\

Consistency in UML and B multi-view specifications

Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, Jeanine Souquieres

» To cite this version:

Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, Jeanine Souquieres. Consistency in UML and B
multi-view specifications. Fifth International Conference on Integrated Formal Methods - IFM’2005,
2005, Eindhoven, Netherlands. hal-00009478

HAL Id: hal-00009478
https://hal.science/hal-00009478
Submitted on 4 Oct 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00009478
https://hal.archives-ouvertes.fr

Consistency in UML and B multi-view specifications

Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, and Jezmilggieres

LORIA - Université Nancy 2 - UHP Nancy 1
Campus scientifique, BP 239
54506 Vandceuvre-lés-Nancy Cedex - France
Email: {okalas,jacquot,souquier}@Ioria.fr

Abstract. We present the notion afonsistency relatioin UML and B multi-
view specifications. It is defined as a semantic relation betwboth views. It
provides us with a sound basis to define the notiodexelopment operatoAn
operator models a development step; it separates the déstggions from their
expression in the specification formalisms. Operator abness is defined as a
property which guarantees that the application of an opecat a consistent spec-
ification state yields a consistent new state. An operatoreaproven once and
for all to be correct. A classical case-study, the GenegdliRailroad Crossing
(GRC), demonstrates how the different notions can be putdatjge to provide
specifiers with a realistic development model.

Keywords: consistency, verification, operator, multi-view, UML, B.

1 Motivations

It has been recognized for a long time that the developmenuafity software de-
pends crucially on the quality of the initial specificati@urrently, there are two mains
streams of specification languages: graphical notationk as UML which are very
effective for the discussion between users and developgrarb poor for formal ver-
ifications, and mathematical notations such as B which deztife for verification
but very poor for discussion. Our aim is to design a framewahere both kinds of
notations can be used together to fulfill the needs of all #wpfe involved.

The approach aims to capitalize on existing languagesrr#iha to define a new one.
This allows us to reuse the efforts that have been made inrtiduption of industrial
tools such as Rational Rdser ArgoUML? for the edition of UML diagrams, and such
asAtelier B[24], B—Toolkit [3], or B4Free[4] for the formal verification of specifica-
tions.

Our approach builds on the works made on the transformatetwden UML and B.
[7, 10, 11, 13, 14, 16, 22] have defined precise sets of tramsfiion rules to generate
a B specification from UML diagrams. These works allow spersfito check UML
specifications by using B-based theorem provers. On the aig [5, 6, 25, 26] define
rules to generate UML diagrams from a B specification. Themdsvallow specifiers to
present users with a “readable” specification in order t@¢las discussion and agree-
ment on what the planned software is supposed to do.

L http://www-306.ibm.com/software/rational/
2 http:/lwww.argouml.tigris.org

Currently, case tools based on transformation rules, sa¢hase proposed in [12, 23,
27], work with transformations in one direction. This is axsequence of the difficulty
to integrate formalisms founded on different paradigmgeadttheory on the one hand
and set theory on the other hand. This situation introducesaaproblem: the specifi-
cation development process is constrained in a highly Uistigavay. Let us suppose a
specifier writes a first specification in UML; he then transfaiit in B and checks it with
the prover; likely, he will need to edit the B specificationdischarge the proof. How
can the changes be retrofitted in the UML design? The proldehei same in the other
direction where the check will consist in a validation witkeuss. Using a “reverse” set
of transformation rules is not realistic since the resulyread to a specification very
far from the original.

More generally, the transformation approach makes imptsspportunistic strategies
where the specifier chooses at some time to focus his workraootstal design with
UML and at some other time to define formal properties with Bhaut any predefined
order. Another approach consists in integrating formalniédins like data-types in
UML state diagrams [2].

In our model, a specification is defined as a coyfg@ecUML. SpecB) whereSpecUML
is a set of UML diagrams anfipecBa set of B machines. Both parts are views of the
samespecification. The development of a multi-view specificai®modeled as a se-
quence of applications @peratorg[18]. An operator models a development technique
by separating the design decisions from their impact on thik E@nd B parts. In prac-
tice, application of an operator makes both views evolveulemeously through the
application of specific editing actions on each part whilsugimg that both parts are
kept consistent. The notion of consistency is then certralr model. It gives a pre-
cise meaning to the notion of multi-view specification. loyides us with the formal
tool to define the correctness of operators.

The paper is organized as follows. Section 2 explicits thecept of operator and the
consistency relation. Section 3 introduces the case stfidiyeogeneralized railroad
crossing (GRC). Section 4 presents an example of operd&efine-Data. Section 5
presents the application of operators on the case studtioS8esgives proofs on the
preservation of the consistency relation with respect éoahplied operators. Section 7
concludes the paper.

2 Operators and multi-view consistency

2.1 Framework for operators

The development of a UML and B multi-view specificati®pec= (SpecUML. SpecB

is done by the application of operators, making parallelptesi of specifications
(SpecUML. SpecB evolve. An operator is composed of two parts: one working on
SpecUMLand the second dBpecBThese parts constitute language specific operators,
denoted byOym andOg.

