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Observations of density fluctuations in an elongated Bose gas:

ideal gas and quasi-condensate regimes

J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook, and I. Bouchoule
Laboratoire Charles Fabry, UMR 8501 du CNRS, 91 403 Orsay Cedex, France

We report in situ measurements of density fluctuations in a quasi one dimensional 87Rb Bose
gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations
compared to the shot noise level expected for uncorrelated atoms. At low atomic density, the
measured excess is in good agreement with the expected bunching for an ideal Bose gas. At high
density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute
this reduction to repulsive interatomic interactions. The data are compared with a calculation for
an interacting Bose gas in the quasi-condensate regime.

PACS numbers: 03.75.Hh, 05.30.Jp

The one dimensional (1D) Bose gas with repulsive in-
teractions has attracted tremendous interest because of
the rich behavior it exhibits as well as the existence of
an exactly solvable model [1]. Recently, ultracold atoms
have proven to be well adapted to testing theoretical pre-
dictions in various regimes. The transition towards the
strong coupling regime, also called the Tonks-Girardeau
regime has been observed [2, 3, 4, 5]. In the weak cou-
pling regime, phase fluctuations of a quasi-condensate
have been experimentally studied [6, 7, 8, 9, 10]. In
this paper, we investigate spatial density fluctuations of
a quasi 1D Bose gas in the weak coupling regime. The
measurement relies on the analysis of noise in absorption
images of atoms trapped on an atom chip. This technique
was first proposed in Ref. [11], and used in Refs. [12]
and [13] to observe atom-atom momentum correlations
in other systems.

The weak coupling regime of a 1D Bose gas is charac-
terized by γ = mg/h̄2n ≪ 1 [14], where g is the effective
1D coupling constant, m is the atomic mass and n is
the linear atom density. Within this regime, two limits
can be distinguished depending on the temperature T of
the sample compared to the temperature Tn defined by
kBTn = h̄n

√

gn/m [15, 16, 17]. For T ≫ Tn, one recov-
ers the ideal gas case. In this limit, density fluctuations
are greater than would be expected for uncorrelated par-
ticles because of atom bunching [18, 19, 20]. Bunching
refers to the enhanced probability of finding two identical
bosons at the same place and arises from the exchange
symmetry of their wavefunction. For T ≪ Tn, the gas
is in the so called Gross-Pitaevskii or quasi condensate
regime. Repulsive interactions are important and den-
sity fluctuations are suppressed relative to the ideal gas
case because of their energy cost. In this regime, phase
fluctuations can be large as shown in [6, 7, 8, 9, 10]. A
mean-field Bogoliubov approximation is valid and gives
analytic predictions of the density and phase fluctuations.

Although our sample is not strictly 1D, our observa-
tions reflect these two regimes. At low density, we ob-
serve density fluctuations in excess of the atomic shot
noise. This excess is in good agreement with the ex-
pected bunching for an ideal Bose gas. For high enough
density, we observe a strong reduction of the fluctuations
in qualitative agreement with the Bogoliubov approach.

Our measurements are conducted in a highly
anisotropic magnetic trap created by an atom chip. We
use three current carrying wires forming an H pattern [21]
and an external uniform magnetic field to magnetically
trap the 87Rb atoms in the |F = 2, mF = 2〉 state (see
Fig. 1). Adjusting the currents in the wires and the ex-
ternal magnetic field, we can tune the longitudinal fre-
quency between 7 and 20 Hz while keeping the trans-
verse frequency ω⊥/(2π) at a value close to 2.85 kHz.
Using evaporative cooling, we obtain a cold sample at
thermal equilibrium in the trap. Temperatures as low
as 1.4 h̄ω⊥/kB are accessible with an atom number of
5×103. The atomic cloud has a typical length of 100 µm
along the z axis and a transverse radius of 300 nm.

As shown in Fig. 1, in situ absorption images are taken
using a probe beam perpendicular to the z axis and re-
flecting on the chip surface at 45o. The light, resonant
with the closed transition |F = 2〉 → |F ′ = 3〉 of the
D2 line is switched on for 150 µs with an intensity of
one tenth of the saturation intensity. Two images are
recorded with a CCD camera whose pixel size ∆ × ∆
in the object plane is 6.0 × 6.0 µm2. The first image is
taken while the trapping field is still on. The second im-
age is used for normalization and is taken in the absence
of atoms 200 ms later. During the first image, the cloud
expands radially to about 5 µm because of the heating
due to photon scattering by the atoms. The size of the
cloud’s image is even larger due to resolution of the op-
tical system (about 10 µm) and because the cloud and
its image in the mirror at the atom chip surface are not
resolved. Five pixels along the transverse direction x are
needed to include 95% of the signal.

