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LOCALIZATION OF INJECTIVE MODULES OVER VALUATION

RINGS

FRANÇOIS COUCHOT

Abstract. It is proved that EJ is injective if E is an injective module over
a valuation ring R, for each prime ideal J 6= Z. Moreover, if E or Z is flat,
then EZ is injective too. It follows that localizations of injective modules over
h-local Prüfer domains are injective too.

If S is a multiplicative subset of a noetherian ring R, it is well known that S−1E
is injective for each injective R-module E. The following example shows that this
result is not generally true if R is not noetherian.

Example 1. Let K be a field and I an infinite set. We put R = KI , J = K(I)

and S = {1 − r | r ∈ J}. Then R/J ∼= S−1R, R is an injective module, but R/J is
not injective by [5, Theorem].

However, we shall see that, for some classes of non-noetherian rings, localizations
of injective modules are injective too. For instance:

Proposition 2. Let R be a hereditary ring. For each multiplicative subset S of R
and for every injective R-module E, S−1E is injective.

There exist non-noetherian hereditary rings.
Proof. Let F be the kernel of the natural map: E → S−1E. Then E/F is

injective and S-torsion-free. Let s ∈ S. We have (0 : s) = Re, where e is an
idempotent of R. It is easy to check that s + e is a non-zerodivisor. So, if x ∈ E,
there exists y ∈ E such that x = (s+e)y. Clearly eE ⊆ F . Hence x+F = s(y+F ).
Therefore the multiplication by s in E/F is bijective, whence E/F ∼= S−1E. �

In Proposition 2 and Example 1, R is a coherent ring. By [3, Proposition 1.2]
S−1E is fp-injective if E is a fp-injective module over a coherent ring R, but the
coherence hypothesis can’t be omitted: see [3, Example p.344].

The aim of this paper is to study localizations of injective modules and fp-
injective modules over a valuation ring R. Let Z be the subset of its zerodivisors.
Then Z is a prime ideal. We will show the following theorem:

Theorem 3. Let R be a valuation ring, denote by Z the set of zero divisors of R
and let E be an injective (respectively fp-injective) module. Then:

(1) For each prime ideal J 6= Z, EJ is injective (respectively fp-injective).
(2) EZ is injective (respectively fp-injective) if and only if E or Z is flat.
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1
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In this paper all rings are associative and commutative with unity and all mo-
dules are unital. We say that an R-module E is divisible if, for every r ∈ R
and x ∈ E, (0 : r) ⊆ (0 : x) implies that x ∈ rE, and that E is fp-injective(or
absolutely pure) if Ext1R(F, E) = 0, for every finitely presented R-module F.
A ring R is called self fp-injective if it is fp-injective as R-module. An exact
sequence 0 → F → E → G → 0 is pure if it remains exact when tensoring
it with any R-module. In this case we say that F is a pure submodule of E.
Recall that a module E is fp-injective if and only if it is a pure submodule of every
overmodule. A module is said to be uniserial if its submodules are linearly ordered
by inclusion and a ring R is a valuation ring if it is uniserial as R-module. Recall
that every finitely presented module over a valuation ring is a finite direct sum of
cyclic modules [7, Theorem 1]. Consequently a module E over a valuation ring R
is fp-injective if and only if it is divisible.

An R-module F is pure-injective if for every pure exact sequence

0 → N → M → L → 0

of R-modules, the following sequence

0 → HomR(L, F ) → HomR(M, F ) → HomR(N, F ) → 0

is exact. Then a module is injective if and only if it is pure-injective and fp-injective.
A ring R is said to be an IF-ring if every injective module is flat. By [1, Theorem
2] R is an IF-ring if and only if R is coherent and self fp-injective.

In the sequel R is a valuation ring whose maximal ideal is P and Z is its subset
of zerodivisors. Some preliminary results are needed to show Theorem 3.

Proposition 4. Let R be a valuation ring, let E be an injective module and r ∈ P .
Then E/rE is injective over R/rR.

