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Abstract

We present two algorithms for the computation of the Kalman form of a linear control system.
The first one is based on the technique developed by Keller-Gehrig for the computation of
the characteristic polynomial. The cost is a logarithmic number of matrix multiplications. To
our knowledge, this improves the best previously known algebraic complexity by an order of
magnitude. Then we also present a cubic algorithm proven to be more efficient in practice.

1 Introduction

This report is a continuation of a collaboration of the first two authors on the algorithmic simi-
larities between the computation of the Kalman form and of the characteristic polynomial. This
collaboration led to [3, Theorem 2]. We report here an improvement of this last result based on a
remark by the third author.

For a definition of the Kalman form of a linear control system, see [5, Theorem 1].
In this report we show how to adapt the branching algorithm of Keller-Gehrig [7, §5] (com-

puting the characteristic polynomial) to compute the Kalman form. This implies an algebraic time
complexity of O(nω logn). Now, the discussion of [2, §2] shows that a cubic algorithm, LUK, is more
efficient in practice for the computation of the characteristic polynomial. Therefore, we adapt it to
the computation of the Kalman form.

The outline of this report is the following : in section 2 we define the compressed Kyrlov
matrix. It will help to describe the adaptation of Keller-Gehrig’s algorithm to the computation of the
Kalman form. In section 3, we recall Keller-Gehrig’s algorithm. Section 4 presents the main result
of this report, on the time complexity of the computation of the Kalman form. Lastly, we give a
full description two algorithms to compute the Kalman form. The first one precises the operations
used in section 4 to achieve the complexity and improves the constant hidden in the O() by saving
operations. The second is based on another algorithm for the characteristic polynomial, that does
not achieve the same algebraic complexity, but appears to be faster in practice.

We will denote by ω the exponent in the complexity of the matrix multiplication.
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2 The compressed Krylov matrix

Let A and B be two matrices of dimension respectively n × n and n × m. Consider the n × (mn)
Krylov matrix K generated by the m column vectors of B and their iterates with the matrix A :

K =
[

b1 . . . An−1b1 . . . bm . . . An−1bm

]

Let r be the rank of K. r ≥ rank(B). Let us form the n × r non-singular matrix K by picking
the first r linearly independent columns of K.

Definition 2.1. K is the compressed Krylov matrix of B relatively to A.

If a column vector Akbj is linearly dependent with the previous column vectors, then any vector
Albj, l > k will also be linearly dependent. Consequently the matrix K has the form :

K =
[

b1 . . . Ad1−1b1 . . . bm . . . Adm−1bm

]

(1)

for some di such that 0 ≤ di ≤ n − 1 and
∑m

i=1 di = r.
The order in the choice of the independent column vectors (from the left to the right) can also

be interpreted in terms of lexicographical order on the sequence (di). Following Storjohann [8],
we can therefore also define the compressed Krylov matrix as follows :

Definition 2.2. The compressed Krylov matrix of B relatively to A is a matrix of the form
[

b1 . . . Ad1−1b1 . . . bm . . . Adm−1bm

]

of rank r, such that the sequence (di) is lexicographically maximal.

The next section will present an algorithm to compute this compressed Krylov matrix.

3 Keller-Gehrig’s algorithm

The selection of the linearly independent columns, starting from left to right, can be done by
a gaussian elimination. A block elimination is mandatory to reduce the algebraic complexity to
matrix multiplication. For this task, Keller-Gehrig first introduced in [7, §4] an algorithm called
“step form elimination”. The more recent litterature replaced it by the row echelon elimination
(for example in [1]). We showed in [2] that the LQUP elimination (defined in [4]) of K

T
could

also be used (algorithm 3.1). This last algorithm simply returns the submatrix formed by the first
independent column vectors of the input matrix form left to right.

Algorithm 3.1 ColReducedForm

Require: A a m × n matrix of rank r (m, n ≥ r) over a field
Ensure: A′ a m × r matrix formed by r linearly independent columns of A

1: (L, Q, U, P, r) = LQUP(AT ) (r = rank(A))
2: return ([Ir0](QT AT ))T

Thus a straightforward algorithm to compute K would be to run algorithm 3.1 on the matrix
K. But cost of the computation of K is prohibitive (n3 coefficients and O(n4) arithmetic opera-
tions with standard matrix product). Hence, the elimination process must be combined within the
building of the matrix.

The computation of the iterates can rely on matrix multiplication, by computing the ⌈log2(n)⌉
following powers of A :

A, A2, . . . , A2i

, A2⌈log2(n)⌉−1
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Thus the following scheme,
{

V0 = [bj ]

Vi+1 = [Vi|A2i

Vi]
(2)

where the matrix Vi has 2i columns, computes every iterates of bj in O(nω logn) operations.
One elimination is performed after each application of A2i

, to discard the linearly dependent
iterates for the next iteration step. Moreover if a vector bj has only k < 2i linearly independent
iterates, one can stop the computation of its iterates. Therefore, the scheme (2) will only be
applied on the block iterates of size 2i.

