * ×X ×R + δ z 1 {i≤ ν s-,1 } 1 {θ≤b(H i (ν s-),V * ν s-(H i (ν s-)))µ(H i (ν s-))M (H i (ν s-),z)} M 2 (ds, di, dz, dθ) - [0,t]×N * ×R + δ H i (ν s-) 1 {i≤ ν s-,1 } 1 {θ≤d(H i (ν s-),U * ν s-(H i (ν s-)))} M 3 (ds, di, dθ) (2.3) 
Let us now show that if ν solves (2.3), then ν follows the Markovian dynamics we are interested in.

Proposition 2.4 Assume (H) and consider a solution (ν t ) t≥0 of Eq. ( 2.3) such that E(sup t≤T ν t , 1 2 ) < +∞, ∀T > 0. Then (ν t ) t≥0 is a Markov process. Its innitesimal generator L is dened for all bounded and measurable maps φ : M → R, all ν ∈ M, by (2.2). In particular, the law of (ν t ) t≥0 does not depend on the chosen order .

Proof The fact that (ν t ) t≥0 is a Markov process is classical. Let us now consider a function φ as in the statement. With our notation, ν 0 = ν 0 ,1 i=1 δ H i (ν 0 ) . A simple computation, using the fact that a.s., φ(ν

t ) = φ(ν 0 ) + s≤t (φ(ν s-+ (ν s -ν s-)) -φ(ν s-)), shows that φ(ν t ) = φ(ν 0 ) + [0,t]×N * ×R + φ(ν s-+ δ H i (ν s-) ) -φ(ν s-) 1 {i≤ ν s-,1 } 1 {θ≤b(H i (ν s-),V * ν s-(H i (ν s-)))(1-µ(H i (ν s-)))} M 1 (ds, di, dθ) + [0,t]×N * ×X ×R + (φ(ν s-+ δ z ) -φ(ν s-)) 1 {i≤ ν s-,1 } 1 {θ≤b(H i (ν s-),V * ν s-(H i (ν s-)))µ(H i (ν s-))M (H i (ν s-),z)} M 2 (ds, di, dz, dθ) + [0,t]×N * ×R + φ(ν s--δ H i (ν s-) ) -φ(ν s-) 1 {i≤ ν s-,1 } 1 {θ≤d(H i (ν s-),U * ν s-(H i (ν s-)))} M 3 (ds, di, dθ).
Taking expectations, we obtain

E(φ(ν t )) = E(φ(ν 0 )) + t 0 E νs,1 i=1 φ(ν s + δ H i (νs) ) -φ(ν s ) b(H i (ν s ), V * ν s (H i (ν s )))(1 -µ(H i (ν s ))) + X (φ(ν s + δ z ) -φ(ν s )) b(H i (ν s ), V * ν s (H i (ν s )))µ(H i (ν s ))M (H i (ν s ), z)dz + φ(ν s -δ H i (νs) ) -φ(ν s ) d(H i (ν s ), U * ν s (H i (ν s ))) ds
Dierentiating this expression at t = 0 leads to (2.2).

Let us show existence and moment properties for the population process.

Theorem 2.5 (i) Assume (H) and that E ( ν 0 , 1 ) < ∞. Then the process (ν t ) t≥0 dened by Denition 2.3 is well dened on R + .

(ii) If furthermore for some p ≥ 1, E ( ν 0 , 1 p ) < ∞, then for any T < ∞,

E( sup t∈[0,T ] ν t , 1 p ) < ∞.
(2.4)

Proof We rst prove (ii). Consider the process (ν t ) t≥0 . We introduce for each n the stopping time τ n = inf {t ≥ 0, ν t , 1 ≥ n}. Then a simple computation using Assumption (H)

shows that, dropping the non-positive death terms,

sup s∈[0,t∧τn] ν s , 1 p ≤ ν 0 , 1 p + [0,t∧τn]×N * ×R + (( ν s-, 1 + 1) p -ν s-, 1 p ) 1 {i≤ ν s-,1 } 1 {θ≤b(H i (ν s-),V * ν s-(H i (ν s-)))(1-µ(H i (ν s-)))} M 1 (ds, di, dθ) + [0,t]×N * ×X ×R + (( ν s-, 1 + 1) p -ν s-, 1 p ) 1 {i≤ ν s-,1 } 1 {θ≤b(H i (ν s-),V * ν s-(H i (ν s-)))µ(H i (ν s-))M (H i (ν s-),z)} M 2 (ds, di, dz, dθ).
Using the inequality (1 + x) p -x p ≤ C p (1 + x p-1 ) and taking expectations, we thus obtain, the value of C p changing from line to line,

E( sup s∈[0,t∧τn] ν s , 1 p ) ≤ C p 1 + E t∧τn 0 b ( ν s-, 1 + ν s-, 1 p ) ds ≤ C p 1 + E t 0 (1 + ν s∧τn , 1 p ) ds .
The Gronwall Lemma allows us to conclude that for any T < ∞, there exists a constant C p,T , not depending on n, such that

E( sup t∈[0,T ∧τn] ν t , 1 p ) ≤ C p,T .
(2.5)

First, we deduce that τ n tends a.s. to innity. Indeed, if not, one may nd a T 0 < ∞ such that T 0 = P (sup n τ n < T 0 ) > 0. This would imply that E sup t∈[0,T 0 ∧τn] ν t , 1 p ≥ T 0 n p for all n, which contradicts (2.5). We may let n go to innity in (2.5) thanks to the Fatou Lemma. This leads to (2.4).

Point (i) is a consequence of Point (ii). Indeed, one builds the solution (ν t ) t≥0 step by step. One only has to check that the sequence of jump instants T n goes a.s. to innity as n tends to innity. But this follows from (2.4) with p = 1.

Examples and simulations

Let us remark that Assumption (H) is satised in the case where

b(x, V * ν(x)) = b(x), d(x, U * ν(x)) = d(x) + α(x) X U (x -y)ν(dy), (2.6) 
where b, d and α are bounded functions.

In the case where moreover, µ ≡ 1, this individual-based model can also be interpreted as a model of spatially structured population, where the trait is viewed as a spatial location and the mutation at each birth event is viewed as dispersal. This kind of models have been introduced by Bolker and Pacala ( [START_REF] Bolker | Using moment equations to understand stochastically driven spatial pattern formation in ecological systems[END_REF][START_REF] Bolker | Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal[END_REF]) and Law et al. ( [START_REF] Law | Population growth in space and time: Spatial logistic equations[END_REF]), and mathematically studied by Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. The case U ≡ 1 corresponds to a density-dependence in the total population size.

We will consider later the particular set of parameters for the logistic interaction model, taken from Kisdi [START_REF] Kisdi | Evolutionary branching under asymmetric competition[END_REF] and corresponding to a model of asymmetrical competition:

X = [0, 4], d(x) = 0, α(x) = 1, µ(x) = µ, b(x) = 4 -x, U (x -y) = 2 K 1 - 1 1 + 1, 2 exp(-4(x -y)) (2.7)
and M (x, z)dz is a Gaussian law with mean x and variance σ 2 conditionned to the fact that the mutant stays in [0,[START_REF] Bürger | The Mathematical Theory of Selection, Recombination, and Mutation[END_REF]. As we will see in Section 4, the constant K scaling the strength of competition also scales the population size (when the initial population size is proportional to K). In this model, the trait x can be interpreted as body size. Equation (2.7) means that body size inuences the birth rate negatively, and creates asymmetrical competition reected in the sigmoid shape of U (being larger is competitively advantageous).

Let us give an algorithmic construction for the population process (in the general case), simulating the size I(t) of the population, and the trait vector X t of all individuals alive at time t.

At time t = 0, the initial population ν 0 contains I(0) individuals and the corresponding trait vector is X 0 = (X i 0 ) 1≤i≤I(0) . We introduce the following sequences of independent random variables, which will drive the algorithm.

• The type of birth or death events will be selected according to the values of a sequence of random variables (W k ) k∈N * with uniform law on [0, 1].

• The times at which events may be realized will be described using a sequence of random variables (τ k ) k∈N with exponential law with parameter C.

• The mutation steps will be driven by a sequence of random variables (Z k ) k∈N with law M (z)dz.

We set T 0 = 0 and construct the process inductively for k ≥ 1 as follows.