An operator has application conditions, ensuring the pvasgien of a global property of
the whole specificatioBpec To make the couple of specificatiofSpecUML. SpecB
evolve, we have to determine the kind of changes we want teaelas well as their

location. This corresponds to the selection of an operétoguide the development, the
“Remain To Be Done’tlause provides information about which operators can be ap
plied next in order to terminate a given development procEsis means that operators
must support the following combination features:

e RecursionAn operator can call itself.

e SequencingOperators can be sequenced to fire one after another.

2.2 Operator template

Operator : operatorName
Description. Natural language description of the purpose and effectseobperator.

Parameters.
e INn.
(PARAMName: TYPEPARAM*
e Result.
(PARAMName: TYPEPARAM*

Application conditions.

e Related tocSpecB
(CONDB)*

e Related tdSpecUML
(COND.UML)*

Definition.

e Context. (contexj
o (OPERATORDEF)

Remains To Be Done. (To Do Next

Fig. 1. Operator template

The standard template for the definition of an operator ispased of various clauses.
Each clause is optional except the first one. Each clauses@giled as follows:

1.

Parameters . Determines parameters of the operator which are of twosinmcand
Result They are both optional.
e In. Designates elements needed to calculat&imultrepresentations.
e Result. Designates elementseatedby the operator. Th®esultparameters
that are not included, default to the parameters.

. Application conditions . Defines the conditions which specify when the operator

can be applied. Two kinds of conditions are identified : ctods related to UML
(CONd.UML) and conditions related to B (CONIB).

. Definition . Consists of:

— Context . Determines the element(s) the operator is applied to.
— (OPERATORDEF). Determines the sequence of operators to be apflBERATORDEF
is given by the following grammar:

OPERATORDEF ::= <OUML, OB>
| OPERATORAPP

| OPERATORDEF [; OPERATORDEF]*
| IF (COND) THEN OPERATORDEF [; OPERATORDEF]"
where:
e CONDdenotes a condition on the context or the parameters.
e OPERATORAPPdenotes an operator’s application consisting of the name
of the operator and its parameters.

4. Remains To Be Done. Indicates which part of the specification has to be defined
next.

2.3 Multi-view consistency relation

We consider the question of how the application of an opetss to be constrained so
that its application on a current consistent specificatiatesSpecUML SpecB, yields

a consistent specification stg@pecUML, SpecB). Let us denot&e. the consistency
relation betweespecUMLandSpecB

Let Ty_pg be the set of UML to B transformation rules [9, 17] which asateceach
UML artifact with one or more B artifacts. These transforioas are relative to UML 1.x
[19]. Re\ is defined as a conjunction of four conditions:

1 Syntactic conformancé.states that botBpecUMLandSpecBnust be well-formed.
It ensures that the specification conforms to abstract gyspacified by the meta-
model, i.e. UML meta-model or B abstract syntax tree. Wef (SpecUML and
WJF(SpecB be two predicates defining if a UML and a B specifications arl-we
formed.

2 Local consistencyit requires that both specifications must be internaly cxiasi.
That means they do not contain contradictions, but theyccbalincompletely de-
fined. We write itconsistent(SpecUMIandconsistent(SpecB)

The global consistency is defined with respect to UML to B ¢farmation rules de-
signed by Meyer, Souquiéres and Ledang [9, 17].

3 Elements traceabilityit states that for any elements I&f (SpecUML) ey, that can
be transformed by a rul€, there exists inD (SpecBh set of artifactdeg} result-
ing from the application oT to ey.

4 Semantic preservatiorit states that any statementsatisfying the semantics of
SpecUMLmust satisfySpecB The semantics oSpecUMLIis defined asly_.g
(SpecUML. This means that UML artifacts that have no B semantics define
Ty_g are not concerned by the consistency relafi®elc. This has important im-
plications throughout the verification process. For examiblis well known that
checking pairwise integration of a set of software spedifices is only possible if
one is able to transform them into a semantic domain supgrteools. B is our
semantic domain and any UML statement that has no B formalizaannot be
verified in our framework.

We use the B theorem prover to prove that a statemenolds in SpecB(condition
(2)) and due taondition (3) we derive the consistency 8pecUML.and therefore the
consistency of the multi-view specificati@pec

Qs

Re|c T\’,E|c
e | et
Fig. 2. UML and B consistency relation

Formally, theRelc relation is defined as follows:

Definition 1 (Consistency relation)
SpecUMLRelc SpecB

(1) WF(SpecUMD A WF(SpecB
(2) consistent(SpecUML) consistent(SpecB)

(3)V eu.(eu € ID(SpecUML,) * =
3 {es}, T.({es} C ID(SpecB)/\T € Tu_s A T(ev) = {es}))

(4) ¥ ¢.(Tu—s(SpecUMLY £ ¢ = SpecB= ¢))

* SpecUML,, ~_ denotes the restriction @pecUMLto elements for which there is
transformation rule to B defined iy g

b Ty_e(SpecUML) denotes the application of the set of UML to B tfanmation rules

on SpecUML

3 A case study

The evolution of the specification and the verification of tdoamsistency relation de-
scribed in section 2.3 will be applied to the generalizedtoad crossing example,
calledGRCin the sequel. We give a short description of the problem anelestract

specification on which the refinement can be introduced. Fifjustrates the structure
of the GRC extracted from [21]. The system to be modeled consists ofte, gacon-

troller and trains at a railroad crossing.

