
HAL Id: hal-00009478
https://hal.science/hal-00009478

Submitted on 4 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistency in UML and B multi-view specifications
Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, Jeanine Souquières

To cite this version:
Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, Jeanine Souquières. Consistency in UML and B
multi-view specifications. Fifth International Conference on Integrated Formal Methods - IFM’2005,
2005, Eindhoven, Netherlands. �hal-00009478�

https://hal.science/hal-00009478
https://hal.archives-ouvertes.fr

Consistency in UML and B multi-view specifications

Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, and JeanineSouquières

LORIA - Université Nancy 2 - UHP Nancy 1
Campus scientifique, BP 239

54506 Vandœuvre-lès-Nancy Cedex - France
Email: {okalas,jacquot,souquier}@loria.fr

Abstract. We present the notion ofconsistency relationin UML and B multi-
view specifications. It is defined as a semantic relation between both views. It
provides us with a sound basis to define the notion ofdevelopment operator.An
operator models a development step; it separates the designdecisions from their
expression in the specification formalisms. Operator correctness is defined as a
property which guarantees that the application of an operator on a consistent spec-
ification state yields a consistent new state. An operator can be proven once and
for all to be correct. A classical case-study, the Generalized Railroad Crossing
(GRC), demonstrates how the different notions can be put in practice to provide
specifiers with a realistic development model.

Keywords: consistency, verification, operator, multi-view, UML, B.

1 Motivations

It has been recognized for a long time that the development ofquality software de-
pends crucially on the quality of the initial specification.Currently, there are two mains
streams of specification languages: graphical notations such as UML which are very
effective for the discussion between users and developers but are poor for formal ver-
ifications, and mathematical notations such as B which are effective for verification
but very poor for discussion. Our aim is to design a frameworkwhere both kinds of
notations can be used together to fulfill the needs of all the people involved.
The approach aims to capitalize on existing languages rather than to define a new one.
This allows us to reuse the efforts that have been made in the production of industrial
tools such as Rational Rose1 or ArgoUML2 for the edition of UML diagrams, and such
asAtelier B [24], B−Toolkit [3], or B4Free [4] for the formal verification of specifica-
tions.
Our approach builds on the works made on the transformation between UML and B.
[7, 10, 11, 13, 14, 16, 22] have defined precise sets of transformation rules to generate
a B specification from UML diagrams. These works allow specifiers to check UML
specifications by using B-based theorem provers. On the other way, [5, 6, 25, 26] define
rules to generate UML diagrams from a B specification. These works allow specifiers to
present users with a “readable” specification in order to ease the discussion and agree-
ment on what the planned software is supposed to do.

1 http://www-306.ibm.com/software/rational/
2 http://www.argouml.tigris.org

1

Currently, case tools based on transformation rules, such as those proposed in [12, 23,
27], work with transformations in one direction. This is a consequence of the difficulty
to integrate formalisms founded on different paradigms: object theory on the one hand
and set theory on the other hand. This situation introduces anew problem: the specifi-
cation development process is constrained in a highly unrealistic way. Let us suppose a
specifier writes a first specification in UML; he then transforms it in B and checks it with
the prover; likely, he will need to edit the B specification todischarge the proof. How
can the changes be retrofitted in the UML design? The problem is the same in the other
direction where the check will consist in a validation with users. Using a “reverse” set
of transformation rules is not realistic since the result may lead to a specification very
far from the original.
More generally, the transformation approach makes impossible opportunistic strategies
where the specifier chooses at some time to focus his work on structural design with
UML and at some other time to define formal properties with B, without any predefined
order. Another approach consists in integrating formal definitions like data-types in
UML state diagrams [2].
In our model, a specification is defined as a couple〈 SpecUML, SpecB〉whereSpecUML
is a set of UML diagrams andSpecBa set of B machines. Both parts are views of the
samespecification. The development of a multi-view specification is modeled as a se-
quence of applications ofoperators[18]. An operator models a development technique
by separating the design decisions from their impact on the UML and B parts. In prac-
tice, application of an operator makes both views evolve simultaneously through the
application of specific editing actions on each part while ensuring that both parts are
kept consistent. The notion of consistency is then central to our model. It gives a pre-
cise meaning to the notion of multi-view specification. It provides us with the formal
tool to define the correctness of operators.

The paper is organized as follows. Section 2 explicits the concept of operator and the
consistency relation. Section 3 introduces the case study of the generalized railroad
crossing (GRC). Section 4 presents an example of operator :Refine−Data. Section 5
presents the application of operators on the case study. Section 6 gives proofs on the
preservation of the consistency relation with respect to the applied operators. Section 7
concludes the paper.

2 Operators and multi-view consistency

2.1 Framework for operators

The development of a UML and B multi-view specificationSpec= 〈SpecUML, SpecB〉
is done by the application of operators, making parallel couples of specifications
〈SpecUML, SpecB〉 evolve. An operator is composed of two parts: one working on
SpecUMLand the second onSpecB. These parts constitute language specific operators,
denoted byOUML andOB.
An operator has application conditions, ensuring the preservation of a global property of
the whole specificationSpec. To make the couple of specifications〈SpecUML, SpecB〉
evolve, we have to determine the kind of changes we want to achieve as well as their

2

location. This corresponds to the selection of an operator.To guide the development, the
“Remain To Be Done”clause provides information about which operators can be ap-
plied next in order to terminate a given development process. This means that operators
must support the following combination features:
• Recursion. An operator can call itself.
• Sequencing. Operators can be sequenced to fire one after another.

