
HAL Id: hal-00009558
https://hal.science/hal-00009558v1

Preprint submitted on 5 Oct 2005 (v1), last revised 6 Feb 2006 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the Kalman form
Clément Pernet

To cite this version:

Clément Pernet. Computing the Kalman form. 2005. �hal-00009558v1�

https://hal.science/hal-00009558v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

09
55

8,
 v

er
si

on
 1

 -
 5

 O
ct

 2
00

5

Computing the Kalman form

Clément Pernet

October 5, 2005

Abstract

We present two algorithms for the computation of the Kalman form of a linear control system.
The first one is based on the technique developped by Keller-Gehrig for the computation of
the characteristic polynomial. The cost is a logarithmic number of matrix multiplications. To
our knowledge, this improves the best previously known algebraic complexity by an order of
magnitude. Then we also present a cubic algorithm proven to more efficient in practice.

1 Introduction

This report is a continuation of a collaboration with Aude Rondepierre on the algorithmic simi-
larities between the computation of the Kalman form and of the characteristic polynomial. This
collaboration led to [DR05, Theorem 2]. We report here an improvement of this last result based
on a remark by Gilles Villard.

For a definition of the Kalman form of a linear control system, see [Kal61, Theorem 1]. In this
report we show how to adapt the branching algorithm of Keller-Gehrig [KG85, §5] (computing the
characteristic polynomial) to compute the Kalman form. This implies an algebraic time complexity
of O(nω logn). Now, the discussion of [DPW05, §2] shows that a cubic algorithm, LUK, is more
efficient in practice for the computation of the characteristic polynomial. Therefore, we adapt it to
the computation of the Kalman form.

The outline of this report is the following : in section 2 we recall the principle of the branching
algorithm of Keller-Gehrig. Then we decompose the computation of the Kalman form into two
steps : the computation of the so-called “compressed Krylov matrix” and the computation of the
Kalman form itself. For the first step, the algorithm of Keller-Gehrig is easily adapted in 3.1.1.
Alternatively the same computation can be performed by an adaptation of the algorithm LUK as
shown in 3.1.2. Now, the recovery of the Kalman form from this compressed Krylov matrix also
uses the technique of LUK algorithm in section 3.2.1. Lastly, algorithm 3.2.2 merges the ideas of
sections 3.1.2 and 3.2.1 but removes some unnecessary operations.

2 Keller-Gehrig’s branching algorithm

2.1 Principle

Consider the n × n2 Krylov matrix K generated by the n column vectors of the identity matrix
iterated with the matrix A (of order n) :

K =
[

e1 . . . An−1e1 . . . en . . . An−1en

]

The rank of K is n. Let us form the n × n non-singular matrix K by picking the first n linearly
independent rows of K.

If a column vector Akej is linearly dependent with the previous iterates, then any vector
Alej, l > k will also be linearly dependent. Consequently the matrix K has the form :

1

K =
[

e1 . . . Ad1e1 . . . em . . . Admem

]

(1)

with 0 ≤ di ≤ n − 1.

Property 1. The matrix K
−1

AK has the Hessenberg polycyclic form : it is block upper triangu-
lar, with companions blocks on its diagonal, and the upper blocks are zero except on their last
column.

K
−1

AK =









































0 ∗

1 0 ∗

. . .
. . . ∗

1 ∗

∗

∗

∗

∗

. . .

0 ∗

1 0 ∗

. . .
. . . ∗

1 ∗









































(2)

Corollary 1. The characteristic polynomial of A is the product of the polynomials associated with
the companion blocks of the diagonal of H .

2.2 The algorithm

Ingredients :

• The position of the linearly independent columns is given by a gaussian elimination. A block
elimination is mandatory to reduce the algebraic complexity to matrix multiplication. Keller-
Gehrig introduced in [KG85, §4] an algorithm called “step form elimination”. The more recent
litterature replaced it by the row echelon elimination (for example in [CBS97]). We showed
in [DPW05] that the LQUP (defined by in [IMH82]) elimination of K

T
(algorithm 2.2.1) could

also be used.

Algorithm 2.2.1 ColReducedForm

Require: A a m × n matrix of rank r (m, n ≥ r) over a field
Ensure: A′ a m × r matrix formed by r linearly independent columns of A

1: (L, Q, U, P, r) = LQUP(AT) (r = rank(A))
2: return ([Ir0](QT AT))T

• The computation of the matrix K is prohibitive (n3 coefficients and O(n4) arithmetic op-
erations with standard matrix product). Hence, the elimination process must be combined
within the building of the matrix.