From these remarks, we can now present Keller-Gehrig’s algorithm. Although is was initially
designed for the computation of the characteristic polynomial, we prefer to show it in a more
general setting : the computation of the compressed Krylov matrix. Afterwards, we will show that
the computation of the characteristic polynomial is a specialization of this algorithm with B = In

and that the recover of its coefficients is straightforward.

Algorithm 3.2 Compressed Krylov Matrix [Keller-Gehrig]
Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: (K, r) as in (1)

1: i = 0
2: V0 = B = (V0,1, V0,2, . . . , V0,m)
3: C = A

4: while (∃k, Vk has 2i columns) do
5: for all j do
6: if ( Vi,j has strictly less than 2i columns ) then
7: Wj = Vi,j

8: else
9: Wj = [Vi,j |CVi,j ]

10: end if
11: end for
12: W = [W1| . . . |Wn]
13: Vi+1 = ColReducedForm(W ) remember r = rank(W ) {Vi+1 = [Vi+1,1| . . . |Vi+1,n] where

Vi+1,j are the remaining vectors of Wj in Vi+1}
14: C = C × C

15: i = i + 1
16: end while
17: return (Vi, r)

Theorem 3.1 (Keller-Gehrig). Suppose m = O(n). The compressed Krylov matrix of B relatively
to A can be computed in O(nω logn) field operations.

Proof. Algorithm 3.2 satisfies the statement (cf [7]).

Property 3.1. Let K be the compressed Krylov matrix of the identity matix relatively to A. The
matrix K

−1
AK has the Hessenberg polycyclic form : it is block upper triangular, with companion
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blocks on its diagonal, and the upper blocks are zero except on their last column.

K
−1
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(3)

Corollary 3.1 (Keller-Gehrig). The characteristic polynomial of A can be computed in O(nω logn)
field operation.

Proof. The characteristic polynomial of the shifted Hessenberg form (3) is the product of the
polynomials associated to the companion blocks on its diagonal. And since determinants are
invariants under similarity transformations, it equals the characteristic polynomial of A.

4 Computation of the Kalman form

Theorem 4.1 recalls the definition of the Kalman form of two matrices A and B.

Theorem 4.1. Let A and B be two matrices of dimension respectively n × n and n × m. Let r

be the dimension of Span(B, AB, . . . , An−1B). There exist a non singular matrix T of dimension
n × n such that

T−1AT =

[

H X

0 Y

]

,

[

B1

0

]

= T−1B

where H and B1 are respectively r × r et r × m.

The main result of this report is the following result, based on an idea by the third author.

Theorem 4.2. Let V be compressed Krylov matrix of B respectively to A. Complete V into a
basis T of Kn by adding n − r columns at the end of V . Then T satisfies the definition of the
Kalman form of A and B.

Proof. The matrix V satisfy the relation

AV = V H

where H is r × r and has the Hessenberg polycylic form (3). Let us note T = [V |W ].
Now

AT =
[

AV AW
]

= T

[

H X

0 Y

]

.

Lastly, V is a basis of Span(B, AB, . . . , AnB). Therefore each column of B is a linear combi-
nation of the colmuns of V :

B = T

[

B1

0

]

.

Corollary 4.1. The Kalman form of A and B can be computed in O(nω logn).
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Proof. Applying theorem 3.1, there only remains to show how to complete V into T in O(nω logn).
The idea is to complete V in its triangularized form. One computes the LUP factorization of V T :

V T = [L][ U1 U2 ]P

Then replace [U1U2] by
[

U1 U2

0 Id

]

and [L] by
[

L 0
0 Id

]

to get a n×n non singular matrix. This

simply corresponds to set

T =

[

K PT

[

0
In−r

] ]

.

It only costs O(nω) field operations to recover the whole Kalman form (blocks H, X, Y and
B1), using for example matrix multiplications and matrix inversions. See section 5.2 for more
details.

This last result improves the algebraic time complexity for the computation of the Kalman form
given in [3, Theorem 2] by an order of magnitude.

5 Algorithms into practice

The goal of the previous section was to establish the time complexity estimate and we therefore
only sketched the algorithms involved. We will now focus more precisely on the operations so as
to reduce the consant hiden in the O() notation.

5.1 Improvements on Keller-Gehrig’s algorithm

The first improvement concerns the recover of the Hessenberg polycyclic form 3, once the com-
pressed Krylov matrix is computed. In [7] Keller-Gehrig simply suggests to compute the product
K−1AK. This implies 4.66n3 additional field operation. We propose here to reduce this cost to
φn2, where φ is the number of blocks in the Hessenberg form. This technique was presented in
[2]. We recall and extend it here for the recovery of the whole Hessenberg polycylic form.

First consider the case where the n first iterates of only one vector v are linearly independent.
Let K = [v|Av| . . . |Anv]. The last column is the first which is linearly dependent with the

previous. Let P (X) = Xn −
∑n−1

i=0 miX
i represent this dependency (the minimal polynomial of

this vector relatively to A). Again consider the LUP factorization of KT . Let Xn+1 denote the
n + 1th row of the matrix X and X1...n be the block of the first n rows of X . Then we have

KT
n+1 = (Anv)T = (

n−1
∑

i=0

miA
iv)T = [ m0 . . . mn−1 ](KT )1...n

Therefore
Ln+1 = [ m0 . . . mn−1 ]L1...n.

