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Abstract

In this paper, small-angle X-ray scattering measurements are used to determine the different

compressibility contributions, as well as the isothermal compressibility, χ0
T , in thermal equilibrium

in silica glasses having different thermal histories. Using two different methods of analysis, in the

supercooled liquid and in the glassy state, we obtain respectively the temperature and fictive tem-

perature dependences of χ0
T . The values obtained in the glass and supercooled liquid states are very

close to each other. They agree with previous determinations of the literature. The compressibility

in the glass state slightly decreases with increasing fictive temperature. The relaxational part of

the compressibility is also calculated and compared to previous determinations. We discussed the

small differences between the different determinations.

PACS numbers: 61.43.Fs, 61.10.Eq, 51.35.+a, 64.70.Pf
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I. INTRODUCTION

The nanometer range in glasses is expected to correspond to fluctuations of density and

composition, whereas at shorter scale the structure is very close to that of the crystalline

counterpart and at larger scale the medium can be considered as homogeneous. Those

fluctuations, or part of them, are frozen-in during the cooling process and thus they are

determined by the cooling rate and the thermal history of the glass sample, which can be

characterized by a “fictive temperature” for a certain property (see Ref. 1 for more details).

As a consequence, the fluctuations are expected to depend on the fictive temperature which

will be used in this paper to characterize the thermal history of each glass sample.

One possible experimental method to study electronic density fluctuations at the nanome-

ter scale is Small-Angle X-ray Scattering (SAXS), which is sensitive to both composition

and density fluctuations. Silica glass is a good candidate to study density fluctuations

as composition fluctuations do not occur in this “single component” glass (made of SiO2

“molecules”). It represents a material of significant commercial as well as fundamental in-

terest. The characterization of density fluctuations in silica is of great importance for the

fundamental understanding of the glass transition but also for commercial applications, such

as for silica-based optical fibers.

Density fluctuations are related to thermodynamics parameters such as compressibility

of the sample. Small angle x-ray scattering intensity measurements in silica glass across

the glass transition temperature give access to the isothermal compressibility. It can be

calculated in the melt, as well as in the glassy state where it depends on the thermal history

of the sample. In the glassy state, the isothermal compressibility can be decomposed into

different terms contributing to frozen-in or still propagating density fluctuations.

In this paper we will use SAXS intensity measured both as a function of temperature

and fictive temperature, in combination with previous Brillouin scattering data,2 in order

to determine the different compressibility contributions to the density fluctuations, both

above and below the glass transition temperature. By a full point by point analysis, we

obtain the temperature and fictive temperature variations of theses different compressibility

contributions. The results are discussed in comparison with previous measurements.
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II. THEORETICAL BACKGROUND

The theoretical description of the SAXS intensity for one composition unit or molecule,

I(q), due to density fluctuations is rather well-known in liquids. Thermodynamic fluctua-

tions theory predicts that:

I(q = 0) =
Na × (

∑

Z)2 × ρ0

m
× kbTχ0

T (T ), (1)

where Na is Avogadro’s number,
∑

Z the total number of electrons per molecule, m the

molar mass of one molecule, χ0
T (T ) the isothermal compressibility of the liquid, ρ0 the density

and kb the Boltzman’s constant. A similar equation can be found for the low q limit of the

static structure factor:

S(q = 0) = n × kbTχ0
T (T ) =

Na × N × ρ0

m
kbTχ0

T (T ) (2)

where S(q) is the static structure factor, n is the number density of atoms and N the number

of atoms in the molecule.3 Then S(q = 0) is related to the intensity I(q = 0) per molecule

by S(q = 0) = NI(q = 0)/(
∑

Z)2.

In the glassy state, equation (1) is no more valid because the system is out of thermody-

namic equilibrium. Historically, several different descriptions have been proposed to relate

the low q SAXS or light scattering intensity to compressibilities in the glassy state.

Weinberg first proposed that all density fluctuations are frozen-in at Tg, and thus, equa-

tion (1) becomes independent of the temperature:4

I(q = 0) =
Na × (

∑

Z)2 × ρ0

m
× kbTgχ

0
T (Tg). (3)

Wendorff rather said that below the glass transition,5

I(q = 0) =
Na × (

∑

Z)2 × ρ0

m
× kbTχ0

T (Tg), (4)

which yields to density fluctuations which are still decreasing with decreasing temperature,

but should go to zero at absolute zero temperature.

Roe and Curro mentioned that below the glass transition temperature, the density fluc-

tuations amplitude is much higher than that expected from (4). They assumed that the

density fluctuations can be decomposed into two components: one dynamic contribution,

related to the isothermal compressibility in the glass, which is determined by equation (4)6,7
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and one static or quasi-static term, I(q = 0, T = 0), which represents the density fluctu-

ations that are frozen-in. This static contribution can be attributed to structural entities

whose relaxation times are longer than experimental time scale.

I(q = 0) = I(q = 0, T = 0) +
Na × (

∑

Z)2 × ρ0

m
kbTχ0

T (Tg) (5)

static dynamic

On another hand, Ruland and coworkers decomposed the density fluctuation below Tg

in one component due to frozen-in disorder, independent of temperature, I(q = 0, T = 0),

and one temperature dependent component due to pressure fluctuations (longitudinal elastic

waves),

I(q = 0) = I(q = 0, T = 0) +
Na × (

∑

Z)2 × ρ0

m
kbT 〈

1

ρV 2
l,∞

〉 (6)

where Vl,∞ is the longitudinal sound wave velocity and 〈〉 indicates a spatial average.8,9

The same kind of decomposition has been introduced by Laberge using in equation (1)

the adiabatic compressibility, χ0
S: χ0

T = (χ0
T − χ0

S) + χ0
S. The fluctuations can be separated

in isobaric fluctuations, related to (χ0
T − χ0

S) and adiabatic fluctuations, related to χ0
S.10

The adiabatic fluctuations consist of sound waves and variations in the local structure.