• The computation of the iterates can rely on matrix multiplication, by computing the ⌈log2(n)⌉
following powers of A :

A, A2, . . . , A2i

, A2⌈log2(n)⌉−1

Thus the following scheme
{

V0 = [ej]

Vi+1 = [Vi|A2i

Vi]
(3)

computes every iterates of ej in O(nω logn) operations.

2

• One elimination is performed after each application of A2i

, to discard the linearly dependent
iterates for the next iteration step. Moreover if a vector ej has only k < 2i linearly indepen-
dent iterates, one can stop the computation of its iterates. Therefore, the scheme (3) will
only be applied on the block iterates of size 2i.

The algorithm is the following :

Algorithm 2.2.2 Characteristic Polynomial [Keller-Gehrig]
Require: A a n × n matrix over a field
Ensure: PA

char the characteristic polynomial of A

1: i = 0 ; V0 = In = [V0,1|V0,2| . . . |V0,n]
2: B = A

3: while (∃k, Vi,k has 2i columns) do
4: for all j do
5: if (Vi,j has strictly less than 2i columns) then
6: Wj = Vi,j

7: else
8: Wj = [Vi,j |BVi,j]
9: end if

10: end for
11: W = [W1| . . . |Wn]
12: Vi+1 = ColReducedForm(W) {Vi+1 = [Vi+1,1| . . . |Vi+1,n] where Vi+1,j are the remaining

vectors of Wj in Vi+1}
13: B = B × B ; i = i + 1
14: end while
15: F = V −1AV , F is as in (2)
16: f = Πifi where fi is the polynomial of the ith companion block of F

17: return f

3 Application to the computation of the Kalman form

Gilles Villard remarked [Vil05] that the algebraic time complexity of the computation of the Kalman
form given in [DR05, Theorem 2] can be improved by an order of magnitude by adapting the
branching algorithm of Keller-Gehrig. Let us decompose the computation of the Kalman form into
two steps :

• the computation of the compressed Krylov matrix K from equation 1 (part 3.1).

• The computation of the Kalman form itself (part 3.2.1)

The first step can be done using either Keller-Gehrig technique (section 3.1.1) or using LUK

(section 3.1.2). In both situations, some computations can be saved by merging the two steps, as
we do in section 3.2.2, since they share common operations.

3.1 Computation of the compressed Krylov matrix

3.1.1 A la Keller-Gehrig

The idea in algorithm 3.1.1 is just to replace the identity matrix In by the matrix B in algorithm
2.2.2. Then, the last computed Vi is formed by some column vectors of B and their iterates with
the matrix A. This matrix is a basis of Span(B, AB, . . . , An−1B).

3

Algorithm 3.1.1 KGCKM Compressed Krylov Matrix (Keller-Gehrig)
Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: (V, rank(V)) as in (1)

1: i = 0
2: V0 = B = (V0,1, V0,2, . . . , V0,m)
3: C = A

4: while (∃k, Vk has 2i columns) do
5: for all j do
6: if (Vi,j has strictly less than 2i columns) then
7: Wj = Vi,j

8: else
9: Wj = [Vi,j |CVi,j]

10: end if
11: end for
12: W = [W1| . . . |Wn]
13: Vi+1 = ColReducedForm(W) remember r = rank(W) {Vi+1 = [Vi+1,1| . . . |Vi+1,n] where

Vi+1,j are the remaining vectors of Wj in Vi+1}
14: C = C × C

15: i = i + 1
16: end while
17: return (Vi, r)

3.1.2 A la LU-Krylov

Algorithm 3.1.2 presents another method to compute K, adapted from [DPW05, algorithm 2.2].
This algorithm is not as good in theory (O(n3) versus O(nω logn)), but proven to be more efficient
in practice [DPW05, §2.4]. Its correctness can be proven in the same way as for algorithm 3.2.1.

3.2 Computation of the kalman form

3.2.1 From the compressed Krylov matrix

Using the technique of algorithm LUK ([DPW05, theorem 2.1]), the matrix T can be recovered by
completing the compressed Krylov matrix K into an invertible matrix. This can be easily done
by a triangularization of KT as follows : one computes the LUP factorization of K

T
, and replace

[U1U2] by
[

U1 U2

0 Id

]

and [L] by
[

L 0
0 Id

]

. This simply corresponds to set

T =

[

K PT

[

0
In−r

]]

.

