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Abstract. : In this paper, we study complex Wishart processes or the so-called
Laguerre processes (Xt)t≥0. We are interested in the behaviour of the eigenvalue
process, we derive some useful stochastic differential equations and compute both the
infinitesimal generator and the semi-group. We also give absolute-continuity relations
between different indices. Finally, we compute the density function of the so-called
generalized Hartman-Watson law as well as the law of T0 := inf{t, det(Xt) = 0} when
the size of the matrix is 2.

1. Introduction

The Real Wishart process is a symmetric matrix-valued process which was introduced
by M.F.Bru (1989) as follows : Let Bt = (Bij(t))i,j be a n × m Brownian matrix and
define Xt = BT

t Bt. The process (Xt)t≥0 satisfies the following stochastic differential
equation (SDE)

dXt = BT
t dBt + dBT

t Bt + nImdt

=
√

XtdNt + dNT
t

√

Xt + nImdt, X0 = BT
0 B0

where Im denotes the unit matrix, the superscript T stands for the transpose,
√

Xt is the
matrix square root of the positive matrix Xt and (Nt)t≥0 is a m × m Brownian matrix.
This process is called the Wishart process of dimension n, of size m, starting from X0

and is denoted W (n,m,X0). Then, the W (δ,m,X0) where δ runs over the Gindikin
ensemble {1, . . . ,m − 1}∪]m − 1,∞[ is defined as the unique solution of the latter SDE
with δ instead of n. Thus, it can be viewed as an extension of the squared Bessel process
to higher dimension. In this way, Donati et al. (2004) tried to extend some well known
properties of the squared Bessel processes to the matrix case and derived expressions
such as the Laplace transform and the tail distribution of some random variables, in
which many multivariate special functions of symmetric matrix argument appear, such as
Gamma, modified Bessel and hypergeometric functions (Muirhead 1982). However, the
latter is quite complicated to deal with and to our knowledge, there are no more precise
results on the law of these variables. Nevertheless, in the complex case, hypergeometric
functions of Hermitian matrix argument can be expressed as a determinant of a matrix
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whose entries are one-dimensional hypergeometric functions. In fact, Gross and Richards
(1991) established the following result :

pFq(a1, . . . , ap, b1, . . . , bq;X) =
det(xn−j

i pFq(a1 − j + 1, . . . , ap − j + 1, . . . , bq − j + 1;xi))

V (X)

where X is a m × m Hermitian matrix, (xi) are its eigenvalues, pFq denotes the stan-
dard hypergeometric functions with scalar argument, V (X) =

∏

i<j(xi −xj) is the Van-
dermonde determinant and pFq is the hypergeometric function with Hermitian matrix
argument defined by :

pFq(a1, . . . , ap, b1, . . . , bq;X) =
∑

k≥0

∑

τ

(a1)τ · · · (ap)τ
(b1)τ · · · (bq)τ

Cτ (X)

k!

where τ = (τ1, . . . , τm) is a partition of length ≤ m and of weight k (i.e. τ1 ≥ τ2 ≥
· · · ≥ τm,

∑

i τi = k), (a)τ is the generalized Pochammer symbol and Cτ is the so-called
zonal polynomial. We refer to Macdonald (1995) for further details and Lassalle (1991),
(1991a) for analogous expressions for multivariate orthogonal polynomials. The deter-
minantal representation above is due to the fact that the zonal polynomial is identified
with the (normalized) Schur functions defined by :

sτ (x1, . . . , xm) =
det(x

τj+m−j
i )

det(xm−j
i )

Consequently, one can use integral representations as well as other properties of stan-
dard hypergeometric functions to get, at least when m = 2, some results that are till now
unknown in the Wishart case. The rest of this paper consists of seven sections, which
are respectively devoted to the following topics: in section 2, we introduce the Laguerre
process of integer dimension. In section 3, we study the behaviour of the eigenvalue
process. Then, in section 4, we define the Laguerre process of positive real dimension.
Section 5 is devoted to the absolute-continuity relations, from which we deduce the
Laplace transform of the so-called generalized Hartman-Watson law as well as the tail
distribution of T0, the first hitting time of 0. In section 6, we focus on the case m = 2
for which we invert this Laplace transform, and finally, in section 7, we compute the
density of S0 := 1/(2T0).

