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Electromagnetic pulses from an oscillating high finesse cavity
Possible signatures for dynamic Casimir effect experiments

Astrid Lambrecht
Laboratoire Kastler Brossel, UPMC/ENS/CNRS,

Campus Jussieu, Case 74, F-75252 Paris Cedex 05 France

Vacuum field fluctuations exert radiation pressure on mirrors in quantum vacuum. For a pair of
mirrors this effect is well known as the Casimir effect. When a single mirror is moving in vacuum,
radiation pressure leads to a dissipative force which opposes itself to the mirrors motion. Accordingly
the electromagnetic field does not remain in the vacuum state but photons are emitted by the mirror
into vacuum. This paper describes the photon emission of a high-finesse cavity oscillating globally
in quantum vacuum. Common features and differences with usual parametric processes in quantum
optics are discussed. Interesting signatures of quantum radiation like pulse shaping and frequency
up-conversion are predicted, which could be used to experimentally demonstrate motion-induced
dissipative effects. The feasibility of an experimental realization is discussed in the end of the
paper.

PACS numbers: 0.3.70.+k; 12.20.Ds; 42.50.Lc

I. INTRODUCTION

Relativity of motion is one of the basic principles of
physics since Galileo. In classical physics this principle
applies without further considerations, as vacuum is con-
sidered to be completely empty. However, the face of the
problem today is changed by quantum theory. Quan-
tum vacuum is no longer empty. It contains irreducible
field fluctuations which lead to mechanical effects for any
scatterer in vacuum. This paper will focus on the vac-
uum fluctuations of the electromagnetic field, which are
characterized by a mean energy of 1

2�ω per field mode of
frequency ω.

Vacuum fluctuations exert mechanical action on scat-
terers due to their non-vanishing radiation pressure. For
macroscopic objects, this leads to the Casimir force, an
attractive force arising between two mirrors at rest in
vacuum [1]. But vacuum fluctuations produce also me-
chanical effects related to the motion of scatterers in
vacuum. When the mirror is at rest, it already expe-
riences a fluctuating force due to vacuum radiation pres-
sure [2, 3]. But as the radiation pressure is the same on
both sides, no mean force appears in this case. However
when the mirror is moving, a dissipative force may arise,
opposing itself to the mirror’s motion [4]. The depen-
dence of the dissipative force is directly connected to the
spectral properties of the fluctuating force through the
fluctuations-dissipation relations [5].

In order to motivate the origin of the dissipative effect
of quantum vacuum, let us consider a mirror in a scalar
thermal field. As is well known, in a thermal field, the
dissipative force Fdiss(t) is proportional to the mirror’s
velocity q′(t)

Fdiss(t) = − �θ2

6πc2
q′(t) (1)

where q(t) is the mirrors motion and θ the field tem-
perature expressed in frequency units θ = 2πkBTfield/�.

The force may equivalently be written in the frequency
domain

Fdiss[ω] =
�θ2

6πc2
iωq[ω] (2)

where Fdiss[ω] and q[ω] are the Fourier transform of the
force and mirror’s displacement. This force is a classi-
cal expression which tends towards zero when temper-
ature goes to zero, as it neglects the effect of vacuum
fluctuations. When vacuum fluctuations are taken into
account, the linear susceptibility is found to scale as the
third power of frequency at the limit of zero temperature

Fdiss[ω] =
�

6πc2
iω3q[ω] (3)

This result, which could be expected from mere dimen-
sional arguments, implies that the force is proportional
to the third order time derivative of the mirror’s position

Fdiss(t) =
�

6πc2
q′′′(t) (4)

The linear susceptibilities encountered in (2) and (3) are
directly connected to the spectral properties of the fluc-
tuating force exerted upon a mirror at rest through the
fluctuations-dissipation relations [5]. At arbitrary tem-
perature the dissipative force is just the sum of the two
contributions (2) and (3). These expressions can also be
generalized to the case of a real mirror with frequency-
dependent reflection and transmission amplitudes [6].

