
HAL Id: hal-00009571
https://hal.science/hal-00009571

Preprint submitted on 6 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous, complete and distributed garbage
collection in the NGrid project

Joannès Vermorel, Warith Harchaoui

To cite this version:
Joannès Vermorel, Warith Harchaoui. Asynchronous, complete and distributed garbage collection in
the NGrid project. 2005. �hal-00009571�

https://hal.science/hal-00009571
https://hal.archives-ouvertes.fr


Asynchronous, complete and distributed garbage

collection in the NGrid project

Summer 2005

Computational Biology group
at the Geostatistics Center of the École des Mines de Paris

France

Joannès Vermorel
École normale supérieure de Paris

Computational Biology group at the Geostatistics Center
of the École des Mines de Paris

Warith Harchaoui
École Supérieure d’Électricité

Supélec

Abstract

Luis VEIGA and Paulo FEIRRERA explain that the distributed garbage col-
lection problem can be divided in two :

• acyclic garbage collection solved by the Reference Listing method [1] in
1993.

• cyclic garbage collection solved by the Graph Summarizer method [2] in
2004 which relies on the Reference Listing method.

The aim of this paper is to implement the Graph Summarizer algorithm and a
few improvements in the NGrid distributed environment.

1



Introduction

Recent advances in computational biology field need important computational
resources. In order to make intensive computations, one can not always afford
uni-processor machines such as supercomputers. For example, if one is interested
in the determination of the precise role of genes in chemical processes, then one
deals with 3.109 nucleotides.

So, the problem is twofold because we have to manage:

• the memory space

• the computation

The aim of this paper is the construction of an automatic memory manager
called garbage collector in a distributed environment. It first dealt with the
deep understanding of two publications [1] [2] about the distributed garbage
collector subject and the integration of the algorithms into the NGrid project1

which is an open source grid computing framework.

1 Presentation of the Veiga & Ferreira’s article

[2]

1.1 The Garbage Collector

In traditional non-garbage collected programming language such as C or C++,
memory is managed by the user with the well-known malloc and free keywords.
Since the 90s, garbage collected languages such as Java, Python and C# have
a great impact on the way people are programming because users do not need
to think about releasing memory anymore, thanks to the garbage collector.

In local environments, the garbage collector problem was solved almost 20
years ago [3]. But distributed environment is not an easy case because of con-
flicts between machines while accessing to shared data. This phenomenon is
called Race conditions. In fact, the distributed problem was partially solved in
1993 with a method called Reference Listing [1]. We think that the problem is
now completely solved since 2004 thanks to Veiga & Feirrera [2].

1.2 The different kinds of garbage

A simple singleton garbage is created when a single temporary object is needed
during the call of a method. The object can not be reached by any reference
after the method’s execution but it still blocks memory space. One says that
the object is a singleton garbage because it lost its root. In fact there are two
types of garbage:

acyclic garbage Now, lets consider that the temporary object is the first el-
ement of a temporary linked list. At the end of a method, the whole list
becomes garbage because the only root was the first element. The list is
an acyclic garbage. This kind of garbage is retroactively destroyed by the
Reference Listing [1] method. One can easily understand that a singleton
garbage is in fact an acyclic garbage.

1NGrid http://ngrid.sourceforge.net/

2



A Lost root ReferenceObject A

Acyclic garbage

AF

E

D C

B

cyclic garbage Finally, the initial object could have been the root of a cyclic
graph which can be handled by the Veiga & Feirrera’s Graph Summarizer
algorithm [2].

Cyclic garbage

AF

E

D C

B

A Root ReferenceObject A

Lost root

As we wrote before, Race conditions make the distributed garbage collection
more difficult than the local one.

1.3 A distributed context

An efficient garbage collector must work under the scene of the environment.
This means that the user should not have even to think about memory manage-
ment. It has to be completely transparent a fortiori in a distributed environ-
ment where heavy computations are made. The NGrid project is a .Net based
distributed environment operating system independent where each machine has
a local garbage collector inherited from the .Net framework for simple objects
which are bounded in the current machine. Moreover in NGrid, distributed
objects called GObjects (G for Grid) are handled by the distributed garbage
collector. For the sake of simplicity, the two kinds of objects shall not be dis-
tinguished as this paper only deals with GObjects. The very goal of this paper
is to understand the Graph Summarizer algorithm and to implement it in the
NGrid project.

3



Up to our knowledge this problem has never been tackled so far in the
literature we read without global synchronization or global consensus. Thus we
are sorry to be unable to provide any comparison with other algorithms.