2. Laguerre Process of integer index

Let B be a n×m complex Brownian matrix starting from B0 , i.e. B = (Bij) where the
entries Bij are independent complex Brownian motions, so we can write B = B1 + iB2

where B1, B2 are two independent real Brownian matrices. We are interested in the
matrix-valued process Xt := B⋆

t Bt which satisfies the following SDE :

dXt = dB⋆
t Bt + B⋆

t dBt + 2nImdt (1)

Definition 1. (Xt)t≥0 is called the Laguerre process of size m, of dimension n and
starting from X0 = B⋆

0B0, and will be denoted by L(n,m,X0).

Remark 1. For m = 1, (Xt)t≥0 is a squared Bessel process of dimension 2n, denoted by
BESQ(2n,X0).
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Remark 2. Set Xt = (Xij(t))i,j . One can easily check that

dXii(t) = 2
√

Xii(t)dγi(t) + 2ndt 1 ≤ i ≤ m,

where (γi)1≤i≤m are independent Brownian motions, thus, Xii is a BESQ(2n, (X0)ii).

Remark 3. The equation above implies that :

d(tr(Xt)) = 2
√

tr(Xt)dβt + 2nmdt (2)

where β is a Brownian motion. Consequently, (tr(Xt))t≥0 is a BESQ(2nm, tr(X0))
of dimension 2nm starting from tr(X0). One can also deduce from (1) that for every
i, j, k, l ∈ {1, · · · ,m}:

〈dXij , dXkl〉t = 2(Xilδkj + Xkjδil)dt,

which differs from equation (I-1-5) derived by Bru (1989) since for a complex Brownian
motion γ, we have d〈γ, γ〉t = 0 and 〈γ, γ〉t = 2t .

2.1. Infinitesimal generator. Let Hm, H̃+
m be respectively the space of m × m Her-

mitian matrices and the space of m × m positive definite Hermitian matrices. On the
space of Hermitian matrix-argument functions, we define the matrix-valued differential
operators :

∂

∂x
:=

(

∂

∂xjk

)

j,k

,
∂

∂y
:=

(

∂

∂yjk

)

j,k

,
∂

∂z
:=

(

∂

∂xjk
− i

∂

∂yjk

)

j,k

,

We also define:
(

∂

∂z

)2

ij

:=
∑

k

∂2

∂zik∂zkj
,

(

∂

∂x

∂

∂y

)

ij

:=
∑

k

∂2

∂xik∂ykj

Proposition 1. Let functions f satisfying:

∂f

∂xij
=

∂f

∂xji
,

∂f

∂yij
= − ∂f

∂yji
for all i, j.

Then, the infinitesimal generator of a Laguerre process L(n,m, x) is given by:

L = 2n tr(ℜ
(

∂

∂z

)

) + 2[tr(xℜ
(

∂

∂z

)2

) + tr(yℑ
(

∂

∂z

)2

)] (3)

where
∂

∂z
is the operator defined above.

Remark 4. Using the fact that xT = x, yT = −y and tr(AB) = tr(BA) = tr(BTAT ) for
any two matrices A and B, we can see that

tr

(

y
∂

∂y

∂

∂x

)

= tr

(

∂

∂x

∂

∂y
y

)

= tr

(

y
∂

∂x

∂

∂y

)

⇒
(

yℑ(
∂

∂z
)2
)

= 2tr

(

y
∂

∂x

∂

∂y

)
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3. Eigenvalues of Laguerre Process

In this section, we will suppose that n ≥ m. The following result is due to König and
O’Connell (2001), Katori and Tanemura (2004) and Bru in the real case (1989a) :

Theorem 1. Let λ1(t), · · · , λm(t) denote the eigenvalues of Xt. Suppose that at time
t = 0, all the eigenvalues are distinct. Then, the eigenvalue process (λ1(t), . . . , λm(t))
satisfies the following stochastic differential system:

dλi(t) = 2
√

λi(t) dβi(t) + 2



n +
∑

k 6=i

λi(t) + λk(t)

λi(t) − λk(t)



 dt 1 ≤ i ≤ m, t < τ,

where the (βi)1≤i≤m are independent Brownian motions and τ is defined by
τ := inf{t, λi(t) = λj(t) for some (i, j)}.
Remark 5. With the help of the SDE satisfied by the eigenvalues, we can compute the
ones satisfied by both processes (tr(X)) and (det(X)): the former is done. For the
second, we find that for t < T0 := inf{t,det(Xt) = 0} and for r ∈ R:

d(det(Xt)) = 2det(Xt)

√

tr(X−1
t )dνt + 2(n − m + 1) det(Xt) tr(X−1

t )dt

d(log(det(Xt)) = 2

√

tr(X−1
t )dνt + 2(n − m) tr(X−1

t )dt,

d(det(Xt)
r) = 2r(det(Xt))

r
√

tr(X−1
t )dνt + 2r(n − m + r)(det(Xt))

r tr(X−1
t )dt

so, we can see that for n = m, log(det(X) is a local martingale and so is (det(X))m−n.