The railroad crossing lies in a region of *a’”"e - *'ea"e
interestR. Trains travel in one direction _____; B
throughR, and only one train per track is™ near g far
allowed to be irRat any moment. Sensors —
indicate when a train enters or exits the re- R

gionR. For space and clarity reasons, we,
do not present in details th@RC prob-
lem, but only details which are relevant to illustrate oupagach.

We will describe the development of the system step by steptjrgy with the UML
specification which identifies some important entities.é\tbiat we only focus on static
aspects.

Fig. 3. The generalized railroad crossing

3.1 Afirst UML specification

A Train may be in three statefar, nearandon. The state of the train is determined
by the information provided by sensors positioned on thektiend by a clock. When
a train leaves a region and enters another one, a signaltiscsére controller which
reacts by sending appropriate signals to the gate. A tra@stato 5 time units to reach
stateon after it entered stataear. It then leaves staten and therefore regioR and
reaches statiar betweeril and2 time units. Time information is stored in the variable
Ht, which is initialized to0 when a train enters statearand stat@n. The system must
be safe: the gate must be down when trains reache ataie order to have the gate
closed when the fastest train reaches stateghe gate must be closed betweleand?2
time units after trains entered regién

The classlrain is characterized by the following variables:

— Ht, which models the time taken by the train to reach each state,
— pos which models the train states.

The class Train provides three methaaisive(), cross()andleave() for entering, cross-
ing and leaving regioR, respectively. The class diagram of tB&RCand the behavior
of theTrain are presented in Fig. 4(a) and 4(b).

«enumerationy|

Controller Train
TSTATES — 1 Tt
far counter : int pos : TSTATES arrive()/*Controller.enter(); Ht = 0
near en_t(?)r() /\
exit ;
on arrive() .
doOpen() cross() far
«enumeration» doClose()
GSTATES ‘ leave() cross()[Ht>2 and Ht<5)/Ht = 0
opened leave()[Ht>1 and Htx2]/AController.exit()
closed _ Gate
lowering Hg : int L
raising pos : GSTATES
close8 (b) State diagram of Train
open

(a) Class diagram of the GRC

Fig. 4. A first UML specification

3.2 The corresponding B specification

MACHINE Train
SEES Types

SETS
TSTATES = {far, near, on}

VARIABLES
train, pos, Ht

INVARIANT

train € TRAIN A

pos € train — TSTATESA
Ht € train — NAT

MACHINE Types
SETS INITIALISATION
OBJECTS ANY tt
CONSTANTS WHERE tt C TRAINA tt # {}
TRAIN THEN
PROPERTIES train := tt ||
TRAINC OBJECTS pos:=tt x {far} ||
END Ht:=1tt x {0}
END
OPERATIONS
arrive(tt) =
PRE
tr : train A pog(tr) = far
THEN
pog(tr) := near || Ht(tr) :=0
END;
A
cross(tt) =
leave(tt) 2
END

Fig. 5. Associated B Machines

Figure 5 represents the abstract specification of the dlesis obtained by an auto-
matic translation of the UML specification (cf. Fig. 4). Eadhss with name&lassis
represented by an abstract machine with the same name casshsl in [16]. For each
classClass a setCLASSIs introduced to represent all possible instance€lass A
variableclassC CLASSIs used to identify current instances Gfass Attributes are
modeled as functions fromlassto the attribute type as defined in the class. The type
of functions reflects the participation and cardinality loé eentity. Class operations are
derived as B operations (e.grrive, crossandleavein the Train machine of Fig. 5)
mirroring the syntactical structure of the associatedestbagram. Operation parame-
ters are typed and further constrained in the operationgpr@ition. Operation bodies
are automatically derived from transitions in the statgydhan. In addition to machines
representing classes, we introduce a special machipes which declares a number
of shared sets or types. The others classes are derivedririlarsivay.

3.3 Improving the specification

Let’s take the UML and B specification couple of Fig. 4(a) areh8l consider that the
user focuses his work on the B specification. He decides terebsnore in details the
behavior of the train in the statesar, as described informally in Fig. 7 and graphically

illustrated in Fig. 6.

arrive stop-S H é\1<Hg<2 * leave

- I
I

Fig. 6. Detailed GRC

If the train moves at great speed towards the crossing aiearat pointcrt-S

(critical state) in less tha# time units, it must stop atop-S(stop state). It ther]
starts to move again, when the time varialdtds greater than two time units. This
is the time needed by the gate to be completely closed.

Fig. 7. Example of a critical property

The description of this property requires new variablesiest, types, and constraints to
be added to the initial specification of the train. This metuad we have to improve
the current couple of specifications so that it capturestéig requirement. The refine-
ment is an appropriate technique to express this criticgh@rty. For this purpose, we
provide users with thRefine-Dataperator, allowing to enrich the current specification
in a stepwise manner. It also provides a way to strengthariemts and to add details
omitted in previous abstractions. TRefine-Dataperator defined in this paper is used
to replace some types and data in a specification by more et@nones in order to
increase efficiency or implementability. The replacemerttseup in new entities, sets
and constraints on the data space being introduced in tlegfispéon. Note that we do
not attempt to provide a new definition of data refinemenheatve use the standard
definition of refinement of state variables. From a practiekpective, we present the
data refinement process as follows.