1.4 The algorithm

The main strengths of the Graph Summarizer are:

the Completeness All kinds of garbage are eventually collected (cyclic and
acyclic garbage).

the Fault-tolerance One machine can crash without disturbing the compu-
tation of the garbage collection.

the Absence of any global synchronization or consensus which makes the
crucial advantage of the algorithm.

The main idea of the algorithm is simple:

Transform cyclic garbage into acyclic garbage.

Indeed, the old Reference Listing [1] strategy retroactively handles the acyclic
garbage. So, we should only remove few elements of a cycle garbage to transform
it into an acyclic one. But still remains the problem of garbage cycle detection.
It should be done without errors because deleting non garbage objects is unac-
ceptable.

The first idea one can have about the problem may be simple but wrong. It
would be like:

Data: A candidate suspected to be garbage
foreach objects o linked to the candidate do

Read o’s local references graph.
if o is rooted then

The candidate is not garbage.
else

if o is met twice then
The candidate is garbage

else
Launch the algorithm with o as the new candidate.

end

end

end

Result: Is the candidate garbage

Algorithm 1: Naive algorithm

This example shows why this naive algorithm is not correct.

4



Eight shaped cyclic garbage

AF

E

D C

B

G

I

H

A Root ReferenceObject A

Lost root

In the alphabetical order starting from A, when leaving F, A is met twice without
meeting any root. In fact the H root makes the whole graph reachable and thus
the graph is not garbage at all !

We can now easily understand that a more sophisticated algorithm is needed
to detect cyclic garbage. The authors dramatically simplify the problem by
adding a new hypothesis. The Reference Listing [1] strategy destroys all acyclic
garbage. Thus:

The remaining garbage is necessarily cyclic.

This implies that an object with no direct root and no reference towards itself
(like an extremity of an acyclic graph) can not exist.

The main notion of the article is the Graph Summary. It consists of two
sets:

entering set made of identifiers of objects entering in a domain with a refer-
ence toward itself from another domain.

leaving set made of identifiers of objects leaving a domain with a reference
toward itself from the current domain.

It sums up a branch of a locally connex reference graph in a given domain. Here
is an example2:

2Application Domains and machines are not distinguished for the sake of clarity.

5



Graph summary

on domain 2 with candidate B (or A, C, I and N)

D2 D3

D5

I

B

A

C

J

D

N

2 sets linked to the candidate :

 - entering objects

 - leaving surrogates

when

the entering objects set

and

the leaving surrogates set

are equal.

a cycle is detected !

As a matter of fact, from a starting point candidate suspected to be in a
garbage cycle, the algorithm gets the summaries of the same connex graph in
all domains. There are only two ways to stop the algorithm:

The graph has a root the suspicion was wrong.

The leaving and entering sets are equal the suspicion was right !

Here is the pseudo-code of the Graph Summarizer algorithm.

6



Data: candidate c suspected to be garbage on the current domain and
the global Graph Summary which is initially empty

Compute the local Graph Summary of the current domain with c as
candidate.
if the local graph is rooted then

The graph is not garbage, so give up the detection
else

if the local leaving set is empty then
Merge the local and the global Graph Summaries
If the global entering and leaving set are empty then the
candidate is garbage.

else

foreach target t in the leaving set do
Create a new Graph Summary g that is the union of the local
(with t as the only element of the leaving set) and the global
ones.
if the entering and leaving set of g are equal then

The candidate is garbage.
else

Continue the algorithm with t as candidate in the domain
referenced by t.

end

end

end

end

Result: Is the candidate garbage

Algorithm 2: Graph Summarizer algorithm

The article has a proof of the algorithm. But we tested it on many config-
urations : first with the old pen and paper and then with a computer. As the
results were correct in many different cases, we assume that the algorithm is
correct.

Of course, the tests were not only on the examples presented before but
also on many others such as spiral shaped graphs, distributed and local graphs,
graphs that have a reference to a root with garbage elements ... The tests were
purely algorithmic. No domains could have been implemented at this stage,
we needed to know if the Graph Summary algebra actually works or not. We
thought it was the best way to deeply understand the algorithm and why it does
work. In fact, these tests also give us hints about the figures involved.

The name Graph Summary is very well chosen. For example, a graph can
have thousands of objects in 10 computers but only 20 leaving and entering
objects. So, the compression factor can be very high which saves remote com-
munication between domains.

Unfortunately, in a one-thread and non-distributed environment, the λ-
calculus can help to demonstrate algorithms but the concurrent environment
does not have such a demonstrating tool yet. Of course, the λ-calculus does not
fit the distributed environment because of Race conditions. In spite of that, we
decided to trust the tests and use the algorithm.

7



2 Integration of the algorithm into the NGrid

project.

The main difficulty was to consider pure algorithmic problems and pure technical
problems too. The leitmotiv was: How to implement a mathematical algorithm
in a real computational environment ?