Laberge10 introduced a term of relaxational origin in the density fluctuations by pointing

out that if the material is viscous enough so that the structural relaxation is slow compared

to the oscillations of infinite frequency acoustic waves, then, the phonons contribution is

defined by the infinite frequency compressibility χ∞

S and the residual part by the relaxational

compressibility χr
S = χ0

S − χ∞

S . These assumptions lead to the following equation:

I(q = 0) =
Na × (

∑

Z)2 × ρ0

m
kbT

[

(χ0
T − χ0

S) + χr
S + χ∞

S

]

, (7)

with:

χ∞

S = 1/(ρ(Vl,∞)2 − 4ρ(Vt,∞)2/3) = 1/(M∞ − 4G∞/3) = 1/K∞, (8)

where Vt,∞ is the high frequency transverse sound velocity, G∞ = ρ(Vt,∞)2 is the high

frequency shear modulus, M∞ = ρ(Vl,∞)2, the high frequency longitudinal modulus and K∞

is the infinite frequency compression modulus.

He, moreover, replaced χ∞

S by M−1
∞

, and χr
S by χ0

S − M−1
∞

, considering that this is more

appropriate in a viscoelastic material capable of supporting high-frequency shear stress. The

scattered amplitude due to density fluctuations then becomes:
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I(q = 0)

Nv × (
∑

Z)2
= kbT

[

(χ0
T (T ) − χ0

S(T )) + (χ0
S(T ) − M−1

∞
(T )) + M−1

∞
(T )

]

, (9)

with Nv = Na × ρ0/m. This equation is valid for a viscoelastic medium in equilibrium at

temperature T .

In the glassy state, Laberge considered that the two first terms, describing non-

propagating fluctuations, are kinetically arrested at a temperature in the annealing range

because their relaxation time becomes considerably longer than the experimental time, as

temperature is lowered. He assumed that these frozen-in fluctuations are the equilibrium

fluctuations present in the glass at the fictive temperature Tf , thus giving:

I(q = 0)

Nv(
∑

Z)2
= kbTf [χ

0
T (Tf ) − χ0

S(Tf )] + kbTf [χ
0
S(Tf ) − M−1

∞
(Tf)] + kbTM−1

∞
(T ). (10)

term 1 term2 term 3

The third term is of vibrational origin and is identical to the phonon term in equation

(6). The first two terms are frozen-in. It can be noted that Tg or Tf are used indifferently

to characterize the temperature at which a glass is frozen-in. In the following, we use Tf for

samples with a known thermal history (annealed and equilibrated at Tf) and Tg by reference

to a given composition when the thermal history is not known. The temperature dependence

below the glass transition is related to term 3, proportional to temperature.

The fluctuations at the nanometer scale can also be probed by light scattering. Using

Brillouin light scattering, the first two terms occurs in the elastic part i. e. the Rayleigh part,

whereas the third one, related to the longitudinal velocity of sound arises from propagating

fluctuations and then contributes to the inelastic (Brillouin) intensity. Thus, the ratio of the

static to propagating intensities, also called the Landau Placzek ratio, RLP , gives access to

the ratio of the first two terms over the third. In a viscoelastic liquid,11 using equation (1):

RLP (T ) =
χ0

T (T ) − M−1
∞

(T )

M−1
∞

(T )
= χ0

T (T )M∞(T ) − 1. (11)

In a glass,12, equation (10) yield:

RLP (T ) = M
∞

(T )
[

χ0
T (Tf ) − M−1

∞
(Tf)

] Tf

T
. (12)
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authors T or Tf χ0
T (T or)(m s2 kg−1) χr

S(m s2 kg−1) χ∞

S (m s2 kg−1)

Laberge et al10 Tf = 1600 K 7.3 ± 0.6 × 10−11

Bucaro et al11 T = 1400 − 1700 K 8.5 ± 0.3 × 10−11 6.3 × 10−11 2.2 × 10−11

Krol et al12 Tf = 1273 K 7.72 × 10−11 5.68 × 10−11 2.04 × 10−11

Watanabe et al13 Tf = 1230 − 1670 K 10.5 × 10−11 6.4 × 10−11 4.1 × 10−11

Polian et al14 T = 1370 K 2.23 × 10−11

this work and2 Tf = 1373 K 6.16 ± 0.24 × 10−11 3.88 ± 0.25 × 10−11 2.28 ± 0.07 × 10−11

this work and2 Tf = 1773 K 5.69 ± 0.23 × 10−11 3.46 ± 0.22 × 10−11 2.22 ± 0.07 × 10−11

TABLE I: Comparison of isothermal compressibility, adiabatic relaxational compressibility and

adiabatic infinite frequency compressibility taken from the literature.

III. PREVIOUS MEASUREMENTS

There are relatively few results about the compressibility in silica and especially few

results concerning its temperature and fictive temperature dependence. Most of them use

light scattering. The different compressibility values quoted in the literature are reported in

table I.

Bucaro et Dardy used Brillouin light scattering and measurements of the Landau Placzek

ratio to determine the isothermal compressibility χ0
T at high temperature, between 1400 and

1700K, using equation (11).11 This equation is only valid in the (viscous) liquid. They found

χ0
T = 8.5±0.3×10−11 m s2 kg−1with no temperature dependence in the range where χ0

T was

determined. They also deduced the compressibility at infinite frequency χ∞

S directly from

the longitudinal and transverse Brillouin shifts; they obtained about 2.2 × 10−11 m s2 kg−1

in the same temperature range.

Krol et al12 also measured the Landau Placzek ratio as well as Brillouin shifts (shear and

longitudinal modulus) as a function of temperature in a silica glass with a fictive temperature

equal to 1273 K. They used equation (12), taking into account the variation of the high

frequency modulus with temperature. From the slope of RLP (T )/M∞(T ), plotted below

the glass transition as a function of 1/T , they deduced χ0
T (Tf). Calculating the infinite

frequency adiabatic compressibility from both longitudinal and transverse Brillouin shifts,

χ∞

S = (M∞ − 4
3
G∞)−1, they deduced the relaxational contribution at Tf , χr

S(Tf) = χ0
S −

7



χ∞

S ≃ χ0
T − χ∞

S because in silica χ0
S − χ0

T is negligible. Indeed, it is related to thermal

expansion,10 which is very low in silica glass: χ0
T (Tf ) − χ0

S(Tf) =
α(Tf )2×Tf

ρ0×Cp(Tf )
, Tf = 1273 K,

α(Tf) = 0.5 × 10−6 K−1 (Ref. 15), ρ0 = 2202 kg m−3, and Cp(Tf ) = 1231 m2 s−2 K−1.

