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A B S T R A C T

The purpose of this article is to show that when dynamically cold, dissipationless self-

gravitating systems collapse, their evolution is a strong function of the symmetry in the initial

distribution. We explore with a set of pressureless homogeneous fluids the time evolution of

ellipsoidal distributions and map the depth of potential achieved during relaxation as function

of initial ellipsoid axis ratios. We then perform a series of N-body numerical simulations and

contrast their evolution with the fluid solutions. We verify an analytic relation between

collapse factor C and particle number N in spherical symmetry, such that C/ N 1=3. We sought

a similar relation for axisymmetric configurations, and found an empirical scaling relation

such that C/ N 1=6 in these cases. We then show that when mass distributions do not respect

spherical or axial symmetry, the ensuing gravitational collapse deepens with increasing

particle number N but only slowly: 86 per cent of triaxial configurations may collapse by a

factor of no more than 40 as N ! 1. For N < 105 and larger, violent relaxation develops

fully under the Lin–Mestel–Shu instability such that numerical N-body solutions now

resolve the different initial morphologies adequately.

Key words: galaxies: formation – galaxies: haloes – dark matter.

1 I N T R O D U C T I O N

Cold, sub-virial distributions of stars undergo a phase of

gravitational focusing during which binding energy is redistributed

between them (Lynden-Bell’s ‘violent relaxation’ process, see

Binney & Tremaine 1987, hereafter BTþ87). The equilibria

established through this process show density profiles which, when

averaged over spherical shells, approach a de Vaucouleurs law

applicable to elliptical galaxies (van Albada 1982; McGlynn

1984). This has since motivated studies of galaxy and galactic halo

formation by some degree of gravitational relaxation (e.g.

Henriksen & Widrow 1997; Weinberg 2001). A hands-on approach

to this problem, free of geometric constraints, consists in inte-

grating the equations of motion with N-body numerical codes. A

crucial step when applying results from N-body experiments to

actual galaxies and haloes consists of bridging the gap between

simulation particle numbers and the actual number of stars (or

generally, mass elements) in galaxies, which still differ by five

orders of magnitude or more in present-day simulations of

collisionless dynamics (Athanassoula 2000). It is therefore

essential to establish the scaling of N-body results with particle

number.

The following example in spherical symmetry brings the

problem to focus. A star at rest converges to the centre of gravity of

a free-falling distribution of mass M in an interval of time:

tff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p

32Gkrða; 0Þl

s
ð1Þ

where krða; 0Þl ¼ 4pM/3a 3 is the mean density inside the star’s

initial radius, a. (The result holds when stars accrete at the origin,

so that shell-crossing is suppressed, see Lynden-Bell 1973.) When

the density profile is flat initially, all stars converge to a point in a

free-fall time. The time-dependent gravitational potential along a

radial orbit is

Fðr; tÞ ¼ 2
GM

2R
3 2

r 2

R 2

� �
; 72F

��
R
¼ 2

GM

R 3
; ð2Þ

with r , R, the system radius, and double-differencing with

respect to r at fixed time yields a measure of the tidal field at r. We

note that the tide is unbound as collapse proceeds and R ! 0. In

general one would not expect a flat density profile on the scales of a

galaxy but rather a heterogeneous or clumpy matter distribution.

Furthermore fragmentation modes develop on all scales in

homogeneous, cold distributions (Aarseth, Lin & Papaloizou

1988, hereafter ALPþ88). Bound clumps would survive violent

relaxation if their binding energy is high (van Albada 1982;

Tsuchiya 1998). However the above argument suggests that
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remnant structures would be severely affected by the maximal

potential depth experienced during collapse (here, when R reaches

a minimum). What constrains this maximum, and how does it scale

with particle number? The survival of bound substructures, the

mixing of orbits and energy exchanges between stars all relate to

constraints set on (2).

We explore these questions both analytically, through an

idealized model of collapsing self-gravitating pressureless fluids,

and with a set of numerical N-body calculations to bring out

discreteness effects. We find that while collapse simulations in

spherical symmetry reproduce theoretical expectations of vigorous

infall (ALPþ88), small departures from sphericity lead to much

gentler collapse. Specifically, we perform N-body simulations of

collapsing spheroids covering four decades in particle number N

(up to 16 million) using a Fast Fourier Transform (FFT) code to

integrate the equations of motion. We show empirically that during

the collapse of spheroidal distributions, the maximum gravitational

energy achieved scales with particle number as /N 1/6 and so

becomes infinite as N ! 1. Triaxial initial configurations offer no

such scaling with particle number. We find from the pressure-free

fluid calculations that the maximum gravitational energy achieved

depends sensitively on the initial axis ratios. We survey the

parameter space of axis ratios on a mesh of 836 points integrated

with high resolution to quantify energy maxima. We then use this

to constrain the increase in potential energy of self-gravitating

finite-N systems. Thus for instance, unless triaxial mass profiles are

initially rounder than E1, their linear size on average will contract

by no more than a factor O(20).

We cover the mathematics in Section 2 before giving details of

our simulations in the section that follows. The implications of our

study to scenarios of galaxy formation are presented in the last

section.

2 A N A LY S I S

Our overall objective is to find out the maximum potential depth

haloes and galaxies may attain during violent relaxation. For

constant initial density, equation (1) shows that the first caustic

occurs at the unique free-fall time tff. This would involve the whole

of the galaxy, as opposed to a subset of stars. It is therefore the

profile of choice for our study. We justify this choice in part below

and later with numerical modelling (see Section 4).

2.1 Results in spherical symmetry

We begin by considering in more details the collapse of uniform

density spheres. The results of this subsection are those of ALPþ88.

The solution for radial infall of uniform spheres takes the

parametric form

sin 2hþ 2h ¼
8GM

rð0Þ3

� �1=2

£ðt 2 t0Þ ð3Þ

with rðtÞ ¼ rð0Þ cos2h, hðt ¼ t0Þ ¼ 0 and free-fall is complete

when h ¼ p=2. If we perturb the density profile so r : r0 þ dr,

dr . 0 (or, ¼0) for r , a (or, .a), the free-fall time is now a

function of position and no singularity forms. From (1) we write

the new collapse time

tff : tff £ ð1 2 dr/rþ O½ðdr/rÞ2�Þ ; tff 2 dtff : ð4Þ

Introducing

hðtffÞ ¼
p

2
2 e

and inserting this in (3), we find on truncating the Taylor expansion

to second order in dtff that

e 3 ¼
8GM

rð0Þ3

� �1=2

£dtff : ð5Þ

Since the motion is pressureless, spherical mass shells re-expand

radially once they have reached the centre. Those that originate

outside r ¼ a meanwhile continue inwards. This spread in arrival

time means that the linear dimension of the sphere reaches a

positive minimum. This minimum is known in terms of the original

system size and dtff:

C21 ;
Wð0Þ

WðtffÞ
¼

rðtffÞ

rð0Þ
¼ cos2hðtffÞ ¼ sin2e < e 2 / ðdtffÞ

2=3; ð6Þ

where C is the collapse factor, and W / GM 2/r is the system’s

gravitational energy. Note that the definition of C applies equally to

non-spherical systems; the first equality in (6) is valid only for

spheres.