— First, concepts (e.g., refinement component, variablgsedyclasses, attributes,
etc.) that form the basis for expressing properties are hedddheRefine-Data
operator is defined to act this role.

— Second, we consider concepts such as gluing invariantsdti@tal constraints
over data introduced previously to express logical linksveen concrete data and
their abstract versions. This is achieved by usinghteelel-Constrainbperator.

For naming UML and B model elements, we will consider thedwihg notations:

— ID the set of all identifiers of the specificatioiD(= ID(SpecB)J ID(SpecUML).

— CMP(SpecBX ID(SpecB)the finite set of B components (machine, refinement,
implementation) names appearing3pecB

— CLASS(SpecUMLY ID(SpecUMLYhe finite set of class names appearin§pecUML

— ATT(C) the finite set of attributes of a cla€se CLASS(SpecUML)

— DATA(Ma) the finite set of data, such as variables and constants, dpgéaa B
componenMa € CMP(SpecB)

4 An example of operator: Refine-Data

Operator : Refine-Data

Description. This operator provides a scheme to refine data, replacing $gpes and
data in a specification by more concrete ones in order to stifpaddition of func-
tional details, to increase efficiency or implementahilifgers must designate:

a B componeniato which the data to be refined belongs,

a variablev: Sthe user wants to refine,

a states the user wants to precise, if the typef vis a set of statess), ..., S, ..., S}
a set of concrete versionsy{, ..., s} the user wants to replacg with. If Sis an
abstract set, the user will give explicit values {. s} to it.

The following modifications are made {8pecUML. SpecB:

In SpecB

1. If there is no already existing refinemevig, of Ma® (denoted byMa C Ma,), a
refinemenMa, is automatically introduced. It models the following elertse

(a) aREFINES Malause immediately after its header, identifying the sragim-
ponentMathat it refines,

(b) aset:
i. § = SuU{s,,..., s} thatrefines the more abstract ${SC §) if Sis an

enumerated set. Note thgtis composed of new state values, as well as of

all value$ in Sor
i. § = {s,,..5}ifthe to refined seSis abstract,

(c) a set of state variablesi{, ..., v, ..., v;,} which take their values ir&, if v
must be refined by several variables,

(d) acommentlinec To do J(vVv;,) > denoting the location to be replaced with the

gluing invariantthat relates the abstract state variabknd the concrete state
variables {4, ..., W, ..., \r,} and extra constraints (refinement conditions).

2. Ifthere is already a refinemelfa, of Ma, two cases can occur:

(a) inthe first case, additional local types, data and extrstraints may be added
to Ma, in a similar way than 1b and 1c,

(b) in the second cas®a, may be precised by means of a serie of refinements in

a similar way than in the case 1. The refinement process \sill iérate.

% This is the case when the operator is applied for the first tmisla.
4 They are renamed i in order to satisfy B naming conventions. For instangen S is
renamed bysRin S.

3. Ifthe type ofvis a predefined type, no new types are introduced.
In SpecUML

1. In the class diagram

(a) arefinement componelia, corresponds to the cladéa,,

(b) a B variable/ in Ma; corresponds to an attribute in the class that represents
the refinement componemta,. The type and initial value of this attribute cor-
respond to the type invariant and initialization subsiitnof the corresponding
B variable,

(c) asets in B corresponds to an enumerated type in UML or in OCL,

(d) theREFINESclause is modeled by an abstraction/refinement associattn
a <<refines>> stereotype,

(e) the comment line< To do J(vVv;,) > leads to the creation of a comment note
in the class diagram, referencing the refinement link beiwtee abstract and
the refinement class.

2. In the state diagram

(a) For a states, that refines a statg, a super-statg with sub-states, is drawn
by nesting in the state diagram attached with the diéas

(b) Asetofstate value§ = {sR,...,sR, s;,...,S;, ..., R} refining an abstract
set of state valueS(S C) leads to the generation of a state diagram as shown

below.
«enumeration» Ma
S
S v:is MACHINE Ma
. SETS MA; S = {s, s}
S evi VARIABLES v, ma
evf INVARIANT
ma C MA A

v € ma — S

END

ev INITIALISATION
T~ ANY oo
. WHERE oo C MAA oo # {}
THEN ma:= o0 || v:=o00 x {sg} END

10

«enumerationy
Ma
S .
R v:S
s evi
S, evy MACHINE Ma
R
S N END
«refines»!
see B REFINEMENT Ma,
<<J(v, v_r)>> REFINES Ma
on the B view Ma_r SETS § = {%R SR s, s}
Vi 'S VARIABLES v
INVARIANT
evi v, € ma— §
evi /*To Be Done((J(v, v;))) */
evi INITIALISATION
ANY 00
WHERE oo C MAA oo # {}
THEN v; := 00 x {s)R} END
END

Result of the Refine-Data operator application

Parameters.

— Ma : identifier

Result

— v : identifier

- [s : State®

- [{si,...y s} : State
— Ma; : identifier

— V, . identifier

— S :identifier

Application conditions.

1. Related t&SpecB

— Ma € CMP(SpecB)\ Ma ::= MACHINE | REFINEMENT
-seS

— V:SA Ve DATAMa)

-Vs(xe{s, s} =>%¢s)

2. Related t&SpecUML

— 3 C.(C € CLASS(SpecUML) C +— Ma)
— Ja.(ae ATT(C) A(ar V)

5 [X] denotes thax is optional.