These values yield to χ0
T (Tf) − χ0

S(Tf) = 1.08 × 10−16 m s2 kg−1 Then, Krol et al obtained

χ0
T (Tf ) = 7.72×10−11 m s2 kg−1, and χ∞

S = 2.04×10−11 m s2 kg−1, from which they deduce

χr
S ≃ 5.68 × 10−11 m s2 kg−1.

Saito et al16,17 deduced the isothermal compressibility from the light scattering intensity,

Ilight, as a function of temperature. They used equation (1) in the liquid and the following

expression in the glass:

Ilight ≃ I(q = 0) ∝ χr
T (Tf )kTf + χ∞

S (T )kT, (13)

where χr
T = χ0

T − χ∞

T . This equation differs from equation (10) by the use of χ∞

S instead of

M−1
∞

as the temperature-dependent part, the shear term being small enough to be neglected

according to the authors. Another difference with equation (10) is the use of χ0
T −χ∞

T instead

of χ0
T − χ∞

S . They found a sudden increase of the isothermal compressibility at the glass

transition and at the melting temperature, with no measurable temperature dependence

within the glassy and supercooled liquid state.16 They found χ0
T around 1.8×10−11 m s2 kg−1

in the glass, and around 8 × 10−11 m s2 kg−1in the supercooled liquid, which yields to χr
T

around 6 × 10−11 m s2 kg−1.17

Apart from Saito’s measurements, most compressibility measurements as a function of

temperature across the glass transition concern the infinite frequency compressibility. χ∞

S has

been measured using Brillouin light scattering by Polian et al14 as a function of temperature

using Brillouin scattering measurements of the longitudinal and transverse modes. They

observed that χ∞

S decreases continuously as a function of temperature from about 2.7 ×

10−11 m s2 kg−1 at 400 K to 2.05×10−11 m s2 kg−1 at 2300 K. Those values are in agreement

with high frequency previous data from several sources18,19,20 compiled by Vukcevitch.21 The

data of Polian are also consistent with our determination of χ∞

S as a function of temperature.2

Concerning the effect of fictive temperature, Champagnon et al22 measured the Landau

Placzek ratio at room temperature in several silica samples of same origin but prepared with

different fictive temperatures from Tf = 1373 K to Tf = 1773 K, using heat-treatment in

the glass transition region (transformation range). They observed an increase of the RLP

at room temperature as a function of fictive temperature. The increase is approximately
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linear above Tf = 1473 K. From relation (12), one can deduce that χ0
T (Tf) and M−1

∞
(Tf)

vary slowly with Tf between 1473 and 1773 K.

There is one paper where compressibility is determined using SAXS intensity measure-

ments at room temperature in four silica samples with different fictive temperatures.13 The

authors obtained a linear variation of the SAXS intensity as a function of fictive temperature.

Following equation (13), they use a linear regression and obtained χ∞

S assumed to be indepen-

dent of temperature, from the slope, and χr
T at the fictive temperature, from the intercept.

They obtained χ∞

S = 4.1×10−11 m s2 kg−1 and χr
T (Tf ) = 6.4×10−11 m s2 kg−1 for χr

T . They

add both terms to determine the adiabatic compressibility χ0
T ≃ χr

T + χ∞

S = 10.5 × 10−11m

kg−1 s2.

IV. MEASUREMENTS

We analyzed high purity silica samples (with very low OH content), all from the same

batch. They are fusion glasses of type I.15 The different samples have different well-defined

thermal histories. The temperature, time and conditions of annealing are reported on table

II, along with the quenching conditions. Annealing times are estimated from the expected

relaxation times at the temperature of the heat-treatment, and the quenching rate (specially

for the high temperature treatments) are assumed to be fast enough to preserve the high tem-

perature structure. We plotted several spectroscopic features based on infrared or Raman

measurements (position or intensities of peaks) as a function of annealing temperature.23,24

Those spectroscopic features have been previously reported to be attributed to structural

characteristics sensitive to the fictive temperature, and to vary linearly with the inverse

fictive temperature.25,26 A linear relation was found for the six annealed samples, using the

temperature of treatment as fictive temperature. Thus, we assumed that all the samples

are treated long enough and quenched fast enough to be stabilized at their annealing tem-

perature. In other words, the fictive temperature is assumed to be equal to the annealing

temperature. Moreover, the sound velocity, measured using Brillouin scattering vary also

linearly, as plotted versus the fictive temperature, in agreement with the hypothesis that

samples are stabilized.

The small-angle x-ray measurements were performed on the D2AM experimental set-up

of the European Synchrotron Radiation Facility (ESRF) at Grenoble, France. The mea-
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Annealing Quench

temperature time conditions conditions

1373 K 60 h in air in air on a metallic plate

1473 K 1h in air in air on a metallic plate

1573 K 1h45 in dry air quenched in water

1773 K 1h45 in dry air quenched in water

TABLE II: Experimental conditions of annealing and quenching of the silica samples.

surements were performed on small plates of about 1 mm thickness. The data on silica

samples were measured with an incident energy of 18 keV, yielding to an available q-range

of 0.02 − 1 Å
−1

, where q = 4πλ−1 sin θ is the scattering vector, and θ is half of the scat-

tering angle. The accumulation times were of 200 s, and the data were collected using a

CCD camera. In situ temperature measurements were performed using a high temperature

molybdenum furnace already referred to in Ref. 27. The use of this furnace produces a

reduction of the available q-range, which is about 0.02 − 0.7 Å
−1

. The temperatures in the

furnace were calibrated by observing the melting of a gold foil, which deviates from less

than 2K from the standard value. Radial integration and corrections from cosmic rays have

been performed in the usual way. The x-ray was monitored before the furnace, m0, and

after the furnace, m1, by scattering part of the beam with Kapton foils onto scintillation

counters. Before measuring a new sample, the SAXS signal of the empty furnace, IB(q),

was systematically measured. This background originated mainly from the Kapton windows

and air scattering.