2.2 Operator template

Operator : operator Name

Description. Natural language description of the purpose and effects of the operator.

Parameters.
• In.

〈PARAM Name: TYPEPARAM〉*
• Result.

〈PARAM Name: TYPEPARAM〉*

Application conditions.

• Related toSpecB
〈COND B〉*

• Related toSpecUML
〈COND UML〉*

Definition.

• Context. 〈context〉
• 〈OPERATORDEF〉

Remains To Be Done. 〈To Do Next〉

Fig. 1.Operator template

The standard template for the definition of an operator is composed of various clauses.
Each clause is optional except the first one. Each clause is described as follows:

1. Parameters . Determines parameters of the operator which are of two kinds,In and
Result. They are both optional.
• In. Designates elements needed to calculate theResultrepresentations.
• Result . Designates elementscreatedby the operator. TheResultparameters

that are not included, default to theIn parameters.

2. Application conditions . Defines the conditions which specify when the operator
can be applied. Two kinds of conditions are identified : conditions related to UML
(CONd UML) and conditions related to B (CONDB).

3. Definition . Consists of:

3

– Context . Determines the element(s) the operator is applied to.
– 〈OPERATORDEF〉. Determines the sequence of operators to be applied.OPERATORDEF

is given by the following grammar:

OPERATORDEF ::= 〈OUML, OB〉
| OPERATORAPP

| OPERATORDEF [; OPERATORDEF]*

| IF 〈 COND 〉 THEN OPERATORDEF [; OPERATORDEF]*

where:
• CONDdenotes a condition on the context or the parameters.
• OPERATORAPPdenotes an operator’s application consisting of the name

of the operator and its parameters.

4. Remains To Be Done. Indicates which part of the specification has to be defined
next.

2.3 Multi-view consistency relation

We consider the question of how the application of an operator has to be constrained so
that its application on a current consistent specification state〈SpecUML, SpecB〉, yields
a consistent specification state〈SpecUML′, SpecB′〉. Let us denoteRelC the consistency
relation betweenSpecUMLandSpecB.

Let TU→B be the set of UML to B transformation rules [9, 17] which associate each
UML artifact with one or more B artifacts. These transformations are relative to UML 1.x
[19]. RelC is defined as a conjunction of four conditions:

1 Syntactic conformance.It states that bothSpecUMLandSpecBmust be well-formed.
It ensures that the specification conforms to abstract syntax specified by the meta-
model, i.e. UML meta-model or B abstract syntax tree. LetWF(SpecUML) and
WF(SpecB) be two predicates defining if a UML and a B specifications are well-
formed.

2 Local consistency.It requires that both specifications must be internaly consistent.
That means they do not contain contradictions, but they could be incompletely de-
fined. We write itconsistent(SpecUML)andconsistent(SpecB).

The global consistency is defined with respect to UML to B transformation rules de-
signed by Meyer, Souquières and Ledang [9, 17].

3 Elements traceability.It states that for any elements ofID(SpecUML), eU, that can
be transformed by a ruleT, there exists inID(SpecB)a set of artifacts{eB} result-
ing from the application ofT to eU.

4

4 Semantic preservation.It states that any statementφ satisfying the semantics of
SpecUMLmust satisfySpecB. The semantics ofSpecUMLis defined asTU→B

(SpecUML). This means that UML artifacts that have no B semantics defined in
TU→B are not concerned by the consistency relationRelC. This has important im-
plications throughout the verification process. For example, it is well known that
checking pairwise integration of a set of software specifications is only possible if
one is able to transform them into a semantic domain supported by tools. B is our
semantic domain and any UML statement that has no B formalization cannot be
verified in our framework.

We use the B theorem prover to prove that a statementφ holds inSpecB(condition
(2)) and due tocondition (3), we derive the consistency ofSpecUML, and therefore the
consistency of the multi-view specificationSpec.

Oi

OUML

OB

RelC RelC

SpecUML SpecUML′

SpecB SpecB′

Fig. 2.UML and B consistency relation

Formally, theRelC relation is defined as follows:

Definition 1 (Consistency relation)
SpecUMLRelC SpecB:

(1) WF(SpecUML) ∧ WF(SpecB)

(2) consistent(SpecUML)∧ consistent(SpecB)

(3) ∀ eU.(eU ∈ ID(SpecUML|TU→B
) a ⇒

∃ {eB}, T.({eB} ⊆ ID(SpecB)∧ T ∈ TU→B ∧ T(eU) = { eB}))

(4) ∀ φ.(TU→B(SpecUML)b � φ ⇒ SpecB� φ))

a SpecUML|TU→B
denotes the restriction ofSpecUMLto elements for which there is a

transformation rule to B defined inTU→B
b

TU→B(SpecUML) denotes the application of the set of UML to B transformation rules
onSpecUML

3 A case study

The evolution of the specification and the verification of theconsistency relation de-
scribed in section 2.3 will be applied to the generalized railroad crossing example,
calledGRC in the sequel. We give a short description of the problem and an abstract
specification on which the refinement can be introduced. Fig.3 illustrates the structure
of the GRCextracted from [21]. The system to be modeled consists of a gate, a con-
troller and trains at a railroad crossing.

5

arrive leave

onnear

R

far far

Fig. 3.The generalized railroad crossing

The railroad crossing lies in a region of
interestR. Trains travel in one direction
throughR, and only one train per track is
allowed to be inRat any moment. Sensors
indicate when a train enters or exits the re-
gion R. For space and clarity reasons, we
do not present in details theGRC prob-
lem, but only details which are relevant to illustrate our approach.
We will describe the development of the system step by step, starting with the UML
specification which identifies some important entities. Note that we only focus on static
aspects.