At step k -1, the number of individuals is I k-1 , and the trait vector of these individuals is

X T k-1 . Let T k = T k-1 + τ k I k-1 (I k-1 + 1)
. Notice that 

τ k I k-1 (I k-1 + 1)
[T k-1 , T k ); its trait is X i T k-1 . (If I k-1 = 0 then ν t = 0 for all t ≥ T k-1 .) • If 0 ≤ W k ≤ d(X i T k-1 , I k-1 j=1 U (X i T k-1 -X j T k-1 )) C(I k-1 + 1) = W i 1 (X T k-1
), then the chosen individual dies, and

I k = I k-1 -1. • If W i 1 (X T k-1 ) < W k ≤ W i 2 (X T k-1 ), where W i 2 (X T k-1 ) = W i 1 (X T k-1 ) + [1 -µ(X i T k-1 )]b(X i T k-1 , I k-1 j=1 V (X i T k-1 -X j T k-1 )) C(I k-1 + 1)
,

then the chosen individual gives birth to an ospring with trait

X i T k-1
, and

I k = I k-1 + 1. • If W i 2 (X T k-1 ) < W k ≤ W i 3 (X T k-1 , Z k ), where W i 3 (X T k-1 , Z k ) = W i 2 (X T k-1 )+ µ(X i T k-1 )b(X i T k-1 , I k-1 j=1 V (X i T k-1 -X j T k-1 ))M (X i T k-1 , X i T k-1 + Z k ) C M (Z k )(I k-1 + 1)
, then the chosen individual gives birth to a mutant ospring with trait X i T k-1 + Z k , and

I k = I k-1 + 1. • If W k > W i 3 (X T k-1 , Z k ), nothing happens, and I k = I k-1 .
Then, at any time t ≥ 0, the number of individuals is dened by I(t) = k≥0 1 {T k ≤t<T k+1 } I k and the population process is obtained as

ν t = k≥0 1 {T k ≤t<T k+1 } I k i=1 δ X i T k .
The simulation of Kisdi's example (2.7) can be carried out following this algorithm.

We can show a very wide variety of qualitative behavior according to the value of the parameters σ, µ and K.

In the following gures, the upper part gives the distribution of the traits in the population at any time, using a grey scale code for the number of individuals holding a given trait. The lower part of the simulation represents the dynamics of the total size I(t) of the population. These simulations will serve to illustrate the dierent mathematical scalings described in Sections 4 and 5. Let us observe for the moment the qualitative dierences between the cases where K is large (Fig. 1 (c)), in which a wide population density evolves regularly (see Section 4.1) and where µ is small (Fig. 1 (d)), in which the population trait evolves according to a jump process (see Section 5.1).

The simulations of Fig. 2 involve an acceleration of the birth and death processes (see

Section 4.2) as b(x, ζ) = K η + b(x) and d(x, ζ) = K η + d(x) + α(x)ζ.
There is a noticeable qualitative dierence between Fig. 2 More discussions about these simulations are given in [START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF], especially about the branching pattern of some of them.

Martingale Properties

We nally give some martingale properties of the process (ν t ) t≥0 , which are the key point of our approach.

Theorem 2.6 Assume (H), and that for some p ≥ 2, E ( ν 0 , 1 p ) < ∞.

(i) For all measurable functions φ from M into R such that for some constant C, for all

ν ∈ M, |φ(ν)| + |Lφ(ν)| ≤ C(1 + ν, 1 p ), the process φ(ν t ) -φ(ν 0 ) - t 0 Lφ(ν s )ds (2.8)
is a càdlàg (F t ) t≥0 -martingale starting from 0.

(ii) Point (i) applies to any function φ(ν) = ν, f q , with 0 ≤ q ≤ p -1 and with f bounded and measurable on X . (iii) For such a function f , the process

(b) µ = 0.1/K η , K = 10000, σ = 0.1, η = 0.5. (c) µ = 0.3, K = 10000, σ = 0.3/K η/2 , η = 1. (d) µ = 0.3, K = 10000, σ = 0.3/K η/2 , η = 1.
M f t = ν t , f -ν 0 , f - t 0 X (1 -µ(x))b(x, V * ν s (x)) -d(x, U * ν s (x)) f (x) + µ(x)b(x, V * ν s (x)) X f (z)M (x, z)dz ν s (dx)ds (2.9)
is a càdlàg square integrable martingale starting from 0 with quadratic variation

M f t = t 0 X (1 -µ(x))b(x, V * ν s (x)) -d(x, U * ν s (x)) f 2 (x) + µ(x)b(x, V * ν s (x)) X f 2 (z)M (x, z)dz ν s (dx)ds.
(2.10)

Proof First of all, note that point (i) is immediate thanks to Proposition 2.4 and (2.4).

Point (ii) follows from a straightforward computation using (2.2). To prove (iii), we rst assume that E ν 0 , 1 3 < ∞. We apply (i) with φ(ν) = ν, f . This yields that M f is a martingale. To compute its bracket, we rst apply (i) with φ(ν) = ν, f 2 and obtain that

ν t , f 2 -ν 0 , f 2 - t 0 X (1 -µ(x))b(x, V * ν s (x))(f 2 (x) + 2f (x) ν s , f ) + d(x, U * ν s (x))(f 2 (x) -2f (x) ν s , f ) + µ(x)b(x, V * ν s (x)) X (f 2 (z) + 2f (z) ν s , f )M (x, z)dz ν s (dx)ds (2.11)
is a martingale. In another hand, we apply the Itô formula to compute ν t , f 2 from (2.9).

We deduce that The philosophy of moment equations is germane to the principle of Monte-Carlo methods: computing the mean path of the point process from a large number of independent realizations. (Another approach, as we shall see in Section 4, is to model the behavior of a single trajectory when it is the initial number of individuals which is made large).

ν t , f 2 -ν 0 , f 2 - t 0 2 ν s , f X (1 -µ(x))b(x, V * ν s (x)) -d(x, U * ν s (x)) f (x) + µ(x)b(x, V * ν s (x)) X f (z)M (x, z)dz ν s (dx)ds -M f t (2.
E ν 0 , 1 2 < ∞ is straightforward, since even in this case, E( M f t ) < ∞ thanks to (2.4) with p = 2.
Let us dene the deterministic measure E(ν) associated with a random measure ν by

X ϕ(x)E(ν)(dx) = E( X ϕ(x)ν(dx)).
Taking expectations in (2.9), we obtain some formula for X ϕ(x)E(ν)(dx) involving the expectations of integrals with respect to ν(dx) or to ν(dx)ν(dy). Nevertheless, this equation is very intricate and presents an unresolved hierarchy of nonlinearities. Writing an equation for E(ν(dx)ν(dy)) could be possible but will involve integrals with respect to ν(dx)ν(dy)ν(dz) and so on. Whether this approach may eventually help describe the population dynamics in the trait space is still unclear.

Let us consider the case of spatially structured population (see Section 2.2) where

d(x, ζ) = d(x) + α(x)ζ, b(x, ζ) = b(x) and µ(x) = 1. Let N (t) = E(I(t))
where I(t) is the number of individuals at time t. Taking expectations on (2.9) with ϕ ≡ 1 yields:

N (t) = N (0)+ t 0 E X (b(x) -d(x))ν s (dx) - X ×X α(x)U (x -y)ν s (dx)ν s (dy) ds. (3.1)
In the specic case where b, d and α are independent of (the spatial location) x, (cf. [START_REF] Law | Population growth in space and time: Spatial logistic equations[END_REF]),

(3.1) recasts into Ṅ = (b -d)N -αE X ×X U (x -y)ν t (dx)ν t (dy) . (3.2)
Even in the specic mean-eld case where U = 1 , we get

Ṅ = (b -d)N -αE X ×X ν t (dx)ν t (dy) . (3.3) 
The quadratic term corresponding to spatial correlations can not be simplied and (3.3) allows us to precisely identify the mathematical issues raised by the problem of moment closure. In Section 4.1, we will see that one needs the additional large population hypothesis to decorrelate the quadratic term and to recover the well-known logistic equation.

Nevertheless, even if we are not able to produce a closed equation satised by E(ν),

we are able to show, in the general case, the following qualitative important property concerning the absolute continuity of the expectation of ν t .

Proposition 3.1 Assume (H), that E( ν 0 , 1 ) < ∞ and that E(ν 0 ) is absolutely continuous with respect to the Lebesgue measure. Then for all t ≥ 0, E(ν t ) is absolutely continuous with respect to the Lebesgue measure.

Remark 3.2 This implies in particular that, when the initial trait distribution E(ν 0 ) has no singularity w.r.t. the Lebesgue measure, these singularities, such as Dirac masses, can only appear in the limit of innite time.

Proof Consider a Borel set A of R d with Lebesgue measure zero. Consider also, for each n ≥ 1, the stopping time τ n = inf {t ≥ 0, ν t , 1 ≥ n}. A simple computation allows us to obtain, for all t ≥ 0, all n ≥ 1,

E ( ν t∧τn , 1 A ) ≤ E( ν 0 , 1 A ) + b E t∧τn 0 X 1 A (x)ν s (dx)ds + b E t∧τn 0 X X 1 A (z)M (x, z)dz ν s (dx)ds .
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By assumption, the rst term on the RHS is zero. The third term is also zero, since for any x ∈ X , X 1 A (z)M (x, z)dz = 0. By Gronwall's lemma, we conclude that for each n, E( ν t∧τn , 1 A ) is zero. Thanks to (2.4) with p = 1, τ n a.s. grows to innity with n, which concludes the proof.

