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Case 907 Luminy, 13288 Marseille cedex 9, France

(Dated: October 4, 2005)

Transport through a single molecular conductor is considered, showing negative differential con-
ductance behavior associated with phonon-mediated electron tunneling processes. This theoretical
work is motivated by a recent experiment by Leroy et al. using a carbon nanotube contacted by an
STM tip [Nature 432, 371 (2004)], where negative differential conductance of the breathing mode
phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings
which inject electrons and those which collect them on the substrate are highly asymmetrical. A
quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron
levels. A “half-shuttle” mechanism is also introduced. A quantum kinetic formulation allows to
derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle
coupling, negative differential conductance is obtained for a wide range of parameters. A detailed
explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-
phonon coupling. In addition, in absence of a gate, the ”floating” level results in two distinct lengths
for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the
”half-shuttle” mechanism tends to reinforce the negative differential regions, but it cannot trigger
this behavior on its own.

I. INTRODUCTION

The prospect of using molecules as the fundamental building blocks of future nanoelectronics devices is rather
innovating and exciting from the point of view of potential applications. On the fundamental side, the field of molecular
electronics also opens new directions for research because of the prominent role of phonon (vibron) excitations in
electronic transport. The nano-objects which are connected to metallic leads may consists of individual molecules,
self-assembled monolayers, or conjugated systems such as polymers and carbon nanotubes. The interplay of electron
transport and molecular vibrations has triggered much interest, and unambiguous signatures of phonons have been
detected in several experiments1,2,3,4,5.

A recent work4,5 considered electron injection from an scanning tunneling microscope (STM) tip into a carbon
nanotube. A single-wall carbon nanotube (CNT) is freely suspended over a trench. The STM-tip is located near
the center of the suspended part of the CNT. A DC-bias voltage V is applied between the substrate and the STM,
and the current flowing through the STM-tip - CNT - substrate structure is measured at a given tunneling distance,
controlled by the setpoint current. The motivation for this special geometry is to allow for free internal vibrations to
occur in the suspended portion of the nanotube, in particular the so-called radial breathing modes (RBM)6. Contrary
to acoustic modes in such system, this mode has a rather high oscillation frequency, and the authors observed that
conductance peaks in the current-voltage characteristics of the nanotube were surrounded by phonon side peaks, due
to emission or absorption of RBM phonons. Indeed, CNT display a sizeable coupling of electrons to RBM modes7.
The contacts to the nanotube being rather resistive, transport in this system is dominated by the Coulomb blockade
regime, and phonon side peaks were observed around each Coulomb blockade peak in differential conductance plots.

Interestingly, the authors mention frequent detection of negative differential conductance (NDC) regions. Striking
NDC features also appear in a very recent work by Sapmaz et al.3, in a transport measurement of a suspended CNT,
where current flows through the CNT, between two contacts at the substrate. In this work, phonon side peaks are
attributed to longitudinal stretching modes, and the steps in the I(V ) characteristics are followed by spikes, thus
displaying NDC features. The purpose of the present theoretical work is to show that such NDC features can be
described quite simply using a generic model which consists of a quantum dot with a single orbital level, coupled
to on-site single phonon mode, and connected to leads by tunnel junctions. Due to the weak tunnel couplings, the
physics of NDC appear to be a consequence of the transport through small polaron states on the molecule. Notice



2

that polaron formation in CNT is suggested by several works7. Similar models have previously been considered in
the literature8,9,10,11,12,13,14. Here we consider a molecular system – or a nanotube setup – whose tunneling matrix
elements from the molecule to the leads are asymmetric, which is the case in Ref. 4, and possibly also in Ref. 3.
We propose that given this asymmetry, NDC can be obtained for a wide range of parameters and it can even be
quantified by analytical means for strong asymmetry. Furthermore, we argue that our approach for the description of
NDC is by no means confined to the experimental geometry of Ref. 4, which can be considered as an “experimental
paradigm” for phonon modulated molecular transport. The present approach should apply to any molecular transport
in the Coulomb blockade regime where an optical-like phonon mode dominates. Notice that NDC was found in Ref.8
within a symmetric model, using an ansatz for the Franck-Condon factors coupling the leads to the polaron levels.
Catastrophic NDC was also proposed to occur in Ref. 10, but due to an additional mechanism. In the framework of
a single site model, NDC was also found in an adiabatic treatment of the polaron problem18. It has been proposed to
occur in the case of two competing molecular states15 or within a two-site model16. Besides electron-phonon coupling,
other physical mechanisms can lead to NDC17.

In molecular electronics, one is tempted to use existing theoretical tools developed in the context of mesoscopic
physics because the size of the devices allows a coherent description of the transport inside the molecule. When the
molecule is connected to good contacts, and when the role of Coulomb interaction and electron-phonon interactions is
reduced, the Landauer formulation of transport combined with a Green’s function calculation of the transmission coef-
ficient serves as a good starting point for computing transport19, but it then neglects the dynamical degrees of freedom
of the molecule. Phonons can be included in these approaches, analytically20, or using numerical calculations21,22

based on the work of Ref. 23. Alternatively, the Landauer approach can be generalized to a situation where interac-
tions are restricted to a finite region9,12,24 using non-equilibrium Green’s functions.

On the other hand, molecular contacts or the contacts to a nanotube are often of poor quality. It is then reasonable
to think of the molecule as a quantum dot, which is subject to the Coulomb blockade. This point of view was adopted
by several authors8,9,10,12,13,25, and is confirmed by experiments. One of the advantages of modecular electronics comes
from the size of the individual nano-object which is connected to the electrodes. Even at relatively large temperatures
(a few Kelvins), the dynamics within the molecule/nanotube is fully phase coherent. On the other hand, the tunneling
rates to the reservoirs are typically small compared to temperature. One can then derive rate equations for the electron
population of the dot. Here our goal is to use the simplest model which can account for the physics of the experiment
of Ref. 4. We therefore derive a kinetic equation approach which can account for the observed NDC effect, treating
the electron-phonon coupling non-perturbatively while still allowing for an intuitive understanding of the physics at
hand. Furthermore, consequences can be derived on the electron transport as well as on the non-equilibrium phonon
population. In the present work the local mode is not coupled to any environmental degrees of freedom, like phonon
modes or electron-hole excitations in the substrate. Although such coupling is probably relevant in some experiments,
the very high phonon quality factors (Q > 20000) obtained in other works4 justify to neglect it as a first step.

Experimentally, the addition of voltage gates on a molecular transport setup is still challenging but it is possible5,26

to approach three metallic probes in a nanometer scale region. Yet, there is also a motivation to study a setup where
the molecular levels are ”floating” instead of being fixed by a gate. Besides the strong asymmetry of the tunneling
rates, a specific feature of our work is that NDC can occur in such absence of gate voltage, and that the ratio of the
right/left capacitance plays an important role, as it dictates the location of the molecular levels.

The structure of the paper is as follows. The model is introduced in Sec. II, and the derivation of the rate
equations is provided in Sec. III. The general considerations about current transport and phonon occupation numbers
are discussed in Sec. IV. Numerical results are presented in Sec. V, illustrating the role of the asymmetry of the
capacitances, of the shift of the dot level, and of the so-called half-shuttle mechanism on the NDC. We conclude in
Sec. VI.