3.1 A first UML specification

A Train may be in three states:far, near andon. The state of the train is determined
by the information provided by sensors positioned on the track and by a clock. When
a train leaves a region and enters another one, a signal is sent to the controller which
reacts by sending appropriate signals to the gate. A train takes2 to 5 time units to reach
stateon after it entered statenear. It then leaves stateon and therefore regionR and
reaches statefar between1 and2 time units. Time information is stored in the variable
Ht, which is initialized to0 when a train enters statenearand stateon. The system must
be safe: the gate must be down when trains reache stateon. In order to have the gate
closed when the fastest train reaches stateon, the gate must be closed between1 and2
time units after trains entered regionR.
The classTrain is characterized by the following variables:

– Ht, which models the time taken by the train to reach each state,
– pos, which models the train states.

The class Train provides three methods,arrive(), cross()andleave(), for entering, cross-
ing and leaving regionR, respectively. The class diagram of theGRCand the behavior
of theTrain are presented in Fig. 4(a) and 4(b).

arrive()
cross()
leave()

Ht : int
pos : TSTATES

Train

raising
lowering
closed
opened

on
near
far

doClose()
doOpen()
exit()
enter()
counter : int

Hg : int

close()
open()

«enumeration»

«enumeration»

Gate

TSTATES

pos : GSTATES

GSTATES

Controller

(a) Class diagram of the GRC

far

on

near

arrive()/^Controller.enter(); Ht = 0

cross()[Ht>2 and Ht<5]/Ht = 0

leave()[Ht>1 and Ht<2]/^Controller.exit()

(b) State diagram of Train

Fig. 4.A first UML specification

6

3.2 The corresponding B specification

MACHINE Types
SETS
OBJECTS
CONSTANTS
TRAIN
PROPERTIES
TRAIN⊆ OBJECTS
END

MACHINE Train
SEES Types

SETS
TSTATES = {far, near, on}

VARIABLES
train, pos, Ht

INVARIANT
train ⊆ TRAIN ∧
pos ∈ train → TSTATES∧
Ht ∈ train → NAT

INITIALISATION
ANY tt
WHERE tt ⊆ TRAIN∧ tt 6= {}
THEN

train := tt ||
pos:= tt × {far} ||
Ht := tt × {0}

END

OPERATIONS
arrive(tt) =
PRE

tr : train ∧ pos(tr) = far
THEN

pos(tr) := near || Ht(tr) := 0
END;

cross(tt)
∧

= ...

leave(tt)
∧

= ...

END

Fig. 5.Associated B Machines

Figure 5 represents the abstract specification of the classTrain obtained by an auto-
matic translation of the UML specification (cf. Fig. 4). Eachclass with nameClassis
represented by an abstract machine with the same name, as discussed in [16]. For each
classClass, a setCLASSis introduced to represent all possible instances ofClass. A
variableclass⊆ CLASSis used to identify current instances ofClass. Attributes are
modeled as functions fromclassto the attribute type as defined in the class. The type
of functions reflects the participation and cardinality of the entity. Class operations are
derived as B operations (e.g.arrive, crossand leave in the Train machine of Fig. 5)
mirroring the syntactical structure of the associated state diagram. Operation parame-
ters are typed and further constrained in the operation precondition. Operation bodies
are automatically derived from transitions in the state diagram. In addition to machines
representing classes, we introduce a special machineTypes, which declares a number
of shared sets or types. The others classes are derived in a similar way.

3.3 Improving the specification

Let’s take the UML and B specification couple of Fig. 4(a) and 5and consider that the
user focuses his work on the B specification. He decides to observe more in details the
behavior of the train in the statenear, as described informally in Fig. 7 and graphically

7

illustrated in Fig. 6.

arrive 1<Hg<2 leave

far
on1<Ht<2

near

R

far

stop−S

crt−S
1<Ht<2

2<Ht<5

Fig. 6.Detailed GRC

If the train moves at great speed towards the crossing and arrives at pointcrt-S
(critical state) in less than2 time units, it must stop atstop-S(stop state). It then
starts to move again, when the time variableHt is greater than two time units. This
is the time needed by the gate to be completely closed.

Fig. 7.Example of a critical property

The description of this property requires new variables, states, types, and constraints to
be added to the initial specification of the train. This meansthat we have to improve
the current couple of specifications so that it captures thisnew requirement. The refine-
ment is an appropriate technique to express this critical property. For this purpose, we
provide users with theRefine-Dataoperator, allowing to enrich the current specification
in a stepwise manner. It also provides a way to strengthen invariants and to add details
omitted in previous abstractions. TheRefine-Dataoperator defined in this paper is used
to replace some types and data in a specification by more concrete ones in order to
increase efficiency or implementability. The replacement ends up in new entities, sets
and constraints on the data space being introduced in the specification. Note that we do
not attempt to provide a new definition of data refinement, rather we use the standard
definition of refinement of state variables. From a practicalperspective, we present the
data refinement process as follows.

– First, concepts (e.g., refinement component, variables, types, classes, attributes,
etc.) that form the basis for expressing properties are modeled. TheRefine-Data
operator is defined to act this role.

– Second, we consider concepts such as gluing invariants or additional constraints
over data introduced previously to express logical links between concrete data and
their abstract versions. This is achieved by using theModel-Constraintoperator.

