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Experimental observations of density fluctuations in an elongated Bose gas:
ideal gas and quasi-condensate regimes

J. Esteve,b

[ J.-B. Trebbia,! T. Schumm,' A. Aspect,! C. I. Westbrook,' and I. Bouchoule
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We report in situ measurements of density fluctuations in a quasi one dimensional 8"Rb Bose
gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations

compared to the shot noise level expected for uncorrelated atoms.

At low atomic density, the

measured excess is in good agreement with the expected “bunching” for an ideal Bose gas. At high
density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute
this reduction to repulsive inter-atomic interactions. The data are compared with a calculation for
an interacting Bose gas in the quasi-condensate regime.

PACS numbers: 03.75.Hh, 05.30.Jp

In a classical gas, the mean square fluctuation of the
number of particles within a small volume is equal to
the number of particles (we shall call this fluctuation
“shot noise”). On the other hand, because of quantum ef-
fects, the fluctuations in a degenerate but non-condensed
Bose gas are larger than the shot noise contribution [ﬂ]
For photons, the well known Hanbury Brown-Twiss or
“photon bunching” effect is an illustration of this phe-
nomenon [f]. Analogous studies have been undertaken
to measure correlations between bosonic atoms released
from a trap after a time of flight @, H, E, E} How-
ever, bunching in the density distribution of trapped cold
atoms at thermal equilibrium has not been yet directly
observed.

Density fluctuations of a cold atomic sample can be
measured by absorption imaging as proposed in [E, E}
and recently shown in [f], [l. When using this method,
one necessarily integrates the density distribution over
one direction, and this integration can mask the bunch-
ing effect whose correlation length is of the order of the
de Broglie wavelength. A one dimensional (1D) gas, i.e.
a gas in an anisotropic confining potential with a temper-
ature lower than or of order of the zero point energy in
two directions, allows one to avoid this integration, and
is thus a very favorable experimental geometry.

Additionally, atoms in 1D do not Bose condense [[L]].
One can therefore achieve a high degree of quantum
degeneracy without condensation, which enhances the
bunching effect for an ideal gas. When one consid-
ers the effect of interactions between atoms, two addi-
tional regimes can appear: the Tonks-Girardeau regime
and the quasi-condensate regime [EI] Starting from
an ideal gas, as one increases density at fixed temper-
ature 7', the 1D interacting Bose gas passes smoothly
to the quasi-condensate regime. The linear density scale
for this crossover is given by np = (m(kpT)?/h%g)'/?
where ¢ is the effective 1D coupling constant and m
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the atomic mass [@, B] Density fluctuations are sup-
pressed by a factor (n/ng)%? compared to the ideal
gas (see Eq. (4) below), although phase fluctuations re-
main . . E E . We emphasize that this
crossover occurs in the dense, weakly interacting limit
which is the opposite of the Tonks-Girardeau regime.

To measure the density fluctuations of a trapped Bose
gas as a function of its density, we acquire a large num-
ber of images of different trapped samples under identi-
cal conditions. We have access to both the ideal Bose
gas limit, in which we observe the expected excess fluc-
tuations compared to shot-noise, as well as the quasi-
condensate regime in which repulsive interactions sup-
press the density fluctuations.

Our measurements are conducted in a highly
anisotropic magnetic trap created by an atom chip. We
use three current carrying wires forming an H pattern }
and an external uniform magnetic field to magnetically
trap the 8"Rb atoms in the |F = 2, mp = 2) state (see
Fig. EI) Adjusting the currents in the wires and the ex-
ternal magnetic field, we can tune the longitudinal fre-
quency between 7 and 20 Hz while keeping the trans-
verse frequency w, /(27) at a value close to 2.85 kHz.
Using evaporative cooling, we obtain a cold sample at
thermal equilibrium in the trap. Temperatures as low
as 1.4 hw, /kp are accessible with an atom number of
5% 103. The atomic cloud has a typical length of 100 um
along the z axis and a transverse radius of 300 nm.