2.1 Adaptation of the algorithm for NGrid

In order to use the Graph Summarizer, we had to do two modifications :

• To translate low-level notions to high-level notions.

• To build the Inhumation technique to actually read a references graph.

The algorithm does not work with objects but only with their identifiers
because we can not destroy objects that are held by a reference...

Translation of low-level notions to high-level notions

The article [2] has a low-level clr approach to present the algorithm. But in
fact, NGrid is a high-level environment. That is why low-level notions such
as scions and stubs are irrelevant in a high-level environment. We decided to
replace them by the notions of entering and leaving objects (from a current
domain’s point of view).

A leaving object is not hosted in the current domain. It simply tells where
the real object is that is why leaving object are called surrogate in the Reference
Listing literature [2]

An entering object is a hosted object that is referenced by an other object
in an other domain. In the Reference Lisiting literature, it is a hosted object
that has dirty set with at least two domains.

The Inhumation technique

Veiga and Feirrera do not explain how to get the references graph of a domain.
That is why we implemented the Inhumation method. It is based on serializa-
tion basically meant to be used by the .Net framework for remote communica-
tion. The idea consists in reading the serialization result because it necessarily
contains all the references data we need.

But the serialization process is heavy and moreover it can not be done on
active objects. The solution is to ignore the references data of active objects
because they a fortiori do not concern garbage. Furthermore, we have to avoid
disturbing domain’s processes by freezing everything to serialize it. We suggest
to serialize objects by freezing them one by one while delaying the calls on the
object being serialized until the serialization process ends.

The definition of rooted object is a little bit blurred. In a domain, an object
is rooted if it is itself a root or if it is referenced by a root or a rooted element.
Our idea is to simplify the notion of rooted object by considering all the objects
referenced directly or not by roots as real roots.

The main idea is to transform and simplify the references graph by keeping
its meaning in a garbage detection point of view. Here is an example that
explains the Inhumation technique:

8



A

CB

D

Real Domain references graph

D1

CB

A

What is seen through the Inhumation glasses

D1

D

CB

A

What is finally seen to simplify the root notion

D1

D

The Inhumation technique

9



2.2 Optimizations and improvements of the Veiga & Feir-
rera’s algorithm due to the NGrid environment

These are few optimizations we managed to implement :

• the time stamps strategy to prevent from objects displacements and mod-
ifications.

• the Initiative grouping strategy to save computations.

• the storage of Initiative’s data in each domain to save remote communi-
cations.

• the OneWay strategy to reduce the number of domains involved at the
same time in the cyclic detection process.

The time stamps strategy

We pointed out how difficult it is to get the current domain references graph.
Moreover, objects can be changed after the serialization process and before the
end of the detection. If it is the case, these objects has been changed through
references thus they are directly or indirectly rooted.

To get this important information, we use a time stamp strategy: every
access on an object increases a counter of it. During the domain references
graph’s serialization, a snapshot of time stamps is made. At the end of the
detection, if the detector claims that the graph is garbage then we have to
check if the time stamps changed. If they did, then the graph is not garbage !
If they did not, then the detector is right. Here is an example that shows how
crucial the time stamps strategy is:

10



Example that shows

how the timestamp strategy is crucial

B

AF

E

D C

Btime

t = 2

AF

E

D

time

t = 3

C

B

A Root Reference

Where the detection is

Object A

Lost root

A

direction

of the detection

F

E

D C

time

t = 1

In this example, without any time stamps information, the algorithm would
destroy a non-garbage graph because the detection did not parse any root. The
time stamps strategy relies on a simple fact:

If an object has been accessed, then it is not garbage.

11



The Initiative grouping strategy

The article [2] explains the Graph Summarizer algorithm for one candidate but
one can shows a better profit for the expensive serialization process. Our idea
is to launch a garbage detection with many candidates of the same domain.

The different detection states are boxed in a bigger process called Initiative.
If a detection process has ended without being able to conclude, it has to be
merged with the other detection process of the same Initiative with one common
parsed element.

In fact the set parsed by a detection can be huge but the union of the entering
an leaving sets is enough ! As a matter of fact, to check if two Graph Summaries
can be merged does not cost much computation since the sets are small.

To deeply understand what we are talking about, lets consider the eight
shaped graph and the crossroad due to the A object.

The storage of heavy Initiative data

Unfortunately, to save remote communications between domains, we must store
all the heavy data on each visited domain such as the time stamps.

Furthermore, as Graph Summaries do not take much time to be calculated
nor much memory space compared to the serialization process, we calculate all
existing Graph Summaries even if they are not needed. In fact, as an Initiative
can meet a domain twice, we do not know if one Graph Summary will be useful
or not. But to avoid incoherent graphs due to domain’s snapshots at different
times, we just pick up one of the old, required and already calculated local
Graph Summary.