II. THEORETICAL MODEL

Although the potential relevance of our approach applies to the carbon nanotube experiments of Refs. 4,5, we
refer to the central region between the leads as the quantum dot. This quantum dot is weakly coupled to two
metallic electrodes by tunnel junctions. In the STM geometry of Refs. 4,5, the electrodes represent the STM-tip
and the substrate, to which we refer as the ’left’ (l) and ’right’ (r) electrodes, respectively. Each tunnel junction
(j = l, r) is characterized by a resistance (Rj) and a capacitance (Cj). While Rr and Cr are constant for a given
contacted nanotube sample, Rl and Cl are functions of the tip-tube separation. The capacitances Cl and Cr are
sample-dependent27. For generality, one can add a gate voltage Vg and a gate capacitance Cg.

We focus on the strong Coulomb blockade regime, assuming that the number of electrons which can be added to the
dot is restricted to one. The physical features revealed in the corresponding bias window can be easily extended to a
full span of many Coulomb blockade peaks, as well a several orbital levels as in Refs. 4,5. The extra-charge electron
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FIG. 1: Schematic drawing of a carbon nanotube suspended over a trench. A bias voltage is applied between the STM tip
(source) and substrate (drain). The inflated portion in the suspended portion of the nanotube illustrates the radial breathing
mode. h is the tip–nanotube separation at rest.

state is locally coupled to a phonon mode: in Refs. 4,5 this mode is identified with the radial breathing mode (RBM)
of the carbon nanotube6,7 and, in Ref. 3, with the longitudinal stretching mode. In view of the phonon-assisted
tunneling processes, the above-mentioned Coulomb blockade regime implies that the charging energy of the dot is
assumed to be infinitely large compared to the relevant energy scale determined (at low temperature) by the phonon
energy Ω and the bias voltage. In the absence of phonons, electron transport would occur only through a single
electron state on the dot.

In the Coulomb blockade regime, far from the Kondo regime, spin degrees of freedom are neglected. The Hamiltonian
of the system is written as follows:

H = H0 + Hleads + V , (1)

where

H0 = ( ǫ − gx) d†d + Ω b†b , x = b + b† , (2)

Hleads =
∑

jk

ξjk c†jkcjk , (3)

V =
∑

jk

Tj(x) c†jk d + h.c. . (4)

Here the operator d (d†) annihilates (creates) an electron on a single dot level of energy ǫ; similarly, cjk (c†jk) annihilates

(creates) an electron with momentum k and energy ξjk in the jth lead. The RBM is linearly coupled (with the coupling
energy g) to the electric charge on the dot; the RBM excitations are annihilated (created) by b (b†). In Eq. (4), Tj is
the energy associated with the tunneling coupling to the dot; for simplicity, Tj is assumed to be energy-independent
(constant density of states in the metallic leads), but we take into account the dependence of the tip-tube tunneling
matrix amplitude on the boson coordinate x: due to the “breathing” motion of the tube, the tip-tube tunneling
distance deviates from its equilibrium value. Explicitly, we assume an exponential x-dependence:

Tl(x) = Tl0 e−sx , (5)

where s is determined by the ratio of the amplitude of the zero-point RBM oscillations to the electronic tunneling
length (≈ 0.5Å) which characterizes the tunnel barrier between the STM tip and the nanotube. Such position
dependent amplitudes have been introduced in the context of nano-mechanical electronic devices28,29, where one
refers to the “shuttle” mechanism as the central region oscillates between the two electrodes. On the other hand, in
our situation the tube-substrate tunneling matrix amplitude is x-independent: Tr(x) ≡ Tr0. For s 6= 0, we refer here
to this position dependent tunneling Hamiltonian as the “half-shuttle” mechanism, because only one of the tunneling
amplitude (left) is modified by the position.

In the model Hamiltonian (1), formally describing the phonon-assisted tunneling of otherwise noninteracting elec-
trons, the charging effects are taken into account via the bias-voltage dependence of the position of the dot level (ǫ)
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with respect to the chemical potentials of the leads, µl,r. A gate voltage Vg and gate capacitance Cg can be included.
In our analysis, ǫ includes the change in the charging energy of the dot when one extra electron is added to the dot,
and which is obtained from the electrostatic energy consideration:

ǫ − ǫ0 = 2EC(nx + 1/2) + eφ , (6)

where ǫ0 is the “bare” energy level of the electron level in the dot, EC = e2/2C is the charging energy and enx is a
background (fractional) charge of the dot. Furthermore, the potential of the dot, φ, is given by

φ =
∑

j=l,r

cjµj/e + cgVg , (7)

cj = Cj/C , cg = Cg/C , C = Cl + Cr + Cg . (8)

In typical experiments Cg ≪ Cj . It is worth noticing that in the “floating-level” geometry which is considered in part
of this work (e. g. without the gate electrode, Cg = 0), the fractional charge is not fixed but it can instead be affected
by changes in the capacitances of the junctions30 (that is, nx may depend on the tip-tube separation).

Assuming weak coupling to the leads, it is convenient to eliminate the electron-phonon coupling in H0 by the
unitary transformation H̃ = Λ†HΛ, with

Λ = e−iαp d†d , p = −i
(

b − b†
)

, α = g/Ω , (9)

In the rotated basis, the electron state in the dot becomes “dressed” with phonons, forming a small polaron. This
results in the “polaron shift” of the dot level energy, ǫ̃ = ǫ − g2/Ω, and a renormalization of the dot-lead tunneling
coupling. In the polaron representation, the Hamiltonian reads:

H̃ = H̃0 + Ṽ + Hleads , (10)

H̃0 = ǫ d†d + Ω b†b (11)

Ṽ =
∑

jk

Tj(x) e−iαp c†jk d + h.c. . (12)

In Eq. (12), we have used the fact that

Λ†Tl(x) d Λ = Tl(x + 2αd†d) d e−iαp = Tl(x) e−iαp d . (13)

III. RATE EQUATIONS

Based on the assumption that the leads are in thermal equilibrium at given chemical potentials (µl and µr),
independently of the state of the dot, one can derive a kinetic equation for the reduced density matrix by tracing out
the electrode degrees of freedom from the total density matrix. Such equations have been used by several authors8,10,13

but form sake of completeness we provide here a full derivation.
In the polaron representation, the reduced density matrix of the phonon-coupled dot is given by

R̃(t) = e−itH̃0R̃V (t) eitH̃0 , R̃V (t) = Trleadsρ̃V (t) , (14)

where ρ̃V (t) is the total density matrix in the interaction picture (with respect to the tunneling coupling to the leads),
which obeys the operator equation of motion:

i∂tρ̃V (t) =
[

Ṽ(t), ρ̃V (t)
]

, (15)

Ṽ(t) = eit(H̃0+Hleads) Ṽ e−it(H̃0+Hleads) . (16)

Using the integral form of Eq. (15),

ρ̃V (t) = −i

∫ t

0

dτ
[

Ṽ(τ), ρ̃V (τ)
]

+ ρ̃V (0) , (17)



5

substituting Eq. (17) into Eq. (15), and taking the trace over the electronic degrees of freedom of the leads with the

above mentioned assumption of ρ̃V (t) = ρeq
leads ⊗ R̃V (t), where ρeq

leads is the equilibrium density matrix of the leads,
we arrive at the integro-differential equation of motion for the reduced density matrix in the polaron representation:

∂tR̃(t) + i
[

H̃0, R̃(t)
]