Based on the measured signal with the sample in place, IS+B(q), the signal originating

from the sample was calculated according to

I(q) ∝ (t ln 1/t)−1[IS+B(q)/mS+B
1 − IB(q)/mB

1 ]mS+B
1 /mS+B

0 , (14)

where the transmission factor t = mS+B
1 mB

0 /(mS+B
0 mB

1 ) allows for changes in the thickness

and orientation of the sample. Doing this, the signal is corrected from the variations of the

incident flux, as well as normalized to the absorption of the sample. The absolute intensity

of the samples is determined by normalization to a reference sample of pure water of 1

cm thick. The scattering power of the water sample is taken equal to 6.37 electron unit

per molecule unit H2O (this value calculated at 300K from equation (1) is in very good
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FIG. 1: Logarithm of the scattered intensity as a function of the square of the scattering vector,

q, measured at room temperature for several silica samples with different fictive temperatures,

showing a linear regime extending from q2 ≈ 0.04 to 0.4 Å−2. This linear regime is used to

extrapolate the intensity towards zero scattering vector, using I(q) = I(q = 0) exp(bq2).

agreement with the measured value of 6.4±0.2 electron unit per molecule H2O).28 The error

in the final absolute intensity is estimated to be about ±2%.

An example of scattering curves I(q) versus q, measured at room temperature, for four

different samples, is shown on Fig. 1. The scattering curve, plotted as log(I(q)) versus q2

exhibits a linear regime extending from q2 ≈ 0.04 to 0.4 Å−2, which means that the intensity

is well described by I(q) = I(q = 0) exp(bq2) (Ref. 8) and I(q = 0) is obtained as one of the

regression parameters. The obtained values of I(q = 0) for a set of 5 samples with different

fictive temperatures are shown in Fig. 2 as a function of temperature.

For one sample, three regimes can generally be identified.29 The first one is an almost

linear regime in the glassy state (T << Tg), with a slight increase with increasing tempera-

ture. The values of intensity in this regime depends on the fictive temperature of the sample.

The third regime corresponds also to a quasi-linear increase but with a larger slope in the

supercooled liquid state (T > Tg). In this regime, I(q = 0) values are independent of fictive

11
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FIG. 2: Scattered intensity extrapolated to q=0 as a function of temperature, for five samples

having different fictive temperatures. The temperature dependent term due to phonons, Iph,

calculated from Brillouin measurements of Ref 2, is plotted (dashed line) to show the slope of this

contribution versus temperature. It is shifted of 18 e.u./molecule for clarity.

temperature within experimental errors. In the intermediate temperature range around the

glass transition I(q = 0) follows a “structural relaxation” regime. The shape of curves in

this second regime depends on Tf as well as on the acquisition time.

V. COMPRESSIBILITY

In this section we present compressibility results obtained with a full point by point

analysis. From our set of SAXS measurements as a function of temperature and fictive

temperature we analyze the extrapolated SAXS intensity values, I(q = 0), in two regions.

In the first one corresponding to the glassy state regime (regime 1), we used relation (10).

In the second one corresponding to the supercooled liquid (regime 3 as defined in previous

paragraph), relation (1) is used. Both regions corresponds to almost linear regimes for the

intensity I(q = 0) versus temperature. The compressibility cannot be determined in the

structural relaxation regime (regime 2), because the fictive temperature in that region is not

known. Indeed, in this regime, it is assumed that the fictive temperature can evolve during

the time of the measurement.
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FIG. 3: Isothermal compressibility at equilibrium, determined at Tf (filled symbols) for five silica

samples having different thermal histories. χ0
T has been determined using equation (1) in the

liquid state and using equation (10), taking into account M∞(Tf ) deduced from Brillouin scattering

measurements, in the glass state. The solid line in the supercooled liquid range, 1373 − 1773 K, is

a linear fit of the five sets of data above 1473 K. The dot-dashed line is a quadratic fit, shown as

a guide for eyes, of χ0
T (Tf ) in the glass state. The long dashed line is the average of the values in

the supercooled liquid, obtained from the point by point analysis. For clarity, the error bars have

been plotted only for one sample in the supercooled liquid.

In the liquid state, above Tg, the isothermal intensity is simply calculated for each data

point by dividing the extrapolated SAXS intensity by the temperature of the measurement:

χ0
T =

I(q = 0)

T × Nvkb(
∑

Z)2
, (15)

using
∑

Z = 30, ρ0 = 2200 kg m−3, m = 60 × 10−3 kg mol−1. The error on the temper-

ature in this range is less than ±0.1%, and consequently the error on the compressibility is

assumed to be equal to the error on the intensity I(q = 0), that is about ±2%. The values

of χ0
T obtained from the I(q = 0) values for the different silica samples above Tg are plotted

as a function of temperature in fig. 3. χ0
T appears to decrease slightly with temperature

though the variations are within the errors bars. The mean value of χ0
T calculated in this

temperature range for the different silica samples is 5.82 ± 0.12 × 10−11 m s2 kg−1.