4

Large-population renormalizations of the individual-based process

The moment equation approach outlined above is based on the idea of averaging a large number of independent realizations of the population process initiated with a nite number of individuals. If K scales the initial number of individuals, the alternative approach consists in studying the exact process by letting that system size become very large and making some appropriate renormalizations. Several types of approximations can then be derived, depending on these renormalizations.

For any K, let the set of parameters U K , V K , b K , d K , M K , µ K satisfy the Assumption (H). Let ν K t be the counting measure of the population at time t. We dene the measure-valued Markov process (X K t ) t≥0 by

X K t = 1 K ν K t .
As the system size K goes to innity, we need to assume the 

U K (x) = U (x)/K, V K (x) = V (x)/K.
A biological interpretation of this renormalization is that larger systems are made up of smaller individuals, which may be a consequence of a xed amount of available resources to be partitioned among individuals. Thus, the biomass of each interacting individual scales as 1/K, which may imply that the interaction eect of the global population on a focal individual is of order 1. Parameter K may also be interpreted as scaling the resources available, so that the renormalization of U K and V K reects the decrease of competition for resources.

The generator LK of (ν K t ) t≥0 is given by (2.2), with parameters

U K , V K , b K , d K , M K , µ K . The generator L K of (X K t )
t≥0 is obtained by writing, for any measurable function φ from M F (X ) into R and any ν ∈ M F (X ),

L K φ(ν) = ∂ t E ν (φ(X K t )) t=0 = ∂ t E Kν (φ(ν K t /K)) t=0 = LK φ K (Kν)
where φ K (µ) = φ(µ/K). Then we get

L K φ(ν) = K X b K (x, V * ν(x))(1 -µ K (x))(φ(ν + 1 K δ x ) -φ(ν))ν(dx) + K X X b K (x, V * ν(x))µ K (x)(φ(ν + 1 K δ z ) -φ(ν))M K (x, z)dzν(dx) + K X d K (x, U * ν(x))(φ(ν - 1 K δ x ) -φ(ν))ν(dx). (4.1)
By a similar proof as the one of Section 2.3, we may summarize the moment and martingale properties of X K . Proposition 4.1 Assume that for some p ≥ 2, E( X K 0 , 1 p ) < +∞.

(1) For any T > 0, E(sup t∈[0,T ] X K t , 1 p ) < +∞.

(2) For any bounded and measurable functions φ on

M F such that |φ(ν)| + |L K φ(ν)| ≤ C(1+ < ν, 1 > p ), the process φ(X K t ) -φ(X K 0 ) - t 0 L K φ(X K s )
ds is a càdlàg martingale.

(3) For each measurable bounded function f , the process

m K,f t = X K t , f -X K 0 , f - t 0 X (b K (x, V * X K s (x)) -d K (x, U * X K s (x)))f (x)X K s (dx)ds - t 0 X µ K (x)b K (x, V * X K s (x) X f (z)M K (x, z)dz -f (x) X K s (dx)ds
is a square integrable martingale with quadratic variation

m K,f t = 1 K t 0 X µ K (x)b K (x, V * X K s (x)) X f 2 (z)M K (x, z)dz -f 2 (x) X K s (dx)ds + t 0 X (b K (x, V * X K s (x)) + d K (x, U * X K s (x)))f 2 (x)X K s (dx)ds (4.2) 
The search of tractable limits for the semimartingales X K , f yields the dierent choices of scalings of the parameters developed in this section. In particular, we obtain the deterministic or stochastic nature of the approximation by studying the quadratic variation of the martingale term, given in (4.2).

Large-population limit

We assume here that b

K = b, d K = d, µ K = µ, M K = M .
Theorem 4.2 Assume Assumptions (H) and (H1). Assume moreover that the initial conditions X K 0 converge in law and for the weak topology on M F (X ) as K increases, to a nite deterministic measure ξ 0 , and that sup K E( X K 0 , 1 3 ) < +∞.

Then for any T > 0, the process (X K t ) t≥0 converges in law, in the Skorohod space D([0, T ], M F (X )), as K goes to innity, to the unique deterministic continuous function

ξ ∈ C([0, T ], M F (X )) satisfying for any bounded f : X → R ξ t , f = ξ 0 , f + t 0 X f (x)[(1 -µ(x))b(x, V * ξ s (x)) -d((x, U * ξ s (x))]ξ s (dx)ds + t 0 X µ(x)b(x, V * ξ s (x)) X f (z)M (x, z)dz ξ s (dx)ds (4.3) d dt n t (x) = n t (x) b(x, V ( 
0)n t (x)+V (x-y)n t (y))-d(x, U (0)n t (x)+U (x-y)n t (y)) d dt n t (y) = n t (y) b(y, V (0)n t (y)+V (y-x)n t (x))-d(y, U (0)n t (y)+U (y-x)n t (x)) .

(4.7)

4.2 Large-population limit with accelerated births and deaths

We consider here an alternative limit of a large population, combined with accelerated birth and death. This may be useful to investigate the qualitative dierences of evolutionary dynamics across populations with allometric demographies (larger populations made up of smaller individuals who reproduce and die faster, See [START_REF] Calder | Size, Function and Life History[END_REF], [START_REF] Charnov | Life History Invariants[END_REF]).

Here, we assume that X = R d . Let us denote by M F the space M F (R d ). We consider the acceleration of birth and death processes at a rate proportional to K η while preserving the demographic balance. That is, the birth and death rates scale with system size according to Assumption (H2):

b K (x, ζ) = K η r(x) + b(x, ζ), d K (x, ζ) = K η r(x) + d(x, ζ).
The allometric eect (smaller individuals reproduce and die faster) is parameterized by the function r, positive and bounded over R d , and the constant η. A detailed discussion of the biological meaning of these parameters in terms of allometry and life-history scalings can be found in [START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF]. As in Section 4.1, the interaction kernels V and U are renormalized by K. Using similar arguments as in Section 4.1, the process X K = 1 K ν K is now a Markov process with generator

L K φ(ν) = K R d (K η r(x) + b(x, V * ν(x)))(1 -µ K (x))(φ(ν + 1 K δ x ) -φ(ν))ν(dx) + K R d (K η r(x) + b(x, V * ν(x)))µ K (x) R d (φ(ν + 1 K δ z ) -φ(ν))M K (x, z)dzν(dx) + K R d (K η r(x) + d(x, U * ν(x)))(φ(ν - 1 K δ x ) -φ(ν))ν(dx).
As before, for any measurable functions φ on M F such that |φ(ν

)| + |L K φ(ν)| ≤ C(1 + ν, 1 3 ), the process φ(X K t ) -φ(X K 0 ) - t 0 L K φ(X K s )ds (4.8)
is a martingale. In particular, for each measurable bounded function f , we obtain

M K,f t = X K t , f -X K 0 , f - t 0 R d (b(x, V * X K s (x)) -d(x, U * X K s (x)))f (x)X K s (dx)ds (4.9) - t 0 R d µ K (x)(K η r(x) + b(x, V * X K s (x))) R d f (z)M K (x, z)dz -f (x) X K s (dx)ds,
is a square integrable martingale with quadratic variation

M K,f t = 1 K t 0 R d (2K η r(x) + b(x, V * X K s (x)) + d(x, U * X K s (x)))f 2 (x)X K s (dx)ds + t 0 R d µ K (x)(K η r(x)+b(x, V * X K s (x))) R d f 2 (z)M K (x, z)dz -f 2 (x) X K s (dx)ds . (4.10)
Two interesting cases will be considered hereafter, in which the variance eect µ K M K is of order 1/K η . That will ensure the deterministic part in (4.9) to converge. In the large-population renormalization (Section 4.1), the quadratic variation of the martingale part was of order 1/K. Here, it is of order K η × 1/K. This quadratic variation will thus stay nite provided that η ∈ (0, 1], in which case tractable limits will result. Moreover, this limit will be zero if η < 1 and nonzero if η = 1, which will lead to deterministic or random limit models.

Accelerated mutation and small mutation steps

We consider here that the mutation rate is xed, so that mutations are accelerated as a consequence of accelerating birth. We assume Assumptions (H3):

(1) µ K = µ.

(2) The mutation step density M K (x, z) is the density of a random variable with mean x, variance-covariance matrix Σ(x)/K η (where Σ(x) = (Σ ij (x)) 1≤i,j≤d ) and with third moment of order 1/K η+ε uniformly in x (ε > 0). (Thus, as K goes to innity, mutant traits become more concentrated around their progenitors').

(

√ Σ denoting the symmetrical square root matrix of Σ, the function √ Σrµ is Lipschitz continuous.

The main example is when the mutation step density is taken as the density of a vector of independent Gaussian variables with mean x and variance σ 2 (x)/K η : Then the convergence results of this section can be stated as follows.