The dissipative force arising for a mirror moving in
quantum vacuum has interesting consequences with re-
spect to the problem of relativity of motion. In contrast
to the dissipative force experienced by a mirror in a ther-
mal field, it vanishes for a motion with uniform velocity.
This is a direct consequence of the Lorentz invariance of
quantum vacuum. The appearance of vacuum in an ac-
celerated frame is a much debated question [7]. For the
present problem of motion of a mirror in vacuum there



is a clear answer at our disposal. No dissipative force
arises for a motion with uniform acceleration and this
fact may be explained as a consequence of the conformal
invariance of electromagnetic vacuum.

However, a dissipative force arises for a mirror moving
in vacuum with a non-uniform acceleration. For exam-
ple, an oscillating mirror feels a force proportional to its
change of acceleration due to the coupling to vacuum fluc-
tuations. Accordingly, the electromagnetic field does not
remain in the vacuum state but photons are emitted by
the mirror into vacuum. This motion-induced radiation
and the associated radiation reaction force are dissipative
effects related to motion in quantum vacuum, although
this motion has no further reference than vacuum itself.
Since these effects challenge the principle of relativity of
motion in vacuum, it would be very important to obtain
experimental evidence for them and to study their char-
acteristics in detail. So far, these effects have not yet
been observed for macroscopic objects like mirrors. As a
matter of fact, the orders of magnitude are exceedingly
small for the fluctuating force as well as for the dissipa-
tive force. This raises the question as how to increase the
order of magnitude of dissipative effects of vacuum fluc-
tuations and eventually render those effects observable.

II. MOTION-INDUCED RADIATION

A first idea in this direction is to observe changes in
the field rather than in the mechanical forces. Due to
energy conservation, the dissipated energy is transformed
into radiation emitted by the mirror. Let us for example
consider a mirror oscillating in vacuum at a frequency Ω
with an amplitude q0 as shown in figure 1

q(t) = q0 sin Ωt (5)

The number of emitted photons N during the measure-

FIG. 1: Single mirror oscillating in vacuum. The arrows rep-
resent the vacuum field which, in a onedimensional space, may
be considered as two counterpropagating fields.

ment time T is then given by

N =
Ω3q2

0T

3πc2
=

ΩT

3π

v2

c2
(6)

(7)

The Ω3-dependence in the second term comes from the
already discussed motional susceptibility (3). v = q0Ω
is the mirror’s maximal velocity. Since N scales as the
square of the ratio of the mirrors mechanical velocity and
the speed of light, it remains very small for any possible
macroscopic motion.

The emission of photons can also be interpreted us-
ing analogies with optical parametric processes. Indeed,
photon production by the oscillating mirror can be ex-
plained through opto-mechanical coupling between vac-
uum fluctuations and the mechanical motion. In a linear
approximation, the mechanical excitation of frequency Ω
is transformed into two photons of frequency ω and ω′
emitted into vacuum. Energy conservation imposes the
sum of the photon frequencies to be equal to the oscilla-
tion frequency ω + ω′ = Ω. In vacuum only spontaneous

FIG. 2: Emission diagram for a parametric process. Through
opto-mechanical coupling between vacuum fluctuations and
the mirrors motion, a mechanical excitation Ω is transformed
into two photons of frequency ω and ω′ which are emitted
into vacuum.

parametric processes can take place as it is impossible to
extract energy from vacuum.

As motion induced radiation emitted by a single mirror
is too small to be observed, a natural idea for improving
the orders of magnitude is to study a cavity oscillating
in vacuum instead of a single mirror. In this configura-
tion one may profit from the resonant amplification of
radiation inside the cavity. The resonant enhancement is
determined by the cavity finesse F

F =
π

1 − r2
(8)

which gives the number of roundtrips of the field before
it leaves the cavity, and depends on the mirrors ampli-
tude reflection coefficients r here chosen to be equal for
simplicity. Hence the cavity has to be treated as an open
system with mirrors having reflection coefficients smaller
than unity so that the field can leave the cavity by trans-
mission through the mirrors [8]. This distinguishes the
present calculations from the numerous works devoted to
photon production between a pair of perfectly reflecting
mirrors [4, 9–14] in which case the amount of radiation
emitted outside the cavity cannot be evaluated.