Lemma 1. Take X0 ∈ H̃+
m. Then for n ≥ m, Xt ∈ H̃+

m.

Proof : In fact, this result is a direct consequence of the fact that for n = m, log det(X)
is a local martingale, and so is (det(X))m−n. Hence, for n ≥ m, these two continuous
processes tend to infinity when t → T0 which is possible only if T0 = ∞, because every
continuous local martingale is a time-changed Brownian motion. �

Corollary 1. If λ1(0) > · · · > λm(0), then, the process U defined by

U(t) =
1

∏

i<j(λi(t) − λj(t))
, t < τ

is a local martingale.

Proof : We could follow the proof given by Bru (1989a) or make straightforward
computations using the derivatives of the Vandermonde function. But we prefer use a
result from König and O’Connell (2001): for n ≥ m, the eigenvalue process is the V -
transform (in the Doob sense) of the process obtained from m independent BESQ(2(n−
m + 1)). Thus, if G and Ĝ denote respectively the infinitesimal generators of these two
processes, then, G(h) = 0 and, for all C2 function f ,

Ĝ(f) =
1

V
G(V f) ⇒ Ĝ(U) =

1

V
G(1) = 0.

Corollary 2. If at time t = 0, the eigenvalues of X are distinct, then, they will never
collide, i.e. τ = ∞ almost surely.
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Proof : This result follows from the fact that the continuous process U tends to infinity
when t → τ which is possible only if τ = ∞ almost surely (We use the same argument
as before). �

3.1. Additivity Property. The proof of this result is similar to the one derived by
Bru in the real case (1989):

Proposition 2. If (Xt)t≥0 and (Yt)t≥0 are two independent Laguerre processes L(n,m,X0)
and L(p,m, Y0) respectively, then the process (Xt + Yt)t≥0 is a Laguerre process L(n +
p,m,X0 + Y0).

Now, we introduce the Laguerre processes of noninteger dimensions δ.

4. Laguerre Processes with noninteger dimensions

Let X be a Laguerre process L(n,m,X0) with n ≥ m. If X0 ∈ H̃+
m, and if

√
Xt stands

for the symmetric matrix square root of Xt, it is easy to show that the matrix O defined

by Ot :=
√

Xt
−1

B⋆
t , where Xt = B⋆

t Bt, satisfies O⋆O = OO⋆ = Im. Thus,

dγt = OtdBt =
√

Xt
−1

B⋆
t dBt

is a m × m complex Brownian matrix. Replacing this expression in (1), one obtains :

dXt =
√

Xtdγt + dγ⋆
t

√

Xt + 2nImdt

Theorem 2. If (Bt) is a m × m complex Brownian matrix, then for every X0 ∈ H̃+
m

and for all δ ≥ m, the SDE

dXt =
√

XtdBt + dB⋆
t

√

Xt + 2δImdt (4)

has a unique strong solution in H̃+
m. Furthermore, if the eigenvalues are distinct at time

t = 0, then they satisfy the stochastic differential system:

dλi(t) = 2
√

λi(t) dβi(t) + 2



δ +
∑

k 6=i

λi(t) + λk(t)

λi(t) − λk(t)



 dt 1 ≤ i ≤ m,

where the (βi)1≤i≤m are independent Brownian motions.

Proof : The proof of the second part of the theorem is the same as before with δ
instead of n. So, we have to prove the first part. Note first that (det(Xt)), (log det(Xt))
and (det(Xt)

r) verify the same SDE with δ instead of n. Hence, arguing as before, we

can see that T0 = ∞ almost surely. On the other hand, the map a 7→ a1/2 is analytic

in H̃+
m (see Roger and Williams 1987, p. 134), so, the SDE has a unique strong solution

for all t ≥ 0. �

Definition 2. Such a process is called the Laguerre process of dimension δ, size m and
initial state X0. It will be denoted by L(δ,m,X0).