For naming UML and B model elements, we will consider the following notations:

– ID the set of all identifiers of the specification (ID = ID(SpecB)∪ ID(SpecUML)).
– CMP(SpecB)⊆ ID(SpecB)the finite set of B components (machine, refinement,

implementation) names appearing inSpecB.
– CLASS(SpecUML)⊆ ID(SpecUML)the finite set of class names appearing inSpecUML.
– ATT(C) the finite set of attributes of a classC ∈ CLASS(SpecUML).
– DATA(Ma) the finite set of data, such as variables and constants, appearing in a B

componentMa ∈ CMP(SpecB).

8

4 An example of operator: Refine-Data

Operator : Refine-Data
Description. This operator provides a scheme to refine data, replacing some types and
data in a specification by more concrete ones in order to support the addition of func-
tional details, to increase efficiency or implementability. Users must designate:

– a B componentMa to which the data to be refined belongs,
– a variablev: S the user wants to refine,
– a statesi the user wants to precise, if the typeSof v is a set of states {s0, ..., si , ..., sn}
– a set of concrete versions {sr i , ..., sr j } the user wants to replacesi with. If S is an

abstract set, the user will give explicit values {sr i ,...sr j } to it.

The following modifications are made to〈SpecUML, SpecB〉:

In SpecB

1. If there is no already existing refinementMar of Ma3 (denoted byMa ⊑ Mar), a
refinementMar is automatically introduced. It models the following elements:

(a) aREFINES Maclause immediately after its header, identifying the single com-
ponentMa that it refines,

(b) a set:
i. Sr = S ∪ { sr i , ..., sr j } that refines the more abstract setS(S⊑ Sr) if S is an

enumerated set. Note thatSr is composed of new state values, as well as of
all values4 in Sor

ii. Sr = { sr i ,...sr j } if the to refined setS is abstract,

(c) a set of state variables {vr0 , ..., vr i , ..., vrn} which take their values inSr , if v
must be refined by several variables,

(d) a comment line< To do J(v, vr i) > denoting the location to be replaced with the
gluing invariantthat relates the abstract state variablev and the concrete state
variables {vr0 , ..., vr i , ..., vrn} and extra constraints (refinement conditions).

2. If there is already a refinementMar of Ma, two cases can occur:

(a) in the first case, additional local types, data and extra constraints may be added
to Mar in a similar way than 1b and 1c,

(b) in the second case,Mar may be precised by means of a serie of refinements in
a similar way than in the case 1. The refinement process will also iterate.

3 This is the case when the operator is applied for the first timeonMa.
4 They are renamed inSr in order to satisfy B naming conventions. For instance,si in S is

renamed bysiR in Sr .

9

3. If the type ofv is a predefined type, no new types are introduced.

In SpecUML

1. In the class diagram

(a) a refinement componentMar corresponds to the classMar ,

(b) a B variablevr in Mar corresponds to an attributevr in the class that represents
the refinement componentMar . The type and initial value of this attribute cor-
respond to the type invariant and initialization substitution of the corresponding
B variable,

(c) a setSr in B corresponds to an enumerated type in UML or in OCL,

(d) theREFINESclause is modeled by an abstraction/refinement associationwith
a<<refines>> stereotype,

(e) the comment line< To do J(v, vr i) > leads to the creation of a comment note
in the class diagram, referencing the refinement link between the abstract and
the refinement class.

2. In the state diagram

(a) For a statesr i that refines a statesi , a super-statesi with sub-statesr i is drawn
by nesting in the state diagram attached with the classMa.

(b) A set of state valuesSr = { s0R, ..., siR, sr i , ..., sr j , ..., snR} refining an abstract
set of state valuesS(S⊑ Sr) leads to the generation of a state diagram as shown
below.

v : S

Ma
S

«enumeration»

s0

s0

si

si

evti

evti

evtj

evtj

MACHINE Ma
SETS MA ; S = {s0, si}
VARIABLES v, ma
INVARIANT

ma ⊆ MA ∧
v ∈ ma → S

INITIALISATION
ANY oo
WHERE oo ⊆ MA ∧ oo 6= {}
THEN ma := oo || v := oo × {s0} END

END

Refine−Data

10

v : S

Ma

Ma_r
<<J(v, v_r)>>
see

on the B view

«refines»

«enumeration»

s0R

s0R

siR

siR

vr : Sr

sri

sri

srj

srj

Sr

evti

evti

evti

evtj

evtj

evtj MACHINE Ma
...
END

REFINEMENT Mar
REFINES Ma
SETS Sr = {s0R, siR, sri , srj }

VARIABLES vr
INVARIANT

vr ∈ ma → Sr
/*To Be Done〈〈 J(v, vr) 〉〉 */

INITIALISATION
ANY oo
WHERE oo ⊆ MA ∧ oo 6= {}
THEN vr := oo × {s0R} END

END

Result of the Refine-Data operator application

Parameters.
In

– Ma : identifier
– v : identifier
– [si : State]5

– [{sr i , ..., sr j} : States]

Result

– Mar : identifier
– vr : identifier
– Sr : identifier

Application conditions.

1. Related toSpecB
– Ma ∈ CMP(SpecB)∧ Ma ::= MACHINE | REFINEMENT
– si ∈ S
– v : S∧ v ∈ DATA(Ma)
– ∀ sk.(sk ∈ {sr i , ..., sr j} ⇒ sk 6∈ si)

2. Related toSpecUML
– ∃ C.(C ∈ CLASS(SpecUML)∧ C 7→ Ma)
– ∃ a.(a ∈ ATT(C) ∧(a 7→ v))

5 [x] denotes thatx is optional.