So far we have not specified the form of dr in the region 0 ,

r , a of the initial configuration, only that it be positive. If

furthermore dr is a non-monotonic function of position, shell-

crossing will occur before any shell has reached the centre. This

would contribute to smooth out fluctuations by orbit mixing, but

would not affect infall of the system as a whole. In the case of a

point-mass realization of a uniform density stellar system,

discreteness introduces Poissonian noise so that dr/r/ 1/
ffiffiffiffi
N
p

,

with N the total particle number. The ratio (6) now scales with the

inverse one-third power of N, or

C/ N 1=3: ð7Þ

The density perturbations dr . 0 leading to (7) are Jeans-type

fragmentation modes of instability: the enhanced gravity pulls in

the matter which condenses faster at the origin, as in the classic

Jeans condensation of star-formation studies. The scaling relation

(7) recovers the solution for a cold Newtonian fluid in the limit

N ! 1, for which rðtffÞ! 0. Systems with small particle numbers

experience relatively larger density fluctuations, which act as seeds

for fragmentation modes contributing to halt radial infall. Infall

stops once orbit crossing occurs in the centre, as encapsulated by

the spread in radial collapse time (6).

The above analysis would not apply to initially cuspy profiles,

since in that case shell-crossing takes place immediately at the

centre. Analysis with shell-crossing is beyond our scope. However

if we view a peaked profile as a perturbed, uniform-density

distribution, where a large-amplitude perturbation is necessary to

distinguish it from Poissonian noise, the spread in free-fall times,

dtff, would then be even larger, so presumably (6) is minimized for

initially flat profiles.

2.2 Non-spherical collapse

2.2.1 Small deviations

Pressureless, self-gravitating oblate or prolate structures collapse

first down the shortest axis (Lynden-Bell 1964; Lin, Mestel & Shu

1965). Hence perturbations breaking the spherical symmetry while

preserving internal density homogeneity grow in time. Writing

rðtÞ ¼ rð0Þ cos2h r̂þ j; ð8Þ

where h(t) is known from (3) and jðr; u;f; tÞ ¼ vector displace-

ment of the spherical surface with respect to the radial direction r̂,
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Lagrangian linear analysis shows growth rates for these modes (cf.

equation 37 of ALPþ88)

d2j

dt 2
¼

4p

3

Gr0

ðcos2hÞ23

n 2 1

2nþ 1
j; ð9Þ

where n . 1 is the principal number of an angular decomposition

of the displacement in spherical harmonics ðn ¼ 1 corresponds to a

homogeneous radial contraction). Thus the right-hand side in the

above equation is positive and jjj becomes larger in time. Since (9)

is linear in j, angular and radial components of each mode (or,

value of n) grow in time at the same rate. We may solve

numerically for jjj as a function of time using (3). However an

approximate solution is found immediately if we note that for

collapse in spherical symmetry the time-averaged square cosine,

kcos2hl ¼ 1=2

gives a mean ratio rðtÞ/rð0Þ ¼ 1=2 averaged over tff. Substituting

this in (9) and writing jjj ¼ jðtÞ we find on integrating

jðtÞ ¼ j0 exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

4p

3
Gr0

n 2 1

2nþ 1

r
½t 2 t0�

 !
ð10Þ

Thus high-order n @ 1 modes grow faster with increasing t 2 t0.

At the time when jðtÞ . rðtÞ, the linear size of the system may be

compared with (6) in order to determine which type of pertur-

bations develop the fastest for a given particle number. For this

purpose we truncate to third order a Taylor expansion with respect

to t 2 t0 of (10) in the limit h ! p=2, (i.e. t 2 t0 ! tffÞ. In the case

of Poissonian fluctuations, we find from (6) and (7) that the

fragmentation modes in spherical symmetry develop faster than

surface modes (8) when

N 1=3 &
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 1

2nþ 1

r
þ

p2

2

n 2 1

2nþ 1
þ 1

 !21
j0

r½0�

� �21

: ð11Þ

For a particle realization of a uniform-density sphere, the statistics

will be Poissonian. The surface mode should initially rise above the

noise level to be effective. We therefore set

j0

rð0Þ
¼

1ffiffiffiffi
N
p ;

from which we find a critical particle number,

N1=6
c ¼

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 1

2nþ 1

r
þ
p2

2

n 2 1

2nþ 1
þ 1; ð12Þ

such that for N & Nc fragmentation modes (‘clumpiness’) halt

radial infall before
ffiffiffiffi
N
p

2 seed surface modes have developed fully

and led to pancaking. If we make n @ 1 we compute the maximum

value possible for Nc:

Nc < 4:66 . 9475: ð13Þ

Otherwise said, this Nc is the largest possible particle number for

which discreteness effects (noise) may significantly distort the flow

of a collapsing sphere through a pancaking mode.

The results (12) and (13) apply to initially small amplitude

deviations from spherical symmetry. For sufficiently large

deviations from sphericity, linear analysis shows that small particle

number simulations may yet reproduce the pancaking collapse of

cold fluids (Lynden-Bell 1964; Lin, Mestel & Shu 1965). Consider

for example an axisymmetric displacement of amplitude j0 .
rð0Þ=4 mapping a sphere to a spheroid of aspect ratio 3:4. For this

case we compute from (11) N & 43/ð4:6Þ3 , 1. Thus for

axisymmetric cold distributions, of initial aspect ratio , 3=4, any

sensible simulation particle number will reproduce the Lin–

Mestel–Shu flow adequately. The time-evolution of axis-ratio of

collapsing triaxial systems with N ¼ 105 particles performed by

Hozumi, Fujiwara & Kan-Ya (1996) shows growth of surface

modes (pancaking) in agreement with (11). The initial axis ratios of

their systems were j0/rð0Þ . 0:01 and 0.005, or three times the

Poisson noise level for this number of particles.

We stress that uncorrelated Poisson noise of a uniform spherical

distribution is not sufficient in itself to lead to appreciable

flattening during infall, for any particle number. Thus the scaling

(7) is well recovered from simulations with as few as N , 102

particles (see ALPþ88; Boily, Clarke & Murray 1999), therefore

(12) does not invalidate the interpretation of previous studies of

small-N collapse simulations in terms of one-dimensional radial

motion (e.g. van Albada 1982; Aguilar & Merritt 1990; Cannizzo

& Hollister 1992).

2.2.2 Large deviations: ellipsoidal figures

A uniform-density ellipsoid collapses down the minor axis before

major-axis collapse is complete, followed by re-expansion when

the fluid is also pressureless. Since all orbits are synchronous in a

homogeneous distribution, phase-mixing is minimal. Minor-axis

cyclic motion continues while the ellipsoid collapses down the

major axis, until it too rebounds while the minor-axis assumes a

finite value. For a perfect fluid, such cycles of collapse/expansion

may repeat themselves without loss of cohesion. For a fluid made

up of stars, however, the stars exchange kinetic energy and phase

along their orbits, causing damping. In the case where the system is

initially oblate spheroidal, axes a1 ¼ a2 . a3, Boily et al. (1999)

found in N-body simulations the time-evolution of the aspect ratio

after plane crossing to be approximately given by

a3ðtÞ

a1ðtÞ
¼

a3ð0Þ

a1ð0Þ

a1ðtÞ

a1ð0Þ

� �21=3

ð14Þ

i.e. the spheroid becomes rounder as collapse continues and the

major axis a1ðtÞ! 0. In practice only a few minor-axis oscillations

are detected before phase mixing and violent relaxation lead to

equilibrium with little or no streaming pattern. We want to

establish for triaxial initial configurations a constraint on the

collapse factor C in (6) by solving the equations of motion for a

pressureless ellipsoidal fluid integrated over a time-scale for

complete relaxation suggested by N-body simulations. The motion

of a triaxial uniform ellipsoid, of axes a1 . a2 . a3, is governed

by a set of harmonic equations (BTþ87, table 2.1),

d~vi

d~t
¼ 27iFð~xÞ ¼ 2

~xi

~x3
1

AiðaÞ; ð15Þ

d~xi

d~t
¼ ~vi; ð16Þ

where ~xið~tÞ ¼ aið~tÞ/aið0Þ, ~vð~tÞ ¼ d~xi/d~t are dimensionless functions

of the dimensionless time ~t ; t/tff . The coefficients Ai(a) are

known from potential theory. For instance we have

A1ðaÞ ; 2
a2ð0Þa3ð0Þ

a2
1ð0Þ

Fðu; kÞ2 Eðu; kÞ

k 2 sin3u

with similar definitions for A2, A3, and

kð~tÞ ;
a2

1 2 a2
2

a2
1 2 a2

3

� �1=2

; uð~tÞ ; cos21 a3

a1

� �
: ð17Þ
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Here F, E are incomplete elliptical integrals (see BTþ87 for