M K (x, z) = K η 2πσ 2 (x) d/2 exp[-K η |z -x| 2 /2σ 2 (x)]
Theorem 4.3 [START_REF] Aldous | Stopping times and tightness[END_REF] Assume (H), (H1), (H2), (H3) and 0 < η < 1. Assume also that the initial conditions X K 0 converge in law and for the weak topology on M F as K increases, to a nite deterministic measure ξ 0 , and that

sup K E( X K 0 , 1 3 ) < +∞. (4.12)
Then, for each T > 0, the sequence of processes (X K ) belonging to D([0, T ], M F ) converges (in law) to the unique deterministic function

(ξ t ) t≥0 ∈ C([0, T ], M F ) sat- isfying: for each function f ∈ C 2 b (R d ), ξ t , f = ξ 0 , f + t 0 R d (b(x, V * ξ s (x)) -d(x, U * ξ s (x)))f (x)ξ s (dx)ds + t 0 R d 1 2 µ(x)r(x) 1≤i,j≤d Σ ij (x)∂ 2 ij f (x)ξ s (dx)ds, (4.13) 
where ∂ 2 ij f denotes the second-order partial derivative of f with respect to x i and x j (x = (x 1 , . . . , x d )).

(2) Assume moreover that there exists c > 0 such that r(x)µ(x)s * Σ(x)s ≥ c||s|| 2 for any

x and s in R d . Then for each t > 0, the measure ξ t has a density with respect to Lebesgue measure.

Remark 4.4 In case (2), Eq. (4.13) may be written as

∂ t ξ t (x) = b(x, V * ξ t (x)) -d(x, U * ξ t (x)) ξ t (x) + 1 2 1≤i,j≤d ∂ 2 ij (rµΣ ij ξ t )(x). (4.14) 
Observe that, for the example (4.11), this equation writes Therefore, Eq. (4.15) generalizes the Fisher reaction-diusion equation known from classical population genetics (see e.g. [START_REF] Bürger | The Mathematical Theory of Selection, Recombination, and Mutation[END_REF]).

∂ t ξ t (x) = b(x, V * ξ t (x)) -d(x, U * ξ t (x)) ξ t (x) + 1 2 ∆(σ 2 rµξ t )(x).
Theorem 4.5 Assume (H), (H1), (H2), (H3) and η = 1. Assume also that the initial conditions X K 0 converge in law and for the weak topology on M F as K increases, to a nite (possibly random) measure X 0 , and that sup K E( X K 0 , 1 3 ) < +∞.

Then, for each T > 0, the sequence of processes (X K ) converges in law in D([0, T ], M F ) to the unique (in law) continuous superprocess X ∈ C([0, T ], M F ), dened by the following conditions:

sup t∈[0,T ] E X t , 1 3 < ∞, (4.16) and for any f ∈ C 2 b (R d ), M f t = X t , f -X 0 , f - 1 2 t 0 R d µ(x)r(x) 1≤i,j≤d Σ ij (x)∂ 2 ij f (x)X s (dx)ds - t 0 R d f (x) (b(x, V * X s (x)) -d(x, U * X s (x))) X s (dx)ds (4.17)
is a continuous martingale with quadratic variation Remark 4.6 [START_REF] Aldous | Stopping times and tightness[END_REF] The limiting measure-valued process X appears as a generalization of the one proposed by Etheridge [START_REF] Etheridge | Survival and extinction in a locally regulated population[END_REF] to model spatially structured populations.

M f t = 2 t 0 R d r(x)f 2 (x)X s (dx)ds.
(2) The conditions characterizing the process X above can be formally rewritten as

∂ t X t (x) = b(x, V * X t (x)) -d(x, U * X t (x)) X t (x) + 1 2 1≤i,j≤d ∂ 2 ij (rµΣ ij X t )(x) + Ṁt
where Ṁt is a random uctuation term, which reects the demographic stochasticity of this fast birth-and-death process, that is, faster than the accelerated birth-and-death process which led to the deterministic reaction-diusion approximation (4.15).

(3) As developed in Step 1 of the proof of Theorem 4.5 below, a Girsanov's theorem relates the law of X t and the one of a standard super-Brownian motion, which leads to conjecture that a density for X t exists only when d = 1, as for the super-Brownian motion.

These two theorems are illustrated by the simulations of Figs. 2 (a),(c) and (d).

Proof of Theorem 4.3 We divide the proof in several steps. Let us x T > 0.

Step 1 Let us rst show the uniqueness for a solution of the equation (4.13).

To this aim, we dene the evolution equation associated with (4.13). It is easy to prove that if ξ is a solution of (4.13) satisfying sup t∈[0,T ] ξ t , 1 < ∞, then for each test function

ψ t (x) = ψ(t, x) ∈ C 1,2 b (R + × R d ), one has ξ t , ψ t = ξ 0 , ψ 0 + t 0 R d (b(x, V * ξ s (x)) -d(x, U * ξ s (x)))ψ(s, x)ξ s (dx)ds + t 0 R d (∂ s ψ(s, x) + 1 2 r(x)µ(x) i,j Σ ij (x)∂ 2 ij ψ s (x))ξ s (dx)ds. (4.19)
Now, since the function √ Σrµ is Lipschitz continuous, we may dene the transition semigroup

(P t ) whith innitesimal generator f → 1 2 rµ i,j Σ ij ∂ 2 ij f . Then, for each function f ∈ C 2 b (R d ) and xed t > 0, to choose ψ(s, x) = P t-s f (x) yields ξ t , f = ξ 0 , P t f + t 0 R d (b(x, V * ξ s (x)) -d(x, U * ξ s (x)))P t-s f (x)ξ s (dx)ds, (4.20) since ∂ s ψ(s, x) + 1 2 r(x)µ(x) i,j Σ ij (x)∂ 2 ij ψ s (x) = 0 for this choice.
We now prove the uniqueness of a solution of (4.20).

Let us consider two solutions (ξ t ) t≥0 and ( ξt ) t≥0 of (4.20) satisfying sup t∈[0,T ] ξ t + ξt , 1 = A T < +∞. We consider the variation norm dened for µ 1 and µ 2 in M F by

||µ 1 -µ 2 || = sup f ∈L ∞ (R d ), ||f ||∞≤1 | µ 1 -µ 2 , f |. (4.21)
Then, we consider some bounded and measurable function f dened on X such that ||f || ∞ ≤ 1 and obtain

| ξ t -ξt , f | ≤ t 0 R d [ξ s (dx) -ξs (dx)] (b(x, V * ξ s (x)) -d(x, U * ξ s (x))) P t-s f (x) ds + t 0 R d ξs (dx)(b(x, V * ξ s (x)) -b(x, V * ξs (x)))P t-s f (x) ds + t 0 R d ξs (dx)(d(x, U * ξ s (x)) -d(x, U * ξs (x)))P t-s f (x) ds. (4.22) Since ||f || ∞ ≤ 1, then ||P t-s f || ∞ ≤ 1 and for all x ∈ R d , |(b(x, V * ξ s (x)) -d(x, U * ξ s (x)))P t-s f (x)| ≤ b + d(1 + Ū A T ).
Moreover, b and d are Lipschitz continuous in their second variable with respective constants K b and K d . Thus we obtain from (4.22) that

| ξ t -ξt , f | ≤ b + d(1 + Ū A T ) + K b A T V + K d A T Ū t 0 ||ξ s -ξs ||ds. (4.23)
Taking the supremum over all functions f such that ||f || ∞ ≤ 1, and using the Gronwall Lemma, we nally deduce that for all t ≤ T , ||ξ t -ξt || = 0. Uniqueness holds.

Step 2 Next, we would like to obtain some moment estimates. First, we check that for all T < ∞, sup

K sup t∈[0,T ] E X K t , 1 3 < ∞. (4.24)
To this end, we use (4.8) with φ(ν) = ν, 1 3 . (To be completely rigorous, one should rst use φ(ν) = ν, 1 3 ∧ A, make A tend to innity). Taking expectation, we obtain that for all t ≥ 0, all K,

E X K t , 1 3 = E X K 0 , 1 3 + t 0 E R d [K η+1 r(x) + Kb(x, V * X K s (x))] [ X K s , 1 + 1 K ] 3 -X K s , 1 3 K η+1 r(x) + Kd(x, U * X K s (x)) [ X K s , 1 - 1 K ] 3 -X K s , 1 3 X K s (dx) ds.
Dropping the non-positive death term involving d, we get

E X K t , 1 3 ≤ E X K 0 , 1 3 + t 0 E R d K η+1 r(x) [ X K s , 1 + 1 K ] 3 + [ X K s , 1 - 1 K ] 3 -2 X K s , 1 3 + Kb(x, V * X K s (x)) [ X K s , 1 + 1 K ] 3 -X K s , 1 3 X K s (dx) ds.
But for all x ≥ 0, all ∈ (0, 1], (x+ ) 3 -x 3 ≤ 6 (1+x 2 ) and |(x+

) 3 +(x-) 3 -2x 3 | = 6 2 x.
We nally obtain

E X K t , 1 3 ≤ E X K 0 , 1 3 + C t 0 E X K s , 1 + X K s , 1 2 + X K s , 1 3 ds.
Assumption (4.12) and the Gronwall Lemma allows us to conclude that (4.24) holds.