=

−
∑

j=l,r

2πνj

∫ t

0

dτ eiǫ̃τ
[

F>
j (τ)

{

T̃ †
j (0)T̃j(−τ) d†d R̃(t − τ) − T̃j(−τ) d R̃(t − τ) d†T̃ †

j (0)
}

+ F<
j (τ)

{

R̃(t − τ) dd†T̃j(−τ)T̃ †
j (0) − T̃ †

j (0) d† R̃(t − τ) d T̃j(−τ)
}]

+ h.c. , (18)

where νj is the density of states in the jth electrode,

T̃j(τ) = Tj [(x(τ)]e−iαp(τ) , (19)

with

x(τ) = b e−iΩτ + h.c. , (20)

p(τ) = −ib e−iΩτ + h.c. , (21)

and

F>,<
j (τ) =

1

2

[

δ(τ) ∓ P.v.
ie−iµjτ

β sinh (πτ/β)

]

(22)

(where ”P.v.” stands for the principal value). ¿From the above expressions for the kernels F>,<
j (τ), it follows that the

relevant retardation time is of the order of the inverse temperature, β. Assuming temperature to be high compared
to the tunneling rates, β−1 ≫ 2πνjT 2

j , and considering the long-time behavior of the reduced density matrix, we may

neglect changes in R̃(t) within this retardation time interval by making the Markovian approximation in Eq. (18):
∫ t

0
dτ R̃(t − τ) →

∫ +∞

0
dτ R̃(t) .

The reduced density matrix is diagonal in the on-dot electron number (no coherence between subsequent tunneling
events at long times),

R̃(t) =
(

1 − d†d
)

R0(t) + d†dR1(t) , (23)

yet it may be in principle non-diagonal in the phonon number due to the presence of the displacement operators
(e±iαp) in the right-hand side of Eq. (18). In what follows, we assume that the phonon frequency is high compared
to the tunneling rates, Ω ≫ 2πνjT 2

j . This ”anti-adiabatic” condition allows us to neglect off-diagonal components of

R̃ as being negligibly small compared to the diagonal ones.
Under the above assumptions, Eq. (18) reduces to a differential operator equation for R̃(t), which is diagonal in

both the electron and phonon numbers. Introducing the electron-phonon joint probabilities

P i
n(t) = 〈n|Ri(t)|n〉 , (24)

for i = {0, 1} additional electrons and n = {0, 1, 2, ...} boson excitations on the dot, we obtain the system of rate
equations for the joint probabilities, which can be written in the following form:

∂tP
0
n(t) = −Γ<

n P 0
n(t) +

∑

m

L>
nm P 1

m(t) ,

∂tP
1
n(t) = −Γ>

n P 1
n(t) +

∑

m

L<
nm P 0

m(t) , (25)

with the normalization condition,
∑

n

(

R0
n + R1

n

)

= 1. The charge/phonon transition rates are given by

Γ<
n =

∑

m

L<
mn , Γ>

n =
∑

m

L>
mn , (26)

L<
nm =

∑

j=l,r

Γj γ2
j,mn fj(ǫ̃ − Ωmn) , L>

nm =
∑

j=l,r

Γj γ2
j,nm (1 − fj(ǫ̃ − Ωnm)) . (27)
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In the above equations, fj(ω) =
[

eβ(ω−µj) + 1
]−1

is the Fermi distribution function of the jth electrode, Ωnm =
(n − m)Ω,

Γj = 2πνj T 2
j0 , (28)

γl,nm = 〈n|e−sxe−iαp|m〉 , γr,nm = 〈n|e−iαp|m〉 . (29)

Explicitly, we have for the oscillator matrix elements:

〈n|e−sxe−iαp|m〉 = e−sα+ 1

2 (s2−α2)
Min(n,m)

∑

q=0

(−1)m−q
√

n!m!

(n − q)!(m − q)!q!
(α − s)

n−q
(α + s)

m−q
. (30)

In the steady state, the joint probabilities are coupled by the stationary rate equations, ∂tP
i
n = 0. From these

solutions we can calculate the DC current and expectation values of the phonon observables. It should be noticed
that in the original (non-polaron) representation, the resulting phonon density matrix is given by

Rph =
∑

n

(

P 0
n |n〉〈n| + P 1

n e−iαp |n〉〈n| eiαp
)

. (31)

In general, Rph has contributions from both charge states i = 0, 1 and is non-diagonal in vibrational space (two shifted
oscillators).

In order to express the current in terms of the joint probabilities P i
n, we have to average the current operator taken

in the polaron representation,

Ĩj = ei
∑

k

Tj(x) e−iαp c†jk d + h.c. , (32)

with the total density matrix

ρ̃(t) = e−it(H̃dot+Hleads) ρ̃V (t) eit(H̃dot+Hleads) , (33)

where ρ̃V (t) obeys Eq. (17). Following the same steps and assumptions which we have made in the derivation of the
rate equations, we obtain the average DC current flowing from the jth lead to the dot as (we set e = 1)

Ij =
∑

n

(

Γ<
j,n P 0

n − Γ>
j,n P 1

n

)

, (34)

where Γ<,>
j,n are the partial relaxation rates contributing to Γ<,>

n , Eq. (26), from the jth electrode:

Γ<
j,n =

∑

m

Γj γ2
j,nmfj(ǫ̃ − Ωnm) , (35)

Γ>
j,n =

∑

m

Γj γ2
j,mn (1 − fj(ǫ̃ − Ωmn)) . (36)

By virtue of the rate equations, we have conservation of the current, Il = −Ir.

IV. PHONON-ASSISTED TRANSPORT FOR Γl ≪ Γr

In calculating I(V )-characteristics from Eqs. (18) and (34), we will focus on the case of highly asymmetric two-
junction model with Γl ≪ Γr. This corresponds to the typical experimental situation with STM measurements where
a contact to the STM tip plays the role of the high resistive tunneling junction. For instance, in STM measurements on
suspended nanotubes, the typical ratio Rtip/Rsub ∼ 103 − 105 can be huge depending, in particular, on the tunneling

distance between the STM-tip and the nanotube, h ∼ 4 Å typically. In the present Section, no gate is present (floating
level) thus Cg = 0.

At the same time, according to the data in Ref. 5 obtained from spectroscopy measurements on suspended nan-
otubes, the ratio Ctip/Csub ≡ Cl/Cr can be smaller as well as larger than unity depending on an effective length of
the portion of the nanotube that is on the substrate, and which can be relatively short due to local defects induced
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by the edges of the trench. Thus, there is no dominating asymmetry in the capacitive coupling of the dot to the both
electrodes. As a result, in the voltage-biased system, the effective position of the polaron level with respect to the
chemical potentials of the leads is strongly affected by the ratio Cl/Cr which is not negligibly small like Γl/Γr, or can
even be larger than unity27. It results that the polaron level (assuming neither gate-induced nor intrinsic shift of the
polaron level at zero voltage) is not trivially stuck to the chemical potential of the far less resistive junction electrode,
µr.