In order to determine the different contributions to density fluctuations in the glassy
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state, we use equation (10), where terms 1 and 2 have been combined:

I(q = 0) = kbNv(
∑

Z)2 [χ0
T (Tf) − M−1

∞
(Tf)] Tf +kbNv(

∑

Z)2
[

M−1
∞

(T )
]

T

= Ires +Iph. (16)

We first focus on the temperature dependent term of equation (10), Iph. This contri-

bution (term 3), related to the longitudinal phonons, can be calculated independently of

our SAXS measurements from Brillouin light scattering experiments. In order to determine

the longitudinal velocity at the precise temperatures at which the SAXS measurements

have been performed, we interpolate our previous high resolution Brillouin measurements,2

performed from 300 to 1773 K using the following polynomial fit:

Vl,∞(m/s) = 5788 + 0.6578 × T − 0.0001844× T 2 ± 0.5. (17)

The sound velocity has been calculated from the Brillouin shift using a temperature de-

pendence of refractive index. We used a linear variation of the index n with temperature

which does not differ from more than 0.2% from the temperature variations ∆n measured

by Brückner.15 The temperature dependent index estimated by Polian et al14 is rather sim-

ilar to that of Brückner up to 973K but the index calculated by Polian is smaller above.

The maximum difference is about ±0.25% (and this would lead to less than about ±0.5%

difference on the determination of the intensity Iph). In order to calculate M−1
∞

, we used a

temperature dependent density determined using either measurements of specific volume by

Brückner or experimental values of the linear thermal dilatation compiled by him.15 Both

methods yield to density which vary from less than 0.2 % in the considered temperature

range and the differences on M−1
∞

and Iph are accordingly negligible. The error on Iph is

about 0.5 % (0.1% on the temperature, 0.4% on M−1
∞

). Moreover, the variation of Vl,∞ with

fictive temperature is less than 0.6 % (1.2% on M−1
∞

).

Iph increases with temperature, from 1 electron unit/molecule at room temperature to

4 electron units/molecule at 1300 K, as observed in Fig. 4. The contribution Iph is rather

small, 5-20% of I(q = 0). This result correlate rather well with that of Laberge which

mentioned that this term contribute to about 8% of the total scattered intensity.10 However,

the increase of this term should be responsible for the increase of I(q = 0) with increasing

temperature in the glassy state, as stated by Laberge. The variation of Iph with fictive

14



300 500 700 900 1100
Temperature (K)

0

5

10

15

20

25
I(

q=
0)

(e
le

ct
ro

n 
un

it/
m

ol
ec

ul
e 

S
iO

2) Tf=1373K a

300 500 700 900 1100
temperature (K)

0

5

10

15

20

25

I(
q=

0)
(e

le
ct

ro
n 

un
it/

m
ol

ec
ul

e 
S

iO
2)

Tf=1773K b

FIG. 4: (a) Scattered intensity extrapolated to q = 0 (•), I(q = 0), in the supercooled liquid state

for the sample of lowest fictive temperature, Tf = 1373K. The two contributions of equation (10),

Iph (�) due to phonons (term 3) and Ires (◦)(related to terms 1 and 2) are also plotted. (b) Same

quantities for the sample with the higher fictive temperature, Tf = 1773 K.

temperature has been neglected because it amounts to less than 0.25% of the total intensity

because of the small contribution of the phonons term to I(q = 0).

Subtracting Iph from the total extrapolated SAXS intensity in the glassy state gives

access to the residual contribution, proportional to [χ0
T (Tf ) − (M∞(Tf))

−1] Tf . For a given

fictive temperature, Ires very slightly decreases with temperature, by about 2 to 5% from

300 to 1300K, depending on the sample. This decrease is systematic for the 5 different fictive

temperature silica samples that we analyzed, but at the limit of accuracy of the experiment.

However, we note that other methods of analysis (for example using χ∞

S for the temperature

dependent term) would yield to a stronger decrease. I(q = 0), Iph and Ires are presented

on Fig. 4 for Tf = 1373 K (Fig. 4(a)) and for Tf = 1773 K (Fig. 4(b)).

The residual contribution, Ires, yields χ0
T (Tf ) − M−1

∞
(Tf). The accuracy on the residual

contribution is ±2.5%, but the error in fictive temperature (±10 K) has to be taken into

account to estimate the error on χ0
T (Tf) − M−1

∞
(Tf) which is then ±3.5%. Then χ0

T (Tf)

can be calculated in the glassy state using M−1
∞

(Tf ), deduced from Brillouin measurements.

χ0
T (Tf ), also presented in Fig. 3, varies between 6.16 × 10−11 m s2 kg−1 for Tf = 1373 K to

5.69 × 10−11 m s2 kg−1 for Tf = 1773 K, decreasing by 8% in total with increasing fictive

temperature. The error bar is ± 4% (±0.24 × 10−11 m s2 kg−1). The values of χ0
T (Tf)
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obtained in the glass state are in rather good agreement with the values obtained for the

supercooled liquid. All the values are compatible with a smooth decrease of isothermal

compressibility with temperature.

In order to understand the different contributions to the isothermal compressibility in

the glassy state, as well as for comparison with data of the literature, it is interesting to

calculate the infinite frequency and relaxational compressibilities. The infinite frequency

compressibility can be determined from our previous Brillouin scattering measurements2 us-

ing equation (8). For this, we need a precise determination of the high frequency transversal

velocity. We used the same temperature dependence for the refractive index as for the lon-

gitudinal velocity and found that our data in the 300− 1773 K range can be well described

by:

Vt,∞(m/s) = 3689 + 0.2946 × T − 0.0001014× T 2 ± 30 (18)
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FIG. 5: Isothermal compressibility in the glass state χ0
T (Tf ) as a function of fictive temperature,

together with the infinite frequency compressibility χ∞

T (Tf ) and the relaxational compressibility

χr
T (Tf ).

The infinite frequency compressibility, is calculated from the combination of the experi-

mental determinations of longitudinal and transverse velocity using equation (8). The error

bar on the infinite frequency compressibility is estimated to be about 3% (0.2% on ρ, 1%

on the square of longitudinal sound velocity, 1.8% on the square of transverse velocity) i. e.

