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Experimental evidence of flow destabilization in a 2D bidisperse foam.

I. Cantat,∗ C. Poloni, and R. Delannay
GMCM, UMR 6626, Université de Rennes (CNRS), 263,

av. du Général Leclerc 35042 Rennes Cedex, France
(Dated: April 7, 2006)

Liquid foam flows in a Hele-Shaw cell were investigated. The plug flow obtained for a monodisperse
foam is strongly perturbed in the presence of bubbles whose size is larger than the average bubble
size by an order of magnitude at least. The large bubbles migrate faster than the mean flow above a
velocity threshold which depends on its size. We evidence experimentally this new instability and,
in case of a single large bubble, we compare the large bubble velocity with the prediction deduced
from scaling arguments. In case of a bidisperse foam, an attractive interaction between large bubbles
induces segregation and the large bubbles organize themselves in columns oriented along the flow.
These results allow to identify the main ingredients governing 2D polydisperse foam flows.

PACS numbers: 82.70.Rr, 83.50.Ha, 83.60.La

I. INTRODUCTION

In the context of complex and structured fluids, 2D
foam rheology gives rise to a revived interest. In these
materials, the subtle interplay between the elastic, plastic
and viscous behaviors induces complex rheological prop-
erties. The similarities between fluid foam, pastes, clays
or slurries arise from the organisation at small scale of
a disordered structure, that governs the macroscopic be-
havior. In case of foam, this small scale is the millimet-
ric bubble scale, which is much easier to observe than
the molecular scale usually involved. The structure de-
termination is especially convenient in 2D foam which
is thus often used as a model system for complex fluids
[1, 2, 3, 4].

We developed an experimental set-up enabling foams
to flow in a dissipative regime in a large 2D channel.
The foam is confined between two horizontal glass plates
separated by a small gap allowing a sole bubble layer
to form. The whole films network, as well as the ve-
locity fields, can thus be determined from images taken
from above, where bubbles appear as polygons of vari-
ous areas. Each vertical film touches both plates along
lines called Plateau borders. When sliding on the plates,
they induce a viscous dissipation that becomes impor-
tant even at relatively small velocities [5, 6]. When a
foam is pushed in the cell, it is thus submitted to a vis-
cous force depending on its velocity and on the density
of Plateau borders, ie on the bubble sizes. If the foam
is polydisperse, the largest bubbles experience a smaller
drag (per unit foam surface, in a 2D language) than the
smallest ones and tend therefore to move faster than the
mean flow. The resulting flow is difficult to quantify in
the general case of a polydisperse foam. As a first step,
we investigated the case of a single large bubble embed-
ded in a sea of much smaller bubbles and the case of a
bidisperse foam with a minority of large bubbles. These
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large bubbles, that play the role of defects (or holes) in
the foam, can be produced a posteriori with a controlled
size and position by vaporisation of liquid films with a
laser.

As in a viscous instability of an interface, the pressure
gradient in the foam is higher in-front of the hole than
to the sides. A similar hole in a simple viscous liquid
would move ahead for this reason. In a foam, the shear
stress created by the different pressure gradients must
exceed a yield stress. A threshold velocity is thus set
by a competition between surface tension and dissipative
forces. Only above this velocity, the large bubbles begin
to migrate through the smaller bubbles. This migration
does not imply that films break : the process is based on
elementary neighbors exchanges involving four bubbles
called T1 events [7](see Fig. 2). The flow destabilization
presented in this paper is based on wall effects and should
thus be more important at smaller scale and especially
in the domain of microfluidics.

This enhanced role of the dissipation in 2D foam flows
in presence of large bubbles has been predicted numer-
ically but is experimentally evidenced here for the first
time. We present the experimental set-up in the section
2 and the qualitative flow behavior in section 3. Then,
in section 4, we briefly recall the theoretical predictions
previously obtained in [8, 9]. The section 5 is devoted to
the relative velocity of a single large bubble in a monodis-
perse foam flow, which is the main result of this paper.
Finally, in section 6, we show that size segregation oc-
curs in the case of several large bubbles and that these
bubbles organize themselves in columns oriented in the
direction of the flow.