11

– ∃ T.(T ∈ TYPE(SpecUML)∧ T 7→ S)

Definition.

Context: Ma
IF (Ma ::= MACHINE ∨ Ma ::= REFINEMENT)∧

(v ∈ DATA(Ma) ∧ (S ::= AbstractSet∨ S ::= EnumeratedSet))
THEN
OUML OB

(AddClass(Mar) ; AddDependency(Ma, Mar , «refines»)) ;

AddType(Sr , {sri , ..., srj})* ;

AddAttribute(Mar , vr)
*

AddRefinement(Ma, Mar)

AddSet(Sr , {sri , ..., srj})* ;

AddVariable(Mar , vr)
*

;

IF (Ma ::= MACHINE ∨ Ma ::= REFINEMENT)∧
(v ∈ DATA(Ma) ∧ S ::= PredefinedType)

THEN
OUML OB

(AddClass(Mar) ; AddDependency(Ma, Mar , «refines»)) ;

AddAttribute(Mar , vr)
*

AddRefinement(Ma, Mar)

AddVariable(Mar , vr)
*

;

IF Ma ::= REFINEMENT∧
v ∈ DATA(Ma) ∧ (S ::= AbstractSet∨ S ::= EnumeratedSet)∧
∃ Max.(Max ∈ ID(Spec) ∧ Ma ⊑ Max)

THEN
OUML OB

AddType(Sr , {sri , ..., srj})* ;

AddAttribute(Max, vr)
*

AddSet(Sr , {sri , ..., srj})* ;

AddVariable(Max, vr)
*

;

IF Ma ::= REFINEMENT∧
v ∈ DATA(Ma) ∧ S ::= PredefinedType∧
∃ Max.(Max ∈ ID(Spec) ∧ Ma ⊑ Max)

THEN
OUML OB

AddAttribute(Max, vr)
* AddVariable(Max, vr)

*

Remains To Be Done. The introduced variable can be improved:
• Invariant and initialization comment lines have to be replaced by concrete constraints
using for example theModel-Constraintoperator.

5 Application to the case study

Let’s take the couple of specifications of Fig. 4 and Fig. 5 andenrich it with new vari-
ablesposRandHtR in order to model the property of Fig. 7. We decide to refine the
Train machine, using theRefine-Dataoperator. The train machine and its related UML
class and state diagram are interdependent representations. As one changes, the other

12

one undergoes changes too. So, we instantiate twice theRefine-Dataoperator in order
to introduce variablesposRandHtR. The instantiation of this operator requires to set
the actual parameters as shown in Fig. 8(a) and 8(b).

Parameters
In

(Train, pos, near,{crt S, stopS}
Results

Train R, posR, TSTATESR

(a) First instantiation to introduce the variable
posR

Parameters
In

(Train, Ht)
Results
HtR

(b) Second instantiation to
introduce the variableHtR

Fig. 8. Two instantiations of theRefine−Dataoperator

Fig.9 illustrates the result of the instantiation of theRefine−Dataoperator on theTrain
machine, where variablesposRandHtR are introduced one after the other.

doClose()
doOpen()
exit()
enter()
counter : int

Controller

Hg : int
pos : GSTATES

close()
open()

Gate

raising
lowering
closed
opened
GSTATES
«enumeration»

on
near
far
TSTATES
«enumeration»

«enumeration»

farR
onR
crt_S
stop_S

TSTATES_R

farR

onR

J(pos, posR)

J(Ht, HtR)

arrive()
cross()
leave()

posR : TSTATES_R
HtR : int

TrainR

arrive()
cross()
leave()

pos : TSTATES
Ht : int

Train

crt_S stop_S

nearR

«refines»

cross()[Ht>2 and Ht<5]/Ht = 0

leave()[Ht>1 and Ht<2]/^Controller.exit()

arrive()/^Controller.enter(); Ht = 0

MACHINE Train
...
END

REFINEMENT TrainR
REFINES Train
SEES Types

SETS
TSTATESR =

{nearR,farR, crtS, stopS, onR}
VARIABLES
posR, HtR

INVARIANT
posR ∈ train → TSTATESR ∧
HtR ∈ train → NAT
/* <To Do J(pos,posR)> */
/* <To Do J(Ht,HtR)> */

INITIALISATION
ANY tt
WHERE tt ⊆ TRAIN∧ tt 6= {}
THEN

posR:= tt × {farR} ||
HtR := tt × {0}

END

OPERATIONS
arrive(tt) =
PRE tr : train ∧ posR(tr) = farR
THEN
posR(tr) := nearR || HtR(tr) := 0
END;
...
END

Fig. 9.Application of theRefine−Dataoperator on the train machine

One of the most important steps when refining specifications in B is formulatinggluing
invariants that relate concrete variables with their abstract versions. We assume that
the data refinement process ends with formulating invariants over variables and types

13

previously introduced by theRefine-Dataoperator in the first step. This is achieved by
theModel-Constraintoperator as indicated in theRemains To Be Done clause of the
Refine−Data operator. Once theModel-Constraintoperator has been applied, we can
move on to deal with the consistency checking. For space and clarity reasons, we do
not present the definition of theModel-Constraintoperator in this paper.

For theModel-Constraintoperator to work, users have to write the invariantI to be
added, and to designate the component to which this constraint has to be introduced.
The application ends with new constraints in B and OCL constraints or comment notes
in UML. We give below one possible formulation of the gluing invariant (over vari-
ablesposRandHtR, and their abstract versionsposandHt) and constraints on the new
functionality that can be given as parameter when instantiating theModel-Constraint
operator.