Remark 6. Any process (Xt)t≥0 solution of (4) is a diffusion whose infinitesimal
generator is given by:

L = 2δ tr(ℜ(
∂

∂z
)) + 2[tr(xℜ(

∂

∂z
)2) + tr(yℑ(

∂

∂z
)2)]
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Remark 7. A simple computation shows that

d〈Xij ,Xkl〉t = 2(Xil(t)δkj + Xkj(t)δil)dt, for all i, j, k, l ∈ {1, . . . ,m}
Now, we focus on both existence and uniqueness when δ > m − 1 and X0 ∈ H+

m (see
Bru (1989) for the real case).

4.1. The Process X+. If X is a Hermitian matrix, let X+ be the Hermitian matrix
max(X, 0). If we denote by (λi) the eigenvalues of X, then (λ+

i = max(λi, 0)) are those
of X+.

Theorem 3. For all δ ∈ R+ and X0 = x ∈ Hm , the stochastic differential equation

dXt =

√

X+
t dBt + dB⋆

t

√

X+
t + 2δImdt (5)

has a solution in Hm.

Proof : The mapping a 7→
√

a+ is continuous on Hm. Hence, X exists up to its
explosion time (Ikeda and Watanabe 1989, theorem. 2. 3). Furthermore, from

||
√

X+||2 + ||δI ||2 ≤ δ2 + ||X||2 ≤ C(1 + ||X||2),
we can deduce that this explosion time is infinite almost surely (Ikeda and Watanabe
1989, theorem 2. 4). �

Proposition 3. If λ1(0) > . . . > λm(0) ≥ 0, then, for all t < S := inf{t, λi =
λj for some (i, j)}, the eigenvalues of X+ verify the following differential system:

dλi(t) = 2
√

λ+
i (t)dνi(t) + 2



δ +
∑

k 6=i

λ+
i (t) + λ+

k (t)

λi(t) − λk(t)



 dt, 1 ≤ i ≤ m,

Proof : This differential system can be shown in the same way as in theorem 1 using :

〈dXij , dXkl〉t = 2(X+
il (t)δkj + X+

kj(t)δil)dt, for all i, j, k, l ∈ {1, . . . ,m}
Proposition 4. If λ1(0) > . . . > λm(0) ≥ 0, then, for all δ > m − 1, t > 0, λm(t) ≥ 0 .

Proof : First, we note that S = ∞ almost surely. Indeed, one can easily show that
the process U defined by :

U(λ1(t), . . . , λm(t)) =
1

∏

i<j(λi(t) − λj(t))

is a local martingale. For the proof, we follow in the same way as Bru (1989).

Theorem 4. If λ1(0) > . . . > λm(0) ≥ 0, then, for all δ > m − 1, (4) has a unique
solution in H+

m in the sense of probability law.

Proof : By Proposition 4, the solution of the SDE (5) remains positive for all t > 0,
thus, it is a solution of (4). �

Theorem 5. Let H+
m be the space of positive Hermitian matrices. Then, whenever

the SDE (4) has a solution in H+
m, for fixed t, its distribution is given by its Laplace

transform:

EX0(exp−(tr uXt)) = (det(Im + 2tu))−δ exp(−tr(X0 (Im + 2tu)−1u)), (6)

for all u in H+
m.
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Proof : For s ∈ H+
m, let g(t, s) = ∆−δ

t exp(−V (t, s)) , where

∆t = det(Im + 2ut), Wt = (Im + 2ut)−1u, V (t , s) = tr(sWt),

First, note that W ∈ Hm. To proceed, we need a lemma :

Lemma 2. The function g satisfies the heat equation:
∂g

∂t
= L g where L is the infin-

itesimal generator of X.

Proof of the lemma : If we write s = x+ iy, then, using the fact that x is symmetric, y
is skew-symmetric and W is Hermitian, we can see that tr(sWt) = tr(xM + iyN) where

M =
W + W

2
N =

W − W

2
.

Observing that MT = M and NT = −N , we can deduce that g satisfies the conditions
of Proposition 1. Besides,

∂g

∂t
= −g(2δ tr(Wt) − 2 tr(sW 2

t ))

tr(y

(

∂2g

∂x∂y
+

∂2g

∂y∂x

)

) = −ig tr(yW 2),

tr(x

(

∂2g

∂x2
− ∂2g

∂y2

)

) = g tr(x(M2 + N2)) = g tr(xW 2).

