
UML Protocol State Machines Incremental Construction: a Conformance-based
Refinement Approach

Olivier Gout Thomas Lambolais
LGI2P

École des mines d’Alès

Nı̂mes 30035 France

{Olivier.Gout, Thomas.Lambolais}@ema.fr

Submitted to SEFM05, LGI2P Research Report RR05/027

Abstract

This article introduces formal relations between UML
Protocol State Machines in order to support their incre-
mental construction. This is based on the use ofconfor-
mance relations. Protocol State Machines (ProSMs) intro-
duced in UML2.0 are means to model external behaviors
of objects and/or components in a service oriented way.
These machines are specializations of generic UML State
Machines without actions nor activities. In previous works,
we adapted Labeled Transition System conformance rela-
tions to UML usual State Machines. Going further,ProSMs
allow us to be more formal thanks to the presence of log-
ical propositions such as state invariants, pre and post-
conditions. Hence, we define a conformance relation as a
specialization of the informal notion of Protocol Confor-
mance of UML2.0 and we illustrate it on an example.

1. Introduction

Our works deal with the construction processes in the
early stages of software intensive system development.
Such steps are: requirements engineering, analysis (abstract
system specification and environment modeling) and ab-
stract design. By the latter, we mean architectural steps but
not detailed design and programming aspects.

Current software engineering practices usually imply the
use of the UML notation de facto standard [8]. For our
purposes we are concerned with dynamic models and es-
pecially UML state machines [8]. Hence, we address the
problem of “UML state machines development”, and in par-
ticular what we shall call “abstractUML state machines”,
i.e. first and simplified UML behavioral models. Basically,
in a top-down process, steps go from abstract to concrete
and precise state machines. On the opposite, in a bottom-

up approach, development steps go from detailed to general
state machines. Since we want our approach to be a prag-
matic one, and we want to take into account current prac-
tices in software engineering, the development framework
we are going to settle up should be able to describe both
kinds of approaches: bottom-up, top-down, and even hy-
brid approaches.

In the category of “theoretical” top-down approaches,
we may classify pure refinement approaches like the “B
method” [1] in the case of the B language. This kind of
approach is theoretically appealing, but we find it too con-
straining: the first steps must be very abstract and global,
for them to implicitly include forthcoming details. Our goal
is not to convert the B method for the UML language. Nev-
ertheless, we are inspired by the refinement relation: we like
the idea of a process “adding details, but preserving previ-
ous properties”.

In the category of “pragmatic” approaches, we may find
classical “extension” approaches in which a new versionis a
specialization of a former version, with new capabilities and
responsibilities, such as new methods in specialized classes.
Suchincrementalconstruction processes are also appealing,
but a risk appears: are new versions compatible with previ-
ous ones? In other words, are new capabilities (extension
points) preserving former ones?

Conformancebetween development steps tackles both
aspects ofreduction(i.e. refinement and property preserva-
tion) andextension: It combines both advantages of theory
and practice. It has been initially proposed in the context
of service and telecommunication protocols [4], to define
the notion of ‘conformance tests’. Afterwards, formal rela-
tions namedconf, ioconf andioco have been proposed for
formal languages like process algebras based onLabeled
Transition Systems[11].

Our point of view is to use such relations in the context
of incremental development processes. In previous works,



we have defined conformance relations for sequential UML
state machines. In this paper, the address the case of UML
protocol state machines. The paper is structured as follows.
The Section 2 introduces UML Protocol States Machines
and shows an example. In Section 3, we informally recall
previous conformance definitions over LTS and UML State
Machines. They are the background for new conformance
relation definitions given in Section 4. This relation is illus-
trated on an example in Section 5.

2. Protocol State Machines

In UML, State Machines are used to model the global
behavior of objects. These models capture both internal
and observable behaviors and do not necessarily make a dis-
tinction between the various orthogonal services offered by
the object. This distinction can be done thanks to Protocol
State Machines (ProSMs in the sequel) a new formalism
proposed in UML2.0. An object can have several ProSMs
for the different services it provides. These ProSMs can be
associated tointerfacesor to ports to specify how others
objects (or components) have to proceed to use a service.
In other words, a ProSM defines at any time which opera-
tion (or method) is enable and which is not, for a specified
service.