In what follows, we consider the system of the rate equations Eq. (25) in the steady state:

Γ<
n P 0

n =
∑

m

L>
nm P 1

m

Γ>
n P 1

n =
∑

m

L<
nm P 0

m . (37)

Writing explicitly expressions for the Fermi factors entering Eq. (27), we obtain [see also Eqs. (6), (7)]:

fl(ǫ̃) = f(E − crV ) , fr(ǫ̃) = f(E + clV ) , V = µl − µr , (38)

where f(ω) =
(

eβω + 1
)−1

, and

E = ǫ0 − g2/Ω + 2EC(nx + 1/2) (39)

determines the position of the polaron level with respect to the lead chemical potentials at V = 0, considered as
the reference level of zero energy. ¿From Eq. (38), the role of charging effects in the single-electron resonant level
problem can be viewed as follows : when changing the bias voltage, the chemical potentials move in opposite directions
(depending on the sign of V ) with different “velocities” determined by the capacitance ratios, cr and cl for the left
and right electrode, respectively. The above picture is given in the ”reference frame” of the polaron level, where its
position is voltage-independent. For the floating-dot geometry, E may be strongly affected by a background charge,
nx. In the presence of a gate electrode27, E can be controlled by the gate potential, and C in Eq. (7), must also
include the gate capacitance, with cl + cr < 1.

In this section, in order to make analytical progress on the prediction of the current transport, we formally assume
temperature to be zero. Because the rate equations have been derived in the high-temperature approximation (T ≫
Γr), the zero-temperature assumption is justified for the voltage-biased cases where the chemical potentials, µl,r, are
not very close to the phonon sidebands, so that thermally activated tunneling processes can be neglected.

We first notice that in the case where the polaron level E lies beyond the bias-voltage window, the system of rate
equations, Eq. (37), reduces to the following:

L<
nm P 0

m = L>
mn P 1

n , (40)

which is satisfied for all phonon numbers m, n. The ground state solution of Eq. (40) is either P i
n = δn0δi1 (i = 0, 1)

for E < µl,r, or P i
n = δn0δi0 for E > µl,r. As a result, in this case the current is zero : no contribution to the current

occurs from the phonon sidebands alone (cf. Ref. 13).
Eq. (40) also works in the less trivial case when E lies within the bias-voltage window, but |µl,r − E| < Ω. For

instance, for V ≡ µl − µr > 0, the solution of Eq. (40) (valid for arbitrary Γl,r) reads P i
n = δn0P

i, where

P 0 = 1 − P 1 =
L<

00

L<
00 + L>

00

=
Γ̃l

Γ̃l + Γr

, (41)

Γ̃l = Γle
−2sα+s2

, (42)

and the current is given by

I = e−α2 Γ̃lΓr

Γ̃l + Γr

. (43)

For large α, the exponential prefactor in Eq. (43) leads to a significant suppression of the current at low bias voltages
(the so-called Franck-Condon blockade12,13,14). The role of s (“half-shuttle”) will be discussed later.

At higher voltages, such that phonon sidebands enter the bias-voltage window, Eq. (40) fails, and we have to
go back to the full system of rate equations, Eq. (37), taking into account the total balance of probabilities for
transitions between different states of the dot. This renders the problem of calculating phonon distribution functions,
P i

n, and eventually the I(V )-characteristics, a rather complicated one to be solved analytically. However, for the case
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of high asymmetry in the tunneling couplings, it is possible to make some further analytical progress before passing
to numerical calculations30.

We now exploit the condition Γl ≪ Γr for analyzing steady solutions of the rate equations. In the general case,
when a bias voltage V is applied and the current is not identically zero (up to thermally activated processes), the
polaron level is accompanied by N + M phonon sidebands captured in the bias-voltage window, where we introduce
(“int” stands for the integer part)

N = int(|µl − E|/Ω) , (44)

M = int(|µr − E|/Ω) . (45)

Independently of the sign of V , the integer N (M) is defined as a number of phonon sidebands lying between the
polaron level and the chemical potential of the electrode connected to the dot through the more (less) resistive junction.
An example with N = 2 and M = 1 for V > 0 is shown on Fig. 2. Due to high asymmetry Γl ≪ Γr, only probabilities
{P 0

m} with m ∈ [0, M ] do not vanish in this limit. For the example on Fig. 2, the probabilities to have an electron
on the dot with any n phonons, P 1

n , are suppressed due to ”fast” tunneling of the electron to the right electrode via
n + 2 open channels; the probability to have the dot with an empty electron state but with the number of phonons
M + 1 = 2 (and higher), P 0

M+1, is also negligible due to the “fast” tunneling of an electron from the right electrode

with absorbing two phonons. In other words, on a large time scale determined by Γ−1
l , the polaron-hole states with 0

and 1 phonon excitation are (quasi)steady states with respect to the tunneling coupling to the right electrode. Notice
that in the asymmetric situation, the phonon number distributions are nearly the same in the polaron basis (the P 0

n ’s)
and the original basis (Rph), as shown by Eq. (31).

µ

L

R

µ
−2

+1

−3

−1

+2

−3

+1

−1

−2 −2

FIG. 2: Energy-level diagram for the case M = 1 and N = 2; the arrows show possible channels for electrons to tunnel
onto/from the dot with changing (indicated by numbers) the phonon occupancy; µl − µr = V

The case V < 0 can be treated in the same manner. We obtain that only probabilities {P 1
m} with m ∈ [0, M ] are

not vanishing as Γl/Γr. As a result, with a good accuracy, controlled by the smallness of Γl/Γr, the current flowing
from the left to the right, I ≡ Il [see Eq. (34)], can be written as

I(V > 0) =

M
∑

m=0

P 0
m Im , Im = Γl

m+N
∑

n=0

γ2
l,mn , (46)

where
∑M

m=0 P 0
m + O(Γl/Γr) = 1, and

I(V < 0) = −
M
∑

m=0

P 1
m Im , Im = Γl

m+N
∑

n=0

γ2
l,nm , (47)

with
∑M

m=0 P 1
m + O(Γl/Γr) = 1. The current is given by a sum of partial currents, Im, representing M conducting

channels which are distributed with the corresponding phonon occupation probabilities. The magnitude of each partial
current depends on the previously defined number of phonon sidebands N captured between E and µl.

When varying V , the number of captured phonon sidebands, N and M , can change. In the voltage ranges where
N and M do not change, we obtain plateaus in the I(V ) characteristics. Assuming for concreteness V > 0, we
see from Eq. (46) that if V increases in such a way that only N changes (N can only increase with increasing V ),
the magnitude of each partial current, and hence the net current, will increase. Thus, we obtain here the positive
differential conductance (PDC) behavior which is commonly computed and observed. On the contrary, if when
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increasing V , only M changes (i.e. increases), while N remains constant, then a new phonon-assisted channel is
added. This leads to redistribution of phonon occupation probabilities between all open channels. Paradoxically, the
net current may decrease, leading to a NDC behavior on I(V )8 .

For V > 0, assuming that due to the voltage increase V → V + ∆V the number of phonon sidebands in the
bias-voltage window has changed as {N = 0, M = 0} → {N = 0, M = 1}, using Eq. (46) the variation of the current
∆I = I(V + ∆V ) − I(V ) becomes:

∆I = P 0
0 I0 + P 0

1 I1 − I0 = −P 0
1 Γ̃le

−α2
[

1 − (α − s)
2 −

(

1 − α2 + s2
)2

]

. (48)

Thus, for this particular situation, assuming for simplicity s = 0, the condition for the NDC is α < 1: large values of
the electron-phonon coupling do not favor NDC. The magnitude of the negative step on I(V ) increases with increasing
phonon occupancy P 0

1 .
For V < 0, considering the same transition, {N = 0, M = 0} → {N = 0, M = 1}, one finds:

∆I = −P 1
1 Γ̃le

−α2
[

1 − (α + s)
2 −

(

1 − α2 + s2
)2

]

, (49)

with the same NDC condition, α < 1, for s = 0. ¿From the above expressions, we also notice that for positive
(negative) bias voltage and non-zero but small half-shuttle s ≪ 1, the NDC effect increases (decreases) for the first
phonon-assisted step of the I(V ) characteristic.