II. EXPERIMENTAL SET-UP

Foams were prepared from a solution of SDS (3g/L),
dodecanol (0.01g/L) and glycerol (0.05 L/L) in ultra pure
water. As-prepared solutions were used within a period
of 24h. The surface tension is γ = 31 10−3N/m and the
bulk viscosity is η = 1.1 10−3Pa s. The cell flow is made
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FIG. 1: Experimental set-up.

of two large horizontal glass plates (l = 35cm × L =
170cm) separated by a gap h = 2mm (fig. 1). It is
connected upstream to a vertical production cell, of the
same width and thickness, containing the foaming solu-
tion. The gap thickness is ensured by a steel piece, on
which the glass plates are simply clamped. The foam
is produced by blowing nitrogen continuously at a con-
trolled flow rate through 4 equally spaced needles of di-
ameter 1mm. It drains in the vertical cell until it reaches
the main cell (fig.1). The present data were collected with
a drainage height of 5 cm. The resulting liquid fraction
is difficult to estimate but it corresponds to a very dry
foam.

Depending on the gas flow rate we impose, the turbu-
lence in the foaming solution is modified and yields vari-
ous polydispersities. We worked with almost monodis-
perse foams with a typical bubble volume of V =
5 10−2mL (which gives a typical diameter of d = 5mm±1
for the polygons), obtained at the small flow rate of 1.5
mL/s per injector. The large bubble is produced by a
YAG laser (wave length 1064 nm, energy per pulse 20
mJ, pulse duration 5 ns). The beam is successively fo-
cused on each desired film with an orientable lens, until
a bubble 10 to 400 times larger in volume is produced.
Once the foam and the defect are produced at low flux,
the foam flow is accelerated at the required velocity by
increasing the gas flow rate. Velocities were varied be-
tween 0.3cm/s and 10cm/s. The structure of the foam
produced at this stage may be highly disordered but it
does not influence the flow observed downstream.

The foam is lit laterally by a circular neon tube of di-
ameter 0.4 m, put horizontally just below the cell on a
black board. The Plateau border network reflects the
light at 90o and thus appears from above in white on a
black background (see Fig.2). Only the Plateau borders
perpendicular to the incident light lead to a good con-
trast and the isotropy of the light is thus crucial. The
camera is placed above the middle of the cell, and the
large bubble shape has then time enough to relax spon-
taneously from its initial arbitrary shape before reaching
the recording zone. We record 25 images per second with

FIG. 2: Details of the raw images obtained from the camera.
The foam, lit laterally by a circular neon tube, appears in white
on black background. The mean flow is oriented to the right
and the two images are separated by 120 ms. Small bubbles
typical size is d=5mm. The large bubble is migrating through
the smallest ones due to T1 events : one of these elementary
plastic transformations occurs between images (a) and (b) and
the involved bubbles are underlined with a darker grey level.

a Pulnix TM6CN camera, with a resolution of 570× 760
pixels. Images are processed using a commercial software
named Visilog to isolate each bubble and determine its
area a and center of mass. The polygon area a is related
to the bubble volume V through the relation V = ha.
This 2D language will be used without precision in the
following. The images treatment consists in the following
operations : we subtract the background to remove the
large scale heterogeneities of lightning and we get binary
images by thresholding (liquid is white and gas black).
Then a white pixel dilatation improves the bubble sep-
aration and the continuous white network thus obtained
is skeletized to get finally a one pixel width continuous
frontier around each black bubble. The last step is to
record the area and the center of mass of these connex
domains of back pixels. Bubble tracking between images
n and n+1 is then performed. A bubble k in image n is
identified with the bubble k’ in image n+1 if its center of
mass (computed in image n) belongs to k’ in image n+1.
We checked manually the pairing method on few images
and found that the error ratio was less than few percents,
so the individual bubble trajectories are determined with
a good precision.