11

— dT.(T € TYPE(Spec UML)\ T — S)
Definition.

Context: Ma
IF (Ma ::= MACHINE Vv Ma ::= REFINEMENT)A

(v € DATA(Ma) A (S ::= AbstractSet/ S ::= EnumeratedSet))
THEN

[OumL |08 |
(AddClas$Ma,) ; AddDependenda, Ma;, «refinesy) ; [AddRefinemefa, Ma,) |
AddTYPES, {si, ..}) AddSetS, {s;,...s;}) 5|’
AddAttributéMa;, ;) AddVariabléMa;, v;)

IF (Ma ::= MACHINE Vv Ma ::= REFINEMENT)A
(v € DATA(Ma) A S ::= PredefinedType)

THEN

[OumL |08 |
(AddClas$Ma,) ; AddDependenda, Ma;, «refinesy); [AddRefinemefiva, Ma)] ;
AddAttributéMa vr)* AddVariabléMa;, vr)*

IF Ma ::= REFINEMENTA
v € DATA(Ma) A (S ::= AbstractSev S ::= EnumeratedSet)
3 Max.(May € ID(Speg¢ A Ma C May)

THEN

[OumL [O8 |
AddTYPES, {s,....s}) 1| AddSets, {s,,...s})" i];
AddAttributéMay, V) AddVariabléMay, V)

IF Ma ::= REFINEMENTA
v € DATA(Ma) A S ::= PredefinedType
3 Max.(Max € ID(Spe¢ A Ma C May)
THEN
[OumL [O8 |

|AddAttribthMax, v,)* |AddVariabIQMax, vr)* |

Remains To Be Done. The introduced variable can be improved:
e Invariant and initialization comment lines have to be repthby concrete constraints
using for example th&lodel-Constrainbperator.

5 Application to the case study

Let’s take the couple of specifications of Fig. 4 and Fig. 5 andch it with new vari-
ablesposRandHtR in order to model the property of Fig. 7. We decide to refine the
Train machine, using thRefine-Dataperator. The train machine and its related UML
class and state diagram are interdependent represestafisrone changes, the other

12

one undergoes changes too. So, we instantiate twicRefiee-Dataoperator in order
to introduce variableposRandHtR. The instantiation of this operator requires to set
the actual parameters as shown in Fig. 8(a) and 8(b).

Parameters Parameters
In In
(Train, pos, near{crt.S, stopS} (Train, Ht)
Results Results
Train_R, posR, TSTATER HtR
(a) First instantiation to introduce the variablgb) Second instantiation to
posR introduce the variabléitR

Fig. 8. Two instantiations of th®efine-Data operator

Fig.9 illustrates the result of the instantiation of Refine-Dataoperator on th@rain
machine, where variablggsRandHtR are introduced one after the other.

MACHINE Train

«enumerationy

TSTATES Controller i Train END
Tar counter : int Ht: '_m
near enter) pos : TSTATES REFINEMENT TrainR
on exit() arrive() REFINES Train
S—— doOpen() cross() SEES Types

doClose() leave()
GSTA'(I;ES ‘ & SETS
opene | TSTATERR =
closed . _inf’ale wefiness| 7| J(POS: POSR) {nearR,farR, ctS, stopS, onR
lowering fs'- GSTATES | J(HE HR) VARIABLES
raising pos : ! posR, HtR

close8 i

open TrainR INVARIANT

<enumerations HIR :int posR € train — TSTATER A

TSTATES R posR : TSTATES_R HtR € train — NAT
@R = - /¥ <To Do J(pos,posR) > */
arrive() /* <To Do J(Ht,HtR)> */

onR cross()

C“—SS leave() INITIALISATION

stop_ ANY tt

WHERE tt C TRAINA tt # {}
THEN

posR:=tt x {farR} ||
HtR:=tt x {0}
END

arrive()/*Controller.enter(); Ht = 0

OPERATIONS
arrive(tt) =
leave()[Ht>1 and Ht<2]/ Controller.exit() ?55,\?’ strain A posRir) = farR
posRtr) := nearR || HtR(tr) := 0
cross()[Ht>2 and Ht<5]/Ht = 0

END;

END

Fig. 9. Application of theRefine-Data operator on the train machine

One of the most important steps when refining specificatioisis formulatinggluing
invariantsthat relate concrete variables with their abstract vesidle assume that
the data refinement process ends with formulating invasiamer variables and types

13

previously introduced by thRefine-Dataperator in the first step. This is achieved by
the Model-Constraintoperator as indicated in tiRemains To Be Done clause of the
Refine-Data operator. Once th&odel-Constrainioperator has been applied, we can
move on to deal with the consistency checking. For space kmilycreasons, we do
not present the definition of thdodel-Constrainbperator in this paper.

For the Model-Constraintoperator to work, users have to write the invariario be
added, and to designate the component to which this contstras to be introduced.
The application ends with new constraints in B and OCL casts or comment notes
in UML. We give below one possible formulation of the gluinyariant (over vari-
ablesposRandHtR, and their abstract versiop®sandHt) and constraints on the new
functionality that can be given as parameter when instangahe Model-Constraint
operator.