details). We may identify the most relevant configurations by

inspecting the gravitational energy. The self-gravitating potential

energy W is known for uniform ellipsoids from

Wða; tÞ ¼ 2
3

5

M 2

a1ðtÞ

Fðu; kÞ

sin u
ð18Þ

with the definitions (17). The energy W in (18) diverges when the

ellipsoid collapses to a rod (or spindle) which is the case when

a ! ða1; 0; 0Þ. It remains finite when two axes are non-zero, which

includes collapse to a disc. Therefore the force and tidal fields are

maximized when ellipsoids develop spindles, together with W. To

constrain the tidal field, it is therefore sufficient to determine when

an ellipsoid forms a spindle, or, generally, what maximum value W

may reach during evolution. We were not able to determine these

analytically and have resorted to a numerical integration of the

equations of motion. We found it useful to introduce the parameter

t defined as

t ;
a2 2 a3

a1 2 a3

$ 0: ð19Þ

Thus axisymmetric prolate spheroids ða2 ¼ a3Þ all have t ¼ 0,

whereas axisymmetric oblate spheroids ða1 ¼ a2Þ have t ¼ 1.

Triaxial structures assume intermediate values.

3 S O L U T I O N S F O R P R E S S U R E L E S S

E L L I P S O I D S

3.1 Method & tests

For given axes a ¼ ða1; a2; a3Þ we may integrate (15) and (16)

subject to the initial conditions ~xið0Þ ¼ 1; ~vi ¼ 0. Note that the

equations are singular when any of the axes vanishes. To integrate

through such singularities we enforce time-symmetry by reversing

the flow: ~vi ! 2~vi whenever ~xi # e, with e a free parameter. We

set up a fourth-order Runge–Kutta integrator (Press et al. 1992)

and varied e from 1023 down to 1 £ 1026 without appreciable

differences in the integrated global quantities such as maximum W

and time (see Table 1). However, details of the fluid configurations

converged to good accuracy only when e < 5 £ 1025 or less. To

quantify the quality of orbit integration, we computed both axial

lengths and velocity components for the representative case where

ða1; a2; a3Þ ¼ ð1; 1=2; 1=3Þ; then initially t ¼ 1=4 from (19). We

computed a similar quantity tv from the velocity components

ð_a1; _a2; _a3Þ which we evaluated at t ¼ tmax, when W/Wð0Þ is

maximum.

The results are listed in Table 1 for various values of e. By

comparing the runs of individual components (a1, ȧ1) and those of

(t, tv) with decreasing e, we may conclude that both geometric and

velocity ellipsoids vary little with e. This does not hold for

individual components, such as major axis, a1. This last quantity

must reach a minimum a few times larger than e to ensure that the

dynamics is resolved properly. Drawing from the results in the

table, we set e ¼ 2 £ 1025 or 1:5 £ 1025 in all our integrations as a

minimal condition to accurate integration.

In conjunction with the value of e, the choice of time-step is

crucial: we adopted a time-adaptive scheme tailored to the

instantaneous free-fall time (1) at each step. This allowed us to

resolve in time increases in potential energy by factors up to <340,

while keeping errors below the 1 per cent level (though not for

axisymmetric systems, see below).

When integrating equations (15) and (16), care must be taken

that the indices (1, 2, 3) are circulated between each axis to identify

the current major and minor axes properly, and allow the correct

evaluation of the force field. All integrations were done in three

dimensions but we found it necessary to enforce symmetry in the

potential when treating initially axisymmetric configurations in

order to prevent large numerical errors. With enforced symmetry,

we computed correctly the growth of singular axisymmetric

potentials for a collapse factor reaching <40. As a test, we

integrated through the singularities formed through major-axis

collapse of axisymmetric spheroids with initial axes ð1; 1=2; 1=2Þ

and ð1; 1; 1=2Þ. The error in binding energy at the end of integration

reached 5 and 6 per cent in each case respectively, which we take as

reference later when sampling the space of triaxial initial

configurations. Note that these errors were accrued during a single

integration through singularity: the slow divergence of W ! 1 as

axes vanish makes agreement with theory intractable, however the

important quantity for these cases must be the time t when W

diverges (since the spindle morphology is known), which could be

evaluated to high accuracy.

In order to determine the sensitivity of our integration scheme to

the symmetry of the system, we integrated a triaxial configuration

with axes ¼ ð1; 0:99; 1=2Þ, i.e. nearly oblate axisymmetric. In this

case integration yielded a maximum collapse factor of <26 and a

total error accrued for the system binding energy of <0.5 per cent

with the same set-up used for the strictly axisymmetric case

discussed before. We concluded from this that the integrator

resolves relatively small departures from axisymmetry, of the order

of 1 per cent in axial ratios; and that these small departures are

sufficient to avoid spindles and large energy errors, while still

collapsing by appreciable factors.

We have monitored the three axes x̃i as a function of time to

determine whether a spindle forms, which, in view of our

Table 1. Axes and velocity components for a triaxial pressureless configuration with initial
axes ða1; a2; a3Þ ¼ ð1; 1=2; 1=3Þ for different values of the parameter e. The time tmax refers to the
moment when the configuration is most compact (maximum W ). Integration ended at tfinal ¼
4:398 model units.

e tmax Wmax a1/1023 ȧ1 t tv a1 ȧ1

(at tfinal) (at tfinal)

1 £ 1023 1.934 6.21 1.780 2.291 0.257 0.125 0.358 20.008
5 £ 1024 1.933 6.31 0.954 2.291 0.259 0.169 0.372 20.044
1 £ 1024 1.930 6.40 0.169 2.291 0.262 0.206 0.377 20.074
5 £ 1025 1.931 6.41 0.014 2.291 0.262 0.212 0.381 20.075
1 £ 1025 1.930 6.42 0.025 2.291 0.263 0.213 0.382 20.076
5 £ 1026 1.930 6.42 0.024 2.291 0.263 0.213 0.383 20.075
1 £ 1026 1.930 6.42 0.025 2.291 0.263 0.214 0.381 20.079
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approximations, is the case when

a ! ða1; e ; eÞ; a1 . e : definition of a spindle: ð20Þ

If this occurs, then a self-gravitating body may assume an even

larger collapse factor C defined in (6) since our scheme does not

resolve the dynamics below that scale. The identification of

configurations of high potential energy is made difficult owing to

the slow divergence of W with vanishing minor axes a2, a3

(spindle), or all three axes simultaneously (spherical case). By

contrast, the case when only one axis vanishes (by definition not

the major axis) is integrable to high accuracy. We therefore

computed the logarithmic averaged length l ; ða1a2a3Þ
1=3, which

we used together with (20) to ensure that the maximal potential

energy computed occurred at the same time as the minimum of l.

As a final precaution, we rejected any integrated solution that

accumulated errors in binding energy exceeding 10 per cent, in

view of our tests with axisymmetric configurations. When (20)

does not occur, the collapse factor reaches a finite maximum: this

maximum is then the limit any N-body collapse calculation for this

initial geometry may reach, since discreteness effects will only

increase the growth of kinetic energy and slow down collapse.