The dissipation in the foam is mainly due to the viscous
forces between the glass plates and the Plateau borders.
The viscous force per unit Plateau border length is pre-
dicted by the lubrication theory to be fv ∼ −γCaαux,
with Ca = ηv0/γ the capillary number, v0ux the Plateau
border velocity and α an exponent which is 2/3 in the
limit of wet foam and mobile surfactants [5, 10] and that
varies roughly between 0.5 and 0.7 in the general case
[11]. For the present foaming solution and in the veloc-
ity range investigated, we measured α = 0.5 ± 0.05 with
the technique detailed in [6]. These viscous forces are
simply balanced by the pressure field, which scales, in a
monodisperse foam of typical bubble diameter d, as

P (x) ∼ −xγCaα/(hd) . (1)

The total pressure gap ∆P between upstream and down-
stream was measured with a pressure captor put in the
foaming solution. For a flow velocity v0 = 3.2 10−2m/s
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and a small bubble size d = 5 10−3m, we measured
∆P = 2800 Pa, leading the typical viscous force per unit
length of Plateau border fv = h∆Pd/(2L) ∼ 10−2N/m,
in good agreement with previously obtained data [6].

III. QUALITATIVE BEHAVIOR
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FIG. 3: The large bubble v is compared to the average flow
velocity v0, and correlated to the large bubble shape (the LB
diameters in the x and y direction are respectively D and Dy).
An elongated shape oriented across the flow (large Dy) gives
rise to a stationary plug flow (0 < t < 1.5). This shape may
spontaneously destabilize (1.5 < t < 2) : a tip grows down-
stream in the flow direction, similarly to a viscous digitation.
The tip finally contains the whole LB which is then oriented
along the flow (t > 2). This transformation coincides with an
acceleration of the large bubble.

The flow is obtained with a controlled foam flux. At
the velocity range we investigated, the first bubble layer
on both sides slips on the wall at the mean velocity.
In monodisperse foam, topological transformations are
thus very rare and the foam structure remains almost
unchanged during the flow. The instantaneous velocity
distribution is well fitted by a Gauss distribution with a
standard deviation of the order of ±5%, due to the pixeli-
sation. In contrast, in the presence of a large bubble, the
plug flow becomes unstable above a given foam velocity.
The large bubble velocity is then larger than the mean
flow velocity v0, with relatively large amplitude fluctu-
ations and an orientation that may vary between ±30o

with respect to the mean flow direction (see Fig. 4). The
large bubble shape was characterized by its diameters in
the direction of the flow D(t) and in the transverse di-
rection Dy(t). These two parameters depend on time, in
contrast with the LB area which is constant. The LB
velocity is strongly correlated to the bubble elongation
(D−Dy)/(D+Dy) that varies roughly between -1/2 and
1/2. The large bubble alternates periods during which it
moves much faster than typical bubbles, with a shape
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FIG. 4: Large bubble trajectory through the network of small
bubbles. The position (xLB, yLB) of the large bubble is mea-
sured in the frame moving with the mean velocity of the foam
v0ux, in unit of small bubble diameter d. The foam velocity is
larger than the velocity threshold and the large bubble moves
in the x direction with a velocity fluctuating in amplitude and
direction. Each dot corresponds to an image, separated by 40
ms.

elongated in the direction of its own relative motion, and
periods during which it moves at the average speed with
an elongated shape perpendicular to the mean flow (see
Fig. 3).

The large bubble migration occurs without films break-
ages. Small bubbles are separated in front of the large
bubble and are reconnected at the rear. These so-called
T1 events, depicted on Fig. 2, are mainly localized very
close to the large bubble, but many structure reorganisa-
tions are also induced much further, in the whole camera
field. The velocity field around the large bubble may
exhibit very different behaviors. Indeed, the presence
of a wake of small bubbles behind the large one is in-
termittent. Comparison with foams flowing around an
obstacle of fixed shape would thus be very interesting to
perform[12].