2.1. Differences betweenProSMsand SMs

According to the UML2.0 specification [9], ProSMs are
specializations of State Machines. Consequently, ProSMs
are similar to State Machines and can have the same char-
acteristics: concurrency, hierarchy, event policy, etc. Nev-
ertheless, ProSMs impose some restrictions on states and
transitions.

States. Changes in states from State Machines to ProSMs
are threefold:

1. A state in a ProSM cannot haveactionsnor activities,
so entry, exit anddo features no longer exist in
ProSMs.

2. Restriction ondeep historyandshallow historypseudo
states: their use is no longer possible in ProSMs.

3. A state invariant typedConstraint which specifies
a condition that is always true when the state is active.

Notation:

State 1

[invariant expr]

Transitions. Transitions are slightly different. As in
states, actions have been suppressed and replaced by a post-
condition that must be verified once the transition is trig-
gered.
Notation:

State1
[precondition]event/[postcondition]
−−−−−−−−−−−−−−−−−−−−−−→ State2

Theprecondition expression has the same seman-
tics as theguards in generic states machines. Consider-
ing the purpose of ProSMs, events in transitions are, most
of the time,CallEvents corresponding to method-calls
on the object. Other event types such asTimeEvent or
ChangeEvent are also possible.

2.2. Example: Lift Control Service

An example of how ProSMs can be used to model differ-
ent uses or scenario of an elevator control system is shown
on figure 1.

The main classes (cf. figure 1) areElevatorSystem
that captures actions and features of the lift cabin and
the Passenger class. These two classes communicate
through theGenericElevatorService interface. The
Passenger classusesthis interface and this connection is
represented by a circle and a half-circle in the diagram.

A Protocol State Machine is associated to this interface.
The service offered is quite simple and a typical usage cor-
responds to the following sequence sketch:

Calling→ Waiting→ Getting in
↓

Getting out← Choosing a destination

This simple ProSM is represented in figure 2. ProSM
is rather simple, It must not be considered as an advanced
specification of the elevator service. Note that UML2.0
ProSM standard definition [9] does not give any example
of ProSM at the moment, as well as the current literature
which is still very poor on the subject [7].

As specified in the class diagram, the passenger can only
interact with theElevatorSystem through three meth-
ods:

• callTo(floor number: int) models the way
to call for the lift.

• goTo(floor number: int) models the way to
indicate, once inside the lift, which floor to go.

• openDoorRequest() models the way to open the
door.

All these methods are called throughCallEvents
in the ProSM. Other events areChangeEvent



Passenger

1

*

<<interface>>

GenericElevatorService

+DestFloor: int = null

+CurrentFloor: int

+doorOpened: boolean

+doorTime: int

+CallFloor: int

+goTo(floor_number:int): void

+openDoorRequest(): void

+callTo(floor_number:int): void

ElevatorSystem

GenericElevatorServicetakes

1

Figure 1. Elevator class diagram

or TimeEvent whose syntax are, respectively,
when(〈condition〉) and after(〈time
expression〉). All the pre/post-conditions and
invariants must be expressed using the attribute vari-
ables defined in the interface. The first state is the
waiting state, the elevator door is closed. Once the
Passenger activates theCallTo transition the el-
evator is informed of his call. This is ensured by the
postcondition of the transition. Then, when the lift is at
the desired floor (CurrentFloor=CallFloor) the
Passenger is able to get in (doorOpened). Dur-
ing this state, thePassenger can activate thegoTo
transition to indicate his destination. After some du-
ration (doorTime), the elevator closes the door and
is ready to move. If thePassenger has not set his
destination at this point, he can do a call togoTo()
or request the door opening (openDoorRequest()).
If the destination was already set or once he has set it
(DestFloor!=null), the lift takes him to his destina-
tion and opens the door ([DestFloor=CurrentFloor
&& doorOpened]). We refer to figure 2 for more details.

3. Conformance background

Evaluationand correction means at each development
step are the base of a rigorous approach. In the case of
genericUML state machines (abbreviated SM in the se-
quel), evaluation means may be: simulation or animation,
internal and external consistency checking (by external,
we mean with other UML diagrams), property verification,
code generation. . .

Unfortunately, current UML tools do not offer many
state machine evaluation mechanisms. Even basic simula-
tion mechanisms are very rarely proposed.