Finally, noting that tr(M) = tr(W ), we obtain the equality. Now, we consider the
process (Z(t,Xt)) defined by Z(t,Xt) = g(t1 − t,Xt) for all t ≤ t1 for fixed t1. From the
lemma, we deduce that Z is a bounded local martingale and thus is a martingale. So,
the result follows from a simple application of the optional stopping theorem. �

Corollary 3. Let (Xt)t≥0 be a Laguerre process L(δ,m, x) where x ∈ H̃m
+
. For δ >

m − 1, its semi-group is given by the following density:

pδ
t (x, y) =

1

(2t)mδΓm(δ)
exp−(

1

2t
tr(x + y)) (det y)δ−m

0F1(δ;
xy

4t2
)1{y>0}

with respect to Lebesgue measure dy =
∏

p≤q dy1
pq

∏

p<q dy2
pq where y = y1 + iy2 and 0F1

is a hypergeometric function of Hermitian matrix argument (Chikuze 1976, Gross and
Richards 1991).

Proof : In fact, this result can be easily deduced from the case where δ = n is integer,
since, in this case, Xt is a non-central complex Wishart variable W (n, 2tIm, x) (James
1964) with density given by:

ft(x, y) =
1

(2t)mnΓm(n)
exp−(

1

2t
tr(x + y)) (det y)n−m

0F1(n;
xy

4t2
)1{y>0}

7



with respect to dy. Hence, taking δ instead of n and denoting by Wt this new variable
(starting from x), we can see that : (we will use |y| to denote det(y))

Ex(e− tr uWt) =
1

(2t)mδΓm(δ)
e−

trx
2t

∫

y>0
exp

(

− 1

2t
tr((I + 2ut)y)

)

|y|δ−m
0F1(δ;

xy

4t2
)dy

=
2tmδ|x|−δ

Γm(δ)
e−

trx
2t

∫

z>0
exp(−2t tr(x− 1

2 (I + 2ut)x− 1
2 z)|z|δ−m

0F1(δ; z)dz

= exp(− trx

2t
)|I + 2ut|−δ exp

(

tr(
x

2t
(I + 2ut)−1)

)

= |I + 2ut|−δ exp

(

− 1

2t
tr(x(I + 2ut)−1(I + 2ut − I ))

)

= |I + 2ut|−δ exp
(

− tr(x(I + 2ut)−1u)
)

which is equal to (6). �

Remark 8. In the last proof, we used the change of variables z = x1/2yx1/2 which
gives dz = |x|mdy. For the second integral, see Faraut and Korànyi (1994), proposition
XV.1.3.

Remark 9. The expression of the semi-group extends continuously to the degenerate
case, namely:

pδ
t (0m, y) =

1

(2t)mδΓm(δ)
exp−(

tr(y)

2t
) (det y)δ−m1{y>0}

where 0m denotes the null matrix.

Corollary 4. For δ > m − 1, the semi-group of eigenvalue process is given by:

qt(x, y) =
V (y)

V (x)
det

(

1

2t

(

yj

xi

)ν/2

e−
(xi+yj)

2t Iν(

√
xiyj

t
)

)

where x = (x1, . . . , xm), y = (y1, . . . , ym) so that x1 > . . . > xm > 0, y1 > . . . > ym > 0,
δ = m+ν such that ν > −1 and Iν denotes the modified Bessel function (Lebedev 1972).

Proof : The expression of the semi-group can be computed using Karlin and MacGre-
gor formula (1959) since, for δ > m− 1, the eigenvalue process is the h-transform of the
process consisted of m independent BESQ(2(δ−m+1)) conditioned never to collide, as
stated by König and O’Connell (2001). Another proof is given by Péché (2003, p. 68).
Here, we will deduce the expression of qt(x, y) from pt(x, y) following Muirhead (1982),
namely, by projection on the unitary group : we will use Weyl integration formula, then
give a determinantal representation of hypergeometric functions of two matrix argu-
ments. First, we state Weyl integration formula (Faraut 2006) in the complex case: for
any Borel function f ,

∫

Hm

f(A)dA = Cm

∫

U(m)

∫

Rm

f(uau∗)α(du)(V (a))2da1 . . . dam,

where Cm =
πm(m−1)

Γm(m)
, U(m) is the unitary group, α is the normalized Haar measure on

U(m), a = diag(ai) and A = uau∗. Hence, the semi-group of the eigenvalue process is
8



given by (James 1964):

qt(x, y) = Cm(V (y)2)