As shown in Fig. m, in situ absorption images are taken
using a probe beam perpendicular to the z axis and re-
flecting on the chip surface at 45°. The light, resonant
with the closed transition |F = 2) — |F’ = 3) of the
D2 line is switched on for 150 ps with an intensity of
one tenth of the saturation intensity. Two images are
recorded with a CCD camera whose pixel size A x A
in the object plane is 6.0 x 6.0 um?. The first image is
taken while the trapping field is still on. The second im-
age is used for normalization and is taken in the absence
of atoms 200 ms later. During the first image, the cloud
expands radially to about 5 um because of the heating
due to photon scattering by the atoms. The size of the
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cloud’s image is even larger due to resolution of the op-
tical system (about 10 pum) and because the cloud and
its image in the mirror at the atom chip surface are not
resolved. Five pixels along the transverse direction x are
needed to include 95% of the signal.

We denote by NP"(z,z) the number of photons de-
tected in the pixel at position (z,z) for the image 4
(i = 1,2). We need to convert this measurement into
an atom number N(z) detected between z and z + A.
Normally, one simply computes an absorption per pixel
In(NP" /NP") and sums over :

N(z) = Z ln[NQPh(:C,z)/Nlph(.r,z)] X A2/Uea (1)

where o, is the absorption cross-section of a single atom.
When the sample is optically thick and the atomic den-
sity varies on a scale smaller than the optical resolution
or the pixel size, Eq. ([l) does not hold since the loga-
rithm cannot be linearized. In that case, Eq. (]II) under-
estimates the atom number and the error increases with
optical thickness. Furthermore, in our geometry, optical
rays cross the atomic cloud twice since the cloud image
and its reflexion in the atom chip surface are not resolved.

We partially correct for these effects by using in Eq. ()
an effective cross section o, determined as follows. We
compare the measured atom number using the in situ
procedure described above with the measured atom num-
ber after allowing the cloud to expand and to leave the
vicinity of the chip surface. In this case, Eq. () is
valid and the atomic cross-section op = 3A\?/(27) well
known. We then obtain for the effective cross-section
ce = 0.80p. Although this effective cross section de-
pends on the atomic density, we have checked that for
total atom number between 2 x 10% and 9 x 10? the mea-
sured value varies by only 10%. Taking into account the
uncertainty on the value of oy, we estimate the total er-
ror on the measured atom number N(z) to be less than
20%.

To measure the variance of the atom number in a pixel,
we acquire a large number of images (typically 300) taken
in the same experimental conditions. To remove techni-
cal noise from our measurement, the following procedure
is used to extract the variance. For each image, we form
the quantity 6N (z)%2 = (N(z) — N(z))? where the mean
value N(z) is normalized to contain the same total atom
number as the current image. We thus correct for shot
to shot total atom number fluctuations. The average is
performed only over p = 21 images which bracket the
current image so that long term drifts of the experiment
do not contribute to the variance. We have checked that
the results are independent of p, varying p between 5 and
21[RJ). A large contribution to §N(2)2, irrelevant to our
study, is the photon shot noise of the absorption mea-
surement. To precisely correct for this noise, we subtract
the quantity zm(l/th(z, 2)+1/N(x, 2))(A2%0,)? from
SN (z)? for each image. We typically detect 10* photons
per pixel corresponding to a contribution to § N2 of about
50. To convert the camera signal into a detected photon
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FIG. 1: Schematic of the experimental setup. Left: drawing
of the wires constituting the atom chip. We keep I1 + I =
3 A and adjust I1 — I between 0.3 A and 1 A to vary the
confinement along z. The uniform field By is approximately
40 G, we also add a small field (S 1 G) along 2. Right: optical
imaging system. We image the cloud and its reflection on the
atom chip onto a CCD camera. In the radial direction, the
unresolved cloud images cover approximately five pixels whose
size in the object plane is A = 6 pm.

number, we use a gain for each pixel that we determine
by measuring the photon shot noise of images without
atoms as explained in [P0J. The corrected dN(z)? ob-
tained for all images are then binned according to the
value of N(z), rather than of z itself. This gives the vari-
ance of the atom number (§N(z)?) as a function of the
mean atom number per pixel. Since more pixels have a
small atom number, the statistical uncertainty on the es-
timate of the variance decreases with the average atom
number (see Figs. (@) and (f)).