Next, we wish to check that Applying (4.9) with f ≡ 1, we obtain

sup K E sup t∈[0,T ] X K t , 1 2 < ∞.
X K t , 1 = X K 0 , 1 + t 0 X b(x, V * X K s (x)) -d(x, U * X K s (x)) X K s (dx)ds + m K,1 t . Hence sup s∈[0,t] X K s , 1 2 ≤ C X K 0 , 1 2 + b t 0 X K s , 1 2 ds + sup s∈[0,t] |M K,1 s | 2 .
Thanks to (4.12), the Doob inequality and the Gronwall Lemma, there exists a constant

C t not depending on K such that E sup s∈[0,t] X K s , 1 2 ≤ C t 1 + E M K,1 t .
Using now (4.10), we obtain, for some other constant C t not depending on K, (4.24). This concludes the proof of (4.25).

E M K,1 t ≤ C t 0 E X K s , 1 + X K s , 1 2 ds ≤ C t thanks to
Step 3 We rst endow M F with the vague topology, the extension to the weak topology being handled in Step 6 below. To show the tightness of the sequence of laws

Q K = L(X K ) in P(D([0, T ], M F ))
, it suces, following Roelly [START_REF] Roelly-Coppoletta | A criterion of convergence of measure-valued processes: application to measure branching processes[END_REF], to show that for any continuous bounded function f on R d , the sequence of laws of the processes X K , f is tight in D([0, T ], R). To this end, we use the Aldous criterion [START_REF] Aldous | Stopping times and tightness[END_REF] and the Rebolledo criterion (see [START_REF] Joe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF]). We have to show that

sup K E sup t∈[0,T ] | X K t , f | < ∞, (4.26) 
and the tightness respectively of the laws of the predictable quadratic variation of the martingale part and of the drift part of the semimartingales X K , f . Since f is bounded, (4.26) is a consequence of (4.25): let us thus consider a couple (S, S ) of stopping times satisfying a.s. 0 ≤ S ≤ S ≤ S + δ ≤ T . Using (4.10) and (4.25), we get for constants C, C

E M K,f S -M K,f S ≤ CE S+δ S X K s , 1 + X K s , 1 2 ds ≤ C δ.
In a similar way, the expectation of the nite variation part of X K S , f -X K S , f is bounded by C δ.

Hence, the sequence Q K = L(X K ) is tight.

Step 4 Let us now denote by Q the limiting law of a subsequence of Q K . We still denote this subsequence by Q K . Let X = (X t ) t≥0 a process with law Q. We remark that by construction, almost surely,

sup t∈[0,T ] sup f ∈L ∞ (R d ),||f ||∞≤1 | X K t , f -X K t -, f | ≤ 1/K.
This implies that the process X is a.s. strongly continuous.

Step 5 The time T > 0 is xed. Let us now check that almost surely, the process X is the unique solution of (4.13). Thanks to (4.25), it satises sup t∈[0,T ] X t , 1 < +∞ a.s., for each T . We x now a function f ∈ C 3 b (R d ) (the extension of (4.13) to any function f in C 2 b is not hard) and some t ≤ T . For ν ∈ C([0, T ], M F ), denote by

Ψ 1 t (ν) = ν t , f -ν 0 , f - t 0 R d (b(x, V * ν s (x)) -d(x, U * ν s (x)))f (x)ν s (dx)ds, Ψ 2 t (ν) = - t 0 R d 1 2 µ(x)r(x) i,j Σ ij (x)∂ 2 ij f (x)ν s (dx)ds. (4.27) 
We have to show that

E Q |Ψ 1 t (X) + Ψ 2 t (X)| = 0. (4.28) 
By (4.9), we know that for each K,

M K,f t = Ψ 1 t (X K ) + Ψ 2,K t (X K ),
where

Ψ 2,K t (X K ) = - t 0 R d µ(x)(K η r(x) + b(x, V * X K s (x))) R d f (z)M K (x, z)dz -f (x) X K s (dx)ds. (4.29)
Moreover, (4.25) implies that for each K,

E |M K,f t | 2 = E M K,f t ≤ C f K η K E t 0 X K s , 1 + X K s , 1 2 ds ≤ C f,T K η K , (4.30) 
which goes to 0 as K tends to innity, since 0 < η < 1. Therefore,

lim K E(|Ψ 1 t (X K ) + Ψ 2,K t (X K )|) = 0.
Since X is a.s. strongly continuous, since f ∈ C 3 b (R d ) and thanks to the continuity of the parameters, the functions Ψ 1 t and Ψ 2 t are a.s. continuous at X. Furthermore, for any

ν ∈ D([0, T ], M F ), |Ψ 1 t (ν) + Ψ 2 t (ν)| ≤ C f,T sup s∈[0,T ] 1 + ν s , 1 2 . (4.31) 
Hence using (4.24), we see that the sequence (Ψ 1 t (X K )+Ψ 2 t (X K )) K is uniformly integrable, and thus

lim K E |Ψ 1 t (X K ) + Ψ 2 t (X K )| = E |Ψ 1 t (X) + Ψ 2 t (X)| . (4.32) 
We have now to deal with Ψ 2,K t (X K )-Ψ 2 t (X K ). The convergence of this term is due to the fact that the measure M K (x, z)dz has mean x, variance Σ(x)/K η , and third moment bounded by C/K η+ε (ε > 0) uniformly in x. Indeed, if Hf (x) denotes the Hessian matrix of f at x,

R d f (z)M K (x, z)dz = R d f (x) + (z -x) • ∇f (x) + 1 2 (z -x) * Hf (x)(z -x) + O((z -x) 3 ) M K (x, z)dz = f (x) + 1 2 i,j Σ ij (x) K η ∂ 2 ij f (x) + o( 1 K η ). (4.33) 
where

K η o( 1 K η ) tends to 0 uniformly in x (since f is in C 3 b ), as K tends to innity. Then, Ψ 2,K t (X K ) = - t 0 R d µ(x)(K η r(x) + b(x, V * X K s (x)))× × 1 2 i,j Σ ij (x) K η ∂ 2 ij f (x) + o( 1 K η ) X K s (dx)ds, and |Ψ 2,K t (X K ) -Ψ 2 t (X K )| ≤ C f sup s≤T < X K s , 1 > 1 K η + K η o( 1 K η ) .
Using (4.25), we conclude the proof of (4.28).

Step 6 The previous steps imply that (X K ) K converges to ξ in D([0, T ], M F ), where M F is endowed with the vague topology. To extend the result to the case where M F is endowed with the weak topology, we use a criterion proved in Méléard and Roelly [START_REF] Méléard | Sur les convergences étroite ou vague de processus à valeurs mesures[END_REF]:

since the limiting process is continuous, it suces to prove that the sequence ( X K , 1 ) converges to ξ, 1 in law, in D([0, T ], R). One may of course apply Step 5 with f ≡ 1, which concludes the proof of (1).

(2) Let us now assume the non-degeneracy property r(x)µ(x)s * Σ(x)s ≥ c s 2 > 0 for each x ∈ R d , s ∈ R d . That implies that for each time t > 0, the transition semigroup P t (x, dy) introduced in Step 1 of this proof has for each x a density function p t (x, y) with respect to the Lebesgue measure. Then if we come back to the evolution equation (4.20), we can write

R d f (x)ξ t (dx) = R d R d f (y)p t (x, y)dy ξ 0 (dx) + t 0 R d (b(x, V * ξ s (x)) -d(x, U * ξ s (x))) R d
f (y)p t-s (x, y)dy ξ s (dx)ds.

Using the fact that the parameters are bounded, that sup t≤T ξ t , 1 < +∞ and that f is bounded, we can apply Fubini's theorem and deduce that

R d f (x)ξ t (dx) = R d H t (y)f (y)dy with H ∈ L ∞ ([0, T ], L 1 (R d ))
, which implies that ξ t has a density with respect to the Lebesgue measure for each time t ≤ T . Equation (4.14) is then the dual form of (4.13).

Proof of Theorem 4.5 We will use a similar method as the one of the previous theorem.

Steps 2, 3, 4 and 6 of this proof can be achieved exactly in the same way. Therefore, we only have to prove the uniqueness (in law) of the solution to the martingale problem (4.16) (4.18) (Step 1), and that any accumulation point of the sequence of laws of X K is solution to (4.16)(4.18) (Step 5).

Step 1 This uniqueness result is well-known for the super-Brownian process (dened by a similar martingale problem, but with b = d = 0, r = µ = 1 and Σ = Id, cf. [START_REF] Roelly-Coppoletta | A criterion of convergence of measure-valued processes: application to measure branching processes[END_REF]).

Following [START_REF] Etheridge | Survival and extinction in a locally regulated population[END_REF], we may use the version of Dawson's Girsanov transform obtained in Evans and Perkins [START_REF] Evans | Measure-valued branching diusions with singular interactions[END_REF] (Theorem 2.3), to deduce the uniqueness in our situation, provided the condition

E t 0 R d [b(x, V * X s (x)) -d(x, U * X s (x))] 2 X s (dx)ds < +∞
is satised. This is easily obtained from the assumption that sup t∈[0,T ] E[ X t , 1 3 ] < ∞ since the coecients are bounded.