∫

U(m)
pt(x̃, uỹu∗)α(du)

=
Cm(V (y)2)

(2t)mδΓm(δ)

m
∏

i,j=1

e−
xi+yj

2t

(

m
∏

i=1

yj

)δ−m
∫

U(m)
0F1(δ;

x̃uỹu∗
4t2

)α(du)

=
πm(m−1)(V (y)2)

(2t)m(m+ν)Γm(m)Γm(m + ν)

m
∏

i,j=1

e−
xi+yj

2t

(

m
∏

i=1

yj

)ν

0F1(m + ν;
x̃

4t2
; ỹ),

where ỹ = diag(yj) , x is a positive definite matrix whose eigenvalues are x1, . . . , xm,

0F1 in the third line is an hypergeometric function with two matrix arguments (Gross
and Richards, 1991) and δ = m + ν, ν > −1. Next, we need a lemma.

Lemma 3. Let B,C ∈ Hm and let (bi), (ci) be respectively their eigenvalues. Then,

pFq((m + µi)1≤i≤p,(m + φj)1≤j≤q;B,C) = π
m(m−1)

2
(p−q−1)Γm(m)

p
∏

i=1

(Γ(µi + 1))m

Γm(m + µi)

q
∏

j=1

Γm(m + φj)

(Γ(φj + 1))m

det (pFq((µi + 1)1≤i≤p, (1 + φj)1≤j≤q; blcf )l,f

V (B)V (C)

for all µi, φj > −1, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Proof : Recall that the hypergeometric function of two matrix arguments is given by
the following series:

pFq((ai)1≤i≤p, (ej)1≤j≤q;B,C) =

∞
∑

k=0

∑

τ

∏p
i=1(ai)τ

∏q
j=1(ej)τ

Cτ (B)Cτ (C)

Cτ (I)k!
,

It is well known that

Cτ (B) =
k!dτ

(m)τ
sτ (b1, . . . , bm),

where sτ is the Schur function and dτ = sτ (1, . . . , 1) is the representation trace or degree
(Gross and Richards 1991, Faraut 2006). Substituting in the series, one gets:

pFq((m + µi)1≤i≤p, (m + φj)1≤j≤q;B,C) =

∞
∑

k=0

∑

τ

∏p
i=1(m + µi)τ

∏q
j=1(m + φj)τ

sτ (B)sτ (C)

(m)τ
,

Now, we write:

(m + µi)τ =
m
∏

r=1

Γ(µi + m + kr − r + 1)

Γ(µi + m − r + 1)
=

m
∏

r=1

Γ(µi + 1 + kr + δr)

Γ(µi + m − r + 1)

= πm(m−1)/2 (Γ(µi + 1))m

Γm(m + µi)

m
∏

r=1

(µi + 1)kr+δr
, δr = m − r

9



Doing the same for each (m + φj)τ and for (m)τ , we can see that:

pFq((m + µi)1≤i≤p, (m + φj)1≤j≤q;B,C) = πβΓm(m)

p
∏

i=1

(Γ(µi + 1))m

Γm(m + µi)

q
∏

j=1

(Γ(φj + 1))m

Γm(m + φj)

∞
∑

k=0

∑

τ

m
∏

r=1

(

∏p
i=1(µi + 1)kr+δr

∏q
j=1(φj + 1)kr+δr

)

sτ (B)sτ (C)
∏m

r=1(1)kr+δr

where β =

(

m(m − 1)

2

)

(p−q−1). To get the desired result, we use the ”Hua formula”

(Faraut 2006) :

Lemma 4. Given an entire function f, i.e. f(z) =
∑∞

k=0 ekz
k, then

det(f(bicj))i,j
V (B)V (C)

=

∞
∑

k=0

∑

τ

(

m
∏

r=1

ekr+δr

)

sτ (B)sτ (C)

sτ (Im)
.

Thus, we get:

pFq((m + µi)1≤i≤p,(m + φj)1≤j≤q;B,C) = π
m(m−1)

2
(p−q−1)Γm(m)

p
∏

i=1

Γ(µi + 1)

Γm(m + µi)

q
∏

j=1

Γm(m + φj)

Γ(φj + 1)

det

(

∑∞
k=0

∏p
i=1(µi+1)k

∏q
j=1(φj+1)k

(blcp)k

k!