The simple SM construction process we advocate is
based on a simple ‘good sense’ cycle: design, evaluation,
correction,. . . For our purpose, the evaluation means we
study is the conformance evaluation between development
steps. Informally, such kind of relation checks that a ‘refine-

ment’must acceptall what the abstract stepmust accept.

3.1. Conformance relations for Labeled Transition
Systems

Conformance relations used in test generation derive
from the following idea:

A realizationI is a conform implementation of a spec-
ification S if all entries thatS must accept must also be
accepted byI. Equivally (since the negation of ‘S must ac-
cepta’ is ‘ S may refusea’) “all entries thatI may refuse,
after a trace ofS, may also be refused byS”.

This definition, using refusal sets of actions, is the one
proposed by Tretmans and Brinksma in 1992 [10, 11] to
formalize the ISO definition of conformance testing. Un-
fortunately, in practice, ifI is a black-box implementation
of S, it may be impossible to test the refusal of actions.
Hence, other more practical conformance relations have be
defined, such as input-output conformance (‘ioco’). These
relations have been defined on IOTS (Input Output Transi-
tion Systems). Basically, an implementationI is a conform
realization ofS if the output set ofI after a traces of inputs
defined inI is included in the output set ofS afters.

These relations have been successfully used in test gen-
eration tools. For our purpose, we have been studying an
adaptation of such relations for UML State Machines.

3.2. Conformance Relation for generic State Ma-
chines

In previous works [2, 6], we proposed two conformance
relations intended to be used in an incremental develop-
ment of generic states machines. These relations are named
‘eco’ and ‘aco’ for Event ConformanceandAction Confor-
mance. Their adaptation to UML states machines has led us
to consider non-concurrent state machines and to introduce
nondeterminism capability and a notion of observability for
events and actions.



Waiting
[doorClosed]

Get in
[CallFloor=CurrentFloor

&& doorOpened]

Ready
[CallFloor=CurrentFloor

&& doorClosed]

callTo(floor_number)
/[CallFloor=floor_number]

goTo(dest_floor_number)
/[DestFloor!=dest_floor_number]

after(doorTime)openDoorRequest()

when(DestFloor!=null)

Get out
[DestFloor=CurrentFloor

&& doorOpened]

goTo(dest_floor_number)
/[DestFloor!=dest_floor_number]

when(CurrentFloor=CallFloor)

The postcondition ensures

that the call has been

registered.

These postconditions ensure

that the destination has

been scheduled.

ChangeEvent that indicates that

the lift is arrived but it does not

specify how long after the call

order.

ChangeEvent triggered as

soon as the passenger indicates

his destination.

Figure 2. GenericElevatorService Protocol State Machine

Non determinism We considered non deterministic State
Machines. Harel’s Statecharts can be nondeterministic [3],
but usually, UML State Machines are treated like opera-
tional and deterministic behavioral models. At the end of
the construction process, we aim at obtaining deterministic
models; but for the first abstract steps, non determinism is a
very expressive mechanism.

Observability In UML State Machines, actions, events
and activities are not explicitly said to be observable nor
internal. Conformance relations, like simulation relations,
compare two models from an external point of view: what
are the external/visible interactions offered by a machine?
What are the visible results of internal treatments? As an
answer, we consider change events, time events and com-
pletion events like internal events. Call events and signal
events have to be tagged as either internal or observable by
the specifier.

Event conformance The event conformance relation is
close to the initial “conf” relation defined by Tretmans [10].
In State Machines, transition triggers are events and not ac-
tions, so that we adapted initial definition in the following

way. Informally, a realizationR is event-conform with a
specificationS, writtenR eco S, if all the observable events
thatS must acceptafterse, se being any trace of events of
S (i.e. partial sequence of observable events),must also be
acceptedby R afterse.

We refer to [2] for a more formal definition.

Action conformance Action conformance is inspired
from input-output conformance “ioco” also defined by Tret-
mans [12]. A realizationR is action-conform with a spec-
ification S, written R aco S, if after any trace of events
se, the set of observable actions thatR mayperform is in-
cluded into the set of observable actions thatS mayperform
afterse. This relation is not fully formal because it uses the
notion of action inclusion that is not yet defined in UML.