As far as the bias voltage increases, the current eventually saturates and does not change in practice. For large

bias voltages V → ±∞, the corresponding saturation currents I
(±)
sat are given by (up to corrections O(Γ2

l /Γr)):

I
(+)
sat = Γl

+∞
∑

m=0

P 0
m 〈m|e−2sx|m〉 , (50)

I
(−)
sat = −Γl e

−4sα
+∞
∑

m=0

P 1
m 〈m|e−2sx|m〉 . (51)

In the absence of the half-shuttle mechanism, we obtain that the saturation current does not depend on the phonon

distribution, I
(±)
sat = Γl. For s 6= 0, considering equilibrated phonons, i.e., forcing P s

m → δm0 in the limit of strong
phonon relaxation, we obtain the saturation currents:

I
(+)
sat = Γl e

2s2

, I
(−)
sat = −e−4sα I

(+)
sat . (52)

For non-equilibrated phonons, Eq. (52) is expected to be accurate in the limit cl ≪ cr. Nevertheless, for relatively
small α < 1, the asymmetry in the current saturation values due to the half-shuttle can be noticeable at low bias
voltages for cl ∼ cr because of the fast saturation of the partial currents Im (fast convergency of the series in Eqs.
(46) and (47)).

V. NUMERICAL RESULTS AND DISCUSSION

We now turn to the numerical solution of the rate equations, and explore the parameter space in order to find the
signatures of NDC. Contrary to the previous analytical arguments, calculations are performed at finite temperature.
For calculation purposes we assume a large asymmetry in the tunneling rates, Γl/Γr = 10−4. Yet, most of our results
also hold for moderate asymmetries. The current I is plotted in units of ΓlΓr/(Γl + Γr), the bias voltage V , the
polaron level E and temperature T are given in units of Ω. In subsection A, one considers the floating level case. We
consider the effect of a given shift of the dot level (due to background or gate charges) in subsection B. In these two
subsections we will disregard the half-shuttle (s = 0), which will be considered in the last subsection.

A. Non-shifted polaron level (E = 0)

We start by considering the case where the capacitances surrounding the dot fully specify the position of the polaron
level. At zero bias voltage, the polaron level is aligned with the chemical potentials of the electrodes, E = 0. In
this case, as it immediately follows from the system of rate equations, Eq. (37), we have the symmetry relation
P 0

n(V ) = P 1
n(−V ) and consequently I(−V ) = −I(V ). Notice that for the ”floating-level” geometry the case of E = 0

is an exceptional one, and must be viewed as a reference point.
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Fig. 3 shows the I(V ) characteristics for different α’s assuming small cl = 0.1, so that the polaron level lies
closer to µr. In the experiment of Refs. 4,27, this means that the nanotube has a large overlap with the conducting
substrate. As long as M = 0, that is if V < Ω/cl (this condition is satisfied on the bias-voltage range which is plotted),
P 0

n = δn0 − O(Γl/Γr), which results in the PDC behavior of I(V ). The PDC steps correspond to N increasing by
one each time V passes through a multiple integer of Ω/cr. Explicitly, the current-step amplitude at V = nΩ/cr

corresponding to the current increase is given by

∆I(n) = Γl e
−α2 α2n

n!
. (53)

For smaller α’s the current-step amplitude decreases faster with increasing V , which leads to the saturation of the
current at lower voltages.

Note that the first step (low bias voltage) is rounded. This feature is specific to the fact that the capacitances are
asymmetric. Indeed, increasing the bias voltage from zero, the chemical potentials move away from the polaron level,
but the chemical potential whose lead has the largest capacitance remains close to this level. In this event, thermally
activated tunneling processes can be effective. When the bias voltage is further increased the phonon sidebands
which contribute to new steps are those above the polaron level, and thus their corresponding steps are not thermally
rounded. In the case where the asymmetry in the capacitances is opposite, which is shown in the next figure, the
same reasoning applies.

0 2 4 6 8
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0.2

0.4

0.6

0.8

1

I

FIG. 3: The case cl = 0.1 for α = 0.8 (solid), 1.5 (dashed) and 1.9 (dot-dashed). T = 0.01.

Fig. 4 shows the I(V ) characteristics for different α’s assuming a relatively large cl = 0.9. In the experiment of
Refs. 4,27, this means that the nanotube has a small length, thus a small overlap with the conducting substrate, and
thus a small capacitance compared to that of the tip-nanotube contact. Alternatively, a large cl could be achieved if
the nanotube contains impurities or bends.

In the bias-voltage window, the polaron level is closer to µl than to µr. Within the bias-voltage range which is
plotted, the current changes by steps when V passes through a multiple integer of Ω/cl, as before. At these points,
M increases by one; correspondingly, one more phonon-assisted channel is added. For α = 1.5 one still observes the
PDC behavior, although the height of the current steps is strongly suppressed compared to the previous case on Fig.
3. For α < 1 NDC occurs in the first step, and with decreasing α, more NDC steps appear. For all curves, Eq.
(48) gives the current jump between the second and first plateaus on Fig. 4. We have also performed calculations
of the current voltage characteristics in this NDC regime while increasing gradually the temperature (not shown).
Temperature tends to smooth the steps and to suppress NDC altogether when it becomes comparable to the spacing
between the steps.

At the same time that we monitor the electronic current, it is instructive to examine the phonon occupation numbers
in order to quantify PDC or NDC behavior. The phonon distributions P 0

m, which play the role of probabilities of
open channels, at different bias voltages are shown on Fig. 5. This figure demonstrates the increase of the number
of phonon excitations with increasing M (See Eq. (45)). It shows that the phonon number which are occupied is
restricted by M − 1. Thus, the phonon distribution allows to understand the height of the PDC or the NDC steps.

In the two previous cases, two limits were considered : either cl ≪ cr or cl ≫ cr. On the way to the more general
situation when cl and cr are comparable, let us now consider in more detail the capacitively symmetric case when
cl = cr = 0.5. The I(V ) characteristics for α = 0.8 and 1.5 are shown on Fig. 6. For α = 1.5, the current shows a
stepwise increased with essentially no NDC behavior. Note that because the capacitances are equilibrated, the first
step does not display substantial rounding due to thermal effects. For α = 0.8, one observes a stepwise increase of the
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FIG. 4: The case cl = 0.9 for α = 0.5 (solid), 0.9 (dotted) and 1.5 (dashed). T = 0.01.
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FIG. 5: Phonon distribution, P 0

m, for the case of Fig. 4 at the bias voltage V = 2 (circles) and V = 4 (triangles).
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FIG. 6: The case cl = 0.5 for α = 0.8 (solid) and 1.5 (dashed). T = 0.01.

current, but the onset of each step is associated with a small spike, thus exhibiting NDC behavior. This NDC behavior
is thus qualitatively different from the one previously observed for the case of asymmetric capacitances. The spikes
bringing the NDC features to the I(V ) characteristics are robust with respect to temperature. In Fig. 7 one sees that
these spikes are broadened with temperature, but NDC persists as long as the temperature is not comparable to the
phonon frequency. On the I(V ) for α = 1.5 (Fig. 6), the NDC-singularities appear only for higher voltages, however,
the first phonon-assisted current step (at V = 2Ω) is also deformed.