Parameters
In
TrainR

[* gluing invariants */
Vir.(tr : train =

(posRtr) = farR = pogtr) = far) A
((posRtr) = crt_S or posRtr) = stopS) = pogtr) = near) A
(posRtr) = onR = pogtr) = on) A

(HtR(tr) : 0..5 = HtR(tr) = Ht(tr)) A

[* constraints on the new functionality */

(posRtr) : {crtS stopS onR} = HtR(r) < 5) A
(posRtr) = crt.S or posRtr) = onR = HtR(tr) < 2

))

REFINEMENT TrainR

REFINES Train

SEES Types

SETSTSTATESR = {nearR farR, crt.S, stop.S, onR}
VARIABLES posR, HtR

INVARIANT

posR € train — TSTATESR A

HtR € train — NAT A

[* gluing invariants */

Vir.(tr : train =

(posRtr) = farR = pogtr) = far) A

((posRtr) = crt_S or posRir) = stopS) = pogtr) = near) A
(posRtr) = onR = pogtr) = on) A

(HtR(tr) : 0.5 = HtR(tr) = Ht(tr)) A

[* constraints on the new functionality */

(posRtr) : {crtS stopS onR} = HtR(r) < 5) A
(posRtr) = crt.S or posRtr) = onR = HtR(tr) < 2)

)
INITIALISATION

END

Fig. 10.B refinement of the class Train

14

Fig. 10 shows the B specification dfainRafter the application of th€onstraint-Modeling
operator. Because existing OCL to B rules [11] are only defffioe simple expressions,
there is no creation of an OCL constraint for the introducad\Briantl.

6 Verification of the operator’s correctness

In this section, we look at the correction aspect of the cdsdy. We show concretely
how the definitions apply to the UML and B parts manipulatethie case-study. We
also give some hints on how the correctness of the operRisfise-Dateand Model-
Constraintcould be assessed.

6.1 Syntactic well-formedness

Both specifications must be checked for syntax and type cioress with their corre-
sponding support tool. The B support tool we use for this casay,atelierB, confirms
the well-formedness of the text shown in Fig. 10. The UML d#ags are also well-
formed according to ArgoUML.

6.2 Internal consistency

The definition of operator correctness uses the strong gsi that each view in the
initial state is internally consistent. While this condiiiis not much more than the
well-formedness for the UML, it means full logical consistg for the B part.

The checking ofSpecBfollows the usual approach of the B method: to check initial-
ization, to check pre and postconditions of operations wépect to the preservation
of machine invariants, and to check inter-machine relatisnch as refinements. On
the case-study, it is clear that the verification is done om levels. The first level is
the verification that the elements automatically introdlioe the operator itspecBare
correct. The second level checks that the elements intemtiby the user are consis-
tent. In our case, the first level is mainly exemplified by tpemtorRefine-Datawhile
Model-Constraints mostly about the second level.

SpecBhas been submitted to tiaelierB. All proof obligations generated by the

REFI NEMENT status of thd@T ai nRhave been discharged through the gluing invariant
which was introduced by the application of tM®del-Constrainoperator. Figure 11
shows the summary of the verification printed by the tool.

Proj ect status

o . Fom e - Fom e - Fom e - Fom e m - +
| COMPONENT | TC| POG| Gbv | nPO| nUn | %r |
oo oo - T - R S +
| Train | K| K | 0 | 4 | O | 100 |
| TrainR | OK| OK | 3 | 10 | O | 100 |
| Types | K| - | I I I I
oo oo - - R - S +
| TOTAL | K| - | 3 | 14 | 0 | 100 |
o oo - Fom o - Fom o - Fom e - Fomm o - +

Fig. 11.Result of the verification of the B specification

15

6.3 Consistency between views

It is decomposed into thelements traceabilitpndsemantics preservatiaconditions.
Let’s consider:

— (SpecUML. SpecB the specification couple of Fig. 4 and 5, respectively.

— (SpecUML, SpecB) the specification couple of Fig. 9 and 10, resulting from the
application of the operators qi®pecUML SpecB. Note that Fig. 10 includes the
machineTrain of Fig. 9.

— Ty_g the set of UML to B transformation rules by Meyer [15] and Led48].

To check, we apply the transformation ruls_.g to SpecUML. The interesting part
of the B specification, the machin@gin* andTrainR*, is given in Figure 12. It then
proceeds by the verification of conditioBgnd4 of Re..

MACHINE Train* MACHINE TrainR*
SEES Types SEES Types
SETS SETS
TSTATES = {far, near, on} TSTATESR = {farR,nearR, crtS, stopS, onR}
VARIABLES VARIABLES
train, pos, Ht trainR, posR,HtR
INVARIANT INVARIANT
train € TRAIN A trainR C TRAINR A
pos € train — TSTATESA posR € trainR — TSTATESR A
Ht € train — NAT HtR € trainR — NAT
INITIALISATION INITIALISATION
ANY ANY
tt tt
WHERE WHERE
tt C TRAINA tt# {} tt C TRAINRA tt# {}
THEN THEN
train := tt || trainR:=tt ||
pos:=tt x {far} || posR:=tt x {far} ||
Ht:=tt x {0} HtR:=tt x {0}
END END
OPERATIONS OPERATIONS
arrive(tt) = arrive(tt) =
PRE PRE
tr : train A pog(tr) = far tr : trainR A posRtr) = farR
THEN THEN
pog(tr) := near || Ht(tr) :=0 posRtr) := nearR || HtR(tr) := 0
cross(tt) 2 cross(tt) 2
leave(t) = ... leave(t) 2
END END

Fig. 12.B specification obtained by applying transformation rules

Condition3 is proved by verifying thatD (Ty_.g(SpecUML)) = ID(SpecB). This is
asserted in two steps:

— all new names introduced by the operators are present. 3bi&sily seen,
— condition3 holds for(SpecUML. SpecB. This is true by construction, cf. subsec-
tion 3.2.