4. Conformance Relation for ProSMs

UML meta-model context. A relation of conformance
between two ProSMs is already presented in the UML2.0
notation. Unfortunately, this relation remains infor-
mal because of its very general definition. The
ProtocolConformance in UML must be explic-



ProtocolStateMachine ProtocolConformance

EventConformance

+generalMachine

+specificMachine
1 +conformance *

*1

Figure 3. ProtocolConformance specialization

CompletionEvent generated when

S1 submachine terminates

S1

ev2

ev1
ev3

S2

S3

ev4

S4

S1

ev2

ev1

ev3S2

S3

ev4

S4

CompletionEvent suppressed

bypassing the final state

Figure 4. CompletionEvent automatic generation example and transformation to observable model.

itly declared by the ProSM that want to conforms
with a more abstract ProSM. The semantics of the
ProtocolConformance is based on the conservation
of the rules (pre/post-conditions, invariants) of the gen-
eral ProSM in the specific one but the way to maintain
these properties is not addressed. Nevertheless, this rela-
tion is a good starting point to define a more refined rela-
tion. So, our relation is defined as a specialization of the
ProtocolConformance and according to the UML no-
tation, can be implemented in the UML meta model as de-
scribed in figure 3.

As introduced in Section 2, ProSMs specify the ways of
using a service offered by an object but not the ways of how
the object realize this service. Considering this we must
clarify some properties of ProSMs before defining precisely
a conformance relation.

4.1. Properties ofProSMs

Observability. The observability notion is interpreted dif-
ferently in ProSMs than in usual SMs. ProSMs describe
explicitly observablebehaviors where state represent “an
exposed stable situation” [9]. Contrary to SMs which con-
tains internal behaviors that model how services are real-
ized, ProSMs do not contain internal behaviors. However,
there is one kind of events that cannot be observed: the

CompletionEvent. A CompletionEvent is gener-
ated each time an activity is completed. Even when there
is no activity in ProSMs, completion rules apply to subma-
chine with final state. Thus a transition without event spec-
ified can be fired when arriving in a final state (see example
in figure 4).

This kind of transition (without event) is not acceptable
for our study. A simple way to avoid this is to transform
such ProSMs. Without lost of expressivity, we can bypass
the final state by redirecting the transitions to final state to
the state reached by the completion transition (see figure 4).
All other event kinds are considered as observable (even
ChangeEvent).

Nondeterminism. As for generic states machines,
ProSMs have to be deterministic models. For identical
reasons as exposed in Section 3.2 we consider that ProSMs
may be non deterministic. Non determinism is the fact
that with same initial conditions, two identical executions
(an execution starts from an initial state) lead to different
results. Since we assume that all events in ProSMs are ob-
servable, the only kind of nondeterminism is the observable
nondeterminism (for example: a state with two outgoing
transitions with the same label).



Concurrency and Composite States. Concurrency in
ProSMs is authorized and modeled using orthogonal com-
posite states, but some semantic flaws remain. At first,
for sake of simplicity, we shall consider non concurrent
ProSMs.

Hence, without concurrent regions and history pseudo-
states, composite states are just a useful syntactic sugar.
They are a means to factorize transitions and keep diagrams
human readable but do not provide additional expressivity.
Consequently, we do not treat composite states, considering
that they can be automatically transformed in flat state ma-
chines distributing transitions to nested states (see figure 5).
In the same manner, the invariant of the composite state is
distributed to the internal states in conjunction with their
proper invariant.

ev2

ev1
ev3

S2

S3

ev4

S4

ev4

Figure 5. A flat state machine semantically
equivalent to the one in Fig.4

This consideration will help us to express ProSMs in a
simpler formalism.

Running context. An important statement is that we con-
sider running ProSMs1. This means that we are able to
determine the active states of the ProSM under study. We
do not address here a semantics of execution of states ma-
chines. Thus, we assume the run-to-completion step [9] se-
mantics for event processing. This means that we are able
to determine the active state after a trace once the last tran-
sition have been trigerred and before a new event have been
dispatched. In our definitions of flat ProSMs, a running state
machine have exactly one active state.

4.2. Definitions

Having considered all the previous properties, we can
now introduce a protocol State Machines semantic interpre-
tation on transitions systems as follow.