And the coefficients mi can be recovered as the solution of a triangular system.
Now, one easily check that

K−1
1...nAK1...n =











0 m0

1 0 m1

. . .
. . .

...
1 mn−1











.

This companion matrix is the Hessenberg polycyclic matrix to be computed.
In the situation of Keller-Gehrig’s algorithm, the linear depencies also involve iterates of other

vectors. However, the LQUP factorization will play a similar role than the previous LUP and makes
it possible to recover the whole vector coefficients of the linear dependency.
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Figure 1: LQUP factorization of 2 blocks of iterates

= .αl1

1L

Figure 2: Recover of the coefficients of the first linear dependency

We show in figure 1 the case of two blocks of iterates. The first linear dependency relation (for
Ad1v1) is done as previously (see figure 2).

Now for the second block, the first linearly dependent vector Ad2v2 satisfies a relation of the
type :

Ad2v2 =

d2−1
∑

i=0

βiA
iv2 +

d1−1
∑

i=0

γiA
iv1

The vector of coefficients β = [βi] and γ = [γi] can be obtained by solving the following system
shown in figure 3.

L
2

N

= .βn l2 γ

L1

Figure 3: Recover of the coefficients of the second linear dependency

There only remains to build the Hessenberg polycyclic matrix from these vectors :
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H =





























0 α0 γ0

1 0 α1 γ1

. . .
. . .

...
...

1 αd1−1 γd1−1

0 β0

1 0 β1

. . .
. . .

...
1 βd2−1





























.

This technique can be applied to every block of iterates. Therefore the Hessenberg polycyclic
matrix can be recovered by as many triangular system resolutions as the number of blocks.

5.2 The main algorithm

We have seen in section 4 how to compute the matrix T (simply T =

[

K PT

[

0
In−r

] ]

).

Section 5.1 showed how to compute H . There only remains to show how to compute the matrices
X, Y and B1 and we will be done.

We recall (from the proof of theorem 4.2) that

AT =

[

AV APT

[

0
In−r

] ]

= T

[

H X

0 Y

]

Then X and Y satisfy T

[

X

Y

]

= APT

[

0
In−r

]

. Let us write

A′ = PAPT =

[

A′

11 A′

12

A′

21 A′

22

]

.

We have

T

[

X

Y

]

= PT A′

[

0
In−r

]

= PT

[

A′

12

A′

22

]

Now

T = PT

[

UT
1 0

UT
2 In−r

] [

LT 0
0 In−r

]

,

therefore
[

UT
1 0

U2 In−r

] [

LT 0
0 In−r

] [

X

Y

]

=

[

A′

12

A′

22

]

[

UT
1 0

UT
2 In−r

] [

LT X

Y

]

=

[

A′

12

A′

22

]

And the system
{

UT
1 LT X = A′

12

UT
2 LT X + Y = A′

22

has the following solution
{

X = L−T U−T
1 A′

12

Y = A′

22 − UT
2 U−T

1 A′

12
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The computation of B1 is straightforward from the equation TB1 = B :

B1 = L−T U−T
1 PB.

We are now able to write the algorithm.

Algorithm 5.1 Kalman form
Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: r, T, H, X, Y, B1 as in theorem 4.1

1: (V, r) = CompressedKrylovMatrix(A, B)
2: if (r=n) then
3: return (n, Id, A, ∅, ∅, B)
4: else
5: (L, [U1U2], P ) = LUP(V T )

6: T =

[

V PT

[

0
In−r

] ]

7: B1 = L−T U−T
1 PB

8: A′ = PAPT =

[

A′

11 A′

12

A′

21 A′

22

]

9: X = L−T U−T
1 A′

12

10: Y = A′

22 − UT
2 U−T

1 A′

12

11: for all j do
12: mj = ljL

−1
j as explained in section 5.1

13: end for
14: Build the polycyclic matrix H using the mj as shown in section 5.1.
15: return (r, T, H, X, Y, B1)
16: end if

Lastly, note that the LUP factorization of V T is already computed at the end of the call to
CompressedKrylovMatrix. Thus, step 5 in algorithm 5.1 can be skipped.

5.3 LU-Krylov : a cubic variant

In [2], we introduce an algorithm for the computation of the characteristic polynomial : LUK. Alike
Keller-Gehrig’s algorithm, it is also based on the Krylov iterates of several vectors and relies as
much as possible on matrix multiplication. But the krylov iterates are computed with matrix vector
products, so as to avoid the logn factor in the time complexity. As a consequence it is O(n3)
algorithm, but we showed that it was faster in practice.

Algorithm 5.2 shows how to adapt this algorithm to the computation of the Kalman form. We
expect this algorithm to be the more efficient in practice.
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