But all these data are linked to an Initiative, and when it is over a last
remote method can destroy all Initiative data in each visited domain.

Finally, we have to prevent from infinite loops due to incoherent snapshots
because of Race conditions where a leaving surrogate points to a leaving surro-
gate of the same object in an other domain. The solution is stop a detection
process if it asks twice the same local Graph summary which is easy when local
Graph summaries are stored in domains.

the OneWay strategy

Finally, here is the last improvement of our work based on the Graph Summa-
rizer : to transform the algorithm into a non-recursive one. Along the refer-
ences graph of a candidate object, the algorithm can meet crossroads between
domains. The first natural idea is to parse domains in a for cycle. But it would
cost too much remote communications while a domain would wait each other
until the next visited domain returns an answer which creates eventually a tree
of waiting domains. Waiting for every method to complete incurs a performance
penalty if the calls themselves are independent. Our idea is to do the for cycle
with the OneWay .Net feature. This feature allows asynchronous calls without
waiting for the result. The only problem is to make these calls independent.

In fact, we can show that the branches of a connex graph can be parsed
in every orders. In a crossroad, two detection processes might want to parse
different domains especially when the graphs are not easily connex. In this
case a vote is made between the Graph Summaries of the same Initiative to

12



determine what is the next domain to be visited. An Initiative ends when there
is no more domain to be visited.

When the vote does not agree with one detection process, it just travels
without doing anything but Graph Summaries are small which saves remote
communications.

Using this powerful OneWay feature means that there is a maximum of two
domains working on the same time in a Initiative detection process. To sum up
all these features, here is the algorithm :

13



Data: Set of (candidate, Graph Summary) pairs which is a Cycle
Detection Message of an Initiative

foreach (c, g) pair of the set do

if the pair needs to parse the current domain then
Compute the local Graph Summary of the current domain with c
as candidate. if the local Graph Summary has already been asked
then

Create the (null, g) pair.
else

if the local graph is rooted then
The graph is not garbage, so forget the pair.

else

if the local leaving set is empty then
Create a new global Graph Summary that is the union
of g and the local Graph Summary.

else

foreach target t in the leaving set do
Create a new global Graph Summary that is the
union of g and the local Graph Summary (with t as
the only element of the leaving set) and the global
ones.

end

end

end

end

else
Keep the pair.

end

end

Merge each (null, g) pair among the kept and created pairs with all pairs
that have a common local Graph Summary
foreach (null, g) pair among the kept and created pairs do

if the entering and leaving set are equal then
The candidate is garbage but check it with the time stamps
strategy.
Forget the pair.

else
Keep the pair.

end

end

if there are only (null, g) pairs then
The Initiative is over.

else
Launch a vote between (not null, g) pairs to determine the next
domain to visit.

end

Algorithm 3: Improved Graph Summarizer algorithm in the NGrid con-
text

The integration of these improvements have been successfully implemented
in the NGrid project. The codes are available at : http://sourceforge.net/projects/ngrid

14



Conclusion

The Graph Summarizer algorithm is a solution that follows a hybrid approach:
an acyclic distributed collector based on the Reference Listing [1] algorithm and
a cycle garbage detector that complements the first thus providing a complete
solution for the problem of distributed garbage collection.

We managed to implement the algorithms with few improvements due to
the high-level environment : NGrid. Now published heuristics in objects’ life-
time prediction should solve the problem of picking the right candidate before
launching the big algorithm presented or maybe the right domain...

The main contributions of our work to the garbage collection problem are:

• an implementation of the Graph Summarizer algorithm to detect cyclic
garbage.

• the Inhumation technique to get the references graph of a domain.

• a OneWay version of the Graph Summarizer algorithm.

Today, our implementation of a cyclic distributed garbage collection is meant
to be launched by the user with all the current domain’s objects as candidates.
A lifetime object predictor could be integrated to launch automatically our
algorithm.

References

[1] Greg NELSON Susan OWICKI Andrew BIRELL, David EVERS and Ed-
ward WOBBER. Distributed garbage collection for network objects. Tech-
nical Report 116, digital - Systems Research Center, Palo Alto, California,
United States of America, December 1993.

[2] Paulo FEIRRERA Luis VEIGA. Asynchronous, complete distributed
garbage collection. Technical Report RT/11/2004, INESC-ID/IST, Lisboa,
Portugal, June 2004.

[3] Paul R. WILSON. Uniprocessor garbage collection techniques. Springer-
Verlag.s, Saint-Malo, France, 1992.

15