3.2 Results

Anticipating the results from N-body calculations of Section 5, we

integrated (15) and (16) up to t ¼ tffð~t ¼ 1Þ, corresponding to one

free-fall time (1) in spherical symmetry. We then explored the

parameter space of [a2(0), a3(0)] by sampling the parameter t

uniformly in the interval [0,1], for a total of 900 pairs (a2, a3),

while fixing the major axis to an initial value a1ð0Þ ¼ 1. We

evaluated (18) and kept the largest value, Wmax, found during

integration. The results are displayed in Fig. 1. The bottom panel

graphs the surface of maximum energy for all pairs a2(0), a3(0). It

is striking that large islands exist where maxðWÞ , Oð10Þ, whereas

all axisymmetric configurations with t ¼ 1 or 0 (i.e., a2 ¼ 1 and

a2 ¼ a3, respectively) must develop spindles and infinite W. The

vertical axis has been capped to Wmax/Wð0Þ ¼ 25 for clarity.

Larger values were not prohibited in the course of integrating

numerically. The presence of fragmented regions with large W in

the plane (a2, a3) are indicative of the formation of spindles or very

compact configurations, in the sense of our equation (20). We note

the presence of islands of as few as a single point were

Wmax/Wð0Þ $ 25, suggesting a complex topology. Details of the

Figure 1. Maximum potential energy Wmax achieved by pressureless homogeneous ellipsoids of axes a1 ¼ 1 . a2 . a3 collapsing from rest. W has been

normalized to its initial value. The Wmax surface is projected in the a2 –a3 plane and three contours are shown, W/W0 ¼ 12, 18 and 24. The maximum values

displayed have been truncated to 25.
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topology of the energy surface W are not important to the main

argument and will not be pursued further.

Cases where spindles formed from initially triaxial configur-

ations turn out to be exceptional. For these cases, a repeat of the

integration with a smaller e lead to larger max(W) at the time the

spindle formed, requiring careful step-wise integration over a small

time interval. The remainder of the integrated solution, however,

was left largely unchanged, giving confidence that singularities

were correctly identified and cured. As stated earlier, we rejected

all runs that accumulated errors in binding energy through full

time-integration exceeding 10 per cent: in total some 62 (i.e. 7.1

per cent) of all initial configurations were rejected on this basis. A

graph of dE/E0 versus MaxðW/Wð0ÞÞ showed no clear trend with

increasing MaxðW/Wð0ÞÞ for these 62 cases, as would have been

the case if a single integration through singularity at high density

was accountable for the bulk of the error budget: instead, large

numerical errors develop owing to repeated integration through

singularities, which may occur in rapid succession if the initial

configuration is significantly non-axisymmetric. Indeed of the 62

cases with significant energy errors, 37 initially had axis ratios

a3/a1 ¼ 1=10 or lower; two more showed near sphericity, with

a2/a1 and a3/a1 . 0:999. The remaining 23, however, showed no

peculiarities in their initial values, or in the maximum W computed.

They were, nevertheless, left out of the analysis.

From Fig. 1 we may quantify the fractional area in (a2, a3)

leading to large potential energy and collapse factor. The inset

gives the projected isocontours in the parameter space. If we

assume fair sampling, then the total area covered by the highest-

level contours is estimated easily using a rectangular grid to cover

the contoured area. In this way we compute a net fraction of <30

per cent of the total area exceeding an increase in W/Wð0Þ of 25.

Note that practically all triaxial configurations with a2 & 0:4 and

a3 & 0:2 likely develop large W. These considerations are

quantified more accurately by sorting Wmax/Wð0Þ in increasing

order for all pairs (a2, a3). This gives an integrated distribution of

collapse factor C. Fig. 2 plots the integrated fraction of 836

solutions as function of Wmax/Wð0Þ. Two-thirds of these solutions

reached a collapse factor C , 22:4, and 86 per cent have C , 40.

We sought a correlation between the morphological parameter t

and the maximum potential reached. On Fig. 2 we also plot the

mean t computed at t ¼ 0 for each 10 percentile interval, in

increasing order of Wmax/Wð0Þ. We find a broad trend such that

ellipsoidal initial conditions with larger t tend to collapse to deeper

potentials. We may identify for the first of these bins, which has

ktl ¼ 0:24, the broad low-Wmax valley seen in Fig. 1. The non-

monotonic relation of ktl with Wmax/Wð0Þ may be guessed at if we

look at a scatter plot of this quantity versus t directly, as shown on

the top panel of Fig. 3. The points clustered to the bottom left

corner of the graph clearly reflect the trend of small t to yield small

Wmax/Wð0Þ. The broad trend we compute for ktl can be guessed

from shifting a horizontal ruler vertically up the W axis: there is a

suggestion of a gap in the data which account for the dip in ktl in

the 50–60 per cent interval (when Wmax/Wð0Þ < 20Þ. Our

conclusions concerning the significance of this gap must be

moderated by the large deviations about the mean values. A more

robust signature of dynamical evolution is a shift of the distribution

of t towards lower values during infall. This may be measured by

Figure 2. Integrated distribution (in per cent) for ellipsoidal pressureless

uniform fluids as function of the maximum gravitational energy achieved

during infall. For each 10 per cent interval, we give the mean shape

parameter ktl (equation 19) and its standard deviation evaluated from the

initial conditions.

Figure 3. Top panel: scatter plot showing the maximum W achieved as

function of the initial shape parameter t0. Lower panel: comparison

between the initial morphology (measured by t, cf. equation 19) and the

morphology when W is maximal. The integrated distribution of t is shown

in each case. This demonstrates a drift towards lower t during infall.
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computing the shape parameter t at the time when W is maximum,

and compared to the initial value, t0, for a given configuration. The

result is shown on the bottom panel of Fig. 3. At maximum

W/Wð0Þ, the mean t ¼ 0:29 approximately, down from 0.50 for the

initially uniform distribution. By the definition (19), this implies a

rounding of the two minor axes, in the same fashion as occurs for

axisymmetric spheroids, that is a3/a2 increases during infall (see

Boily et al. 1999 for a discussion of this issue). If the systems were

allowed to virialize, as will happen in an N-body calculation

allowing orbit mixing and violent relaxation, in contrast to the fluid

model presented here, the effect measured during infall of the

increasing ratio a3/a2, so enhancing axisymmetry, would be offset

by the onset of radial orbit instability, which is known to enhance

triaxiality (see e.g. Aguilar & Merritt 1990). We have not

addressed here the question of which effect would prevail in

determining the equilibrium of haloes or galaxies. This issue would

require more realistic density profiles than used here and is beyond

the scope of the present paper.

3.3 Summary

We sum up the results for pressureless self-gravitating ellipsoidal

collapse as follows.

(1) The bulk of initially triaxial figures does not reach a collapse

factor C ¼ W/Wð0Þ exceeding 40. We find that 86 per cent of the

836 configurations examined collapsed to smaller values.

(2) Triaxial figures that collapse by small factors [small increase

of W/Wð0Þ� tend to have initially small values of the parameter t

(i.e. are more axisymmetric, see Fig. 2).

(3) The axis ratio a3 to a2 increases during infall, leading to more

axisymmetric configuration at maximum collapse (Fig. 3).

(4) Since no orbit mixing or fragmentation mode develops in the

fluid solutions, which would contribute to boost velocity dispersion

and stop infall, we deduce that the collapse factors C obtained are

absolute maxima.