IV. THEORETICAL PREDICTIONS

This instability was already studied numerically and
theoretically in [8, 9]. We summarized here the theoret-
ical predictions for the large bubble velocity to improve
the article self-consistency. The scaling behavior of the
threshold is obtained from the expression of the various
forces acting on the large bubble. From the pressure field
given in eq. 1, we obtain the resulting pressure force on
LB,

Fd ∼ D2(γ/d)Caα , (2)

which is the driving force for the LB migration. For sake
of simplicity, we only retain in the model a single diame-
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ter D for the large bubble. Below the threshold, the LB
equilibrium thus results from a competition between the
pressure field pushing LB downstream (the driving force
Fd) and the surface tension force of the soap films net-
work that try to keep LB at its initial position in the foam
frame. At small deformations, this force Fe, due to the
fact that any modification of the foam structure increases
the total amount of interfaces (and then of energy), is well
predicted by a purely elastic model[13]. This leads to

Fe ∼ γhX/d , (3)

with γ/d the order of magnitude of the foam shear mod-
ulus [7] and X the LB displacement with respect to its
equilibrium position. This expression is obtained from
a continuous incompressible 2D elastic medium at rest
at infinity. In this case, the force exerted on a circular
obstacle scales indeed as the obstacle displacement time
the material shear modulus (up to disregarded logarith-
mic corrections in the obstacle size).

The local elastic stress σ is related to Fe by Fe =
σLgeoh, with Lgeoh the typical area on which the stress
is important around the front or the rear of LB. At the
instability threshold, this local stress reaches the plas-
tic threshold of the foam, scaling as γ/d [13]. The
force balance on the large bubble is then, from eq. 2,
D2(γ/d)Caα ∼ γLgeoh/d or, equivalently, with vth the
velocity threshold,

ηvth/γ ∼ (hLgeo/D2)1/α . (4)

Above this threshold, the large bubble begins to mi-
grate, with a mean velocity v modelised by the following
process. The instantaneous LB velocity v(t) decreases
during the elastic loading of the foam until the plastic
threshold is reached. Then T1 events occur and a new
cycle begins. A full stress relaxation is assumed after
each plastic events and the elastic force is zero. Between
two plastic events, the elastic force is obtained from eq.

3, Fe = γh/d
∫ t

0
(v(t′)−v0)dt′. The integral is the LB dis-

placement X with respect to the small bubble network,
since the last plastic relaxation, occurring at t=0. The
force balance is then

γh

d

∫ t

0

(v(t′)−v0)dt′−
D2γ

d

(

ηv0

γ

)α

+Dγ

(

ηv(t)

γ

)α

= 0 ,

(5)
the first term being the elastic force given above, the sec-
ond one the driving force (eq.2) and the third one the
excess of viscous force exerted around the large bubble
that moves faster than the mean flow. This integral equa-
tion has been solved analytically in [9]. In the simple case
α = 1 and D ≫ d we obtain for the LB mean velocity
v the expression given below. It differs only by few per-
cents from the general expression, for reasonable values
of α and D/d, and will thus be used, for sake of simplicity
(see Fig. 7).

v − v0

v0
D
d

∼
−vth/v0

ln
(

1 −
vth

v0

) . (6)

When v0 ≫ vth, the expression becomes asymptotically
(v − v0)/(v0D/d) = 1 or equivalently v = v0D/d with
D ≫ d. These equations 4 and 6 are used to rescale the
experimental data.

V. EXPERIMENTAL RESULTS

The aim of the present paper is to determine experi-
mentally the relation, at each time, between the LB ve-
locity in the flow direction, denoted by v(t), the mean
flow velocity v0 and the large bubble size characterised
by its diameter in the x direction D(t), which appeared
to be the pertinent size parameter.

We analyzed 56 movies with a large bubble remaining
2 or 3 seconds in the view field. All control parame-
ters were kept constant, except for the LB area and the
mean flow velocity v0. The measured values of v(t) and
D(t) were averaged over 5 images. When v(t) > 1.1 v0,
a flow is considered as being above the threshold, other-
wise it is below. All experimental points are represented
in the plane (h/D, ηv0/γ) on Fig.5. Despite relatively
large fluctuations, two distinct domains clearly appear
on this phase diagram, corresponding to the two states,
namely above or below the threshold (only the parameter
ranges near the threshold were investigated).