For a cavity oscillating in vacuum, it is well known
that the cavity field is parametrically amplified when
the mechanical cavity length is modulated periodically
(breathing motion). If the cavity field is initially in the
vacuum state, this excitation leads to a squeezed vac-
uum state [15] which differs from the pure vacuum state



and in particular contains photons. This corresponds to
a usual parametric amplifier or oscillator, which can be
easily and efficiently realized in an experiment by using a
nonlinear crystal inside the cavity which produces a pe-
riodic change of the effective cavity length instead of the
mechanical length. A great number of such experiments
has been performed in the past [15] and their results are
well understood. However, these experiments can give
no information about relativity of motion in quantum
vacuum.

More strikingly, a resonant enhancement of radiation
also exists when the cavity oscillates as a whole, with its
mechanical length L kept constant as shown in figure 3.
Here both mirrors oscillate with the same amplitude q0

FIG. 3: Cavity oscillating globally in vacuum with an ampli-
tude q0 at a frequency Ω with constant mechanical length.

and frequency Ω. While the breathing motion of the cav-
ity takes place when the mechanical oscillation frequency
equals an even multiple of the fundamental cavity reso-
nance frequency πc/L, the global motion is realized for
frequencies equal to odd multiples of the fundamental
resonance frequency :

Ω = K
πc

L
; K =

{
2, 4, 6, · · · breathing
3, 5, 7, · · · global (9)

At a first glance, it seems to be paradoxical that both the
breathing and the global motion give rise to emission of
radiation due to parametric excitation of the cavity field.
The basic reason for this is that the optical length (which
depends on retardation effects) as seen by the field varies
in the same way for both kinds of motion although the
mechanical cavity length is modulated in one case and
constant in the other.

Motion induced radiation emitted by a cavity oscil-
lating globally is reminiscent of photon emission from a
single oscillating mirror. However, the important point
is that compared to the situation with a single oscillating
mirror in vacuum, radiation from an oscillating cavity is
resonantly enhanced by a factor of the order of the cav-
ity finesse [8]. Indeed, at perfectly tuned resonance, the
number of photons emitted by the cavity is the product of
motion-induced radiation emitted by a single oscillating

mirror (7) by the cavity finesse F

N = F ΩT

3π

v2

c2
(K = 3) (10)

Since the cavity finesse can be a very large number, up to
109−1012 for instance for microwave cavities [16, 17], this
increases considerably the order of magnitude. The effect
of detuning from resonance on the number of emitted
photons has been studied in [18].

III. SIGNATURES

The previous section has only discussed the linear
regime where the field scattering is supposed to be lin-
ear in the mirrors motion. For a single reflection, the
field scattered by the oscillating mirror undergoes a phase
shift of the order of v/c compared to the incoming field.
This phase shift is always small for a macroscopic mir-
ror. However, inside the cavity the field is scattered many
times by the moving mirrors. For the cavity oscillating
globally in vacuum, the single reflection phase shifts ac-
cumulate in an optimal way leading to a large total phase
shift. A linearization of the scattering in the mirrors mo-
tion becomes therefore invalid. We have developed a full
nonlinear treatment of this situation which uses the com-
position of homographic functions of phase exponentials
allowing to obtain analytical expressions for the emitted
energy density outside and inside the cavity as well as
for the frequency spectrum [19]. Our method is a gen-
eralization to the leaky cavity of the treatment used by
Law [12] and shortly afterwards by Cole and Schieve [13]
who calculated the intracavity field for perfectly reflect-
ing mirrors and predicted the formation of wave packets
inside the cavity growing with time. In the situation of
the leaky cavity that we study, the field can leave the
cavity leading to emitted radiation outside the cavity,
while the average intracavity energy per oscillation pe-
riod is stationnary. Accordingly, we have found a pulse
shaping effect not only in the intracavity field but also
for the field radiated outside the cavity, which both grow
with increasing cavity finesse. A novel signature related
to this pulse shaping effect is a process of frequency up-
conversion taking place in the multiple scattering, which
can be clearly identified in the radiation spectrum. This
signature might become very important in an experimen-
tal observation in order to discriminate motion-induced
radiation from potential stray effects.