Parameters
In

TrainR

/* gluing invariants */
∀ tr.(tr : train ⇒
(posR(tr) = farR ⇒ pos(tr) = far) ∧
((posR(tr) = crt S or posR(tr) = stop S) ⇒ pos(tr) = near) ∧
(posR(tr) = onR ⇒ pos(tr) = on) ∧
(HtR(tr) : 0..5 ⇒ HtR(tr) = Ht(tr)) ∧
/* constraints on the new functionality */
(posR(tr) : { crt S, stop S, onR} ⇒ HtR(tr) < 5) ∧
(posR(tr) = crt S or posR(tr) = onR ⇒ HtR(tr) < 2))

REFINEMENT TrainR
REFINES Train
SEES Types
SETS TSTATESR = {nearR, farR, crt S, stop S, onR}
VARIABLES posR, HtR
INVARIANT
posR ∈ train → TSTATESR ∧
HtR ∈ train → NAT ∧
/* gluing invariants */
∀ tr.(tr : train ⇒
(posR(tr) = farR ⇒ pos(tr) = far) ∧
((posR(tr) = crt S or posR(tr) = stop S) ⇒ pos(tr) = near) ∧
(posR(tr) = onR ⇒ pos(tr) = on) ∧
(HtR(tr) : 0..5 ⇒ HtR(tr) = Ht(tr)) ∧
/* constraints on the new functionality */
(posR(tr) : { crt S, stop S, onR} ⇒ HtR(tr) < 5) ∧
(posR(tr) = crt S or posR(tr) = onR ⇒ HtR(tr) < 2)
)
INITIALISATION
...
END

Fig. 10.B refinement of the class Train

14

Fig. 10 shows the B specification ofTrainRafter the application of theConstraint−Modeling
operator. Because existing OCL to B rules [11] are only defined for simple expressions,
there is no creation of an OCL constraint for the introduced BinvariantI .

6 Verification of the operator’s correctness

In this section, we look at the correction aspect of the case-study. We show concretely
how the definitions apply to the UML and B parts manipulated inthe case-study. We
also give some hints on how the correctness of the operatorsRefine-DataandModel-
Constraintcould be assessed.

6.1 Syntactic well-formedness

Both specifications must be checked for syntax and type correctness with their corre-
sponding support tool. The B support tool we use for this casestudy,atelierB, confirms
the well-formedness of the text shown in Fig. 10. The UML diagrams are also well-
formed according to ArgoUML.

6.2 Internal consistency

The definition of operator correctness uses the strong hypothesis that each view in the
initial state is internally consistent. While this condition is not much more than the
well-formedness for the UML, it means full logical consistency for the B part.
The checking ofSpecBfollows the usual approach of the B method: to check initial-
ization, to check pre and postconditions of operations withrespect to the preservation
of machine invariants, and to check inter-machine relations such as refinements. On
the case-study, it is clear that the verification is done on two levels. The first level is
the verification that the elements automatically introduced by the operator inSpecBare
correct. The second level checks that the elements introduced by the user are consis-
tent. In our case, the first level is mainly exemplified by the operatorRefine-Data, while
Model-Constraintis mostly about the second level.
SpecBhas been submitted to theatelierB. All proof obligations generated by the
REFINEMENT status of theTrainR have been discharged through the gluing invariant
which was introduced by the application of theModel-Constraintoperator. Figure 11
shows the summary of the verification printed by the tool.

Project status
+-----------+----+-----+-----+-----+-----+-----+
| COMPONENT | TC | POG | Obv | nPO | nUn | %Pr |
+-----------+----+-----+-----+-----+-----+-----+
Train	OK	OK	0	4	0	100
TrainR	OK	OK	3	10	0	100
Types	OK	-				
+-----------+----+-----+-----+-----+-----+-----+						
TOTAL	OK	-	3	14	0	100
+-----------+----+-----+-----+-----+-----+-----+

Fig. 11.Result of the verification of the B specification

15

6.3 Consistency between views

It is decomposed into theelements traceabilityandsemantics preservationconditions.
Let’s consider:

– 〈SpecUML, SpecB〉 the specification couple of Fig. 4 and 5, respectively.
– 〈SpecUML′, SpecB′〉 the specification couple of Fig. 9 and 10, resulting from the

application of the operators on〈SpecUML, SpecB〉. Note that Fig. 10 includes the
machineTrain of Fig. 9.

– TU→B the set of UML to B transformation rules by Meyer [15] and Ledang [8].

To check, we apply the transformation rulesTU→B to SpecUML′. The interesting part
of the B specification, the machinesTrain* andTrainR*, is given in Figure 12. It then
proceeds by the verification of conditions3 and4 of RelC .

MACHINE Train*
SEES Types
SETS
TSTATES = {far, near, on}
VARIABLES
train, pos, Ht
INVARIANT
train ⊆ TRAIN ∧
pos ∈ train → TSTATES∧
Ht ∈ train → NAT
INITIALISATION
ANY

tt
WHERE

tt ⊆ TRAIN∧ tt 6= {}
THEN

train := tt ||
pos := tt × {far} ||
Ht := tt × {0}

END
OPERATIONS
arrive(tt) =
PRE

tr : train ∧ pos(tr) = far
THEN

pos(tr) := near || Ht(tr) := 0
END;

cross(tt)
∧

= ...

leave(tt)
∧

= ...