We denote by Nph
i (x, z) the number of photons de-

tected in the pixel at position (x, z) for the image i
(i = 1, 2). We need to convert this measurement into
an atom number N(z) detected between z and z + ∆.
Normally, one simply computes an absorption per pixel

ln(Nph
2 /Nph

1 ) and sums over x:

N(z) =
∑

x

ln[Nph
2 (x, z)/Nph

1 (x, z)] × ∆2/σ, (1)

where σ is the absorption cross-section of a single atom.
When the sample is optically thick and the atomic den-
sity varies on a scale smaller than the optical resolution
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FIG. 1: Schematic of the experimental setup. Left: drawing
of the wires constituting the atom chip. We keep I1 + I2 =
3 A and adjust I1 − I2 between 0.3 A and 1 A to vary the
confinement along z. The uniform field B0 is approximately
40 G, we also add a small field (<

∼
1 G) along z. Right: optical

imaging system. We image the cloud and its reflection on the
atom chip onto a CCD camera. In the radial direction, the
unresolved cloud images cover approximately five pixels whose
size in the object plane is ∆ = 6 µm.

or the pixel size, Eq. (1) does not hold since the loga-
rithm cannot be linearized. In that case, Eq. (1) under-
estimates the atom number and the error increases with
optical thickness. We partially correct for that effect by
using in Eq. (1) an effective cross section σ determined
as follows. We compare the measured atom number us-
ing the in situ procedure described above with the mea-
sured atom number after allowing the cloud to expand.
In this case, Eq. (1) is valid and the atomic cross-section
σ0 = 3λ2/(2π) well known. We then obtain for the ef-
fective cross-section σ = 0.8 σ0. Although this effective
cross section depends on the atomic density, we have
checked that for total atom number between 2× 103 and
9 × 103 the measured value varies by only 10%. Taking
into account the uncertainty on the value of σ0, we esti-
mate the total error on the measured atom number N(z)
to be less than 20%.

To measure the variance of the atom number in a pixel,
we acquire a large number of images (typically 300) taken
in the same experimental conditions. To remove techni-
cal noise from our measurement, the following procedure
is used to extract the variance. For each image, we form
the quantity δ2N(z) = (N(z)− N̄(z))2 ×p/(p−1) where
the mean value N̄(z) is normalized to contain the same
total atom number as the current image. We thus correct
for shot to shot total atom number fluctuations. The av-
erage is performed only over p = 21 images which bracket
the current image so that long term drifts of the experi-
ment do not contribute to the variance. We have checked
that the results are independent of p, varying p between
5 and 21. A large contribution to δ2N(z), irrelevant to
our study, is the photon shot noise of the absorption mea-
surement. To precisely correct for this noise, we subtract

the quantity
∑

x(1/Nph
1 (x, z)+1/Nph

2 (x, z))(∆2σ)2 from
δ2N(z) for each image. We typically detect 104 photons
per pixel corresponding to a contribution to δ2N of about
50. To convert the camera signal into a detected photon
number, we use a gain for each pixel that we determine
by measuring the photon shot noise of images without
atoms as explained in [22]. The corrected δ2N(z) ob-

tained for all images are then binned according to the
value of N̄(z), rather than of z itself. This gives the vari-
ance of the atom number 〈δ2N(z)〉 as a function of the
mean atom number per pixel. Since more pixels have a
small atom number, the statistical error on the estimate
of the variance decreases with the average atom number
(see Figs. (2) and (3)).

FIG. 2: Atom number variance as a function of the mean
atom number per pixel. Open circles correspond to a ”hot”
cloud (T ≃ 10 h̄ω⊥, ω⊥ = 2π × 2.85 kHz) for which fluctua-
tions are given by the shot noise (black line). The full circles
correspond to cold clouds. The fluctuations in excess of shot
noise are due to bosonic bunching. The dot-dashed line is
the prediction for an ideal Bose gas while the dotted line uses
the Maxwell-Boltzmann approximation (see Eq. (3)). The in-
sets show the longitudinal profile of the two cold clouds from
which we deduce the temperature and the chemical potential
used for the calculations.