At low temperature, it is interesting to make a zoom of a given step in order to see how the spikes evolve when the
electron phonon coupling is varied. Fig. 8 shows these “singularities” on the second step of the I(V ) characteristic for
a wide range of α’s (cf. Fig. 6). Note that the NDC behavior is more pronounced with increasing α = {0.5, 0.8, 1.1}.
Indeed, in the limit of vanishing electron phonon coupling, one gets only one step due to the polaron (electron) level,
and all NDC features are absent. There is therefore an optimal value of α which displays maximal NDC behavior.
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FIG. 7: Temperature dependence of the NDC-singularity for α = 0.8: T = 0.005 (solid), 0.01 (dashed) and 0.04 (dotted).

Further increasing α, NDC converts to the PDC case (the curves for α = {1.5, 1.9}).
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FIG. 8: From up to down α = {0.5, 0.8, 1.1, 1.5, 1.9} for cl = 0.5. T = 0.01. The small ticks around V = 2 (corresponding to
V± = 2 ± 0.05) show the width of the Fermi distribution function at given T .

In this case of equal capacitances (cl = cr), the polaron level lies in the middle of the bias-voltage window at all V ,
so that both N and M increase by one when V passes through a multiple integer of 2Ω. In particular, at V = 2Ω the
transition {N = M = 0} → {N = M = 1} occurs : below V = 2Ω the polaron level is the only one which lies within
the bias voltage window, while immediately above V = 2Ω, two phonon sidebands are simultaneously captured by
the bias window. As a result, in the vicinity of V = 2Ω (how close depends precisely on temperature), we have a
competition between the PDC- and ”possible NDC”-type contributions to the current, corresponding to the processes
of electron tunneling from the left electrode into the dot with emission and absorption of one phonon, respectively.

In the transition region, V ≈ 2Ω, the current is given by (here we take into account the Fermi factors)

I(V ) =

1
∑

m=0

P 0
m(V ) Im , (54)

Im = Γl

m+1
∑

n=0

γ2
l,mnf(−crV − Ωmn) , (55)

and P 0
0 + P 0

1 + O(Γl/Γr) = 1. Explicitly, we have

I(V ) = Γle
−α2

[

1 + α2f(Ω − V/2) + P 0
1 (V )α2

(

−1 + α2 +
1

2

[

(1 − α2)(2 − α2) − α2
]

f(Ω − V/2)

)]

. (56)

¿From the numerics, it follows that up to V = V+ ≡ 2Ω+W > 0, where W is the half-width of the Fermi distribution
function (see caption of Fig. 8), we have P 0

1 (V ) = 0, thus the current successively increases up to:

I(V+) = Γle
−α2 (

1 + α2
)

. (57)
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This effect is due to the high asymmetry in the tunneling rates Γl,r: the probability to have an empty dot with one
phonon, P 0

1 , remains negligible, O(Γl/Γr), until there is some probability to have thermally activated electrons of
energy E − Ω coming from the right electrode. Only then, for V > V+, where f(Ω − V/2) has practically reached
unity, P 0

1 (V ) starts deviating from zero. Thus, we have

I(V ) − I(V+) = P 0
1 (V ) Γle

−α2

g(α) , V > V+ , (58)

g(α) = α2

(

−1 + α2 +
1

2

[

(1 − α2)(2 − α2) − α2
]

)

. (59)

For V > V+, the V -dependence of the current is given by P 0
1 (V ). With increasing V , P 0

1 (V ) also increases and
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FIG. 9: g(α) function, Eq. (59).

saturates to some quantity (depending on α) which is comparable with P 0
0 (the right-hand side plateau on Fig.

8). ¿From numerics we find that at V = 2.5Ω, for instance, for α = {0.5, 1.1, 1.9}, we correspondingly have P 0
1 ≈

1 − P 0
0 = {0.35, 0.48, 0.38}. ¿From Eq. (58) and Fig. 9 we see that the NDC plateau disappears for small α < 0.5;

with increasing α, the NDC contribution from an open channel increases-decreases having the maximum at α ≈ 1.15,
and for α > 1.4 the NDC contribution converts to the PDC one (cf. Fig. 8).

Up to now, we have considered only strong asymmetric capacitances and equal capacitances. A common feature of
these choices is that the current voltage characteristics displays steps (with or without NDC behavior) whose spacing
in voltage is essentially always the same at relatively low voltages. Indeed, for the asymmetric capacitances plots
each step is separated by (approximately) Ω, while for cl = cr, this spacing is 2Ω. If one was to plot the differential
conductance, as in the experiment of Ref. 4, one would obtain a periodic series of peaks. What happens to this
periodicity in an intermediate situation where the capacitance are comparable, but not equal ? Fig. 10 shows current-
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FIG. 10: α = 1.9 (solid), 1.5 (dashed) and 0.8 (dot-dashed) for cl = 0.4, E = 0, T = 0.01, s = 0.

voltage characteristics with two steps of different length for the case cr = 1.5cl. The number of phonon sidebands
above the polaron level, N , increases by one with the voltage period Ω/cr = (5/3)Ω; for these steps we always have
a PDC behavior as it is demonstrated in the previous section. At the same time, the number of phonon sidebands
below the polaron level M → M + 1 with the voltage period Ω/cl = 2.5 Ω : one more channel becomes open which
yields the possibility of NDC. The larger α, the more PDC-steps at low bias voltages are observed.
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B. Shifted polaron level (E 6= 0)

In this subsection, we consider the more general situation where, due to gate or background charges, the polaron
level E is shifted by a constant value with respect to the chemical potentials of the leads at zero bias voltage. For
E 6= 0, the symmetry I(V ) = −I(−V ) is violated, moreover I(V ) is not shifted in a trivial manner, meaning that
it does not simply follow E. Fig. 11 shows two current-voltage characteristics for different values of E. As it was
mentioned in Sec. IV, the current is zero when the polaron level lies beyond the bias voltage window. For negative
V , the polaron level becomes captured in this window at V = −E/cl = −4E. At this point, the number of phonon
subbands below the bare level – N in this case – suddenly changes from N = 0 to N = int(crE/clΩ) = int(3E/Ω). In
the curves of Fig. 11 corresponding to E = 0.4Ω and 0.7Ω, we observe a transition to N = 1 and N = 2, respectively.
This results in a fast saturation of the curves at negative voltages (the saturation is faster for the curve with larger
E).