Step 5 Let us identify the limit. Let us call Q K = L(X K ) and denote by Q a limiting value of the tight sequence Q K , and by X = (X t ) t≥0 a process with law Q. Because of Step 4, X belongs a.s. to C([0, T ], M F ). We have to show that X satises the conditions (4.16), (4.17) and (4.18). First note that (4.16) is straightforward from (4.25).

Then, we show that for any function f in C 3 b (R d ), the process M f t dened by (4.17) is a martingale (the extension to every function in C 2 b is not hard). We consider 0 ≤ s 1 ≤ ... ≤ s n < s < t, some continuous bounded maps φ 1 , ...φ n on M F , and our aim is to prove that, if the function It follows from (4.9) that

Ψ from D([0, T ], M F ) into R is dened by Ψ(ν) = φ 1 (ν s 1 )...φ n (ν sn ) ν t , f -ν s , f - t s R d 1 2 µ(x)r(x) i,j Σ ij ∂ 2 ij f (x) + f (x) [b(x, V * ν u (x)) -d(x, U * ν u (x))] ν u (dx)du ,
0 = E φ 1 (X K s 1 )...φ n (X K sn ) M K,f t -M K,f s = E Ψ(X K ) -A K , (4.36) 
where A K is dened by

A K = E φ 1 (X K s 1 )...φ n (X K sn ) t s R d µ(x) b(x, V * X K u (x)) R d (f (z) -f (x))M K (x, z)dz + r(x)K R d (f (z) -f (x) - i,j Σ ij (x) 2K ∂ 2 ij f (x))M K (x, z)dz X K u (dx)du .
It turns out from (4.33) that A K tends to zero as K grows to innity, and using (4.25), that the sequence

(|Ψ(X K )|) K is uniformly integrable, so lim K E |Ψ(X K )| = E Q (|Ψ(X)|) .
(4.37)

Collecting the previous results allows us to conclude that (4.35) holds, and thus M f is a martingale.

We nally have to show that the bracket of M f is given by (4.18). To this end, we rst check that

N f t = X t , f 2 -X 0 , f 2 - t 0 R d 2r(x)f 2 (x)X s (dx)ds -2 t 0 X s , f R d f (x) [b(x, V * X s (x)) -d(x, U * X s (x))] X s (dx)ds - t 0 X s , f R d µ(x)r(x) i,j Σ ij (x)∂ 2 ij f (x)X s (dx)ds (4.38)
is a martingale. This can be done exactly as for M f t , using the semimartingale decom- position of X K t , f 2 , given by (4.8) with φ(ν) = ν, f 2 . In another hand, Itô's formula implies that 

X t , f 2 -X 0 , f 2 -M f t - t 0 X s , f R d r(x)µ(x) i,j Σ ij (x)∂ 2 ij f (x)X s (dx)ds -2 t 0 X s , f R d f (x) b(x, V * X s (x)) -d(x, U * X s (x)) X s (dx)ds

Rare mutations

In this case, the mutation step density M is xed and the mutation rate is decelerated proportionally to 1/K η : Assumption (H4):

M K = M, µ K = µ K η .
Thus only births without mutation are accelerated.

As in Section 4.2.1, we obtain deterministic or random limits, according to the value of η ∈ (0, 1].

Theorem 4.7 [START_REF] Aldous | Stopping times and tightness[END_REF] Assume (H), (H1), (H2), (H4) and 0 < η < 1. Assume also that the initial conditions X K 0 converge in law and for the weak topology on M F as K increases, to a nite deterministic measure ξ 0 , and that sup K E( X K 0 , 1 3 ) < +∞.

Then, for each T > 0, the sequence of processes (X K ) belonging to D([0, T ], M F ) converges (in law) to the unique deterministic function (ξ t ) t≥0 ∈ C([0, T ], M F ) weak solution of the deterministic nonlinear integro-dierential equation:

∂ t ξ t (x) = [b(x, V * ξ t (x)) -d(x, U * ξ t (x))]ξ t (x) + R d M (y, x)µ(y)r(y)ξ t (y)dy -µ(x)r(x)ξ t (x). (4.39)
(2) Assume now η = 1 and that X K 0 converge in law to X 0 . Then, for each T > 0, the sequence of processes (X K ) converges in law in D([0, T ], M F ) to the unique (in law) continuous superprocess X ∈ C([0, T ], M F ), dened by the following conditions:

sup t∈[0,T ] E X t , 1 3 < ∞,

and for any

f ∈ C 2 b (R d ), M f t = X t , f -X 0 , f - t 0 R d µ(x)r(x) R d M (x, z)(f (z) -f (x))dzX s (dx)ds - t 0 R d f (x) (b(x, V * X s (x)) -d(x, U * X s (x))) X s (dx)ds
is a continuous martingale with quadratic variation

M f t = 2 t 0 R d r(x)f 2 (x)X s (dx)ds.
In a SPDE formalism, one can write the last limit as formal solution of the equation

∂ t X t (x) = [b(x, V * X t (x)) -d(x, U * X t (x))]X t (x) + R d M (y, x)µ(y)r(y)X t (dy) + Ṁ -µ(x)r(x)X t (x), (4.40)
where Ṁ is a random uctuation term.

The proof of Theorem 4.7 is similar to proofs of Theorems 4. We hence recover rigorously the stochastic trait substitution sequence jump process of adaptive dynamics (Metz et al. [START_REF] Metz | Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF]) when the initial condition is monomorphic. The biological idea behind such a scaling of the population process is that selection has sucient time between two mutations to eliminate all disadvantaged traits, so that the population remains monomorphic on the evolutionary timescale. Then the evolution proceeds by successive invasions of mutant traits, replacing the resident trait from which the mutant trait is born.

These invasions occur on an innitesimal timescale with respect to the mutation timescale.

Our result emphasizes how the mutation scaling should compare to the system size (K ) in order to obtain the correct time scale separation between the mutant-invasions (taking place on a short time scale) and the mutations (evolutionary time scale).

Statement of the result

We consider here a limit of rare mutations combined with the large population limit of Section 4.1 (Assumption (H1) and b K = b, d K = d and M K = M ). We assume Assumptions (H5):

(i) µ K (x) = u K µ(x). (ii) For any constant C > 0, e -CK u K 1 K log K (5.1)
(thus u K → 0 when K → +∞), or, equivalently, for any C and t > 0, log K t Ku K e CK .

( (5.3) (iv) There exists a constant U > 0 such that U (h) ≥ U for any h ∈ R d .

Assumption (H5)-(i) entails the rare mutation asymptotic, and (H5)-(ii) gives the correct scaling between the mutation probability and the system size in order to obtain the correct time scale separation. Observe that (H5)-(ii) implies that Ku K → 0 when K → +∞, so that the timescale t/Ku K , which corresponds to the timescale of mutations (the population size is proportional to K, and each birth event produces a mutant with a probability proportional to u K , which gives a total mutation rate in the population proportional to Ku K ) is a long timescale. Our result gives the behavior of the population process on this long timescale.

Assumptions (H5)-(iii) and (iv) will allow us to bound the population size on the mutation timescale, and to study the behavior of the population when it is monomorphic or dimorphic between two (rare) mutation events. Specically, the monotonicity properties of b and d in Assumption (H5)-(iii) ensures, for any x ∈ X , the existence of a unique nontrivial stable equilibrium n(x) for the monomorphic logistic equation (4.6) of Example 3 in Section 4.1. Moreover, since b(x, V (0)u) -d(x, U (0)u) > 0 for any u < n(x) and b(x, V (0)u) -d(x, U (0)u) < 0 for any u > n(x), any solution to (4.6) with positive initial condition converges to n(x).

Concerning the dimorphic logistic equations (4.7), an elementary linear analysis of the equilibrium (n(x), 0) gives that it is stable if f (y, x) < 0 and unstable if f (y, x) > 0, where the function

f (y, x) = b(y, V (y -x)n(x)) -d(y, U (y -x)n(x)) (5.4)
is known as the tness function ( [START_REF] Metz | How should we dene tness for general ecological scenarios[END_REF][START_REF] Metz | Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF]), which gives a measure of the selective advantage of a mutant individual with trait y in a monomorphic population of trait x at equilibrium. Similarly, the stability of the equilibrium (0, n(y)) is governed by the sign of f (x, y).

In order to ensure that, when the invasion of a mutant trait is possible, then this invasion will end with the extinction of the resident trait, we will need the following additional assumption:

Assumptions (H6):

Given any x ∈ X , Lebesgue almost any y ∈ X satises one of the two following conditions:

(i) either f (y, x) < 0 (so that (n(x), 0) is stable), (ii) or f (y, x) > 0, f (x, y) < 0 and any solution to (4.7) with initial condition with positive coordinates in a given neighborhood of (n(x), 0) converges to (0, n(y)).