Definition 4.2.1 (Protocol state machine interpretation)A
ProSM P is interpreted as a tuple〈S,Sis, L ,−→, sA〉
where:

1In UML this concept is meaningless because ProSMs are associated
to interfaces that can not be instantiated.

• Sis is the set of initial states;

• S is a set of states defined hereafter;

• L is a set of labels defined hereafter;

• −→⊆ S × L × S is the set of transitions. If
(P, α,Q) ∈−→, we writeP

α
−→ Q;

• sA is the active state in the running context.

Definition 4.2.2 (States, labels)
The setS is a set of state labels,S = (Names ×

Invariant) ∪ Names, where

• Names is the set of states names available inP ;

• Invariant is the set of state invariant expressions of
P . Jointly we defineInv : S → Invariant the function
that for a states associates its invariant.

The setL is a set of labels,L = (Pre × Ev × Post) ∪
(Pre × Ev) ∪ (Ev × Post) ∪ Ev , where

• Pre is the set of preconditions of transitions inP ;

• Post is the set of postconditions of transitions inP ;

• Ev is the set of events ofP . This set cannot be empty.

The notion of classical observable transition of LTS can
be extended to the state machines as follows:

Definition 4.2.3 (Transition)Let α ∈ L be a label andP
be aProSMsuch thatP = 〈S,Sis,L ,−→, sA〉. The rela-
tion =⇒ is defined onProSMs, writing P

α
=⇒ if sA

α
−→.

Precisely, ifP = 〈S,Sis, L ,−→, sA〉 and P
α

=⇒ P ′

thensA
α

−→ s′A andP ′ = 〈S,Sis,L ,−→, s′A〉.
This notation is extended to path transitions

σ = α1; . . . ; αn, writing P
σ

=⇒ P ′ if there existP1, . . . , Pn

such thatP
α1=⇒ P1

α2=⇒ · · ·
αn−1

=⇒ Pn−1
αn=⇒ P ′.

We define event trace sets as follows:

Definition 4.2.4 (Events traces, Refusal)LetP be a Proto-
col State Machine andσ ∈ EvTraces(P ) be an event trace.
EvTraces(P ) is the event traces set andref(P, σ) is the re-
fusal set defined as follows:

• EvTraces(P ) =def {σ ∈ Ev
∗ | P

σ
=⇒}

• ref(P, σ) =def {ev ∈ Ev | ∀P ′, P
σ

=⇒ P ′ 6
ev

=⇒}

The concept of refusal in a state corresponds to the events
for which the evolution of the system is not explicitly spec-
ified. In fact the events do not make absolutely evolve the
system at this time. In a strict sense, in State Machines,
there is no refusal: just like the IOTS, in any state, the re-
sponses of the system are specified for any event. But when
this answer corresponds to be unaware of a given event, we
call it here a refusal.



<<interface>>

GenericDigitalCamera

+power: boolean

+idleTime: int

+on(): void

+off(): void

+shot(): void

DigitalVideoCamera

Photographer

GenericDigitalCamera

1

*

uses

Figure 6. Digital Camera and Photographer system class diagram

Definition 4.2.5 (PreCond, PostCond, Invar)Let P be a
Protocol State Machine andσ ∈ EvTraces(P ) be an
event trace. PreCond(P, σ) is the set of thelast pre-
conditions that must have been verified to completeσ;
PostCond(P, σ) (resp.Invar(P, σ)) is the set of postcondi-
tions (resp. invariants) that must be verified after the trace
σ and defined as follows:

PreCond(P, σ) =def {p ∈ Pre | P
σ′;[p]ev

=====⇒,

with σ = σ′; ev}

PostCond(P, σ) =def {p ∈ Post | P
σ′;ev/[p]

=====⇒,

with σ = σ′; ev}

Invar(P, σ) =def Inv(s′A) with P
σ

=⇒ P
′

and

P
′ = 〈S,Sis, L ,−→, s

′

A〉

4.2.1 Conformance relation

These traces, action and refusal sets, guide us to define a
conformance relation, in a similar way to that already de-
fined for LTS and IOTS.