In order to apply these results correctly to galaxies and haloes, we

must first quantify the impact of discreteness effects of finite-N

systems as discussed in Section 2. We proceed empirically with N-

body numerical calculations. We turn first to the task of reproducing

the theoretical expectation (7) for spherically symmetric systems.

This is followed by a set of calculations of non-spherical initial

configurations, from which we seek trends with particle number to

compare with the results for perfect fluids of Fig. 1.

4 N - B O DY C A L C U L AT I O N S : S E T U P A N D

T E S T S

4.1 Numerical code and units

Our intention is to cover as wide a range in particle number as

possible to seek out correlations applicable to galaxies and haloes.

The nested-grid code SUPERBOX was used (Fellhauer et al. 2000).

This is an FFT Poisson solver with Cartesian grids, of uniform

resolution for each cell of a given grid. There are three grid levels,

each within one another, thus enabling enhanced resolution where

it is required. This is a crucial feature for the problem at hand, since

the structures collapse by large factors and the density increases

accordingly. For computational purposes the units were chosen

such that the total mass and initial radius of the system ¼1,

however the gravitational constant G ¼ 2. The free-fall time (1) for

uniform spheres is therefore

tff ¼
p

4
. 0:785398. . . ð21Þ

A version of the code was set up where the integration time-step of

a leap-frog scheme scales down with the inverse square root of the

local density maximum during the simulation, in order that the

time-step dt remains in the same ratio to the instantaneous

dynamical time (or tff evaluated from equation 1 but with krl now

the density at time t). The three levels of resolution allowed by the

code were set such that when the system reaches a minimum size,

the number of particles per cell is of the order of a few, hence

interactions between particles are resolved approximately on the

smallest scales. We found in practice that grid resolution smoothes

out forces between particles and hence leads to a less deep

potential minimum at the centre of gravity. As we show below, the

net effect of gridding can be easily brought to low error levels.

4.2 Tests in spherical symmetry

We carried out checks of our set-up in spherical symmetry before

Table 2. Collapse factor C ¼ Wmax/Wð0Þ for uniform spherical distributions. The models
have varying particle number (N ), mesh size and linear resolution (m and l ) in model units,
but the same initial total potential energy Wð0Þ ¼ 1:20. The free-fall time tff ¼ tmax

corresponds to the time when W reached a maximum; the analytic value (21) is given in
round brackets. At that time Lagrangian radii enclosing 30 and 60 per cent of the mass
were measured; their values are given here respective to their initial values, L0ð30%Þ ¼
0:670 and L0ð60%Þ ¼ 0:843.

N m l/1023 tff ¼ tmax

Wmax

Wð0Þ
L0/L Comments

(0.7854) 30% 60%

104 64 1.6 0.795 29.5 35.1 31.9
104 64 1.6 0.799 29.6 35.1 31.9 Reduced dt
104 32 3.1 0.798 18.6 26.1 18.9 Lower resolution

105 128 0.8 0.787 67.0 85.9 75.0
105 64 1.6 0.788 67.6 91.8 89.2
105 64 1.6 0.788 56.1 73.8 64.4 dt £ 2
105 32 2.6 0.786 32.9 58.9 41.0 Lower resolution

106 128 0.8 0.784 97.3 133.8 112.4
106 64 1.6 0.781 73.4 121.6 89.7 Lower resolution

1:6 £ 107 128 0.8 0.784 225.9 352.31 290.0
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conducting a survey of particle number and geometry. All

simulations of violent relaxation proceed from zero velocity

initially. Our results are summarized in Table 2. The analysis of

Section 2.1 suggests a clear relation (Kepler’s) between system

radius and the time interval dtff before collapse. From (5) and (6),

rðtff 2 tÞ < rð0Þ sin2e / ðtff 2 tÞ2=3:

We recover this relation for large particle number simulations

shown in Fig. 4. This graphs the evolution of four constant mass

(Lagrangian) shells for a uniform density sphere of one million

particles. The initial radius rð0Þ ¼ 1. Because the free-fall time is

independent of position, the Lagrangian radii must remain in

the same relative ratio to one another; each must converge to the

Keplerian regime near full collapse. The time of collapse

(t 2 tff ¼ 0Þ is off-scale on the right-hand side of the logarithmic

abscissae on the figure. Two set-ups are illustrated, of low- (left-

hand) and high-resolution (right-hand) grids. The linear high

resolution achieved, l ¼ grid size=number of cells ¼ 0:05=64 ¼

0:0008; is still large when compared with the mean inter-particle

distance lint expected from (7),

volume at bounce ¼ Nðlint/2Þ
3 ¼ initial volume/N ¼ rð0Þ3/N;

or lint < 2 £ N 22=3 ¼ 2 £ 1024. If we count the average number of

particles in a (cubic) cell at the bounce, we find ,ðl/4lintÞ
3 , Oð1Þ

particles. The mass distribution is therefore well sampled, and as a

result both the constant ratios of Lagrangian radii and their match

Figure 4. Orbits of four Lagrangian mass shells during the infall of a uniform-density sphere. The shells enclose 10, 30, 50 and 80 per cent of the total mass.

Results for 1 million particle simulations with low (left) and high (right) resolution grids are displayed. The dashed line is the Kepler scaling of orbits,

r 3 / ðtff 2 tÞ2. At constant internal mass, each orbit converges asymptotically to Kepler scaling under adequate resolution.

Figure 5. (a) Collapse factor C versus particle number N. Uniform spheres follow the scaling relation / N 1/3 (solid line) well when the grid mesh resolves

particles individually (black circles). The open circles are results obtained by ALP þ 88 with a direct-summation code. Crosses were taken from Theis &

Spurzem (1999) for Plummer models using the direct-integration code NBODY6þþ . Their data follows the same power-law as uniform distributions (dotted

line). (b) Collapse factor C versus particle number N for uniform spheroidal distributions. The collapse factor for axisymmetric spheroids is well fitted with the

empirical power N 1/6 (solid line). The N 1/3 scaling law of spheres is also shown for reference, for both uniform and Plummer initial distributions (dotted lines).

The open triangles are results of Boily et al. (1999) obtained with a direct-summation N-body algorithm. The horizontal arrow indicates a collapse factor

<O(20), such that 50 per cent of all triaxial ellipsoids of infinite particle number (i.e. pressureless fluid) collapse to smaller values.

978 C. M. Boily, E. Athanassoula and P. Kroupa

q 2002 RAS, MNRAS 332, 971–984

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/332/4/971/1746431 by guest on 16 D
ecem

ber 2020



of the Keplerian relation are reasonably well recovered. By

comparison, for runs with reduced number of mesh points, from

128 to 32, we find <100 particles in each cell at the bounce. Poor

resolution of the mass distribution leads to artificial deviations

from the Keplerian tracks (see left-hand panel in Fig. 4). The

Lagrangian radii spread out, which results in shell crossing at the

centre while the outer shells continue to fall in: this causes artificial

orbit mixing and a gentler collapse.

Our computational strategy must therefore ensure that the mass

profile is well resolved at all times. Because the one-dimensional

spherical collapse provides the strictest numerical test of our

numerical set-up, we first recover the scaling (7) for large particle

number to refine the code’s grid resolution. We do this for values of

N ranging from 104 to 16 £ 106. The mass distribution is mapped

accurately by Lagrangian radii sorted on concentric shells. We

have measured the collapse factor (6) using both the ratio of

gravitational radius, rg, and two shells enclosing 30 and 60 per cent

of the total mass. As can be seen from Table 2, the collapse factor

found for given grid resolution and particle number varies

considerably depending on the choice of Lagrangian radii, as well

as with the ratio of gravitational energies. However the free-fall

time is recovered to 1.6 per cent or better. These different values

obtained for the collapse factor were used to define error bars on

the averaged quantities. The trend with particle number is

displayed in Fig. 5(a). Results in spherical symmetry are plotted as

circles on the figure: the filled circles represent results from this

paper, while open circles are taken from ALPþ88. Each point is

the average of data listed in Table 2 for given N, but excluding the

low-resolution runs. The scaling relation (7) shown as the solid line

on the figure provides a good fit to all data points.