To discuss these signatures, it is convenient to intro-
duce a single reflection parameter α related to the mirrors
velocity v through

th
(v

c

)
= α (11)

and a multiple reflection parameter η, which is the ratio
of the mirrors velocity to the velocity of light multiplied
by the cavity finesse

η = F v

c
(12)



η corresponds to an effective phase shift acquired by the
fields during multiple reflection inside the moving cavity
and characterizes the efficiency of the multiple scattering.
In contrast to the single scattering parameter which is
necessarily very small for macroscopic motions, it can be
large thanks to the multiplication by the cavity finesse.

Multiple scattering gives rise to periodic orbits such
that the optical length seen by the field bouncing back
and forth in the cavity is the same on successive round-
trips despite the motion of the mirrors as first described
in [12, 13]. As the light rays corresponding to a peri-
odic orbit encounter the mirrors at the same position
after an arbitrary number of round-trips, this leads to
an interference effect, analogous to that occurring for a
motionless cavity. There exist two sets of periodic or-
bits which respectively attract or repel the neighboring
trajectories, giving rise to constructive or destructive in-
terference. Only the attractive orbit is expected to give
rise to a large enhancement of the motional radiation.
This process leads to the formation of regularly spaced
electromagnetic pulses bouncing back and forth the cav-
ity. At each scattering on one of the mirrors, there is
a small probability for a photon for escaping the cav-
ity and therefore being detected outside the cavity. This
probability is given by the inverse of the cavity finesse.

Based on this qualitative argument one may calculate
precisely the energy density emitted into vacuum by the
oscillating cavity as a function of time. The result is
shown in Figure 4 where is plotted the energy density for
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FIG. 4: Energy density emitted by the cavity as a function
of time for different effective phase shifts η. With increasing
values of η the energy starts to concentrate in pulses emitted
periodically by the cavity.

three different values of η. The cavity emits periodically
electromagnetic pulses into the vacuum which become
higher and sharper with an increasing multiple scattering
parameter. The plot is based on an analytical solution of
the multiple scattering problem in terms of homographic
mappings of phase exponentials [19]. This approach re-

mains valid in the case of interest η ∼ 1 whereas an
approach linearizing the fields in the phase shifts would
be restricted to η � 1.

The total energy per oscillation period radiated by the
cavity can be calculated by averaging the energy density
over one oscillation period 2π/Ω. We will restrict our
attention to a realistic case, where the mirrors velocity is
small which justifies the use of the homographic relations.
This leads then to a total radiated energy per oscillation
period

E =
�Ωr

6
sh2α +

�Ω
√

1 − r2

24
(ζ(α) + ζ(−α) − 2)

− �Ω
√

1 − r2

4π2K2

(
ξ(α)(ζ(α)− e−2α)

+ ξ(−α)(ζ(−α)− e2α)
)

ζ(α) =
(1 − e−4ρ)e2α +

√
1 − r2(1 − e2α)

1 − e4(α−ρ)

ξ(α) =
∞∑

l=1

e2l(α−ρ)

l2ch2αl
(13)

ρ is related to the reflection coefficients r2 = e−2ρ and
corresponds to the inverse of the cavity finesse for a high
finesse cavity ρ � 1 via eqn. (8). The last equation
in (13) suggests the interpretation of α as a gain for
the motion-induced radiation while ρ signifies the cavity
losses. The total radiated energy would diverge for α = ρ.
However this limit is not reached as the energy density al-
ready diverges when 2α/ρ approaches unity. The reason
for this is simply that the widths of the various contri-
butions to the energy density decrease when the number
of roundtrips inside the cavity increases, so that the con-
tribution to the integrated energy increases less rapidly
than the peak value of the energy density. As a conse-
quence, the divergence of the peak density occurs before
the divergence of the integrated energy. Our calculation
does not remain valid above the oscillation threshold for
the energy density. Still it may be expected that a large
amount of radiation is emitted above threshold.