Data shown in Fig. E correspond to atom clouds of
sufficiently low density so that effect of inter-atomic in-
teractions is expected to be small. The three data sets
correspond to three different temperatures, the trapping
frequencies are 2.85 kHz and 7.5 Hz. We deduce the
temperature and the chemical potential of the sample by
fitting the mean longitudinal profile N (z) of the cloud to
the profile of an ideal Bose gas (see inset of Fig. fl). For
the "hot” sample where bunching gives negligible contri-
bution to §N? (see Eq. (E)), we observe atomic shot noise
fluctuations, i.e. the atom number variance increases lin-
early with the mean atom number. The fact that we re-
cover the linear behavior expected for shot noise increases
our confidence in the procedure described in the previous
two paragraphs. The slope « is only 0.17 and differs from
the expected value of 1. We attribute this reduction to
the fact that our pixel size is not much bigger than the
resolution of our optical imaging system, thus one atom
is spread out on more than one pixel. When the pixel size
is small enough compared to the optical resolution and
in the case of weak optical thickness, the expected slope
is simply approximated by x ~ A/(2+/m §) where § is the
rms width of the optical response which we suppose gaus-
sian. From the measured slope, we deduce 6 = 10 pym in
good agreement with the smallest cloud image we have
observed (8 um).

For ”cold” samples, we see an excess in the atom num-
ber variance compared to shot noise. We attribute this
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FIG. 2: Atom number variance as a function of the mean
atom number per pixel. Open circles correspond to a ”hot”
cloud (T ~ 10w, , wi = 27 x 2.85 kHz) for which fluctua-
tions are given by the shot noise (black line). The full circles
correspond to cold clouds. Error bars show the standard de-
viation of the mean of (JN?). The fluctuations in excess of
shot noise are due to bosonic bunching. The dot-dashed line is
the prediction for an ideal Bose gas while the dotted line uses
the Maxwell-Boltzmann approximation (see Eq. (E)) The in-
sets show the longitudinal profile of the two cold clouds from
which we deduce the temperature and the chemical potential
used for the calculations.

excess to bunching due to the bosonic nature of the
atoms. In a local density approximation, the fluctuations
of a radially trapped and longitudinally uniform Bose gas
with density n(z) are 1]

<n(2) ) = (n(2))* = <n(2)2 oz =2+ (2)

eﬁu(t-ﬁ-]) e~ w(z=2")?(++3)/73p

Z — B (i+9)]?

dBil] 1

where p is the local chemical potential, 5 = 1/(kgT),

B = 1/27h?/(mkgT) is the de Broglie thermal wave-

length and (.) denotes an ensemble average. The first
term on the right hand side corresponds to shot noise,
and the second term to bunching. For a non degenerate
gas (n\qp < 1), one can keep only the term i = j =
1. The bunching term reduces to (n(z))? exp(—2m(z —
2')2/\2g) tanh®(Bhw, /2) and one recovers the well-
known gaussian decay of the correlations. The reduction
factor tanh?(Bhw, /2) is due to the integration over the
transverse states. In our experiment, the pixel size is al-
ways much bigger than the correlation length. In which

case, integrating over the pixel size A, we have

(W) = () + (V2

The coefficient of (N)? is the inverse of the number of
elementary phase space cells occupied by the N atoms.

To compare Eq. (E) to our data we must correct for the
optical resolution as was done for the shot noise. Further-
more, atoms diffuse about 5 pm during the imaging pulse
because of photon scattering. This diffusion modifies the
correlation function, but since the diffusion distance is
smaller than the resolution, 10 pum, and since its effect
is averaged over the duration of the pulse, its contribu-
tion is negligible. We thus simply multiply the computed
atom number variance by the factor .

Figure ] shows that the value calculated from Eq. ()
(dotted line) underestimates the observed atom number
variance. In fact, for the coldest sample, we estimate
n(0)Ags =~ 10, and thus the gas is highly degenerate.
In this situation replacing the Bose-Einstein occupation
numbers by their Maxwell-Boltzmann approximations is
not valid, meaning that many terms of the sum in Eq. (E)
have to be taken into account. The prediction from the
entire sum is shown as a dot-dashed line and is in better
agreement with the data.

In the experiment we are also able to access the quasi
condensate regime in which inter-particle interactions are
not negligible, and the ideal gas theory discussed above
fails. Figure E shows the results of two experimental runs
using denser clouds. For these data, the trapping fre-
quencies are 2.85 kHz and 10.5 Hz. The insets show the
mean longitudinal cloud profiles and a fit to the wings
of the profiles to an ideal Bose gas profile. One can see
from these insets that, unlike the conditions of Fig. E,
an ideal gas model does not describe the density profile
in the center. We employ the same procedure to deter-
mine the variance versus the mean atom number. As in
Fig. E we plot our experimental results along with the
ideal Bose gas prediction based on the temperature de-
termined from the fit to the wings in the insets. For
small mean value N(z), the measured fluctuations fol-
low the ideal gas curve (dot-dashed line) but they are
dramatically reduced when the atom number is large.