Definition 4.2.6 (Event conformance)LetP andP ′ be two
protocol state machines

P ′ eco P if, for eachσ ∈ EvTraces(P ),

ref(P ′, σ) ⊆ ref(P, σ)

and PreCond(P, σ) ² PreCond(P ′, σ)

and

(

PostCond(P, σ)
∪ Invar(P, σ)

) ²
PostCond(P ′, σ)
∧ Invar(P ′, σ)

Thus we ensure that when preconditions are strength-
ened, the resulting postconditions and invariants are also
strengthened.

It defines a relation that captures a kind ofbehavioral
substitutabilitybetween ProSMs. This conformance rela-
tion takes into account both events sequences and logical
properties (constraints). Verifying this relation is a means
to deal with ProSMs refinement and thus to support incre-
mental design of ProSMs.

5. Example

To illustrate the usage of theeco relation in an incremen-
tal design process, we propose incremental design process,
we propose to study a simple case of incremental st to study
a simple case of incremental step. We consider a basic dig-
ital camera interface offered by a digital video camera and
used by a photographer. A first class diagram is given in
figure 6. We consider two attributes:

• power is a boolean which indicates the power status
of the camera.

• idleTime is an integer representing the duration (in
seconds for example) of inactivity before automati-
cally entering in idle mode.

5.1 First step

At this stage, thePhotographer can only call three
methods. This first step is very abstract and just models the
basic usage/service of a digital camera, typically:

Switching on → Shooting → Shooting → . . . → Switching off

A ProSM of this service is proposed in figure 7, with
invariants and a timed transition in addition. We call this
ProSMPCam.

on()

off()

Idle
[power=false]

Operate
[power=true]

after(idleTime)

shot()

Figure 7. First ProSM for generic video cam-
era: PCam

5.2 Second step

In this second stage, we precise the definition of the ser-
vice with new methods and attributes. the resulting class



on()

off()

Idle
[power=false]

after(idleTime)

ViewMode
[display=true &&

power=true]

BlindMode
[display=false

&& power=true]]

Setup
[power=true]

disp() disp()

menu() menu()

shot()

shot()

off()

off()

Figure 8. Flat PCam
′.

on()

off()

Idle
[power=false]

Operate
[power=true]

after(idleTime)

ViewMode
[display=true]

BlindMode
[display=false]

Setup

disp()

disp()

menu()

menu()

shot()

shot()

Figure 9. Second Refined ProSMfor generic video camera.

diagram of the interface is slightly different (see figure 10).
We add:

• The attributedisplay, a boolean used to differenti-
ate view mode and blind mode;

• The methoddisp(), to access and exit the setup
mode of the camera;

• The methodmenu(), used to activate or deactivate
display.

The ProSMPCam
′ associated is exposed in figure 9. The

newmenu() anddisp() methods are used to refine the
service when the digital camera is operating. The refine-
ment is done by adding nested states and transitions in the
Operate state.

5.3 Conformance evaluation

First we have to transformPCam
′ into a flat ProSM. The

flat ProSM equivalent toPCam
′ is given in figure 8.

After that, we have to compute refusal sets ofPCam and
PCam

′ on the event traces ofPCam. To do this we have
to determine the traces set ofPCam. This set is given as a
grammar-like expression :

EvTraces(PCam) = Prefix((on(); shot()
∗

; off())∗)

wherePrefix(σ)), σ ∈ Ev is the set of the prefixes ofσ
trace. Now we can examine refusal sets:

ref(PCam ′, {on()}) = {on(), after(idleTime)}
ref(PCam, {on()}) = {on()}

so ref(PCam ′, {on()}) 6⊆ ref(PCam, {on()})
and PCam′ eco� PCam

As a result,PCam
′ is not event conform withPCam.

The reason is that from step1 to step2, the timed transi-
tion labeledafter(idleTime) has been moved from
the composite stateOperate to one of its nested states
BlindMode. The aim of this move is to model the fact that
the auto power-off mode can only be activated when the dis-
play is off. Consequently, aPhotographer designed to
use a “step1”GenericDigitalCamera may bedead-
lockedin theViewMode because he cannot know how to
transit toBlindMode. In a finalized product, this kind of
modeling error would cause a battery discharge. Generally,
when refining, changing the source state of a transition to
a nested state of the original source is a wrong refinement.
This kind of error is detected with our relation.