END

MACHINE TrainR*
SEES Types
SETS
TSTATESR = {farR,nearR, crtS, stopS, onR}
VARIABLES
trainR, posR,HtR
INVARIANT
trainR ⊆ TRAINR ∧
posR ∈ trainR → TSTATESR ∧
HtR ∈ trainR → NAT
INITIALISATION
ANY

tt
WHERE

tt ⊆ TRAINR∧ tt 6= {}
THEN

trainR := tt ||
posR:= tt × {far} ||
HtR := tt × {0}

END
OPERATIONS
arrive(tt) =
PRE

tr : trainR ∧ posR(tr) = farR
THEN

posR(tr) := nearR || HtR(tr) := 0
END;

cross(tt)
∧

= ...

leave(tt)
∧

= ...

END

Fig. 12.B specification obtained by applying transformation rules

Condition3 is proved by verifying thatID(TU→B(SpecUML′)) = ID(SpecB′). This is
asserted in two steps:

– all new names introduced by the operators are present. This is easily seen,
– condition3 holds for〈SpecUML, SpecB〉. This is true by construction, cf. subsec-

tion 3.2.

The verification of condition4 is more complex. When we look at Figure 12, we can
see the following differences betweenSpecBandTU→B(SpecUML′):

16

1. TrainR* is a machine and is not related toTrain* by a refinement relation.
2. The machineTrainR* introduces a new variabletrainR6 which is a subset of the set

TRAINRrepresenting possible instances of the classTrainR. trainR andTRAINR
do not appear inSpecB′. As a consequence, variablesposRandHtR in the ma-
chineTrainR* which are modeled as functions from current instances set (train)
to the corresponding type (STATESR andNAT respectively), have now different
domains.

3. the UML abstraction/refinement dependency is not modeled,
4. the added invariants in the machineTrainRof SpecB′ do not appear since they have

been represented as a comment note inSpecUML′.

So, to establish the property, we have to prove that the machineTrainR* is a refinement
of the machineTrain*. Concretely, we must find an abstraction function,ρ, defined as
follows. Let us consider:

– SMar andSMa the sets of states ofMar andMa respectively,
– EvtMar andEvtMa the sets of events of state machines ofMar andMa respectively,
– TransMar andTransMa the sets of transitions of state machines ofMar andMa re-

spectively,

ρ : Mar → Ma is an abstraction relation which is a function fromSMar ∪ EvtMar ∪ TransMar

to SMa ∪ EvtMa ∪ TransMa and which maps

– Each statesr of Mar to a stateρ(sr) of Ma,
– Each eventer of Mar to an eventρ(er) of Ma and
– Each transitiontr of Mar to a transitionρ(tr) of Ma.

Such that

– ρ(sinitMar
) = sinitMa

– EvtMa(ρ(tr)) = ρ(EvtMar (tr))
– sourceMa(ρ(tr)) = ρ(sourceMar (tr)) ∧ targetMa(ρ(tr)) = ρ(targetMar (tr))

ρ is an abstraction function equivalent to a B refinement if thefollowing properties hold:

1. ∀ s. ∃ sr .(s ∈ SMa ∧ sr ∈ SMar ∧ ρ(sr) = s) ∧
2. ∀ s. ∃ t.(s ∈ SMa ∧ t ∈ TransMa ∧ EvtMa(t) = e∧ sourceMa(t) = s⇒

(∀ sr .(sr ∈ SMar ∧ ρ(sr) = s⇒ ∃ tr .(tr ∈ TransMar ∧
ρ(EvtMar (tr)) = e∧
ρ(tr) = t ∧
sourceMar (tr) = sr

)))
)

The first condition states that every statesof an abstractionMa has some corresponding
states of its refinementMar . The second states that every evente which has an abstract
transition from some states has also a corresponding concrete transition from each
corresponding state.

6 for modeling effective instances of the classTrainR

17

These conditions ensure that all properties expressed inMar hold in the abstractionMa
and therefore the semantic preservation criteria is ensured. Actually, this condition is
similar to the preservation of precondition requirement ofB refinement.
The definition ofρ on our case study is as follows:

ρ = { farR 7→ far, stop S 7→ near, crt S 7→ near, onR 7→ on} ∪
{ arrive 7→ arrive, cross 7→ cross, leave 7→ leave} ∪
{ (farR, arrive, nearR)7→ (far, arrive, near), (nearR, cross, onR)7→ (near, cross, on),

(onR, leave, farR)7→ (on, leave, far)}

It is easily verified that the preceding properties holds by considering the gluing invari-
ant.

7 Conclusion and Future work

Combining UML notations and the B method is important for theuse and the acceptance
of formal methods as part of the development of high quality systems. We propose a
framework allowing to define development operators making evolve UML and B multi-
view specifications. The approach is not based on the application of transformation
rules from UML to B or B to UML, but on the development of both specifications in
an incremental way by applying operators. Operators enablethe specifier to focus on
methodological issues before addressing technical details related to each specification
language.
We have proposed a definition of the consistency relation between both views of a
specification expressed with UML and B, and two consecutive development states. The
verification of the consistency is done once for all for each operator when defining them,
relatively to a set of UML to B systematic transformation rules. It is partly automated
and supported by the B prover.
As the case study shows, our approach does not pretend to automate the entire develop-
ment of the specification. Technical and tedious syntactical details are taken care of by
the operators but the design of important properties is still the specifier’s responsibility.