The theory for a weakly interacting uniform 1D Bose
gas permits an analytical prediction for the density fluc-
tuations in the limit n > np. In this limit, the gas enters
the Gross-Pitaevskii regime and density fluctuations are
given in the Bogoliubov approximation by [@, B]

(on(z) on(2")) = (4)

oo /2
<7’L> ik(z—2z' kQ !
o | T ) (4 2m),

where nj is the Bose thermal occupation factor of the
mode k with energy e, = /k2(k2+46-2) x h*/(2m)
and { = h/,/mng is the healing length. For 200 atoms
per pixel, the healing length is about 0.3 pym in our
experiment[@]. The term proportional to nj describes

(N?%) — tanh?(Bhw, /2). (3)
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FIG. 3: We plot the same quantities as in figure E Dot-dashed
lines are the predictions for an ideal Bose gas (deduced from
Eq.ﬂ), whereas the dashed lines show the results of Eq. E The
temperature of the sample is deduced by fitting the wings of
the longitudinal profile to an ideal Bose gas profile as shown
in the insets. The solid lines gives the atomic shot noise level.

the contribution of thermal fluctuations while the other is
due to vacuum fluctuations and corresponds to the shot
noise in the non interacting limit. Since the pixel size
is much bigger than the healing length, we probe only
long wavelength fluctuations for which thermal fluctua-
tions dominate at the temperatures we consider. Using
k < 1/¢ and ny ~ kgT/ei, we obtain for the atom num-
ber variance in a pixel

NN (5)

(N?) = (N)? ;

This formula can also be deduced from thermodynamic
considerations: for a gas at thermal equilibrium, the
atom number variance in a given volume is given by

(N?) — (N)? = kaT(ON/Op)r. (6)

For a quasi-condensate with chemical potential gn, equa-
tions (ff) and ([]) coincide.

4

The calculation leading to Eq. (f) holds in a true 1D
situation in which case the effective coupling constant
is g = 2hw,a, where a is the scattering length of the
atomic interaction. The validity condition for the 1D
calculation is n < 1/a (equivalently p < fAiw,). In our
experiment however, the value of na is as high as 0.7
and thus one cannot neglect dependence of the trans-
verse profile on the local density. On the other hand, the
thermodynamic approach is valid and, supposing p(N)
is known, Eq. () permits a very simple calculation. We
use the approximate formula pu(N) = hw, /1 +4Na/A
valid in the quasi-condensate regime [J]. This formula
connects the purely 1D regime with that in which the
transverse profile is Thomas-Fermi. The results of this
analysis, confirmed by a full 3D Bogoliubov calculation,
are plotted in Fig. E dashed line). Equation (E) predlcts
a constant value for the atom number variance and un-
derestimate it by 50% for the maximal density reached
in our experiment (N = 400).

We compare this calculation in the quasi-condensate
regime with our data. From Fig. Ewe see that the calcu-
lation agrees well with the measurements for 7' = 1.4 hw
but less so for T'= 2.4 hiw, . The one-dimensional theory
predicts that the quasi-condensate approximation is valid
in the limit n > np which corresponds to (N) > 100
(140) for T = 1.4 hw, (T = 2.4hw, ). The disagreement
between the calculation and our data for T = 2.4 hw
suggests that perhaps we did not achieve a high enough
density to be fully in the quasi-condensate approxima-
tion. In addition the one-dimensional calculation of np
is unreliable for such high ratio kT /fiw; and underesti-
mates the value at which the cross over appears. This is
also the case for the data of Fig.2 where the naive esti-
mate of nr corresponds to (N) = 160 for kpT = 2.9%iw
and (N) = 130 for kpT = 2.1hw, .

Exploitation of the 1D geometry to avoid averaging
the fluctuations in the imaging direction can be applied
to other situations. A Bose gas in the strong coupling
regime, or an elongated Fermi gas should show sub shot
noise fluctuations due to anti-bunching. With increased
optical resolution, one could also use this technique to
measure the decay length of the density correlation func-
tion.
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