0.07 × 10−11 m s2 kg−1. The error is larger on transverse velocity than on longitudinal one
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because it has to be measured using right angle geometry instead of backscattering used for

longitudinal velocity. We have neglected the very low variations of the transverse and the

longitudinal velocities with fictive temperature. The infinite frequency compressibility can

also be fitted by a quadratic expression in T , valid in the 300 − 1773 K range:

χ∞

S (m s2 kg−1) = 2.917×10−11−7.309×10−15×T +1.925×10−18×T 2±0.07×10−11. (19)

At the high frequency of Brillouin scattering measurements, the samples are in equi-

librium and we calculate χ∞

S (Tf) using the values of χ∞

S (T ) given by equation (19) at

T = Tf . Those values are plotted in Fig. 5 as a function of Tf . χ∞

S slightly decreases

with fictive in this range we analyzed here: from 2.28 ± 0.07 × 10−11 m s2 kg−1 at 1373 K

to 2.23 ± 0.07 × 10−11 m s2 kg−1 at 1773 K, corresponding to a 2% decrease. χr
S(Tf) is

then obtained by subtracting χ∞

S (Tf) to χ0
T (Tf) ≃ χ0

S(Tf) for the five samples with different

fictive temperatures. The error on χr
S(Tf ) is estimated to be within 6.5%. The results are

shown in Fig. 5. The relaxational contribution varies from 3.88± 0.25× 10−11 m s2 kg−1 for

Tf = 1373K to 3.46± 0.23× 10−11 m s2 kg−1 for Tf = 1500◦C. It is then slightly decreasing

with fictive temperature, by about 10% in the 1373–1773 range. In Fig. 5, one can see

that the infinite frequency compressibility contributes to about 40% of the static isothermal

compressibility whereas the dominant contribution is the relaxational one, which amount

to around 60%. Our value of the relaxational compressibility is somewhat smaller than

the other determinations of table I. However, the higher of those determinations from the

literature,13 identified as χr
T (Tf ) by the authors, is rather equal to χ0

T (Tf ) − M−1
∞

(Tf ) if we

follow equation (10). Thus we compared their value directly to our value of χ0
T (Tf )−M−1

∞
(Tf)

which is equal to 5.03× 10−11 m s2 kg−1 for the sample of Tf = 1373 K, decreasing down to

to 4.57 × 10−11 m s2 kg−1 for the others samples. The discrepancy is then smaller.

VI. DISCUSSION

The first result of this paper is a new determination of the isothermal compressibility,

obtained using small angle X-ray scattering. Most of the measurements of the isothermal

compressibility quoted in the literature (see table I) have been established using light scat-

tering. It can be seen that the results for isothermal compressibility are rather dispersed.

Our results are in agreement with previous one within error bars, though slightly lower than
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most of them. Part of the differences can occur from the experimental uncertainty on inten-

sity measurements using light scattering technique. Indeed, any defect in the sample, such

as unperfect surface polishing, bubbles and so on, can contribute in an extrinsic way to the

elastic scattering. Measurements of intensity using light scattering are even more difficult at

high temperature (due to thermal radiation which increases the noise). Another difficulty

with light scattering measurements is that it requires large samples, in order to minimize the

parasitic contribution from the surface. And on large samples, the homogeneity of the fictive

temperature is difficult to achieve. Bucaro et Dardy11 estimated an error of about ±3% on

their measurements of RLP ratio. Krol et al12 mentioned that several determinations of the

Landau Placzek ratio differ from less than 2%. From our own measurements, we estimate

that the Landau-Placzek ratio is usually measured with an accuracy of at least ±1 i.e. ±4%

for silica at room temperature. To illustrate this we calculated, using equation (12), the

isothermal compressibility starting from Landau-Placzek ratio measured with a matching

index liquid.30 We obtain χ0
T = 9.8± 3× 10−11m s2 kg−1. The error bar contains dispersion

of the measurements of different fictive temperatures and differences between two sets of

measurements on the same series of samples. This value illustrates that light scattering

data are in agreement with our SAXS measurements for determination of the isothermal

compressibility, but induce much larger errors.

The second result is the determination of the relaxational compressibility using a com-

bination of the present SAXS data and previous Brillouin scattering measurements. This

value is compared to data of the literature in column 2 of table I. Those data are calculated

from isothermal compressibility in column 1 and infinite frequency compressibility shown in

column 3. All the values of χ∞

S are in relative agreement except that of Watanabe,13 the

only one not determined from Brillouin light scattering. Brillouin scattering is very accurate

for the determination of the infinite frequency compressibility because it relies on the po-

sition of Brillouin lines. The differences in the values of infinite frequency compressibilities

obtained from Brillouin scattering (less than 0.5×10−11 m s2 kg−1) can be assigned to either

differences in samples (for example different OH contents31) or to differences in the density

or refractive index used for the analysis (the index values used in the different papers differ

from up to 0.2%). Except from our value, slightly lower, as the isothermal compressibility,

all the values of relaxational compressibilities are rather close, but that of Watanabe relies

on a very different value of infinite frequency compressibility. This point will be discussed
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below.

The third result is a new information brought out by our measurements: the combi-

nation of measurements below and above the glass transition to determine the isothermal

compressibility as a function of fictive temperature and temperature, respectively. Two dif-

ferent methods of analysis were used : we performed in both cases a full point by point

analysis using equation (1) in the supercooled liquid state on the one hand and using equa-

tion (10) in the glassy state on another hand. Previous studies consider either equation (1)

above the glass transition, or equation (10), often applied at room temperature, assuming

that the infinite frequency inverse modulus and the isothermal compressibility11,13,17 do not

depend on temperature. A linear behavior is consequently obtained for the intensity as a

function of T or Tf and the different contributions to compressibility are then obtained by

a global analysis using linear regressions.13,17 The error bars are smaller than using a point

by point analysis. However, by using this point by point analysis we avoid any assump-

tion on the temperature and fictive temperature dependence of the different compressibility

contributions.