Previously, we found that small cl leads to PDC for the first phonon assisted peaks. Here, although cl = 0.25 is
relatively small in Fig. 11, for positive V , we observe NDC behavior already for the first phonon-assisted step on I(V )
(around V = 2Ω) for E = 0.7. This can be explained as follows. At small positive voltages, we first have a zero-current
plateau until the polaron level becomes captured in the bias-voltage window (N = M = 0) at V0 = E/cr. This leads to
the first PDC step on the I(V ) curve at V0 = (4/3)E. Then the second plateau persists until V1 = (Ω − E)/cl < 2Ω,
which corresponds to the phonon sideband level E − Ω becoming captured in the bias window (N = 0, M = 1).
Because α = 0.8 is less than the critical value 1 (see Sec. IV), this transition gives the NDC step. Next a plateau
persists until, V2 = (Ω+E)/cr when the phonon sideband level E +Ω is captured in the bias window (N = 1, M = 1)
resulting in a PDC step on I(V ). The conditions to observe NDC for the first phonon-assisted step are therefore:

crΩ > E > (cr − cl)Ω > 0 , α < 1 . (60)

The width of the NDC plateau is V2 − V1 = (E − (cr − cl)Ω) /clcr. Eq. (60) is fulfilled for the case E = 0.7Ω on Fig.
11, but it fails for E = 0.4Ω, where we have the PDC behavior of the first phonon-assisted step on I(V ), for V > 0.
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FIG. 11: E = 0.4 (dashed) and E = 0.7 (solid) for α = 0.8, T = 0.01, cl = 0.25.

Fig. 12 shows the temperature dependence of the NDC step for E = 0.7Ω. With increasing temperature T , the
phonon-assisted channel opens for higher voltages when the one-phonon excited state of the empty dot becomes
unreachable for thermally activated electrons from the right electrode at energy E − Ω + W , (as before, W is the
half-width of the Fermi function). As a result, the NDC region with a decreased slope gradually shifts towards the
next step on I(V ).

Fig. 13 shows the opposite situation: the NDC appears this time with increasing temperature. At low temperature,
when the Fermi half-width W is negligibly small, we only observe PDC behavior for the first step on I(V ) at V0 = E/cr,
where we suddenly have a transition to {N = 0, M = 1}. At this threshold, both the polaron level and the first
phonon subband below it belong to the bias voltage window. Then we obtain a plateau in the I(V ) curve up to
V1 = (E + Ω)/cr, where the next PDC step is associated with the increase of N by one. However, if the temperature
is increased so that W becomes comparable with Ω − E, now at V = V0 the occupation probability P 0

1 will be
negligibly small because of thermally activated electrons tunneling from the right electrode. P 0

1 starts developing only
at V > (Ω − E + W )/cl ≈ 1.2Ω leading to NDC behavior. Here we have used that at T = 0.04Ω, the half-width of
the Fermi function is about 0.2Ω. At much higher temperature everything is of course washed out (not shown).

We conclude this subsection by some comments on the role of the asymmetry in the tunneling rates Γ’s on current
transport. Fig. 14 shows I(V ) characteristics for the case of highly asymmetric (Γl = 10−4Γr) and for the case of
symmetric (Γl = Γr). As it is seen from the plots, the NDC steps in the asymmetric case turn into PDC steps in
the symmetric case. We also notice that the NDC steps are slightly shifted with respect to their PDC counterparts
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FIG. 12: The case α = 0.8, cl = 0.25, E = 0.7 at different temperatures: T = 0.01 (thin solid), 0.02 (dashed) and 0.04 (bold
solid).
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FIG. 13: The NDC induced by temperature for the case α = 0.8, cl = 0.25, E = 0.9 : T = 0.005 (dashed) and 0.04 (solid).

in the symmetric case. This shift is associated with the finite width of the Fermi function, and it has been already
been discussed in the two previous figures. A more detailed analysis (not detailed here) shows that NDC appears in
our model even for moderate asymmetries, typically Γl = 10−1Γr. The height of the phonon-assisted steps in the
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FIG. 14: For α = 0.8, T = 0.02, E = 0.25, cl = 0.5: Γl/Γr = 10−4 (solid) and 1 (dashed).

asymmetric case is noticeably large compared to the symmetric case. This is related to the phonon distribution, an
example of which (at V = 6Ω) is shown on Fig. 15 for both cases (symmetric and asymmetric). In the asymmetric
case, the number of phonons is restricted by M , while in the symmetric case the phonon distribution is more spread
out. As a result, in the symmetric case, the phonon-assisted contribution to the current is weakened.

C. Effect of the half-shuttle on I(V )

In this subsection we discuss the role of the half-shuttle mechanism on I(V ) characteristics.
It is worth to be mentioned that in the absence of the half-shuttle (s = 0), the rate equations (37) are invariant
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FIG. 15: For the cases shown on Fig. 14, the phonon distribution P 0

m at the bias voltage V = 6: circles for Γl/Γr = 10−4 and
triangles for Γl/Γr = 1.

under the transformation

V → −V , E → −E , P 0
n ↔ P 1

n . (61)

As a consequence, the current-voltage characteristics IE(V ) and I−E(V ) corresponding to the cases of the polaron
level shifted by E and −E, respectively, are related as follows:

IE(V ) = −I−E(−V ) . (62)

The presence of half-shuttle mechanism (s 6= 0) violates this symmetry.
Fig. 16 shows I(V ) for the case when cl = 0.25 is relatively small and where the polaron level is not shifted, both

of which are favorable for PDC. The current steps are suppressed at negative voltages (differential conductance peaks
in the inset of Fig. 16), while at positive bias voltage, the current steps have a tendency to increase. ¿From Eqs.
(46), (47) we obtain that the current-step amplitude at V = nΩ/cr corresponding to the current increase is given by

∆I(n) = Γl e−α2−2sα+s2 (α + sign(V ) s )
2n

n!
. (63)

In other words, the half-shuttle mechanism works in favor of the formation of the polaron state: the probability of
phonon-assisted tunneling onto the dot from the left electrode is increased, while the phonon-assisted tunneling from
the dot to the left electrode is decreased. Eq. (52) for the saturation currents illustrates this fact.
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FIG. 16: Asymmetry of I(V ) due to ”half-shuttle” only: s = 0.1 (solid) and s = 0 (dashed). The case of α = 0.7, cl = 0.25,
E = 0, T = 0.04. The inset shows the differential conductance for s = 0.1.

The case of relatively large cl = 0.75 is shown on Fig. 17. Like in the previous case, here we also observe suppression
of the current steps at negative voltages. At positive voltages, the NDC steps become more pronounced compared to
the PDC ones. Expressions for the one-phonon assisted steps are given by Eqs. (48), (49).

We have provided concrete evidence that the half-shuttle mechanism alone, with reasonable values of the parameters,
cannot produce NDC when cl is small and when the bare polaron level is not shifted upwards. Nevertheless, based
on the results of Figs. 18 and 19, we conclude that in situation when NDC is present (shifted level or reversed
capacitances), the addition of the half-shuttle tends to emphasize the NDC features.
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FIG. 17: Asymmetry of I(V ) due to ”half-shuttle”: s = 0.1 (solid) and s = 0 (dashed). The case of α = 0.7, cl = 0.75, E = 0,
T = 0.04. The inset shows the differential conductance for s = 0.1.
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FIG. 18: The case α = 0.7, cl = 0.5, E = −0.8, T = 0.04, s = 0.1.

VI. CONCLUSION

To summarize, we have provided an in-depth study of NDC behavior in molecular quantum dots or transistors.
While this study covers a wide range of experimental parameters such as capacitances and electron-phonon coupling,
here the focus was put on the case where the tunneling coupling from the dot to the source and drain leads is
asymmetrical. This choice was motivated by the experiment of Leroy and coworkers4,27 where a nanotube is suspended
over a trench, allowing nearly free vibrations of the phonon breathing mode. Electrons flow from an STM tip to the
suspended region of the nanotube, and their tunneling amplitude is much smaller than that of the nanotube to the
substrate. It turns out that this assumption allows us to quantify NDC behavior by analytical means. Yet, moderate
asymmetries, often encountered with two poor metallic contacts, qualitatively display the same physics.