0 0.02 0.04 0.06 0.08 0.1
h/D

0

0.5

1

1.5

2 

(x 10
-3

)

ηv
0/γ

below the threshold
above the threshold
y= 68 x 

3.7

FIG. 5: Phase diagram of the large bubble instability. The
control parameters are the capillary number built with the
mean flow velocity Ca = ηv0/γ and the LB diameter D adi-
mensioned by the gap h between the plates. Each point of
the graph corresponds to an image, on which the large bubble
is migrating (circle) or not (cross). Despite large fluctua-
tions, a frontier between the stable and unstable domains in
the (Ca, h/D) plane can be determined. The full line is the
best fit of this frontier in power law, axb with a and b ad-
justable.

To compare the experimental data presented on this
figure 5 with the theoretical prediction given by eq. 4,
an adjustment of the experimental frontier has been per-
formed by minimization of the distances dfront between
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the graph of a function and the experimental points
located on the wrong side of this frontier. A least
square method has been used with the set of functions
f(x) = a xb, a and b being free parameters. We obtained
thus the relation

ηvth/γ = 68 (h/D)3.7 . (7)

The mean value of dfront increases of 10% if the expo-
nent varies of ±0.5, which is the order of the precision
on the exponent. This very crude estimation is neverthe-
less sufficient to discriminate between the two possible
scaling for Lgeo. Indeed, Lgeo = D would correspond to
an exponent 2 in eq.7 (with α = 0.5), whereas Lgeo = d
leads to the relation

ηvth/γ ∼ (d/h)2 (h/D)4 (8)

which is in better agreement with the relation 7. More
experimental data would be needed to confirm the value
of this exponent, but h can not be easily varied and d
is confined to the small value range h < d ≪ D ≪ l
with l the channel width. Nevertheless it tends to prove
that Lgeo ∼ d and further modeling will therefore have
to go beyond the continuum medium approximation, in
which the bubble size d becomes irrelevant, and to take
explicitly into account its discrete nature, at least in the
high stress regions near the large bubble.

Above the threshold, the large bubble migrates
through the foam with a velocity v(t) > v0. Exper-
imentally, the foam disorder induces large fluctuations
of v, depicted on Fig. 4, which have been averaged
out. The averages were performed over small bins of size
δ(ηv0/γ) = 0.25 10−3 and δ(h/D) = 0.01 or 0.02, lead-
ing to the graphs presented on Fig. 6. As expected, the
large bubble velocity, in the frame of the foam, is vanish-
ing at small foam velocity and/or small LB size. It can
reach 0.5v0 (i.e 1.5v0 in the laboratory frame) for the
largest foam flux explored. At larger velocities, images
are not recorded fast enough by our camera to extract
quantitative results. New physical processes, like films
breakages, are involved and modify the dynamical be-
havior. For very large bubbles, the shape remains no
more convex. The description of the phenomena in term
of a Saffman Taylor instability is then probably more ap-
propriate [14, 15].

The experimental data shown on Fig. 6 were rescaled
according to the theoretical prediction eq. 6. The value
used for the velocity threshold is the experimental fit
given by eq. 7. We obtain in that way a good superpo-
sition of curves for the various h/D values, as well as an
agreement with the theory (see Fig.4).

The problem of the orientation of the LB velocity re-
mains open. Local crystallization is presumably impor-
tant, as shown numerically. By contrast, disorder induces
randomized plastic thresholds in the foam and thus cre-
ates most favorable paths for the LB migration that may
deviate from a straight line. A precise analysis of the
coupling between the local foam structure, the T1 local-
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FIG. 6: Large bubble relative velocity (v−v0)/v0 as a function
of the mean foam velocity v0, for different large bubble size
D (the h/D ratio are given on Fig.7 with the same symbol
convention). Each point represents an average over few tens
of measures.
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0.03 < h/D < 0.04
0.04 < h/D < 0.05
0.05 < h/D < 0.07
0.07 < h/D < 0.09
analytical result (α=1)
analytical result (α=0.5)

FIG. 7: Large bubble relative velocity in rescaled units (same
data as in Fig. 6). The mean flow velocity threshold vth(D)
used to rescale the experimental data, is obtained from eq.7.
The first analytical result (full line) is obtained from eq. 6,
with the adjustable prefactor 0.045. Numerical simulations in
vertex model have been performed, leading to a good agree-
ment with theory as well, with an adjustable prefactor of 0.07
[9]. The second curve (dashed line) is the exact solution of
eq. 5, using the experimental value of α (α = 0.5), with an
adjustable prefactor (see [9]).

ization and the LB shape and orientation might help to
clarify these questions.
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FIG. 8: Initial structure of the bidisperse foam.