5 R E S U LT S F O R N - B O DY S P H E R O I DA L

C O L L A P S E ðt 5 0 O R 1 )

Our results for pressureless fluids show that initially axisymmetric

distributions (with t ¼ 0 or 1) develop spindles and divergent

gravitational energy as they collapse. These configurations may as

a result show significant dependencies on particle number in an

N-body realization of the solution. We therefore explore the case of

the collapse of spheroidal distributions first.

5.1 Oblate and prolate spheroids

To construct spheroidal distributions, we squeezed or stretched the

axes of spheres to achieve the sought geometry. We consider two

cases, a prolate t ¼ 0 spheroid of initial axes ¼ ð2; 1; 1Þ and an

oblate one with axes ¼ ð2; 2; 1Þ. We then performed N-body

calculations with 104, 105 and 106 particles and compared the

outcome with the pressureless fluid solutions for the same initial

configurations.

The results are displayed in Fig. 6. This graphs the gravitational

energy W as a function of time. The dimensionless axes x̃i of the

fluid solution are also displayed, where we have indicated the

formation of discs or spindles, according to whether a single or two

axes vanished at the time indicated. Spindle or disc each gives rise

to sharp features in the profile of W. The numerical solutions for

t ¼ 0 or 1 show clear dependencies on particle numbers, in the

sense that the larger-N calculations map the features of the fluid

solution more closely. Better agreement with the fluid solutions are

to be expected as we increase particle number, since the fluid

solutions corresponds to N ! 1. This is difficult to assess

quantitatively for the solutions as a whole. However we may isolate

features that support this view. For instance, as N is increased from

104 to 106 particles, the maximum potential energy achieved in

both cases displayed increases and corresponds to ‘spindles’ in the

fluid solution. For the case of the t ¼ 1 (oblate) fluid spheroid, a

spindle forms following collapse of the major-axis at t . 0:623.

The time of maximum potential is t ¼ 0:646; 0:642 and 0.638

respectively for the N ¼ 104, 105 and 106 runs, when these maxima

shifts upward with N, from 9.57 to 13.2, and 15.7 for the largest-N

run. The value for the fluid solution !1 formally. Note that the

N ¼ 106 run is the only one with a rapid recollapse to a disc

Figure 6. Evolution of the self-gravitating energy versus time for prolate ðt ¼ 0, left) and oblate ðt ¼ 1, right) spheroids. The solid lines give the solution for a

pressureless homogeneous fluid; broken lines are N-body realizations. The labels give the grid cell and particle numbers. On the top panels, the set of curves

shown at the bottom are the dimensionless axes x̃i integrated from (15) and (16) and we have indicated the times when spindles or discs form. Note how cusps

develop in the analytic solution each time a disc or spindle forms.

Scaling up tides in numerical models 979

q 2002 RAS, MNRAS 332, 971–984

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/332/4/971/1746431 by guest on 16 D
ecem

ber 2020



singularity (see inset at t < 0:64Þ similar to the fluid solution. A

similar comment can be made for the t ¼ 0 (prolate) fluid

spheroid, where the sequence of singularities is reversed: a spindle

forms first, followed by disc and spindle singularities. The two

numerical calculations both follow the fluid solution relatively

well, with one important difference: at the time of the first spindle,

t . 0:370, the 104 particle run shows an increase in W/Wð0Þ much

reduced compared with the 106 particle run (3.77 to 5.27, or 70 per

cent as much); at t . 0:525 a second spindle forms but now the two

N-body runs develop very similar extrema in W/Wð0Þ : 5.42 and

5.61, respectively. This means that following rebound through the

firsts spindle, both calculations suffer a comparable degree of orbit

mixing, which then smoothes out the second singularity seen in the

fluid. As for the t ¼ 1 case, the phase of the N-body curves tunes

up to the fluid solution as N increases: thus the first singularity at

t . 0:370 is found at t ¼ 0:385 ðN ¼ 104Þ and t ¼ 0:376

ðN ¼ 106Þ, which differs with the fluid solution by only 1.6 per

cent.

The two cases t ¼ 0 and 1 displayed in Fig. 6 both develop

spindles which will reach arbitrarily large potential energy as

N ! 1. Both behave in a qualitatively identical way in this

respect. We decided therefore to investigate in more details only

the relation of the solution for the oblate t ¼ 1 case to the number

of particles, before exploring triaxial initial configurations.

5.2 Series of oblate spheroids

We constructed oblate spheroidal distributions as indicated above.

The equator of the spheroids lies in the XY plane. The diameter was

kept fixed and only one axis resized to achieve the desired aspect

ratio, hence the gravitational energy W is magnified with

decreasing a3ð0Þ/a1ð0Þ. In the limit a3ð0Þ! 0 we compute a radial

free-fall time

tffða3½0� ¼ 0Þ ¼

ffiffiffiffiffiffi
4

3p

r
£ tffðequation 21Þ . 0:5116:

The time of maximum contraction would therefore lie between this

and the value (21) for spheres.

The results are listed in Table 3. The errors on the collapse factor

C ¼ W/Wð0Þ are computed from variations about the mean value

for fixed number of particles. The aspect ratios initially lie between

1/6 and 9/10, for particle numbers ranging from 104 to 107. All

results are graphed as triangles in Fig. 5(b). (The effect of different

initial aspect ratios on C is discussed in Section 5.3.) We have

added points obtained from simulations with direct-summation

codes by Boily et al. (1999) for small-N systems to those of the

present study (filled triangles on the figure). For large-N

calculations ðN * 105 and beyond) the black triangles mark a

gently increasing trend, well matched with a power-law

dependence C/ N a with a < 1=6. For N < 104 or smaller, the

fit remains good but note the large scatter for points obtained with a

direct-summation code (open triangles on the figure). The range of

collapse factors measured for the 10 000 particle runs listed in

Table 3 allows for a multiplicative factor of 3/2 between maximum

and minimum values of W/Wð0Þ. The results for the direct-

summation runs would allow a somewhat larger range, of perhaps

5/2. Whether this is cause for concern is debatable because of the

small number of runs in this bin; it may be that particle–particle

interactions, better resolved in the direct-summation scheme,

increase the scatter somewhat, though not the mean values, which

we recover well with the FFT scheme.

The trend with particle number N for spheroidal distributions is

never well fitted with the scaling / N 1/3 of spherical distributions,

though the data differ by only small factors for small-N systems.

The results of Section 3 suggest that any increasing trend of

collapse factor C with particle number would be a sensitive

function of the symmetry of the initial distribution, or of evolution

towards axisymmetry in the course of evolution.

5.3 Another look at the Lin–Mestel–Shu flow

We investigated the role played by the Lin–Mestel–Shu instability

in numerical N-body calculations of violent relaxation. For

homogenous systems, the LMS instability develops as an

aspherical system collapses from rest first down its shortest axis.