We have used a microscopic approach modeling the molecule/nanotube as a quantum dot, which is justified based
on the early observation of Coulomb blockade behavior in carbon nanotubes. A single phonon mode couples on-site
to the quantum dot, in two different way. First, as the principal mechanism, it couples to the electron density on the
dot, as in a polaron model. Second, the half-shuttle coupling was introduced, with the motivation that it should be
present in the experiment of Refs. 4,27: when the nanotube vibrates, the tunneling distance between the nanotube
wall and the STM tip oscillates accordingly, but the amplitude of this motion is believed to be rather small (or the
order of the zero point motion, which can be smaller than 0.1Å).

With these ingredients, the polaron transformation eliminates the electron charge coupling to the phonon on the
dot, and transfers this coupling to the tunneling Hamiltonian. At this point, we have chosen to describe the situation
corresponding once again to the experiment of Ref. 4,27, where the time scale associated with tunneling events between
the dot and the leads is large compared to the temperature, so that electrons evacuated in the leads effectively loose
their phase coherence. On the other hand, the quantum mechanical nature of electron-phonon dynamics within the
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FIG. 19: The case α = 0.7, cl = 0.5, E = 0.8, T = 0.04, s = 0.1.

dot (polaron formation) is fully captured. This happens to be the regime were most molecular electronics experiments
are performed nowadays, as these experiments typically do not require dilution refrigerator technology. From the
density matrix of the total system, a kinetic equation for the reduced density matrix (with the leads degrees of
freedom integrated out) was derived, leading to master equations for the electron population and their associated
phonon numbers.

At temperature high enough for this rate equation is valid, but low enough that thermally activated tunneling
from the phonon sideband can be neglected, analytical predictions were made for the current-voltage characteristics,
thanks to our assumption of a highly asymmetrical molecule–lead configuration: the positive or negative differential
conductance behavior depends both on the location of the bare polaron level and on the occupation of the associated
phonon sidebands – above and below this level – which are included in the bias voltage window.

Turning to numerics, attention was first drawn to the role of the relative capacitances to the dot. If the
molecule/nanotube is in better contact with the lead which evacuates the electrons (the substrate), than with the
one who injects electrons, it is plausible to believe that the capacitance of this junction will be larger than that
of the injecting junction. In this case, no negative differential conductance is obtained. When increasing the bias
voltage, the contribution of an increasing number of phonon sidebands leads to a standard staircase behavior in the
current-voltage characteristics. Thermal effects tend to round off the first step. In the experiment of Ref. 4,27,
the use of several nanotube samples with different lengths allowed to vary the relative capacitance of the injecting
and of the tunneling contact. This provided a motivation to study the so-called “reversed capacitance” case, which
according to our analytical prediction could justify the presence of an negative differential behavior. This was indeed
observed numerically, but it was emphasized that intermediate phonon couplings are needed to observe NDC: “small”
electron-phonon coupling leads to barely noticeable NDC, while “large” electron-phonon coupling suppresses NDC
altogether, thus the need to use non-perturbative techniques to study NDC.

Do these results disqualify the possibility of NDC if contacts where the capacitances between left and right are
comparable ? The answer is no, although NDC could be more difficult to detect in this case. While the global shape
of the current voltage characteristics displays the staircase structure typically attributed to PDC, the onset of each
step is followed by a small spike, thus displaying NDC behavior. The amplitude of this peak can be optimized with
phonon coupling. For slightly asymmetric capacitances, the same effects are observed, but the staircase structure is
modified as it involves two distinct periodicities.

Because background charges may shift the bare polaron level, and because of the possibility of using a voltage gate
on the molecule/dot we also studied the possibility of NDC in this case. This suggests that when the level is shifted
upwards, NDC is possible even when the capacitance of the injecting junction is small.

Finally, we have proposed that a half-shuttle mechanism may play a role in a STM experiment. It can be detected
by the asymmetry of the current-voltage curves. Yet, in our opinion, this mechanism cannot account for NDC alone
and only tends to increase the heights of PDC and NDC steps in the current-voltage characteristics. Notice that
approaching the tip closer to the molecule should strongly enhance the half-shuttle mechanism. In our numerical
calculations, we set s = 0.1 assuming the amplitude of the zero-point RBM oscillations to be of the order of 1pm.
Estimating the zero-point amplitude, we have considered a single-wall carbon nanotube as an elastic hollow cylinder
with diameter d0 ∼ 1 nm, with wall thickness ∼ 1 Å, and with a length corresponding to the relevant breathing part
∼ 10 nm. Accordingly, the undeformed volume of the cylinder is V0 ∼ 1nm3. The elastic properties of the nanotube
cylinder are characterized with the average Young’s modulus Y ∼ 1 TPa (see, for instance, Ref. 31). Assuming
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h̄Ω ≈ 10 meV (Ω is the frequency of the RBM), one finds for the relative extension of the nanotube due to the
breathing,

δx ∼
(

h̄Ω

Y V0

)1/2

∼ 10−3 . (64)

Thus, the estimated diameter change, ∼ δx d0, associated with the zero-point oscillations is of the order of 1 pm.
Overall, we have provided a rather complete account on the possible occurrence of NDC behavior in molecular

electronic transport, due to phonon-assisted transport. This phenomenon is due to a distribution of the total spectral
weight of the injected electron on the polaron levels included in the bias window. Taking into account the correct
microscopic expressions of the Franck-Condon factors associated to phonon transitions, we have demonstrated that
NDC effects are a fingerprint of the polaronic nature of charge carriers. While we cannot rule out that NDC could
exist in molecular system with symmetric molecular junction, it was not observed within this model. On the other
hand, we have clearly shown that for asymmetric tunneling rates, there exist a wide range of parameters which lead
to NDC.

A striking result of this work is the fact that a simple counting of the NDC steps in the current voltage characteristic
(or alternatively, a counting of the peaks in differential conductance) provides direct information about how many
phonon subbands contribute to transport. The question remains about whether this NDC behavior can be observed
in experiments. Our model could apply to Ref. 3, if the tunnel couplings are indeed asymmetric. Concerning Ref.
4, NDC occurs but only for the first phonon sideband. This can be due to several factors : first, as a general rule,
the height of PDC or NDC steps tends to decrease with increasing phonon sidebands number. Furthermore, if the
electron phonon coupling is weak, NDC is present but its manifestation is weak. Finite temperature tends to smear
these steps, so in order to observe several peaks in NDC, lower temperatures would be required, keeping in mind that
the tunneling contacts should not be too large in order to “avoid” any Kondo like regime. Another aspect which we
have not considered in this work is the possibility of phonon damping. The population of the phonon subbands may
rearrange due to the coupling with the environment of the molecule12,13. The environment could include electron-hole
pairs generated in the leads, which should be reduced because of our weak coupling assumption. On the other hand,
for a “large” molecular system, the optical phonon mode (the breathing mode of the nanotube of Ref. 4) is also
accompanied by other phonon modes such as acoustic-like modes, which have typically lower energies, and which
therefore can play the role of a “bath”. Because of the importance of the occupation of the phonon subbands for
NDC in our present work, we expect that substantial coupling to this bath will tend to suppress NDC.
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