Proof. Let J be an ideal of R such that Rr ⊂ J and g : J/Rr → E/rE be a
nonzero homomorphism. For each x ∈ E we denote by x̄ the image of x in E/rE.
Let a ∈ J \ Rr such that ȳ = g(ā) 6= 0. Then (Rr : a) ⊆ (rE : y). Let t ∈ R
such that r = at. Thus ty = rz for some z ∈ E. It follows that t(y − az) = 0. So,
since at = r 6= 0, we have (0 : a) ⊂ Rt ⊆ (0 : y − az). The injectivity of E implies
that there exists x ∈ E such that y = a(x + z). We put xa = x + z. If b ∈ J \ Ra
then a(xa − xb) ∈ rE. Hence xb ∈ xa + (rE :E a). Since E is pure-injective, by [6,
Theorem 4] there exists x ∈ ∩a∈Jxa + (rE :E a). It follows that g(ā) = ax̄ for each
a ∈ J . �

Lemma 5. Let R be a valuation ring, let U be a module and F a flat module.
Then, for each r, s ∈ R, F ⊗R (sU :U r) ∼= (F ⊗R sU :F⊗RU r).

Proof. We put E = F ⊗R U . Let φ be the composition of the multiplication by
r in U with the natural map U → U/sU . Then (sU :U r) = ker(φ). It follows that
F ⊗R (sU :U r) is isomorphic to ker(1F ⊗ φ) since F is flat. We easily check that
1F ⊗ φ is the composition of the multiplication by r in E with the natural map
E → E/sE. It follows that F ⊗R (sU :U r) ∼= (sE :E r). �

Proposition 6. Let R be a valuation ring. Then every pure-injective R-module F
satisfies the following property: if (xi)i∈I is a family of elements of F and (Ai)i∈I

a family of ideals of R such that the family F = (xi + AiF )i∈I has the finite
intersection property, then F has a non-empty intersection. The converse holds if
F is flat.
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Proof. Let i ∈ I such that Ai is not finitely generated. By [2, Lemma 29] either
Ai = Pri or Ai = ∩c∈R\Ai

cR. If, ∀i ∈ I such that Ai is not finitely generated, we
replace xi + AiF by xi + riF in the first case, and by the family (xi + cF )c∈R\Ai

in the second case, we deduce from F a family G which has the finite intersection
property. Since F is pure-injective, it follows that there exists x ∈ F which belongs
to each element of the family G by [6, Theorem 4]. We may assume that the
family (Ai)i∈I has no smallest element. So, if Ai is not finitely generated, there
exists j ∈ I such that Aj ⊂ Ai. Let c ∈ Ai \ PAj such that xj + cF ∈ G. Then
x − xj ∈ cF ⊆ AiF and xj − xi ∈ AiF . Hence x − xi ∈ AiF for each i ∈ I.

Conversely, if F is flat then by Lemma 5 we have (sF :F r) = (sR : r)F for each
s, r ∈ R. We use [6, Theorem 4] to conclude. �

Proposition 7. Let R be a valuation ring and let F be a flat pure-injective module.
Then:

(1) F ⊗R U is pure-injective if U is a uniserial module.
(2) For each prime ideal J , FJ is pure-injective.

Proof.

(1). Let E = F ⊗R U . We use [6, Theorem 4] to prove that E is pure-injective.
Let (xi)i∈I be a family of elements of F such that the family F = (xi + Ni)i∈I has
the finite intersection property, where Ni = (siE :E ri) and ri, si ∈ R, ∀i ∈ I.

First we assume that U = R/A where A is a proper ideal of R. So E ∼= F/AF . If
si /∈ A then Ni = (siF :F ri)/AF = (Rsi : ri)F/AF . We set Ai = (Rsi : ri) in this
case. If si ∈ A then Ni = (AF :F ri)/AF = (A : ri)F/AF . We put Ai = (A : ri)
in this case. For each i ∈ I, let yi ∈ F such that xi = yi + AF . It is obvious that
the family (yi + AiF )i∈I has the finite intersection property. By Proposition 6 this
family has a non-empty intersection. Then F has a non-empty intersection too.

Now we assume that U is not finitely generated. It is obvious that F has a non-
empty intersection if xi +Ni = E, ∀i ∈ I. Now assume there exists i0 ∈ I such that
xi0 +Ni0 6= E. Let I ′ = {i ∈ I | Ni ⊆ Ni0} and F ′ = (xi +Ni)i∈I′ . Then F and F ′

have the same intersection. By Lemma 5 Ni0 = F ⊗R (si0U :U ri0 ). It follows that
(si0U :U ri0 ) ⊂ U because Ni0 6= E. Hence ∃u ∈ U such that xi0 +Ni0 ⊆ F ⊗R Ru.
Then, ∀i ∈ I ′, xi + Ni ⊆ F ⊗R Ru. We have F ⊗R Ru ∼= F/(0 : u)F . From
the first part of the proof F/(0 : u)F is pure-injective. So we may replace R with
R/(0 : u) and assume that (0 : u) = 0. Let Ai = ((siU :U ri) : u), ∀i ∈ I ′. Thus
Ni = AiF, ∀i ∈ I ′. By Proposition 6 F ′ has a non-empty intersection. So F has a
non-empty intersection too.