FIG. 9: Picture of the same foam as on Fig. 8, taken few
seconds later, 50 cm downstream in the cell. The large bubbles
have spontaneously organized in columns oriented along the
flow.

VI. LARGE BUBBLES SEGREGATION IN

BIDISPERSE FOAM

Polydisperse foam flows imply obviously interactions
between bubbles of various sizes. A mean field approach,
in which we would consider that each bubble migrates in
an effective continuous medium and adjusts its velocity
as a function of its own size and of the local mean ve-
locity and mean bubble size does not seem appropriate.
The flow appears indeed to be dominated by correlations
between bubbles. In this last part, we point out the at-
tractive interactions between a set of large bubbles, and
their spontaneous organization in columns.

A regular network of approximately 10 large bubbles is
initially produced in a monodisperse foam, at rest (Fig.
8). The middle of this network is used as abscissa ref-
erence (x = 0). Then the flow is turn on, at a velocity
higher than the threshold, and the large bubbles begin to
migrate through the foam. When two large bubbles meet,
they migrate together. This aggregation leads progres-
sively to large bubbles domains of increasing size, organ-
ised in one bubble width columns, oriented along the flow
(see Fig. 9). The length of the columns was measured
at two points along the flow, for ten flows (99 bubbles).
The number N(n) of bubbles involved in a n-bubbles col-
umn when crossing the abscissas x = 50 or x = 100cm is
plotted for each value of n on Fig. 10 (n = 1 for an iso-
lated bubble). It represents equivalently the number of
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Column size (in bubbles number)
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FIG. 10: Large bubbles repartition in the columns of various
sizes, at two abscissa in the cell. Ten flows have been recorded,
involving 99 large bubbles. The position x = 0 correspond to
the mean abscissa of the initial regular large bubble network
(see Fig. 8). Each time a large bubble crosses the line x =
50cm (resp. x = 100cm), the size of the column in which this
bubble migrates is recorded (size 1 corresponds to an isolated
large bubble) and the obtained distribution is plotted. The
count is focused on the bubbles, which number is conserved,
and the n-bubbles columns are thus counted n times.

n-bubbles columns, with a weight n. The initial distribu-
tion at x = 0 is simply N(1) = 99 and N(i) = 0 for i > 1.
In order to follow every large bubble, we needed a large
field of view. The image quality is therefore reduced and
the analysis was done by hand.

The number of isolated bubbles decreases along the
flow. The aggregation process may be due to attractive
forces, or simply due to the spontaneous fluctuations of
the large bubbles trajectories. Indeed, once in contact,
two large bubbles never unbind, which leads to an effec-
tive attractive interaction, even without long range at-
tractive forces. The orientation of the domains is prob-
ably governed by the same phenomenon as in viscous
digitation.

VII. CONCLUSION

In conclusion, the reported experiments evidence the
crucial role of polydispersity in non quasi-static foam
flows and open a whole field of investigations. We mea-
sured the relative velocity of a single large bubble created
in a monodisperse foam as a function of its size and of the
mean flow velocity. The results are explained with non
trivial scaling arguments. In a bidisperse foam, we show
that the large bubbles are attracted to each other and
organise themselves in columns oriented along the flow.
A deeper analysis of the velocity fields around these large
bubbles will allow for a better understanding of the na-
ture of the attractive interaction. Strong spatial correla-
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tions are observed and a mean field approach is probably
not enough to explain the velocity field of a fully poly-
disperse foam.

The dissipation is of different nature in three-
dimensional foams. Nevertheless, it is still localized in
the liquid phase, and the largest bubbles remain easier
to deform or displace. Similar destabilizations are thus

expected to occur in non quasi-static 3D flows and might
have important practical consequences.
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