For oblate spheroids, the collapse down the minor axis z occurs in a

time

tðz ¼ 0Þ <
ffiffiffiffiffiffiffiffiffiffi
a3ð0Þ

a1ð0Þ

r
tff ðequation 21Þ; ð22Þ

where tff is the free-fall time for spheres. For the initially flattest

spheroids in our sample, of a3ð0Þ : a1ð0Þ ¼ 1 : 6, we compute

t ¼ 0:41tff < 0:32. The data given in Table 3 and Figs 6 and 8

show that maximum collapse (or, W) occurs at later times, as

collapse down the major axis sets in. This applies to all

simulations. Thus self-induced LMS-type of instabilities are not

Table 3. Collapse factor C ¼ Wmax/Wð0Þ for uniform spheroidal
distributions. Symbols as for Table 2.

N m l/1023 tmax

a3ð0Þ

a1ð0Þ

Wmax

Wð0Þ
Comments

,1

104 32 3.1 0.737 4:5 12.27
104 32 3.1 0.732 4:5 11.04
104 32 3.1 0.697 2:3 10.23
104 64 3.1 0.695 2:3 12.40
104 32 3.1 0.659 1:2 11.52
104 64 3.1 0.650 1:2 12.65
104 32 3.1 0.646 1:2 9.23
104 32 3.1 0.608 1:3 11.88
104 64 1.6 0.602 1:3 17.26
104 32 3.1 0.574 1:6 8.85
104 32 3.1 0.584 1:6 10.50 kW /W0l ¼ 11:6 ^ 1:3

105 32 3.1 0.722 4:5 17.44
105 64 1.6 0.724 4:5 17.86
105 128 0.8 0.563 4:5 18.09
105 32 3.1 0.686 2:3 13.32
105 32 3.1 0.642 1:2 13.29
105 32 3.1 0.597 1:3 18.40
105 64 3.1 0.595 1:3 24.1
105 128 1.6 0.597 1:3 30.1
105 32 3.1 0.558 1:6 14.54
105 64 3.1 0.559 1:6 15.69
105 64 1.6 0.563 1:6 17.19
105 128 0.8 0.563 1:6 17.57 kW /W0l ¼ 18 ^ 3

106 128 0.8 0.752 9:10 33.17
106 128 0.8 0.682 2:3 17.68
106 64 0.8 0.634 1:2 15.60
106 128 0.8 0.637 1:2 15.84
106 128 0.8 0.595 1:3 44.16
106 128 0.8 0.593 1:3 47.42
106 128 0.4 0.593 1:3 47.48 Higher resolution
106 64 1.6 0.596 1:3 28.89 Lower resolution
106 128 0.8 0.556 1:6 23.20 kW /W0l ¼ 28 ^ 11

107 128 0.8 0.718 4:5 29.33
107 128 0.8 0.680 2:3 22.55
107 128 0.8 0.595 1:3 57.45
107 128 0.8 0.553 1:6 36.92 kW /W0l ¼ 37 ^ 10
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sufficient by themselves to halt collapse since the kinetic energy

dispersion s grows anisotropically. This anisotropy persists up to

the time of maximum W and beyond, even for low-N particle

number calculations, and imprints the virialized equilibrium that

follows (Boily et al. 1999).

A question remains which concerns the relative importance of

the LMS instability compared with the fragmentation modes of

instability that control collapse in spherical symmetry (cf. Section

2.1). Both types of instability will develop during the collapse of a

spheroid, however the growth rate of the LMS instability deduced

from (22) will be higher for spheroids with initially small aspect

ratios. In Section 2.2, we have argued that the growth rate of the

LMS instability is always more rapid than the fragmentation

instability if the initial aspect ratio is less than about 0.75. We

would, therefore, expect a signature of this instability in the form of

a stream at a later stage of collapse, namely the bounce. We seek

out evidence for this in our sample of runs of Table 3. Below we

refer to the stream as an ‘LMS flow’, which should not be confused

with the instability described by Lin and co-workers.

Since (22) shows a relation between minor-axis collapse time

and initial aspect ratio, we expect a similar relation between

maximum collapse factor C ¼ Wmax/Wð0Þ (the bounce) and initial

aspect ratio for the cases when an LMS flow drives the dynamics at

that time. Crucial to the argument is the relative phase of the

velocity components at the bounce. For the chosen spheroidal

initial conditions, the motion can be divided in cylindrical z and R

components, and we may align the minor axis with the z-

component of the reference frame. The expectation for LMS flows

is that when both kvzl and kvRl are negative inward (in phase) at the

bounce, the value of W achieved should be larger than when kvzl
and kvRl are of opposite signs (out of phase), i.e. one inward, the

other outward. Unless fragmentation or other types of instability

manage to erase the signature LMS flow, the relative phase of the

velocity components at the bounce will be set by the initial system

aspect ratio.

We may compare the ensemble of calculations of Table 3, first

by normalizing individual values of W/Wð0Þ for given N to the

mean value for that series; in this way we remove the scaling

/N 1/6 between simulations with different particle numbers. We

then sort the normalized values by increasing order of the initial

aspect ratio, a3ð0Þ/a1ð0Þ. The results are displayed in Fig. 7. The

sinusoidal pattern of the data is unmistakable. The data may be

fitted with a sinusoid of amplitude <1/2, which is comparable to or

larger than the intrinsic scatter of the points at given aspect ratio.

Thus the LMS flow has equal or more impact on the potential and

the system configuration than other factors which predict no

dependence with initial aspect ratio, such as the growth of velocity

dispersion by internal fragmentation modes (see Section 2). At the

bottom of Fig. 7 we have sketched the relative phase of the velocity

components obtained for the analytic fluid solution for oblate

spheroids. The step-wise histogram indicates in-phase (high step)

motion or out-of-phase (low step) motion. The arrows indicate the

polarity of the motion. The correspondence with the numerical data

is only suggestive: the pattern itself appears somewhat out of phase

with the histogram. Since the pressureless fluid solution from

which the histogram was constructed does not suffer from any type

of instability, the poor agreement with the data would suggest that

instabilities other than the LMS instability are not completely

negligible to set the system properties at the bounce.

We note that for N ¼ 104 particle runs and initial aspect ratio

.1/2 or so, the data lie near the normalized C ¼ 1 value (cf. Table

3 and Fig. 7, open squares), hence are not caught in the sinusoidal

pattern driven by the streaming motion. However our data also

indicate that 104 particle runs with initial aspect ratios ,1/2 or so

match the range of values obtained with larger-N runs. Thus

fragmentation modes of instability may still be the dominant factor

controlling the bounce for simulations with particle numbers &104

and initially near-spherical distributions, but not so when the initial

aspect ratio is sufficiently small.

6 R E S U LT S F O R N - B O DY T R I A X I A L

C O L L A P S E ðt Þ 0 O R 1 )

We now extend our study to triaxial configurations. We repeated

the exercise of Section 5, but this time varying two initial aspect

ratios as parameters. The set-ups used to obtain numerical and

analytic solutions were as before. The results are illustrated in

Fig. 8. We considered three triaxial configurations with t ¼

1=3; 1=2 and 2/3, so covering both prolate and oblate structures. For

these cases the analytic fluid solution did not develop spindles and

hence the potential energy remained finite for the duration of

integration. As for the spheroidal calculations, the numerical

N-body calculations come ever closer to the analytic solution

with increasing particle number. For example, for N ¼ 106

particle runs, the potential energy already comes within 20 per

cent of the fluid solution at maxima. Higher particle numbers

would only bring modest differences and convergence as N ! 1 is

therefore very slow. The 104 particles runs remains approximately

50 per cent out of step with the fluid values, and hence the

quantities involved with such low-N calculations of relaxation

processes are to be treated with caution in applications to galaxy or

halo formation problems.