In the case of linear logistic density-dependence introduced in Section 2.2 (b(x, ζ) = b(x) and d(x, ζ) = d(x) + α(x)ζ), the equilibrium monomorphic density n(x) writes (b(x) -d(x))/α(x)U (0) and the condition (H6)-(ii) is actually equivalent to f (y, x) > 0 and f (x, y) < 0 (see [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]).

Our convergence result writes Theorem 5.1 Assume (H), (H1), (H5) and (H6). Given x ∈ X , γ > 0 and a sequence of N-valued random variables (γ K ) K∈N , such that γ K /K is bounded in L 1 and converges in law to γ, consider the process (X K t , t ≥ 0) of Section 4 generated by (4.1) with initial state γ K K δ x . Then, for any n ≥ 1, ε > 0 and 0 < t 1 < t 2 < . . . < t n < ∞, and for any measurable subsets Γ 1 , . . . , Γ n of X , lim K→+∞ P ∀i ∈ {1, . . . , n}, ∃x i ∈ Γ i : Supp(X K t i /Ku K ) = {x i } and | X K t i /Ku K , 1 -n(x i )| < ε = P (∀i ∈ {1, . . . , n}, Y t i ∈ Γ i ) (5.5) where for any ν ∈ M F (X ), Supp(ν) is the support of ν and (Y t , t ≥ 0) is a Markov jump process with initial state x generated by

Aϕ(x) = R d
(ϕ(y) -ϕ(x))g(y, x)M (x, y)dy Corollary 5.2 With the same notations and assumptions as in Theorem 5.1, assuming moreover that γ K /K is bounded in L q for some q > 1, the process (X K t/Ku K , t ≥ 0) converges when K → +∞, in the sense of the nite dimensional distributions for the topology on M F (X ) induced by the functions ν → ν, f with f bounded and measurable on X , to the process (Z t , t ≥ 0) dened by

Z t = γδ x if t = 0 n(Y t )δ Yt if t > 0.
This corollary follows from the following long time moment estimates. Lemma 5.3 Under (H), (H1), (H5)(iii) (5.3) and (iv), and if sup K≥1 E( X K 0 , 1 q ) < +∞ for some q ≥ 1, then sup K≥1 sup t≥0 E X K t , 1 q < +∞, and therefore, if q > 1, the family of random variables { X K t , 1 } {K≥1, t≥0} is uniformly integrable.

Proof of Lemma 5.3 Observe that, if we replace b(x, V * ν) by b and d(x, U * ν) by g(U ν, 1 ) where g(ζ) := inf x∈X d(x, ζ) in the indicator functions of each terms of the construction (2.3) of the process X K t , we can stochastically dominate the population size X K t , 1 by a birth and death Markov process (Z K t ) t≥0 with initial state Z K 0 = X K 0 , 1 and transition rates i b from i/K to (i + 1)/K, ig(U i K ) from i/K to (i -1)/K.

Therefore, it suces to prove that sup K≥0 sup t≥0 E((Z K t ) q ) < +∞. Let us dene p k t = P (Z K t = k/K). Then d dt E((

Z K t ) q ) = k≥1 k K q dp k t dt = 1 K q k≥1 k q b(k -1)p k-1 t + (k + 1)g U k + 1 K p k+1 t -k b + g U k K p k t = 1 K q k≥1 b 1 + 1 k q -1 + g U k K 1 - 1 k q -1 k q+1 p k t .
Now, by (H5) (iii) (5.3), g(α) → +∞ when α → +∞, so there exists α 0 such that, for any α ≥ α 0 , g(U α) ≥ 2 b. Therefore, for k ≥ Kα 0 , b((1+1/k) q -1)+g(U k/K)((1-1/k) q -1) ≤ -b[3 -2(1 -1/k) q -(1 + 1/k) q ], the RHS term being equivalent to -bq/k. Therefore, enlarging α 0 if necessary and using in the rst inequality the facts that (1 + α) q -1 ≤ α(2 q -1) and (1 -α) q -1 ≤ 0 for any α ∈ [0, 1], we can write

d dt E((Z K t ) q ) ≤ Kα 0 -1 k=1 b(2 q -1) k K q p k t - k≥ Kα 0 bq 2 k K q p k t ≤ Kα 0 -1 k=1 b(q/2 + 2 q -1)α q 0 p k t - bq 2 E((Z K t ) q ) ≤ bq 2 [C -E((Z K t ) q )],
where C = (1 + 2(2 q -1)/q)α q 0 . This dierential inequality solves as E((Z K t ) q ) ≤ C + [E((Z K 0 ) q ) -C]e -bqt/2 , which gives the required uniform bound.

Proof of Corollary 5.2 Let Γ be a measurable subset of X . Let us prove that lim K→+∞ E X K t/Ku K , 1 Γ = E n(Y t )1 Yt∈Γ .

( [0, ζ 0 /U ] ⊂ ∪ p i=1 I i , where p is the integer part of ζ 0 /(U ε), and I i = [(i -1)ε, iε[. Dene Γ i = {x ∈ X : n(x) ∈ I i } for 1 ≤ i ≤ p, and apply (5.5) to the sets Γ ∩ Γ 1 , . . . , Γ ∩ Γ p with n = 1, t 1 = t and the constant ε above. Then, by Lemma 5.3, for some constant C > 0 and for suciently large K, A similar estimate for the lim inf ends the proof of (5.8), which implies the convergence of one-dimensional laws for the required topology.

lim sup K→+∞ E X K t/Ku K , 1 Γ ≤ lim sup K→+∞ E X K t/Ku K , 1 Γ 1 X K t/Ku K ,1 ≤C + ε ≤ p i=1 lim sup K→+∞ E X K t/Ku K , 1 Γ∩Γ i 1 X K t/
The same method gives easily the required limit when we consider a nite number of times t 1 , . . . , t n .

Observe that the fact that the limit process is not right-continuous prevents the possibility to obtain a convergence for the Skorohod topology on D([0, T ], M F (X )).

Idea of the proof

Theorem 5.1 can be proved in a similar way as in Champagnat [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]. Let us give an idea of the method in order to explain the assumptions, the various parameters appearing in Theorem 5.1 and the tools involved in the proof. It is based on two ingredients: the study of a monomorphic population before the rst mutation, and the study of the invasion of a single mutant individual in this population.

1) The rst part obtains from large deviation results for the convergence of X K t to n t (x)δ x when the initial population is monomorphic with trait x, where n t (x) satises (4.6).

  represents the time between jumps for I k-1 individuals, and C(I k-1 + 1) gives an upper bound on the total event rate for each individual. At time T k , one chooses an individual i k = i uniformly at random among the I k-1 alive in the time interval

  (a) and (b), where η = 1/2, and Fig. 2 (c) and (d), where η = 1. In the latter, we observe strong uctuations in the population size and a nely branched structure of the evolutionnary pattern, revealing a new form of stochasticity in the large population approximation.

  (a) µ = 0.03, K = 100, σ = 0.1. (b) µ = 0.03, K = 3000, σ = 0.1.

  (c) µ = 0.03, K = 100000, σ = 0.1. (d) µ = 0.00001, K = 3000, σ = 0.1.

Figure 1 :

 1 Figure 1: Numerical simulations of trait distributions (upper panels, darker is higher frequency) and population size (lower panels). The initial population is monomorphic with trait value 1.2 and contains K individuals. (ac) Qualitative eect of increasing system size (measured by parameter K). (d) Large parameter K and very small mutation probability (µ).

  (a) µ = 0.3, K = 10000, σ = 0.3/K η/2 , η = 0.5.

Figure 2 :

 2 Figure 2: Numerical simulations of trait distribution (upper panels, darker is higher frequency) and population size (lower panels) for accelerated birth and death and concurrently increased parameter K. Parameter η (between 0 and 1) relates the acceleration of demographic turnover and the increase of system size K. (a) Rescaling mutation step. (b) Rescaling mutation probability. (cd) Rescaling mutation step in the limit case η = 1; two samples for the same population. The initial population is monomorphic with trait value 1.2 and contains K individuals.

  equations have been proposed by Bolker and Pacala ([2, 3]) and Dieckmann and Law ([11]) as handy analytical models for spatially structured populations.

  Assumption (H1): The parameters U K , V K , b K , d K , M K and µ K are all continuous, ζ → b(x, ζ) and ζ → d(x, ζ) are Lipschitz for any x ∈ X , and

(4. 11 )

 11 where σ 2 (x) is positive and bounded over R d .

E

  (Ψ(X)) = 0.

  is a martingale. Comparing this formula with (4.38), we obtain (4.18).

  3 and 4.5 and we leave it to the reader. Theorem 4.7 (1) is illustrated in the simulation of Fig. 2 (b).5 Rare mutation renormalization of the monomorphic process and adaptive dynamics In the previous section, Eqs. (4.39) and (4.40) have been obtained at the population growth time scale (ecological time scale), under an assumption of rare mutation. Here, we are interested in the behavior of the population process at the evolutionary time scale, when mutations are extremely rare, as illustrated by the simulation of Fig. 1 (d).