6. Conclusion and future work

ProSMs differ sensibly from UML usual State Machines
in the sense that they are more abstract (actions and activi-



<<interface>>

GenericDigitalCamera

+power: boolean

+idleTime: int

+display: boolean

+on(): void

+off(): void

+shot(): void

+menu(): void

+disp(): void

Figure 10. GenericDigitalCamera service: new class diagram.

ties are not detailed any more) but also that all the described
behaviors are observable. Internal transition triggers cannot
be used any more, since ProSMs describe the offered ser-
vices and not a way it could be implemented. In order to
define a conformance relation over ProSMs, abstraction is a
real advantage, but the absence of internal transitions led us
to adopt another point of view of the refinement notion.

For the first stages, we consider fully observable abstract
non deterministic ProSMs: the refinement steps concern the
reduction of nondeterminism. Indeed, for such stages, non-
determinism is a very convenient means to formally specify
a behavior which is not entirely known. Hence, like pre-
vious conformance relations, the relation we defined over
ProSMs reduces nondeterminism.

There is also a practical advantage of dealing with
ProSMs rather than directly with State Machines. The
ProSM language is very close to FTS (Fair Transition Sys-
tems). FTS are defined with state invariants and logical con-
ditions to trigger transitions. Since several studies and tools
have been proposed for FTS [5], we can reasonnabily hope
to realize a bridge between UML ProSMs and FTS at short
time.

The main differences between ProSMs and FTS consist
in the internal transition which can be directly used in FTS,
and in the fact that FTS cannot be externally nondeterminis-
tic. But refinement relations defined over FTS make a spe-
cial use of the internal transition. It appears that a first way
to translate ProSMs nondeterminism could be to use FTS
internal transition.

References

[1] J.-R. Abrial.The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] O. Gout and T. Lambolais. Construction incrmentale
de modles comportementaux UML. In J. Julliand, edi-
tor, AFADL’04, Approches Formelles dans l’Assistance au
Dveloppement des Logiciels, pages 29–42, Besanon, June
2004. Translated as a Research Report ref.[RR05/001].

[3] D. Harel and M. Politi. Modeling Reactive Systems with
Statecharts. The Statemate Approach. Computing McGraw-
Hill, 1998. ISBN 0-07-026205-5.

[4] ISO/IEC-JTC1/SC21. Conformance Testing Methodology
and Framework, April 1989. DIS 9646.

[5] O. Kouchnarenko and A. Lanoix. Refinement and Verifi-
cation of Synchronized Component-based Systems — Ex-
tended version of the FM’03 article. Research Report, IN-
RIA, June 2003.

[6] T. Lambolais and O. Gout. Using Conformance Relations to
Help the Development of State-Machines. In IEEE, editor,
ISSRE’04, International Symposium on Software Reliability
Engineering, Saint-Malo, November 2004.

[7] V. Mencl. Specifying Component Behavior with Port State
Machines. In F. de Boer and M. Bonsangue, editors,Pro-
ceedings of the Workshop on the Compositional Verification
of UML Models (CVUML, Oct 21, 2003, part of UML 2003),
volume 101C, pages 129–153. Electronic Notes in Theoret-
ical Computer Science, Nov 2004.

[8] OMG. OMG Unified Modeling Language Specification.
OMG formal/03-03-01, March 2003.

[9] OMG. OMG Unified Modeling Language Specification.
OMG Adopted Specification ptc/03-08-02, August 2003.

[10] J. Tretmans.A Formal Approach to Conformance Testing.
PhD thesis, University of Twente, Enschede, The Nether-
land, 1992.

[11] J. Tretmans. Repetitive Quiescence in Implementation and
Testing (Extended Abstract). In A. Wolisz, I. Schiefer-
decker, and A. Rennoch, editors,Formale Beschreibung-
stechniken f̈ur verteilte Systeme, number Nr. 315 in
GMD-Studien, pages 23–37, St. Augu, 1997. GI/ITG-
Fachgespr̈ach, GMD.

[12] J. Tretmans and A. Belinfante. Automatic testing with for-
mal methods. InEuroSTAR’99:7th European Int. Confer-
ence on Software Testing, Analysis & Review, Barcelona,
Spain, November 8–12, 1999. EuroStar Conferences, Gal-
way, Irelan.