(2). We apply (1) by taking U = RJ . �

Proof of Theorem 3

Let J be a prime ideal and E a module. If E is fp-injective, E is a pure submodule
of an injective module M . It follows that EJ is a pure submodule of MJ . So, if MJ

is injective we conclude that EJ is fp-injective. Now we assume that E is injective.
(1). Suppose that J ⊂ Z. Let s ∈ Z \ J . Then there exists 0 6= r ∈ J such

that sr = 0. Hence rE is contained in the kernel of the natural map: E → EJ .
Moreover RJ = (R/rR)J and EJ = (E/rE)J . By Proposition 4, E/rE is injective
over R/rR and by [2, Theorem 11] R/rR is an IF-ring. So E/rE is flat over R/rR.
From Proposition 7 we deduce that EJ is pure-injective and by [3, Proposition 1.2]
EJ is fp-injective. So EJ is injective.
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Assume that Z ⊂ J . We set

F = {x ∈ E | J ⊂ (0 : x)} and G = {x ∈ E | J ⊆ (0 : x)}.

Let x ∈ E and s ∈ R \ J such that sx ∈ F (respectively G). Then sJ ⊂ (0 : x)
(respectively sJ ⊆ (0 : x)). Since s /∈ J we have sJ = J . Consequently x ∈ F
(respectively G). Thus the multiplication by s in E/F (and E/G) is bijective
because E is injective. So E/F and E/G are modules over RJ and EJ

∼= E/F .
We have G ∼= HomR(R/J, E). It follows that E/G ∼= HomR(J, E). But J is a flat
module. Thus E/G is injective. Let A be an ideal of RJ and f : A → E/F an
homomorphism. Then there exists an homomorphism g : RJ → E/G such that
g ◦ u = p ◦ f where u : A → RJ and p : E/F → E/G are the natural maps. It
follows that there exists an homomorphism h : RJ → E/F such that g = p ◦ h.
It is easy to check that p ◦ (f − h ◦ u) = 0. So there exists an homomorphism
ℓ : A → G/F such that v ◦ ℓ = f − h ◦ u where v : G/F → E/F is the inclusion
map. First assume that A is finitely generated over RJ . We have A = RJa. If
0 6= ℓ(a) = y + F , where y ∈ G, then (0 : a) ⊆ Z ⊆ J = (0 : y). Since E is injective
there exists x ∈ E such that y = ax. Hence f(a) = a(h(1)+(x+F )). Now suppose
that A is not finitely generated over RJ . If a ∈ A then there exist b ∈ A and r ∈ J
such that a = rb. We get that ℓ(a) = rℓ(b) = 0. Hence f = h ◦ u.

(2). Let the notations be as above. Then EZ = E/F . If Z is flat, we do as
above to show that EZ is injective. If E is flat then F = 0, whence EZ = E.
Now, assume that EZ is fp-injective and Z is not flat. By [2, Theorem 10] RZ is
an IF-ring. It follows that EZ is flat. Consequently F is a pure submodule of E.
Suppose there exists 0 6= x ∈ F . If 0 6= s ∈ Z then (0 : s) ⊆ Z ⊂ (0 : x). So, there
exists y ∈ E such that x = sy. By [2, Lemma 2] (0 : y) = s(0 : x) ⊆ Z. Since F
is a pure submodule, we may assume that y ∈ F . Whence Z ⊂ (0 : y). We get a
contradiction. Hence F = 0 and E is flat. �

Now we give a consequence of Theorem 3. Recall that a domain R is said to be
h-local if R/I is semilocal for every nonzero ideal I, and if R/P is local for every
nonzero prime ideal P, [4].

Corollary 8. Let R be a h-local Prüfer domain. For each multiplicative subset S
of R and for every injective R-module E, S−1E is injective.

Proof. By [4, Theorem 24] EP is injective for each maximal ideal P . Since
RP is a valuation domain, we deduce from Theorem 3 that EJ is injective for each
prime ideal J . It is easy to check that S−1R is a h-local Prüfer domain. So, by [4,
Theorem 24] S−1E is injective. �
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