. 2 )

 2 (iii) For any x ∈ X , ζ → b(x, ζ) and ζ → d(x, ζ) are positive functions, non-increasing and increasing respectively, satisfying ∀x ∈ X , b(x, 0) -d(x, 0) > 0, lim ζ→+∞ inf x∈X d(x, ζ) = +∞.

  , x) = µ(x)b(x, V (0)n(x))n(x) [f (y, x)] + b(y, V (y -x)n(x)) (5.7)and [•] + denotes the positive part.

. 8 )

 8 By (H5)-(iii)-(5.3), there exists ζ 0 > 0 such that for any ζ > ζ 0 and x ∈ X , d(x, ζ) > b. Therefore, by (H5)-(iv), for any x ∈ X , n(x) ∈ [0, ζ 0 /U ]. Fix ε > 0, and write

The proof of Theorem 4.2 is let to the reader. It can be adapted from the proofs of Theorem 4.3 and 4.5 below, or obtained as a generalization of Theorem 5.3 in [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. This result is illustrated by the simulations of Figs. 1 (a)(c).

Main Examples:

(1) A density case. Following similar arguments as in the proof of Proposition 3.1, one shows that if the initial condition ξ 0 has a density w.r.t. Lebesgue measure, then the same property holds for the nite measure ξ t , which is then solution of the functional equation:

M (y, x)µ(y)b(y, V * ξ t (y))ξ t (y)dy (4.4) for all x ∈ X and t ≥ 0. Desvillettes et al. [START_REF] Desvillettes | Innite dimensional reaction-diusion for evolutionary population dynamics[END_REF] suggest to refer to ξ t as the population number density; then the quantity n t = X ξ t (x)dx can be interpreted as the total population density over the whole trait space.

(2) The mean eld case. As for moment equations (cf. Section 3), the case of spatially structured populations with constant rates b, d, α is meaningful. In this context, (4.3) leads to the following equation on n t :

U (x -y)ξ t (dx)ξ t (dy). 

Comparing (4.5) with the rst-moment equation (3.3) obtained previously stresses out the decorrelative eect of the large system size renormalization (only in case U ≡ 1). In (3.3), the correction term capturing the eect of spatial correlations in the population remains, even if one assumes U ≡ 1.

(3) Monomorphic and dimorphic cases without mutation. We assume here that the population evolves without mutation (parameter µ = 0); then the population traits are the initial ones.

(a) Monomorphic case: only trait x is present in the population at time t = 0. Thus, we can write X K 0 = n K 0 (x)δ x , and then X K t = n K t (x)δ x for any time t. Theorem 4.2 recasts in this case into n K t (x) → n t (x) with ξ t = n t (x)δ x , and (4.3)

(b) Dimorphic case: when the population contains two traits x and y, i.e. when X K 0 = n K 0 (x)δ x + n K 0 (y)δ y , we can dene in a similar way n t (x) and n t (y) for any t as before, such that ξ t = n t (x)δ x + n t (y)δ y satises (4.3), which recasts into the following system of coupled ordinary dierential equations: Any positive solution to (4.6) converges to n(x) when t → +∞, and hence reaches a given neighborhood of n(x) in nite time, i.e. on an innitesimal time scale with respect to the mutation time scale. Large deviations theory allows us to show that the exit time of X K t , 1 from this neighborhood behaves as exp(KC) for some C > 0 (problem of exit from a domain, Freidlin and Wentzell [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF]). Thanks to the right part of Assumption (5.2), we can prove that, with high probability, X K t , 1 is close to n(x) when the rst mutation occurs. Therefore, the total mutation rate is close to u K µ(x)K n(x)b(x, V (0)n(x)) and so, on the mutation time scale t/Ku K , the rate of mutation is close to n(x)µ(x)b(x, V (0)n(x)), which explain the left part of the RHS of (5.7). This argument can be made rigorous using stochastic domination results similar to the one used at the beginning of the proof of Lemma 5.3, and leads to the following result: Lemma 5.4 Let τ 1 denote the rst mutation time and

and

In particular, under

(b) For any t > 0,

where

2) The study of the invasion of a mutant individual with trait y can be divided in three steps represented in Fig. 3.

Firstly, the invasion of the mutant (between 0 and t 1 in Fig. 3) can be dened as the growth of the mutant density X K t , 1 {y} from 1/K (one individual) to a xed small level ε (εK individuals). As long as the mutant density is small, the dynamics of the resident density X K t , 1 {x} is close to the one it followed before the mutation, so it is close to n(x) with high probability. Therefore, between 0 and t 1 , the birth and death rates of an individual with trait y are close to b(y, V (y -x)n(x)) and d(y, U (y -x)n(x)) respectively.

Therefore, the number of mutant individuals is close to a binary branching process with the parameters above. When K → +∞, the probability that such a branching process reaches level εK is close to its survival probability, which writes [f (y, x)] + /b(y, V (y -x)n(x)). This gives the second part of the RHS of (5.7).

Secondly, once the invasion succeeded (which is possible only if f (y, x) > 0), the dynamics of the densities of traits x and y are close to the solution to the dimorphic logistic equation (4.7) with initial state (n(x), ε), represented in dotted curves between t 1 and t 2 in Fig. 3. Because of Assumption (H6), the resident density can be proved to reach level ε with high probability (at time t 2 in Fig. 3).

The three steps of the invasion and xation of a mutant trait y in a monomorphic population with trait x. Plain curves represent the resident and mutant densities X K t , 1 {x} and X K t , 1 {y} , respectively. Dotted curves represent the solution of Eq. (4.7) with initial state n 0 (x) = n(x) and n 0 (y) = ε.

Finally, a similar argument as in the rst step above allows us to prove that the resident population density X K t , 1 {x} follows approximately a binary branching process with birth rate b(y, V (x -y)n(y)) and death rate d(y, U (x -y)n(y)). Since f (x, y) < 0 by Assumption (H6), this is a sub-critical branching process, and therefore, the resident trait x disappears in nite time t 3 with high probability.

We can show, using results on branching processes, that t 1 and t 3 -t 2 are of order log K, whereas t 2 -t 1 depends only on ε. Therefore, the left part of (5.2) ensures that the three steps of the invasion are completed before the next mutation, with high probability.

The previous heuristics can be made rigorous using further comparison results, and leads to the following result. Lemma 5.5 Assume that the initial population is made of individuals with traits x and y satisfying assumption (H6) (i) or (ii). Let θ 0 denote the rst time when the population gets monomorphic, and V 0 the remaining trait. Let (z K ) K≥1 be a sequence of integers such that z K /K → n(x). Then,

, (5.11) ∀η > 0, lim

and ∀ε > 0,

where f (y, x) has been dened in (5.4).

Once these lemmas are proved, the proof can be completed by observing that the generator A of the process (Y t , t ≥ 0) of Theorem 5.1 can be written as

(ϕ(y) -ϕ(x))β(x)κ(x, dy), (5.14) where β(x) has been dened in Lemma 5.4 and the probability measure κ(x, dh) is dened by

M (x, y)dy. (5.15) This means that the process Y with initial state x can be constructed as follows: let (M (k), k = 0, 1, 2, . . .) be a Markov chain in X with initial state x and with transition kernel κ(x, dy), and let (N (t), t ≥ 0) be an independent standard Poisson process. Let also (T n ) n≥1 denote the sequence of jump times of the Poisson process N . Then, the process (Y t , t ≥ 0) dened by

is a Markov process with innitesimal generator (5.14) (cf. [START_REF] Ethier | Markov Processes, characterization and convergence[END_REF] chapter 6).

Let P x denote its law, and dene (S n ) n≥1 by T n = Sn 0 β(Y s )ds. Observe that any jump of the process Y occurs at some time S n , but that all S n may not be eective jump times for Y , because of the Dirac mass at x appearing in (5.15).

Fix t > 0, x ∈ X and a measurable subset Γ of X . Under P x , S 1 and Y S 1 are independent, S 1 is an exponential random variable with parameter β(x), and Y S 1 has law κ(x, •). Therefore, for any n ≥ 1, the strong Markov property applied to Y at time S 1 yields P x (S n ≤ t < S n+1 , Y t ∈ Γ) = t 0 β(x)e -β(x)s R l P y (S n-1 ≤ t -s < S n , Y t-s ∈ Γ)κ(x, dy)ds (5.16) and P x (0 ≤ t < S 1 , Y t ∈ Γ) = 1 {x∈Γ} e -β(x)t .

(5.17) Using the Markov property at time τ 1 and Lemmas 5.4 and 5.5, we can prove that, when we replace S n by the n-th mutation time of X K t/Ku K and Y t by the support of X K t/Ku K (when it is a singleton) in the LHS of (5.16) and (5.17), the same relations hold in the limit K → +∞. Therefore, Theorem 5.1 is proved for one-dimensional time marginals. A similar method generalizes to nite dimensional laws.