Theorem 1. Let A and B be two matrices of dimension respectively n × n and n × m. Let r be
the rank of Span(B, AB, . . . , An−1B). Algorithm 3.2.1 computes the Kalman form :

T−1AT =

[

H CT
1

0 CT
2

]

,

[

B1

0

]

= T−1B

where H and B1 are respectively r × r et r × m.
It requires O(nω logn) field operations using algorithm 3.1.1 or O(n3) using algorithm 3.1.2.

Proof. Algorithm CompressedKrylovMatrix builds the matrix V satisfying

AV = V H

4

Algorithm 3.1.2 LUKCKM : Compressed Krylov Matrix (LU-Krylov)
Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: (V, rank(V)) as in (1)

1: v = B1

2:

{

K =
[

v Av A2v . . .
]

(L, [U1|U2], P) = LUP(KT), r1 = rank(K)
{The matrix K is computed on the fly : at most

2r1 columns are computed. U1 is r1 × r1}
3: if (r1 = n) then
4: return (K, r1)
5: else

6: A′ = PAPT =

[

A′

11 A′

12

A′

21 A′

22

]

where A′

11 is r1 × r1.

7: AR = A′

22 − UT
2 U−T

1 A′

12

8: B′ =

[

U−T
1 0

−UT
2 U−T

1 I

]

PB

9: Compute the permutation Q s.t. B′Q =

[

X Y

0 Z

]

10: (V2, r2) = LUCKM(AR, Z)

11: V =

[

K PT

[

0
V2

]]

12: return (V, r1 + r2)
13: end if

Algorithm 3.2.1 Kalman form
Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: r, T, H, C1, C2, B1 as in theorem 1

1: (V, r) = CompressedKrylovMatrix(A, B)
2: if (r=n) then
3: return (n, Id, A, ∅, ∅, B)
4: else
5: (L, [U1U2], P) = LUP(V T)

6: T =

[

V PT

[

0
In−r

]]

7: B1 = L−T U−T
1 PB

8: A′ = PAT PT =

[

A′

11 A′

12

A′

21 A′

22

]

9: C1 = L−T U−T
1 A′

12

10: C2 = A′

22 − UT
2 U−T

1 A′

12

11: for all j do
12: Let tj be the column indexes in V of the last iterate of the jth block.
13: Let lj be first linearly dependent row of the jth block in L (to be stored during the execu-

tion of CompressedKrylovMatrix)
14: mj = ljL

−1
1...tj ,1...tj

15: end for
16: Build the polycyclic matrix H by placing each column vectors mj at column index tj and

adding 1 on the subdiagonal on all other columns.
17: return (r, T, H, C1, C2, B1)
18: end if

5

where H has the Hessenberg polycylic form (2).
Now

AT =

[

AV APT

[

0
In−r

]]

= T

[

H C1

0 C2

]

with T

[

C1

C2

]

= APT

[

0
In−r

]

. Let us write

A′ = PAPT =

[

A′

11 A′

12

A′

21 A′

22

]

.

We have

T

[

C1

C2

]

= PT A′

[

0
In−r

]

= PT

[

A′

12

A′

22

]

Now

T = PT

[

UT
1 0

UT
2 In−r

] [

LT 0
0 In−r

]

,

therefore
[

UT
1 0

U2 In−r

] [

LT 0
0 In−r

] [

C1

C2

]

=

[

A′

12

A′

22

]

[

UT
1 0

UT
2 In−r

] [

LT C1

C2

]

=

[

A′

12

A′

22

]

And the system
{

UT
1 LT C1 = A′

12

UT
2 LT C1 + C2 = A′

22

has the following solution
{

C1 = L−T U−T
1 A′

12

C2 = A′

22 − UT
2 U−T

1 A′

12

Lastly

T−1AT =

[

H C1

0 C2

]

,

The column vectors of B are linear combinations of the column vectors of V , therefore we can
write

B = T

[

B1

0

]

and then
B1 = L−T U−T

1 PB.

If CompressedKrylovMatrix is done by algorithm 3.1.1, it requires O(nω logn) field operations :
at most logn executions of the while loop whose domining operation is B = B × B in nω. Any
remaining operation can be done in O(nω).