Data shown in Fig. 2 correspond to atom clouds of
sufficiently low density so that interatomic interactions
are expected to be negligible (T > Tn). The three data
sets correspond to three different temperatures, the trap-
ping frequencies are 2.85 kHz and 7.5 Hz. We deduce
the temperature and the chemical potential of the sam-
ple by fitting the mean longitudinal profile N̄(z) of the
cloud to the profile of an ideal Bose gas (see inset of
Fig. 2). For the ”hot” sample where bunching is negli-
gible (see Eq. (3)), we observe atomic shot noise fluctu-
ations, i.e. the atom number variance increases linearly
with the mean atom number. The slope κ is only 0.17 and
differs from the expected value of 1. We attribute this re-
duction to the fact that our pixel size is not much bigger
than the resolution of our optical imaging system, thus
one atom is spread out on more than one pixel. When
the pixel size is small enough compared to the optical
resolution and in the case of weak optical thickness, the
expected slope is simply approximated by κ ≃ ∆/(2

√
π δ)

where δ is the rms width of the optical response that we
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suppose gaussian. From the measured slope, we deduce
δ = 10 µm which is in good agreement with the smallest
cloud image we have observed (8 µm).

For ”cold” samples, we see an excess in the atom num-
ber variance compared to shot noise. We attribute this
excess to bunching due to the bosonic nature of the
atoms. In a local density approximation, the fluctuations
of a radially trapped and longitudinally uniform Bose gas
with density n(z) are [20]

〈n(z)n(z′)〉 − 〈n(z)〉2 = 〈n(z)〉 δ(z − z′)+

1

λ2
dB

∑

i,j≥1

eβµ(i+j)

√
ij

e−π(z−z′)2( 1

i
+ 1

j
)/λ2

dB

[

1 − eβh̄ω⊥(i+j)
]2

(2)

where µ is the local chemical potential, β = 1/(kBT ),

λdB =
√

2πh̄2/(mkBT ) is the de Broglie thermal wave-

length and 〈.〉 denotes an ensemble average. The first
term on the right hand side corresponds to shot noise,
and the second term to bunching. For a non degenerate
gas (nλdB ≪ 1), one can keep only the term i = j =
1. The bunching term reduces to 〈n(z)〉2 exp(−2π(z −
z′)2/λ2

dB) tanh2(βh̄ω⊥/2) and one recovers the well-
known gaussian decay of the correlations as expected for
a Maxwell-Boltzmann distribution. The reduction factor
tanh2(βh̄ω⊥/2) is due to the integration over the trans-
verse states. In our experiment, the pixel size is always
much bigger than the correlation length. In which case,
integrating over the pixel size ∆, we have

〈N2〉 − 〈N〉2 = 〈N〉 + 〈N〉2 λdB√
2∆

tanh2(βh̄ω⊥/2). (3)

The coefficient of 〈N〉2 is the inverse of the number of
elementary phase space cells occupied by the N atoms.
Because of the 1D geometry, the cell number is reduced
and the bunching signal enhanced.

To compare Eq. (3) to our data we must correct for the
optical resolution as was done for the shot noise. Further-
more, atoms diffuse about 5 µm during the imaging pulse
because of photon scattering. This diffusion modifies the
correlation function, but since the diffusion distance is
smaller than the resolution, 10 µm, and since its effect
is averaged over the duration of the pulse, its contribu-
tion is negligible. We thus simply multiply the computed
atom number variance by the factor κ.

Figure 2 shows that the value calculated from Eq. (3)
(dotted line) underestimates the observed atom number
variance. In fact, for the coldest sample, we estimate
n(0)λdB ≃ 10, and thus the gas is highly degenerate.
In this situation replacing the Bose-Einstein occupation
numbers by their Maxwell-Boltzmann approximations is
not valid, meaning that many terms of the sum in Eq. (2)
have to be taken into account. The prediction from the
entire sum is shown as a dot-dashed line and is in better
agreement with the data.

In the experiment we are also able to access a regime
in which interparticle interactions are not negligible, and
the ideal gas theory discussed above fails. Figure 3 shows
the results of two experimental runs using colder and
denser clouds of atoms. For these data, the trapping fre-
quencies are 2.85 kHz and 10.5 Hz. The insets show the

FIG. 3: We plot the same quantities as in figure 2. Dot-
dashed lines are the predictions for an ideal Bose gas, whereas
the dashed lines show the results of a calculation for a quasi-
condensate in the Bogoliubov approximation (see Eq. 3). The
temperature of the sample is deduced by fitting the wings of
the longitudinal profile to an ideal Bose gas profile as shown
in the insets.

mean longitudinal cloud profiles and a fit to the wings
of the profiles to an ideal Bose gas profile. One can see
from these insets that, unlike the conditions of Fig. 2,
an ideal gas model does not describe the density profile
in the center. We employ the same procedure to deter-
mine the variance versus the mean atom number. As in
Fig. 2 we plot our experimental results along with the
ideal Bose gas prediction based on the temperature de-
termined from the fit to the wings in the insets. For
small mean value N̄(z), the measured fluctuations fol-
low the ideal gas curve (dot-dashed line) but they are
dramatically reduced when the atom number is large.