For the fictive temperature dependence in the glass state, to our knowledge, the influ-

ence of thermal history on the isothermal and relaxational compressibilities have not been

reported in the literature. Indeed, Saito et al have shown an influence of thermal history on

the density fluctuations but their analysis rely on the assumption that the compressibility do

not depend on the fictive temperature. Nevertheless, we found a rather noticeable influence

of heat treatment on the isothermal compressibility with a variation of 8 % for Tf varying

between 1373 K and 1773 K. The changes are specially noticeable for the low Tf (when

Tf is lowered from 1473 to 1373 K). The error bar on χ0
T being around 4%, we considered

this result as significant though at the limit of accuracy. This decrease with Tf is a thor-

oughly new result. Such dependence was suggested by Le Parc et al24 when they discussed

the fictive temperature dependence of the Rayleigh intensity in silica at room temperature.

They suggest that such a dependence could explain a non linear dependence of the Rayleigh

intensity, IRayleigh, with Tf , because IRayleigh ∝ χ0
T (Tf )× Tf . The variation of isothermal

compressibility which occurs mostly at low fictive temperature is in qualitative agreement

with the variations of RLP with Tf .
32

About the temperature dependence, the fact that χ0
T (Tf) decreases with increasing fic-

tive temperature, is a very strong support for a decrease of the isothermal compressibility
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at least in the 1373-1773 K range. We found almost the same temperature dependence

of χ0
T (T ) in the supercooled liquid state, than that of χ0

T (Tf ) in the same temperature

range (above 1530K), suggesting that χ0
T (T ) will follow the variation of χ0

T (Tf ) also below

1530 K. Several values of the literature for compressibilities correspond to determinations

in the glass, χ0
T (Tf), obtained using equation (10), around 1400K for most samples.10,12,13

Most of them are above the value of 5.82± 0.12× 10−11 m s2 kg−1 found in the supercooled

liquid. This also suggests a decrease with increasing temperature of the isothermal com-

pressibility. Thus we want to emphasize that the analysis performed in the glassy state

and that performed in the liquid state are in very good agreement and they both suggest

a decrease of the compressibility with temperature. The small differences observed for ex-

ample between χ0
T (Tf ) for Tf = 1373 K calculated using equation (10) and the isothermal

compressibility of the same sample in the liquid are compatible with a smooth decreases of

χ0
T with temperature in the range of the glass transition. Such smooth decreases of χ0

T with

temperature would be in contrast with the data of Saito et al16 which found an isothermal

compressibility constant within glassy and supercooled state but with a discontinuity and a

strong increase at the glass transition. We did not observe any strong discontinuity of the

isothermal compressibility at the glass transition.

A variation of isothermal compressibility with both temperature and fictive temperature

induces that the global analysis by linear fitting is a rather crude approximation. In order

to evaluate the impact of the approximation made using this linear fitting, we will now use

such an analysis on our SAXS data. As we have measured both temperature and fictive

temperature dependence of the SAXS intensity, we can plot the intensity I(q = 0) either as

a function of T or Tf and then use linear regressions or as a function of T or Tf .

Using linear fits of I(q = 0) a function of T , we can first deduce a value of the isothermal

compressibility χ0
T , supposed to be independent of temperature using equation (1) for tem-

peratures above the glass transition. We obtain χ0
T = 5.52 ± 0.22 × 10−11 m s2 kg−1. This

value is very slightly lower, but close to the values obtained by the point by point analysis.

Below the glass transition, we can deduce M−1
∞

from the slope and χ0
T − M−1

∞
from the in-

tercept of the fitting straight line. We found that a linear law can fit the data and the slope

yields a high frequency inverse longitudinal modulus M−1
∞

= 9.16 ± 1.5 × 10−12 m kg−1 s2.

This value is the average of the slopes obtained for each of the five samples (with dif-

ferent Tf ), the error includes differences between the determinations for different samples
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as well as the error on the fitting procedure. This value is a bit lower than that deter-

mined from our Brillouin scattering, from 1.27 × 10−11 m kg−1 s2 at room temperature to

1.12 × 10−11 m kg−1 s2 at 1700 K, although it is in agreement with it, taking into account

the error bar. The variation with temperature of M−1
∞

determined using Brillouin measure-

ments, by 13%, is below the error bar on the intercepts determined from SAXS. One can

also verify that the value obtained using the slope of SAXS data as a function of temper-

ature is much closer to M−1
∞

(Ref. 10,11,12,33) than to χ∞

S . These results consequently

confirm the validity of equation (10), where the temperature dependent term below Tg is

governed by M−1
∞

rather than χ∞

S . The quantity χ0
T − M−1

∞
, deduced from the intercept

Tf [χ0
T (Tf ) − M−1

∞
(Tf)] of the same straight line used to determine M−1

∞
, slightly decreases

with increasing Tf , from 5.15 × 10−11 m kg−1 s2 for Tf = 1373K to 4.7 × 10−11 m kg−1 s2

for Tf = 1773K. Those values are lower than the intercept obtained by Watanabe (table I)

using the same measuring technique and the same analysis. Indeed, as stated above, the

intercept of Watanabe, corresponds, using our analysis with equation (10), to χ0
T (Tf )−M−1

∞

and not to χr
T (Tf ), as he assumed. One possible reason for his higher value could rely

on the measurements themselves: the absolute SAXS intensity measured by Watanabe et

al. are also slightly higher than the values usually reported in silica.4,28,34,35,36 The val-

ues in the literature (except that of Ref. 13) are all around 18 and 25 electron units per

molecule (4 and 5.5 ×1023 electron unit per cm3), whereas the data of Watanabe et al are

between 5.5 and 7.12 ×1023 electron unit per cm3. This difference could arise either from

differences in the sample (different purities or different thermal histories) or from different

normalization procedure for SAXS data (Watanabe normalized his SAXS data using the

compressibility of quartz, Renninger used a Ludox solution, we used pure water). From

the values of χ0
T (Tf) − M−1

∞
, one can calculated the isothermal compressibility, by adding

M−1
∞

deduced from our Brillouin scattering data, or the relaxational compressibility by

subtracting 4G∞
M∞(3M∞−4G∞)

. One obtains then χ0
T and χr

S values which decrease with temper-

ature from χ0
T = 6.3 × 10−11 m kg−1 s2 and χr

S = 4 × 10−11 m kg−1 s2 for Tf = 1373 K to

χ0
T = 5.8 × 10−11 m kg−1 s2 and χr

S = 3.6 × 10−11 m kg−1 s2 for Tf = 1773 K. The results

for the isothermal and relaxational compressibilities using this method are nearly identical

to that of the point by point analysis. In summary, the linear analysis as a function of

temperature yield results in agreement with our point by point analysis, though it is less

accurate.