For experimental reasons one might also be interested
in the amount of energy stored inside the cavity. The
intracavity energy, integrated over the cavity length L =
Kπ/Ω, is with the same notations as above found to be

E =
�ΩK

48
(ζ(α) + ζ(−α) − 2)

− �Ω
8π2K

(ξ(α)ζ(α) + ξ(−α)ζ(−α)− 2ξ(0)) (14)

The energy is here directly expressed with respect to the
static Casimir energy which is recovered when the cavity
is motionless [4]. This result is due to the fact that the
vacuum outside and inside the cavity is not the same but
differs exactly by this amount of energy.

In order to obtain an appreciable value for the radi-
ated energy per period if the cavity is moving at a small
velocity, it is necessary to consider a high finesse cavity



ρ � 1. In this case equation (13,,14) may be approx-
imated as follows by expanding separately the common
denominator and numerators

E ≈ �Ω
6

α2 +
�Ω
6

(
1 − 1

K2

)
ρα2

ρ2 − α2

E ≈ �Ω
24

(
K − 1

K

)
α2

ρ2 − α2

α ≤ ρ

2
� 1 (15)

The first term in the radiated energy is due to the field
which is directly reflected by the two mirrors without en-
tering the cavity. This term corresponds to the expres-
sion for motion-induced radiation from a single perfectly
reflecting mirror. The second term has its origin in the
field which has traversed the cavity and thus accumu-
lated a much more important dephasing than the singly
reflected field. Neglecting α2 in the denominator and de-
ducing the total number of emitted photons during the
detection time T leads to the linear result (10). The lin-
ear approximation is found to be rigorously valid if the
gain is much smaller than the cavity losses (α � ρ).

A particular case is the excitation at the fundamen-
tal cavity mode K = 1. Clearly equation (15) shows
that for a high finesse cavity no enhancement of photon
production inside the cavity can be obtained in accor-
dance with results in ref. [11, 12]. In this case the energy
radiated by the cavity corresponds to the one emitted
by a single mirror and the motional intracavity energy
vanishes. However, in the general case of arbitrary cav-
ity finesse motion-induced photons are also found for the
K = 1 mode (cf. equation (13)). Although this motion
gives rise to periodic orbits as pointed out in [13], the key
point is that the cavity plays the part of a filtering func-
tion and suppresses photons at zero frequency. Due to
the coupling to radiation pressure photons are not emit-
ted singly but in pairs. Thus motion-induced radiation
is enhanced by the cavity if all photons are emitted into
a cavity mode, the sum of their frequencies being equal
to the mechanical oscillation frequency. In order to fulfill
this condition when the cavity oscillates with the fre-
quency of the lowest cavity mode photons have to be
emitted at zero frequency. The cavity suppresses those
photons the more efficiently the higher is the cavity fi-
nesse. Thus motion-induced photons for the K = 1 mode
can be found in the bad cavity limit but not in the high
finesse limit.

A second interesting feature is the frequency spectrum
of the emitted radiation which can be evaluated analyti-

cally through Fourier series developments [19]

nν =
sin2(πν)

π2

∑
m>ν

ν (m − ν)

×



∣∣∣∣∣∣r(1 − r2)
∑
n≥0

r2ne−2iπKν(n+1)Gm (ν, β2n+1)

− rGm (ν, β−1)|2

+(1 − r2)2

∣∣∣∣∣∣
∑
n≥0

r2ne−2iπKνnGm (ν, β2n)

∣∣∣∣∣∣
2

 (16)

βp = (−1)Kth (pα)

ν =
ω

Ω

where Gm (ν, x) is the hypergeometric series

Gm (ν, β) = βm
∑
l≥0

Γ (ν + l) Γ (m − ν + l)
Γ(m + 1 + l)

β2l

l!
(17)

Figure 5 shows the upper radiation spectrum for an ef-
fective phase shift η = 0.9 and a mechanical oscillation
frequency Ω = 5πc/L. Radiation is emitted at the res-
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FIG. 5: Spectrum of the radiation emitted by the cavity for
η = 0.9. The peaks correspond to cavity resonance frequen-
cies. The spectrum is plotted for a cavity oscillating globally
at a mechanical frequency Ω = 5πc/L.