The theory for a weakly interacting uniform 1D Bose
gas permits an analytical prediction for the density fluc-
tuations in the limit T ≪ Tn. In this limit, the gas enters
the Gross-Pitaevskii regime and density fluctuations are
given in the Bogoliubov approximation by [15, 16]

〈δn(z) δn(z′)〉 =

〈n〉
2π

∫ ∞

−∞

dk eik(z−z′)

(

k2

k2 + 4ξ−2

)1/2

(1 + 2nk),

(4)

where nk is the Bose thermal occupation factor of the
mode k with energy ǫk =

√

k2(k2 + 4ξ−2)× h̄2/(2m) and
ξ = h̄/

√
mng is the healing length. The term propor-

tional to nk describes the contribution of thermal fluc-
tuations while the other is due to vacuum fluctuations
and corresponds to the shot noise in the non interacting
limit. Since the pixel size is much bigger than the heal-
ing length, we probe only long wavelength fluctuations
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for which thermal fluctuations dominate at the tempera-
tures we consider. Using k ≪ 1/ξ and nk ≃ kBT/ǫk, we
obtain for the atom number variance in a pixel

〈N2〉 − 〈N〉2 = ∆
kBT

g
. (5)

This formula can also be deduced from thermody-
namic considerations. The atom number variance is
kBT (∂N/∂µ)T which coincides with Eq. (5) for a gas with
chemical potential gn.

To apply the previous calculation to our system, the
effective 1D coupling constant g has to be computed.
As long as n ≪ 1/a, where a is the scattering length
of the atomic interaction, the transverse profile of the
cloud is given by the vibrational transverse ground state
and g = 2h̄ω⊥a, provided a ≪

√

h̄/(mω⊥). For our
experimental parameters, na can be as large as 0.7 and
the transverse profile of the cloud is widened by interac-
tions. To take this effect into account we make a gaussian
ansatz for the profile and minimize the Gross-Pitaevskii
energy functional. We then obtain g = 2h̄ω⊥a/

√
1 + 4na

as in [23]. Using this expression, we have computed atom
number variance according to Eq. (4). The results are
plotted in Fig. 3. The coupling g is not constant over
the density range of interest and this explains the slope
of the dashed line in Fig. 3.

The 1D calculation shown here relies on two assump-
tions. First, the higher branches of the Bogoliubov
spectrum corresponding to transverse excitations are ne-
glected and second the transverse shape of the relevant
Bogoliubov modes is assumed to be identical to that of
the Gross-Pitaevskii mode. A full 3D calculation shows
that these assumptions are justified. From Fig. 3 we
see that the calculation agrees well with the data for

T = 1.4 h̄ω⊥ but less so for T = 2.4 h̄ω⊥. Strictly
speaking, the Bogoliubov approximation is valid in the
limit T ≪ Tn which corresponds to 〈N〉 ≫ 160 (230)
for T = 1.4 h̄ω⊥ (T = 2.4 h̄ω⊥). So apparently we
did not achieve high enough density to reach the quasi-
condensate regime for T = 2.4 h̄ω⊥.

A crucial aspect of this experiment has been the ex-
ploitation of the 1D geometry to avoid averaging the fluc-
tuations in the imaging direction. This method can be
applied to other 1D situations such as a Bose gas in the
strong coupling regime, or an elongated Fermi gas, where
sub shot noise fluctuations due to anti-bunching are ex-
pected. With increased optical resolution, one could also
use this technique to measure the decay length of the
density correlation function.

In the context of the 1D interacting Bose gas, our ex-
periment raises the question of the nature of the transi-
tion towards the quasi-condensate regime in a very elon-
gated trap. For a truly 1D Bose gas, in the thermody-
namic limit, no phase transition is expected and the gas
smoothly enters the quasi-condensate regime when the
temperature is lowered [14]. This smooth transition may
be masked in a finite size sample because of the satura-
tion of the excited states, producing a more abrupt tran-
sition [24]. With our experimental parameters, a detailed
study of these effects is possible.
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