An implementation of this framework with some operators is under development. It is
an extension of theArgoUML+B [12] platform, allowing to automatically transform
some UML diagrams to B specifications (ArgoUML+B is based on theArgoUML7

project, dedicated to the edition and design of UML diagrams). This extension includes
SmartTools[1, 20] to dynamically represent B specifications as instances of the B AST
(abstract syntax tree), taking into account the multi-viewspecification.
We are looking at developing a library of useful operators. We have already identi-
fied and defined some restructuring operators such as modeling abstraction of generic
classes from existing classes. We also need operators for the specification of system
behaviours.
7 http://www.argouml.tigris.org

18

References

[1] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D. Parigot, C. Pasquier, and C. S.
Coen. SmartTools: a development environment generator based on XML technologies. In
In XML Technologies and Software Engineering, Toronto, Canada. ICSE’01, ICSE work-
shop proceedings, 2001.

[2] C. Attiogbé, P. Poizat, and G. Salaün. Integration of Formal Datatypes within State Dia-
grams. InFASE’2003 - Fundamental Approaches to Software Engineering, volume 2621
of LNCS, pages 341–355. Springer-Verlag, 2003.

[3] Oxford(UK) B-Core(UK) Ltd.B-Toolkit User’s Manual. 1996.
[4] ClearSy. http://www.b4free.com/index.php.
[5] F. Houda and Stephan Merz. Transformation de spécifications B en diagrammes UML. In

Proceedings of AFADL’04, Besançon (Fr), 2004.
[6] A. Idani and Y. Ledru. Object Oriented Concepts Identification from Formal B Specifica-

tions. In9th Int.Workshop on Formal Methods for Industrial CriticalSystems (FMICS’04),
Linz (AT), 2004.

[7] R. Laleau and F. Polack. A Rigorous Metamodel for UML Static Conceptual Modelling
of Information Systems. InAdvanced Information Systems Engineering. 13th Int. Conf.,
CAiSE 2001, Proceedings, volume 2068 ofLNCS, pages 402–416. Springer, 2001.

[8] H. Ledang. Traduction Systématique de Spécifications UML vers B.PhD thesis, LORIA
-Université Nancy2, novembre, 2002.

[9] H. Ledang and J. Souquières. Modeling class operations in B: application to UML behav-
ioral diagrams.- ASE2001: 16th IEEE International Conference on AutomatedSoftware
Engineering, IEEE Computer Society, November, 2001.

[10] H. Ledang and J. Souquières. Integrating Formalizing UML Behavioral Diagrams with B.
Workshop on Integration and Transformation of UML models, Malàga (S), 2002.

[11] H. Ledang and J. Souquières. Integration of UML and B Specification Techniques: Sys-
tematic Transformation from OCL Expressions into B. InProceedings of APSEC 2002
IEEE Computer Society, 2002.

[12] H. Ledang, J. Souquières, and S. Charles. ArgoUML+B : Unoutil de transformation sys-
tématique de spécifications UML vers B. InProceedings of AFADL’03, Rennes (Fr), 2003.

[13] R. Marcano and N. Levy. Transformation rules of OCL constraints into B formal expres-
sions. In Jürjens, Cengarle, Fernandez, Rumpe, and Sandner, editors,Critical Systems
Development with UML – Proceedings of the UML’02 workshop, pages 155–162, 2002.

[14] R. Marcano and N. Levy. Using B formal specifications foranalysis and verification of
UML/OCL models. In L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors,
Workshop on Consistency Problems in UML-based Software Development. Workshop Ma-
terials, pages 91–105, 2002.

[15] E. Meyer. Développements formels par objets: utilisation conjointede B et d’UML. PhD
thesis, LORIA -Université Nancy2, mars, 2001.

[16] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification.FM’99: World Congress on Formal Methods in the Development of Comput-
ing Systems, Toulouse (Fr), 1999.

[17] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification.FM’99: World Congress on Formal Methods in the Development of Comput-
ing Systems, Toulouse (Fr), 1999.

[18] D. Okalas Ossami, J. Souquières, and J.-P. Jacquot. Opérations de construction de spé-
cifications multi-vues UML et B. InProceedings of AFADL’04, Besançon, France, June
16-18. INRIA, 2004.

[19] OMG. Unified modeling language specification, version 1.5, March 2003. available from
hhtp:://www.omg.org.

[20] D. Parigot and C. Courbis. avaible at : http://www-sop.inria.fr/smartool/.
[21] P. Schnoebelen, B. Bérard, M. Bidoit, F. Laroussine, and A. Petit.Vérification de logiciels

-Techniques et outils du model-checking-. Paris,Vuibert, 1999. ISBN 2- 7117-8646-3.
[22] C. Snook, M. Butler, and I. Oliver. Towards a UML profile for UML-B. Technical report,

DSSE-TR-2003-3, Electronics and Computer Science, University of Southampton, 2003.

19

[23] C. Snook and M. Buttler. U2B: a tool for combining UML andB. Avaible at
http://www.ecs.soton.ac.uk/ cfs/U2Bdownloads/.

[24] STERIA. Manuel de référence du langage B. -ClearSy-, novembre, 1998.
[25] B. Tatibouet, A. Hammad, and J.-C. Voisinet. From an abstract B specification to UML

class diagrams. In2nd IEEE International Symposium on Signal Processing and Informa-
tion Technology (ISSPIT’2002), pages 5–10, 2002.

[26] B. Tatibouet and J.-C. Voisinet. Generating statecharts from B specifications. In16th
International Conference Software & Systems Engineering and their applications (IC-
SSEA’2003), Paris (Fr), 2003.

[27] B. Tatibouet and J.C. Voisinet. jBtools and B2UML : a plateform and a tool to provide a
UML class diagram since a B specification. InICSSEA : 14th International Conference on
Software and Systems Engineering and Their Applications, Paris (Fr), volume 2, 2001.

20