onance frequencies of the cavity corresponding to the
peaks in the spectrum. The spectrum shown here is plot-
ted for a cavity oscillating at a frequency Ω = 5πc/L.
Photons are emitted at multiple integers of the funda-
mental cavity frequency, that is at specific rational mul-
tiples of the mechanical excitation frequency Ω

ω =
Ω
5

,
2Ω
5

,
3Ω
5

,
4Ω
5

,
6Ω
5

, . . . (18)

A striking feature is that no radiation is emitted at multi-
ple integers of Ω. There the spectrum vanishes rigorously.



This constitutes an interesting property in so far as it is
very different from the expected behavior of any pick-up
or spurious field which would be strong at multiples inte-
gers of the mechanical oscillation frequency. In addition,
photons are emitted not only for frequencies lower but
also for frequencies higher than the oscillation frequency
Ω which means that a process of frequency up-conversion
takes place in the system.

The simple interpretation given in section II of emis-
sion of motion induced radiation in terms of a parametric
process is therefore not valid anymore in the nonlinear
regime, where the field inside the cavity acquires a large
phase shift due to numerous reflections on the two oscil-
lating mirrors. The process of frequency up-conversion
can be explained in the following way. For a single re-
flection only spontaneous parametric processes are pos-
sible. However, inside the cavity the field undergoes a
great number of roundtrips while at each reflection spon-
taneous parametric photons are emitted. Before these
photons leave the cavity through one of the mirrors, they
can be re-absorbed in a higher order parametric process
as shown in figure 6 which produces a photon of a fre-
quency larger than the mechanical oscillation frequency.

FIG. 6: Emission diagram in the nonlinear regime. Sponta-
neous parametric photons are emitted from a single reflection
on the moving mirrors. Before these photons leave the cavity,
they can be re-absorbed in a higher order process giving rise
to the emission of photons with frequencies higher than the
mechanical oscillation frequency.

Clearly, these specific temporal and spectral signatures
of the emitted radiation may help to discriminate motion-
induced radiation from potential stray effects in an ex-
perimental observation.

IV. ORDERS OF MAGNITUDE

We may now evaluate the orders of magnitude of mo-
tion induced radiation and discuss the feasibility of an
experimental observation of this effect. As we are inter-
ested in the dissipative effect of vacuum, the number of
thermal photons per mode in the input field needs to be
smaller than 1 in the frequency range of interest. Low
temperature requirements thus point to experiments us-
ing small mechanical structures with optical resonance
frequencies as well as mechanical oscillation frequencies
in the GHz range. In order to observe the dissipative
effect of quantum vacuum and not of a thermal field, a

temperature of T ∼ 10mK is necessary [20]. At such a
temperature, the finesse of a superconducting cavity can
reach 109 − 1012 [16, 17]. A peak velocity ranging from
v ∼ 2.5 · 10−4m/s for a finesse of 1012 to v ∼ 0.25m/s
for a finesse of 109 would then be sufficient to obtain
an effective phase shift η close to unity (η ∼ 0.9). Un-
der these conditions, the radiated flux of motion-induced
photons created outside the cavity ranges from 0.001 pho-
ton/second for a finesse of 1012 to 1 photon per second
for a finesse of 109. Inside the cavity, the stationary
photon number is in both case of the order of 1. This
clearly illustrates that a very high finesse cavity needs
much longer detection times as the mirrors transmission
to the outside is extremely small. Nevertheless photon
fluxes of these orders of magnitude are measurable by
efficient photon-counting detection available in the GHz
range. Alternatively, the field produced inside the cavity
could be probed with the help of Rydberg atoms [16].
In both cases, the specific signatures of motion induced
radiation are essential in order to be able to distinguish
the motional radiation from stray effects.