7 D I S C U S S I O N A N D C O N C L U S I O N

We have sought to constrain the tidal field developing around

galaxies and haloes as they form. To do this we studied the growth

of gravitational energy during the violent relaxation of ellipsoidal

Figure 7. Normalized collapse factor C versus initial aspect ratio for all

runs. The values C taken from Table 3 were normalized to the mean of their

respective N series. The open squares are the results for N ¼ 104; black

triangles for all others. The dashed line is the function sinðuþ u 2 2 2Þ,

where u ; 2pa3/a1. The histogram at the bottom shows the relative phase

of the minor-axis and major-axis velocities around the time when a

singularity forms.
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bodies. We used both an analytic pressureless gas model and N-

body numerical integration to set absolute limits on calculations of

galaxy and halo formation involving N point masses.

We found using the pressureless gas model that close to 9/10 (86

per cent) of all ellipsoidal triaxial configurations increase their

gravitational energy by at most a factor of 40 (cf. Figs 1 and 2). We

confirmed this with N-body calculations using up to one million

particles.

We studied axisymmetric and spherical uniform distributions.

We extended the scaling of collapse factor with particle number

for homogeneous spheres, C/ N 1=3, to N ¼ 16 millions with the

code SUPERBOX. We noted that axisymmetric spheroidal

distributions also show increasing collapse factor with particle

number. The run of data points is well fitted by the power law

C/ N 1=6, much gentler than for spherically symmetric

distributions (see Fig. 5b). The scatter in the data for spheroids

as such does not allow to fall back on the C/ N 1=3 scaling for

spheres, even when we try matching runs with different initial

aspect ratio (cf. Table 3). We pointed out that the extrema of

binding energy and hence tidal forces met by such systems depend

sensitively on the formation of prolate structures (spindles) and are

much gentler otherwise.

The growth of velocity dispersion during collapse can be

attributed both to global fragmentation modes and Lin–Mestel–

Shu-type of pancaking. We presented evidence to the effect that in

calculations involving more than N ¼ 104 particles, the Poissonian

seeds of fragmentation modes leads to growth in kinetic energy

such that the sum remains smaller than, though not negligible

before, the growth of kinetic energy attributable to the surface

mode (Lin–Mestel–Shu) of instability. For N & 104 and initial

aspect ratio *1/2, the data suggests that fragmentation modes play

an equally important role (see Fig. 7). For N . 105, the LMS flow

at the bounce sets the system properties both in terms of potential

depth and velocity components for the full range of the initial

conditions studied here, where aspect ratios where taken in the

range from 1/6 to 9/10. For this range of particle number and

more, the collapse of systems with different initial morphologies

can be distinguished without ambiguity in Fig. 5, which gives

confidence that the gravitational infall has been properly

resolved.

Figure 8. Evolution of the self-gravitating energy W versus time for three ellipsoidal configurations of initial morphology given by t (equation 19). In all cases,

the solid line represents the pressure-free fluid solution, while broken lines are the N-body realizations with particle numbers as indicated. The evolution of the

dimensionless ellipsoid axes, x̃i, are shown at the bottom for reference. The N-body calculations come ever closer to the fluid solution with increasing particle

number. Note that the fluid solution reaches a finite maximum W in all cases displayed.
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Taken together, these results imply that the formation of axially

or spherically symmetric haloes and galaxies lead to deeper

potentials during the violent relaxation phase and hence to more

pronounced tidal fields than for non-symmetric ones. The stronger

tidal fields would in turn reduce the rate of survival of sub-

condensations or satellites orbiting within them. Consequently, we

would expect galactic halo morphology and satellite populations to

be correlated, in the sense that galaxies with rounder massive

haloes would harbour fewer satellites, while triaxial haloes would

harbour many more satellites, all other parameters being equal.

This does not take into account the long-term fate of galactic

satellites: Tidal forces do not subside after virialization, and

eventually will cause the disruption of all galactic satellites after a

period of time (e.g. Ibata, Gilmore & Irwin 1994; Klessen &

Kroupa 1998; Bullock, Kravtsov & Weinberg 2001). Thus the

above statement refers to the time of formation only, once the

system has virialized.

Another direct consequence of our results is that spherically

symmetric haloes should be more centrally concentrated than non-

spherical ones in virial equilibrium. We may expect this to bear on

the kinematics of observed galaxies.

Unfortunately the current observational constraints on the halo

shapes are not sufficiently precise to allow us to test our prediction.

Halo axial ratios have been measured for hardly over a dozen

galaxies. What is more worrisome, however, is that the different

techniques seem to give systematically different results. Merrifield

(2002) summarizes nicely the situation for disc galaxies. Their

haloes appear to be axisymmetric and oblate, with their axes of

symmetry coaligned with the disc axes. The most reliable

measurements for the minor to major axis ratios come from polar

rings, but galaxies having such structures may not be a

representative sample of disc galaxies, because they might be the

results of recent mergers. Measurements from the flaring of the H I

disc give systematically smaller values than those of polar rings

measurements. An application to our own Galaxy (Olling &

Merrifield 2000) shows that such values may be valid only if the

value of the distance from the sun to the Galactic Centre and the

local Galactic rotation speed are smaller than what is currently

believed. Certainly some progress is necessary before the measure-

ments attain the precision we need for testing our prediction.

Gravitational lensing offers some hope by constraining the

distribution of total ðdarkþ visibleÞ gravitational mass inside a

given volume from the symmetry of the lensed image, which will

not respect the centre of mass of the system if it is not spherically

symmetric. For instance, Maller et al. (2000) have applied such a

lensing technique to the spiral B1600þ434. The deconvolution

procedure however does suggest that the shape of the halo deduced

remains dependent on the choice of halo density profile (isothermal

or otherwise) and symmetry. It may be that the systematic

application of such techniques to sufficiently large samples would

reveal a correlation in the sense that we indicated above.

The results obtained for uniform-density distributions should be

contrasted with results obtained for non-uniform initial distri-

butions. Theis & Spurzem (1999) investigated the morphological

evolution of initially cold Plummer distributions. The collapse

factors they obtained are given in Fig. 5(a) and 5(b). These confirm

earlier results by ALPþ88 of lower values of C for non-uniform

systems and our own arguments of Section 2. The curve fitting the

Theis & Spurzem data is shown in Fig. 5(b) shifted down with

respect to the one obtained for uniform spheres. This new curve

now intersects with the collapse factors obtained for aspherical

distributions and N , 103 particles. A Plummer model shows an

extended envelope of mass density r/ r 25=2. Thus for the same

particle number, the collapse factor of a Plummer model is reduced

in comparison with a uniform sphere, presumably due to shell

crossing taking place near the centre. However, Plummer models

with larger particle numbers also collapse by larger factors, and

hence other systems with initially steep profiles will, too. In

spherical symmetry, the collapse of mass distribution with radial

dependence (e.g. r/ r 2aÞ has bearing on accretion problems,

since the mass shells reach the centre at various rates in time. The

currently favoured road to galaxy formation would have many

clumps converging to the centre of mass. Since the scaling we have

obtained for uniform-density profiles may be extended to non-

uniform profiles, as shown with the Plummer model, we may hope

that the relation of gravitational gradient to initial morphology will

also find application to cosmological models of galaxy and galactic

halo formation.

To recover the physics of collapsing systems adequately in

N-body calculations requires a sufficiently large number of

particles in order to disentangle effects of mass distribution and

morphology. The results of Fig. 5(b) suggest a fiducial number

N , 100 000 particles as a clean demarcation (where a large gap

appears between the lower dotted and solid lines on the figure)

between initially spherical, axisymmetric and triaxial distributions.

Furthermore, the effect of varying the initial density profile appears

only to shift the zero-point of the curves, and hence does not affect

the relation of maximum collapse factor C ¼ Wmax/Wð0Þ to particle

number.
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