Yet if CompressedKrylovMatrix is done by algorithm 3.1.2, the Krylov matrix is computed by
at most n matrix-vector products (O(n2) each) and any remaing operation can be done in O(n3)
using classic matrix arithmetic.

6

3.2.2 Improvements

Using Keller-Gehrig variant : One can note that the LUP factorization of V is already available
at the end of algorithm 3.1.1. Thus, step 5 in algorithm 3.2.1 can be skipped.

Using LUK variant : Here again, one can merge the common operations between algorithms
3.1.2 and 3.2.1 into algorithm 3.2.2. More precisely, every operation is already done in algorithm
3.1.2 except the update of the upper right hand side block of H (denoted by J1 in algorithm
3.2.2). However, we intentionnaly forgot to explain how to compute it in the previous combination
of algorithms 3.1.2 and 3.2.1 and precise it here. Note that this computation of J1 should be
improved, taking into account its structure : a few non zero columns, since it is a submatrix of the
Hessenberg polycyclic matrix H .

Algorithm 3.2.2 Kalman-LUK : Kalman-LU-Krylov
Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: r1, T, H, C1, C2, B1 as in theorem 1

1: v = B1

2:

{

K =
[

v Av A2v . . .
]

(L, [U1|U2], P) = LUP(KT), r1 = rank(K)
{The matrix K is computed on the fly : at most

2r1 columns are computed}
3: m = (m1, . . . , mr1) = Lr1+1L

−1
1...r1

4: f = Xr1 −
∑r1

i=1 miX
i−1

5: if (r1 = n) then
6: return (n, Id, A, ∅, ∅, B)
7: else

8: A′ = PAPT =

[

A′

11 A′

12

A′

21 A′

22

]

where A′

11 is r1 × r1.

9: AR = A′

22 − UT
2 U−T

1 A′

12

10: B′ =

[

U−T
1 0

−UT
2 U−T

1 I

]

PB

11: Compute the permutation Q s.t. B′Q =

[

X Y

0 Z

]

{Z is µ × µ}

12: if (µ = 0) then
13: C1 = L−T U−T

1 A′

12

14: C2 = AR

15: T =

[

K PT

[

0
In−r1

]]

16: return (r1, T, Cf , C1, C2, X)
17: else
18: (r2, T

(2), H(2), C
(2)
1 , C

(2)
2 , B

(2)
1) = Kalman-LUK(AR, Z)

19: T =

[

K PT

[

0

T (2)

]]

20: J = L−T U−T
1 A′

12T
(2) =

[

J1 J2

]

{J1 is r1 × r2 and J2, r1 × (n − r1 − r2)}

21: H =

[

Cf J1

0 H(2)

]

22: C1 =

[

J2

C
(2)
1

]

23: return (r1 + r2, T, H, C1, C
(2)
2 , B1)

24: end if
25: end if

Algorithm 3.2.2 is still O(n3) since the additional operations are the following :

7

• the computation of L−T in O(r3
1)

• the matrix product (L−T U−T
1 A′

12) × T (2) in O(r1(n − r1)
2)

Summing for every recursive level, one gets O(n3) since the sum of the r1 of each recursive level
is n.

References

[CBS97] Michael Clausen, Peter Burgisser, Mohammad A. Shokrollahi. Algebraic Complexity Theory.
1997.

[DPW05] Jean-Guillaume Dumas, Clément Pernet, Zhendong Wan. Efficient computation of the character-
istic polynomial. Patrz Kauers [Kau05].

[DR05] Jean-Guillaume Dumas, Aude Rondepierre. Algorithms for symbolic/numeric control of affine
dynamical system. Patrz Kauers [Kau05].

[IMH82] Oscar H. Ibarra, Shlomo Moran, Roger Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. Journal of Algorithms, 3(1):45–56, Marzec 1982.

[Kal61] R.E. Kalman. Canonical structure of linear dynamical systems. Proceedings of the National
Academy of Sciences, strony 596–600, 1961.

[Kau05] Manuel Kauers, redaktor. ISSAC’2005. Proceedings of the 2005 International Symposium on
Symbolic and Algebraic Computation, Beijing, China. ACM Press, New York, Lipiec 2005.

[KG85] Walter Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical computer
science, 36:309–317, 1985.

[Vil05] Gilles Villard. Personal communication, 2005.

8