It is important to emphasize that the peak velocity
considered here is only a small fraction of the typical
sound velocity in materials so that fundamental break-
ing limits do not oppose to these numbers. The obser-
vation of motional radiation in vacuum seems thus to be
achievable by an experiment of this kind. The difficulty
remains to find means for exerting a very large force to
excite the motion of the cavity while keeping the optical
part of the experiment at a very low temperature and
largely unaffected by the stray fields induced by the ex-
citation.

In order to have an efficient coupling between the mir-
rors’ mechanical motion and the modes of the electro-
magnetic vacuum one has to suppose a mirror of macro-
scopic size. Let us assume in the following as an example
a mirror with a surface A = 25mm2. In this context the
question arises whether or not it is possible to construct
superconducting cavities with mirrors of such small sur-
faces. Otherwise, in the following one has to suppose
that only a fraction of the mirrors surface oscillates.

A typical material for superconducting cavities is Nio-
bium which has a density of ρ = 10g/cm3. One needs
a 1µm thick layer of Niobium in order to achieve a fi-
nesse of 109. The mirrors volume is then 2.5·10−4cm3,
leading to a mass of 2.5 mg. The Niobium layer would
probably have to be fixed to a massive support, capable
to evacuate the excitation heating. This support should
be insensitive to vibrations due to radiation pressure and
thus have a very different mechanical behavior than Nio-
bium, as for example quartz.

For a cavity finesse of the order of F = 109 a mirror’s
maximum speed of about v=25cm/s gives an effective
phase shift of 0.9. At 1GHz this mechanical velocity cor-
responds to a very small displacement q0 ∼ v

Ω ∼ 10−11m,
but to a large acceleration a = 109m/s2. For even
higher values for the cavity finesse, e.g. F ∼ 1012,
the mirrors maximum speed needs only to be about



v = 2.5 × 10−4m/s, corresponding to an amplitude
q0 ∼ v

Ω ∼ 10−14m and an acceleration of a = 106m/s2.
A possible excitation mecanism for the oscillation

could be the piezoelectric effect, where one could ben-
efit from a high mechanical quality factor of the support
to excite the motion of the Niobium layer. Indeed me-
chanical quality factors of quartz for hypersonic acoustic
waves (Ω ∼ 10MHz) have been reported to be of the or-
der of 106−108 in the low temperature domain. However
to my knowledge, it remains uncertain if the quality fac-
tors hold in the GHz domain. On the other hand several
papers investigate the piezoelectric constant of quartz at
Gigacycle frequencies[21–23]. There the excitation has
been measured up to frequencies of 10GHz.

The efficiency of the conversion of electromagnetic en-
ergy into acoustic energy for the piezoelectric effect is
given by [22]

P ac
out = P em

in

C2Qλq

2πV
(19)

C2 =
4πd2

11c11

ε

C is the piezoelectric coupling factor which depends on
the piezoelectric constant in a specific direction, here d11,
and on the elastic constant c11. Q is the mechanical qual-
ity factor, λ the wavelength of the electromagnetic wave,
q the crystal’s thickness, V an appropriately chosen ef-
fective volume of the interaction and ε the dielectric con-
stant of the medium. Because of the the dependence on
the Q value, the sensitivity might in practice be consid-
erably improved by using superconductive cavities at low
temperatures.

There exist two possibilities to couple an electromag-
netic wave to a piezoelectric crystal, either with a re-
entrant cavity or a direct coupling via an impedance
adaptation system [24]. The re-entrant cavity allows to
couple to a crystal with a large surface, that is a diame-
ter of about φ ∼ 5mm, but the coupling efficiency is only
of the order of β = −30dB. The impedance adaptation
system allows for a better coupling of about -15dB, but
only to small surfaces corresponding to a diameter of the
order of φ ∼ 0.1mm. Such a surface seems to small in
order to have sufficient coupling between the mechani-
cal motion and the electromagnetic vacuum field modes.
For this reason I will not consider this possibility in the
following although the coupling is more efficient.

If one excites mechanical motion via piezoelectric effect
on one end of a crystal, electromagnetic energy will be
emitted through the inverse effect on the crystal’s other
end. This might cause a difficulty for the detection of
motion-induced radiation. This difficulty can be circum-
vented either by an efficient screening with a metallic
mirror, or by replacing the crystal with an Aluminium
bulk coated with a quarter-wave thick layer of ZnO [24].