21



Using our SAXS data measured for the different fictive temperatures, we can also analyze

the data using equation (10) as a function of fictive temperature for a given temperature of

measurement. Now term 3 is constant and terms 1 and 2 vary with Tf . If we performed this

analysis as a function of fictive temperature for different temperatures of measurement, we

found a reasonable fit by a straight line, but the obtained M−1
∞

values are much too high (3

to 7 times too high) and varies much faster than what is obtained using Brillouin scattering

measurements. Indeed, this analysis assumes that χ0
T (Tf) − M−1

∞
does not vary with Tf . It

is equivalent to a linear extrapolation down to Tf = 0 of data measured for Tf around 1300

to 1800K. Consequently it induces large errors, specially because there is not reason why the

intensity as a function of Tf should be linear. From our point by point analysis, we observe

that χ0
T vary with temperature and Tf , and so does χ0

T (Tf) − M−1
∞

. There is consequently

no reason to use a linear extrapolation of I(q = 0) with Tf .

Having shown the uncertainty of compressibility determination using intensity measure-

ments by light scattering and the limitations of a global analysis using linear fits of I(q = 0)

determined by SAXS versus Tf , we come back to a comparison of our work with other

small-angle measurements. Table III shows several determinations from x-ray small-angle

measurements and one from neutron small-angle x-ray scattering. In each line of table

III the first value of χ0
T (Tf) is determined from the intensity measured at room tem-

perature using equation (10) with M−1
∞

(300K) = 1.27 × 10−11 m s2 kg−1 in term 3 and

M−1
∞

(Tf ) ≃ 1.12 × 10−11 m s2 kg−1 in term 1 and 2. The fictive temperature is either given

by the authors either determined using viscosity data from Hetherington37 and a value of

1012 Pa. s for the viscosity at the glass transition (Tg = 1473K for infrared Vitreosil or

1400K for O. G. Vitreosil). The values in next column is the value given by the authors

themselves, when appropriate. For Ref. 13 and 38 this values used χ∞

S in equation (10)

instead of M−1
∞

, which yields to an overestimate of the isothermal compressibility. Several

determinations of SAXS intensity at room temperature using equation (10) are very close

to our determination.28,35 The compressibility value deduced from Ref. 38 is a bit higher

but has a rather large error bar. A few determinations are slightly higher than ours.4,13

Differences in the studied silica samples (different impurity contents, different thermal his-

tory) and uncertainty on the glass transition temperature could be partly responsible for

the differences. Differences up to 0.7 to 0.8 × 10−11 m s2 kg−1 i.e. 10% can be expected

when the fictive temperature vary by 400 K. Differences about 0.15 × 10−11 m s2 kg−1 can
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authors χT (Tf )(m s2 kg−1) χT (m s2 kg−1)

from Eq. (10) from authors

Watanabe(Tf = 1230K)13 8.95 × 10−11 10.5 × 10−11

Watanabe(Tf = 1670K)13 8.15 × 10−11 10.5 × 10−11

this work and Ref. 2 (Tf = 1373K) 6.16 ± 0.24 × 10−11

this work and Ref. 2 (Tf = 1773K) 5.69 ± 0.23 × 10−11

Weinberg4 7.85 × 10−11 7.8 × 10−11

Levelut (Tg = 1400 − 1473 K)28 6.65 − 6.75 × 10−11

Renninger (Tg = 1473K)35 6.15 × 10−11

Brüning GE-124 (Tf = 1535 K)36 5.85 × 10−11

Brüning Corning 7980 (Tf = 1303 K)36 6 × 10−11

Hulme (neutrons)38 7.95 ± 0.7 × 10−11 8.5 ± 0.7 × 10−11

TABLE III: Isothermal compressibility at Tf deduced from SAXS intensity measurements I(q = 0),

using equation (9), M−1
∞

(300K) = 1.27×10−11 m s2 kg−1 and M−1
∞

(Tf ) = 1.12×10−11 m s2 kg−1.

When the fictive temperature is not given in the paper, it is taken equal to the glass transition

temperature (given by authors or deduced from Ref. 37, see text).

be expected when the OH content vary of 900 pmm.36

VII. CONCLUSION

To summarize, we want to emphasize that the values of χT (Tf ) and χT (T ) determined

respectively from equation (10) and equation (1) present temperature dependences which

are in very good agreement (Fig. 3).

In this paper, we reported a complete determination of isothermal compressibility using

SAXS measurements in several silica samples having different thermal histories. Using two

different descriptions for the supercooled and the liquid state, we were able to determine the

equilibrium isothermal compressibility χ0
T as a function of temperature and as a function of

fictive temperature, respectively. We obtained very comparable values from the two analysis,

with the same temperature dependence. χ0
T is observed to decrease with fictive temperature

in a non-linear manner from 6.2 to 5.7×10−11 m s2 kg−1 in the range 1373 to 1773K. We also
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determined the fictive temperature dependence of the relaxational compressibility, which is

also decreasing with fictive temperature.

In order to compare our data with previous determinations of the literature, we performed

different analysis on our data in order to evidence that differences can arise from the method

of analysis.

We can also conclude from our full point by point analysis of data measured both as

a function of temperature and fictive temperature, that Laberge description of the SAXS

intensity in the glassy state is a very good approximation which leads to results coherent

with analysis in the supercooled liquid state.

To conclude, our values of isothermal compressibility around 5.7 to 6.2×10−11 m s2 kg−1,

are compatible with most of the SAXS (or SANS) determinations, and not too far from the

other previous determinations by light scattering , which are around 7 × 10−11 m s2 kg−1,

with a rather large error.
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