The verification of conditiont is more complex. When we look at Figure 12, we can
see the following differences betwe8pecBandTy_.g(SpecUML):

16

1. TrainR*is a machine and is not relatedTain* by a refinement relation.

2. The machindrainR* introduces a new variabteainR® which is a subset of the set
TRAINRrepresenting possible instances of the classnR trainR and TRAINR
do not appear irSpecB As a consequence, variablpesRandHtR in the ma-
chine TrainR* which are modeled as functions from current instancestesan]
to the corresponding type (STATES andNAT respectively), have now different
domains.

3. the UML abstraction/refinement dependency is not modeled

4. the added invariants in the machifr@inR of SpecBdo not appear since they have
been represented as a comment not®pecUML

So, to establish the property, we have to prove that the madhainR* is a refinement
of the machin€lrain*. Concretely, we must find an abstraction functipndefined as
follows. Let us consider:

— Sua, @andSua the sets of states dfla, andMa respectively,

— Eviys, andEviy, the sets of events of state machined/af andMa respectively,

— Transu, andTransg, the sets of transitions of state machinesvia, andMa re-
spectively,

p: Ma, — Ma isan abstraction relation which is a function froBus U EViua, U Transy,,
to Sua U Eviya U Transya and which maps

— Each states of Ma, to a statep(s;) of Ma,
— Each evengé of Ma, to an evenp(e) of Maand
— Each transition, of Ma; to a transitiorp(t;) of Ma.

Such that

- P(&nitMa,) = Shitya
= Eviva(p(tr)) = p(EViya, (t))
— sourcga(p(tr)) = p(sources, (t)) A targeta(p(tr)) = p(targetus, (tr))

pis an abstraction function equivalentto a B refinement ifthiewing properties hold:

1.Vs3Is(SE SuaAS € Sua Ap(S) =9 A
2.Vsdt(s € SuaAt € Transua A Eviya(t) = e A sourcgua(t) = s=
(V 53 € Sua A p(s) = s= T t.(tr € Transys A
p(EViv (tr)) = eA
ptr) = tA
sourceys (tr) = &

)

The first condition states that every statef an abstractioiMa has some corresponding
states of its refinememla,. The second states that every eventhich has an abstract
transition from some state has also a corresponding concrete transition from each
corresponding state.

8 for modeling effective instances of the claBsinR

17

These conditions ensure that all properties expressktijrhold in the abstractioMa
and therefore the semantic preservation criteria is edsuketually, this condition is
similar to the preservation of precondition requiremenBatfinement.

The definition ofp on our case study is as follows:

p = {farR — far, stop.S+ near, crt. S+ near, onR— on} U
{arrive — arrive, cross— cross leave— leavé U
{(farR, arrive, nearR)— (far, arrive, near) (nearR, cross, onR)- (near, cross, on)
(onR, leave, farR)- (on, leave, far)

Itis easily verified that the preceding properties holds @ysidering the gluing invari-
ant.

7 Conclusion and Future work

Combining UML notations and the B method is important fordke and the acceptance
of formal methods as part of the development of high qualjsteams. We propose a
framework allowing to define development operators makiravee UML and B multi-
view specifications. The approach is not based on the apiplicaf transformation
rules from UML to B or B to UML, but on the development of bothesffications in
an incremental way by applying operators. Operators enhklepecifier to focus on
methodological issues before addressing technical detdted to each specification
language.

We have proposed a definition of the consistency relatiowdah both views of a
specification expressed with UML and B, and two consecut@xetbpment states. The
verification of the consistency is done once for all for eggérator when defining them,
relatively to a set of UML to B systematic transformationesil It is partly automated
and supported by the B prover.

As the case study shows, our approach does not pretend tmatgtthe entire develop-
ment of the specification. Technical and tedious syntdddietils are taken care of by
the operators but the design of important properties iste8lspecifier's responsibility.

An implementation of this framework with some operatorsrigler development. It is
an extension of thé&rgoUML+B [12] platform, allowing to automatically transform
some UML diagrams to B specificationargoUML+B is based on thérgoUML’
project, dedicated to the edition and design of UML diagraifikis extension includes
SmartToolg1, 20] to dynamically represent B specifications as instaraf the B AST
(abstract syntax tree), taking into account the multi-vep&cification.

We are looking at developing a library of useful operatore kéve already identi-
fied and defined some restructuring operators such as mgdabistraction of generic
classes from existing classes. We also need operatorsdaplcification of system
behaviours.

7 http://www.argouml.tigris.org

18

References

[1]

(2]

(3]
[4]
[5]

[6]

[7]

(8]
9]

(10]
(11]

(12]

(13]

(14]

(19]

(16]

I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D.rigat, C. Pasquier, and C. S.
Coen. SmartTools: a development environment generat@doas XML technologies. In
In XML Technologies and Software Engineering, Toronto, acian ICSE’'01, ICSE work-
shop proceeding001.