The orders of magnitude for the amplitude of the mov-
ing surface which can be reached with the re-entrant cav-
ity are exposed in the following. Suppose an electromag-
netic source of Pin = 1W. The acoustic power is then

given by Pac = Pin10β/10. This power is converted into
mechanical motion of the surface with an amplitude q0

at a frequency Ω

Pac =
1
2
ZΩ2q2

0A (20)

Z is the acoustic impedance and A the moving surface.
For a mirror of a surface A = 25 mm2 with a cou-
pling efficiency of about -30dB, the acoustic input power
is then Pac ≈ 1mW. For an oscillation frequency of
1GHz and with an acoustic impedance for Aluminium
of Z = 4 × 107kg/m2/s one thus finds a maximum dis-

placement q0 =
√

2Pac
ZΩ2A ∼ 10−12m achievable with the

piezoelectric excitation. Remembering that for values of
F = 109 and F = 1012 of the cavity finesse, the neces-
sary amplitudes in order to reach an effective phase shift
η ∼ 0.9 were respectively q0 = 10−11m and q0 = 10−14m,
the piezoelectric effect therefore could be suitable to ex-
cite the necessary mecanical oscillation.

Finally, we also have to assure that the maximum ex-
citation field applied to the superconducting mirror does
not destroy the superconductivity. No matter how mo-
tion will be excited, the maximum field strength at the
surface of the superconductor must not exceed Emax =
25MV/m [17]. For higher field strengths Cooper pairs
are broken up and the superconductor becomes normally
conducting. As consistency check we may therefore cal-
culate the maximum velocity which can be excited by
such a field:

vmax = Ωq0 =
ε0E

2
max

ρdΩ
(21)

With ε0 = 8.85 × 10−12As/Vm, a density ρ = 10g/cm3,
a layer thickness d ≈ 1µm and an oscillation frequency of
1GHz, the numerical value for the maximum velocity is
found to be vmax ∼ 2×10−4m/s. This value is compatible
only with the peak velocity for a cavity of finesse 1012,
but not for a cavity of lower finesse.

V. CONCLUSION

This paper has discussed motion-induced radiation
from an oscillating high finesse cavity. The present re-
sults apply only for a one dimensional space. As is
well known from the analysis of squeezing experiments,
the transverse structure of the cavity modes does not
change appreciably the results obtained from this simpli-
fied model. Each transverse mode is correctly described
by a two-dimensional model as soon as the size of the mir-
rors is larger than the spot size associated with the mode.
The two-dimensional model thus corresponds to a conser-
vative estimate where one transverse mode is efficiently
coupled to the moving mirrors. A more precise evalua-
tion for a realistic configuration should take diffraction
into account and would probably lead to a result obtained
by multiplying the one-dimensional result by the Fresnel



number, i.e. the number of efficiently coupled transverse
modes [25]. Precise calculations with three dimensional
perfectly reflecting cavities have been performed recently
for example in [26, 27].

To resume the possibilities of observing experimentally
motion-induced radiation emitted by an oscillating high
finesse cavity, the emitted photons may be detected out-
side the cavity by performing sensitive photon-counting
detection of the radiated flux. Inside the cavity the state
of the field could be probed with the help of Rydberg
atoms. However, to excite the motion, a very large force
would have to be applied onto the mirrors which would
create spurious signals. To distinguish experimentally
the motion-induced photons from spurious signals, the
particular signatures of the effect such as pulse shaping
and frequency up-conversion are therefore extremely im-
portant.

Generally, one may say thatthe challenge of this kind

of experiment does not come from one particular con-
straint, but from the fact that all of the above discussed
conditions will have to be fulfilled simultaneously. The
present paper shows that there is no fundamental objec-
tion to the realization of such an experiment, but that it
is very difficult, to meet the ensemble of necessary con-
ditions. However, as dissipative effects of vacuum fluctu-
ations are a fundamental phenomenon related to impor-
tant conceptual questions in physics, their observation
would be worth the effort.
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