C. Attiogbé, P. Poizat, and G. Salaln. Integration ofrkarDatatypes within State Dia-
grams. InFASE’2003 - Fundamental Approaches to Software Engingeviolume 2621
of LNCS pages 341-355. Springer-Verlag, 2003.

Oxford(UK) B-Core(UK) Ltd. B-Toolkit User's Manual 1996.

ClearSy. http://www.b4free.com/index.php.

F. Houda and Stephan Merz. Transformation de spécificatB en diagrammes UML. In
Proceedings of AFADL'04, Besancgon (F2004.

A. Idani and Y. Ledru. Object Oriented Concepts Idenéfion from Formal B Specifica-
tions. In9th Int.Workshop on Formal Methods for Industrial Critic®ystems (FMICS’04),
Linz (AT) 2004.

R. Laleau and F. Polack. A Rigorous Metamodel for UML #t&onceptual Modelling
of Information Systems. I#dvanced Information Systems Engineering. 13th Int. Conf.
CAISE 2001, Proceedinggolume 2068 o NCS pages 402-416. Springer, 2001.

H. Ledang. Traduction Systématique de Spécifications UML ver$BD thesis, LORIA
-Université Nancy2, novembre, 2002.

H. Ledang and J. Souquieres. Modeling class operatiois application to UML behav-
ioral diagrams.- ASE2001: 16th IEEE International Conference on Autom&efiware
Engineering, IEEE Computer Society, NovemB2€01.

H. Ledang and J. Souquiéres. Integrating FormaliziinglBehavioral Diagrams with B.
Workshop on Integration and Transformation of UML modelaldga (S) 2002.

H. Ledang and J. Souquiéres. Integration of UML and Bc8jmation Techniques: Sys-
tematic Transformation from OCL Expressions into B. Rroceedings of APSEC 2002
IEEE Computer Societ002.

H. Ledang, J. Souquiéres, and S. Charles. ArgoUML+B otil de transformation sys-
tématique de spécifications UML vers B.Pnoceedings of AFADL'03, Rennes (F2003.
R. Marcano and N. Levy. Transformation rules of OCL dosisits into B formal expres-
sions. In Jurjens, Cengarle, Fernandez, Rumpe, and Saretfignrs, Critical Systems
Development with UML — Proceedings of the UML'02 workshpgmes 155-162, 2002.
R. Marcano and N. Levy. Using B formal specifications émralysis and verification of
UML/OCL models. In L. Kuzniarz, G. Reggio, J. L. Sourroujlend Z. Huzar, editors,
Workshop on Consistency Problems in UML-based Softwarelbewent. Workshop Ma-
terials, pages 91-105, 2002.

E. Meyer. Développements formels par objets: utilisation conjouheB et d’'UML. PhD
thesis, LORIA -Université Nancy2, mars, 2001.

E. Meyer and J. Souquieres. A systematic approach tsftoam OMT diagrams to a B
specification FM’99: World Congress on Formal Methods in the Developmé@amput-
ing Systems, Toulouse (F1)999.

E. Meyer and J. Souquieres. A systematic approach tsftoam OMT diagrams to a B
specification FM’99: World Congress on Formal Methods in the Developmé@amput-
ing Systems, Toulouse (F1)999.

D. Okalas Ossami, J. Souquieres, and J.-P. Jacquotratdpé de construction de spé-
cifications multi-vues UML et B. IrProceedings of AFADL'04, Besancon, France, June
16-18 INRIA, 2004.

OMG. Unified modeling language specification, versioh, March 2003. available from
hhtp:://www.omg.org.

D. Parigot and C. Courbis. avaible at : http://www-sopa.fr/smartool/.

P. Schnoebelen, B. Bérard, M. Bidoit, F. Laroussinel, AnPetit.Vérification de logiciels
-Techniques et outils du model-checkinBaris, Vuibert, 1999. ISBN 2- 7117-8646-3.

C. Snook, M. Butler, and I. Oliver. Towards a UML profilerfUML-B. Technical report,
DSSE-TR-2003-3, Electronics and Computer Science, Usityeof Southampton, 2003.

19

(23]
[24]
(25]

(26]

[27]

C. Snook and M. Buttler. U2B: a tool for combining UML ar8. Avaible at
http://www.ecs.soton.ac.uk/ cfs/lU2Bdownloads/.

STERIA. Manuel de référence du langage ElearSy-, novembre, 1998.

B. Tatibouet, A. Hammad, and J.-C. \Voisinet. From antr&los B specification to UML
class diagrams. I8nd IEEE International Symposium on Signal Processing afafina-
tion Technology (ISSPIT’2002)ages 5-10, 2002.

B. Tatibouet and J.-C. \Voisinet. Generating statetshfitom B specifications. 1i6th
International Conference Software & Systems Engineering #neir applications (IC-
SSEA2003)Paris (Fr), 2003.

B. Tatibouet and J.C. Voisinet. jBtools and B2UML : atglarm and a tool to provide a
UML class diagram since a B specification.I@SSEA : 14th International Conference on
Software and Systems Engineering and Their Applicaticauss PFr), volume 2, 2001.

20