)

l,p

V (B)V (C)

= π
m(m−1)

2
(p−q−1)Γm(m)

p
∏

i=1

Γ(µi + 1)

Γm(m + µi)

q
∏

j=1

Γm(m + φj)

Γ(φj + 1)

det (pFq((µi + 1)1≤i≤p, (1 + φj)1≤j≤q; blcf )l,f

V (B)V (C)
�

For p = 0 and q ≥ 1, it reads :

0Fq((m + φj)1≤j≤q;B,C) = π−m(m−1)
2

(q+1)Γm(m)

q
∏

j=1

Γm(m + φj)

(Γ(φj + 1))m

det (0Fq((1 + φj)1≤j≤q; blcf )l,f
V (B)V (C)

,

and similarly,

0F0(B,C) =
Γm(m)

π
m(m−1)

2

det(eblcf )l,f
V (B)V (C)

which can be viewed as Harish-Chandra formula for the ”Itzykson-Zuber” integral (Collins

2003). We now proceed to the end of the proof. Taking p = 0, q = 1, B =
x̃

4t2
, C = ỹ,

we get:

0F1(m + ν;
x̃

4t2
; ỹ) =

(4t2)m(m−1)/2Γm(m + ν)Γm(m)

πm(m−1)(Γ(ν + 1))m
det
(

0F1((ν + 1);
xiyj

4t2
)
)

V (x)V (y)
10



The expression of qt(x, y) follows from a simple computation and from the fact that:

0F1((ν + 1);xiyj/4t
2))i,j

Γ(ν + 1)
=

(

2t
√

xiyj

)ν

Iν(

√
xiyj

t
) �

Proposition 5. The measure defined by ρ(dx) = (det(x))δ−m dx on H̃m
+

is invariant
under the semi-group, i. e, ρPt = ρ.

Proof: Denote by Pt the semi-group of Laguerre process L(δ,m, x) for δ > m − 1.
Then, we have to show that

∫

x>0
Ptf(x)ρ(dx) =

∫

y>0
f(y)ρ(dy) f ∈ C0(H̃m

+
).

This follows by a similar computation and the same arguments as in the proof of corollary
3. �

Remark 10. For Wishart processes, it is easy to see that µ(dx) := (det(x))
δ
2
−m+1

2 1{x>0}dx
is invariant under the semi-group.

5. Girsanov Formula and Absolute-continuity Relations

The index ν > −1 of a L(δ,m, x) is defined by ν = δ − m. In this section, we will
discuss in the same way as in [] to derive absolute-continuity relations between different
indices.

5.1. Positive Indices. Take a matrix-valued Hermitian predictable process H. Let Qδ
x

be the probability law of L(δ,m, x) for δ > m − 1 and x ∈ H̃+
m. Define:

Lt =

∫ t

0

tr(HsdBs + Hs dBs)

2
,

Φt = exp (Lt −
1

2

∫ t

0
tr(H2

s )ds),

where B is a complex Brownian matrix under Qδ
x. We can easily see that the process β

defined by βt = Bt −
∫ t
0 Hsds is a Brownian matrix under the probability

P
H
x |Ft

:= Φt · Qδ
x|Ft

,

Furthermore, (Xt)t≥0 is a solution of

dXt =
√

Xtdβt + dβ⋆
t

√

Xt + (
√

XtHt + Ht

√

Xt + 2δIm )dt. (7)

For Ht = ν
√

Xt
−1

, (7) becomes

dXt =
√

Xtdβt + dβ⋆
t

√

Xt + 2(δ + ν)Imdt,

so that (Xt)t≥0 is a L(δ + ν,m, x) under P
H
x . Thus, we proved that :

Theorem 6. For δ > m − 1,

Qδ+ν
x |Ft

= exp

(

ν

2

∫ t

0
tr(
√

Xs
−1

dBs +
√

Xs
−1

dBs) −
ν2

2

∫ t

0
tr(Xs

−1)ds

)

· Qδ
x|Ft

. (8)

11



Proposition 6.

Qm+ν
x |Ft

=

(

det(Xt)

det(x)

)ν/2

exp

(

−ν2

2

∫ t

0
tr(Xs

−1)ds

)

· Qm
x |Ft

. (9)

Proof : We know that ∇u(det(u)) = det(u)u−1, hence, ∇u(log(det(u))) = u−1. Then,
using the fact that for δ = m, (log(det(Xt))) is a local martingale, we get from Itô
formula that:

log(det(Xt)) = log(det(X0)) +

∫ t

0
tr(Xs

−1(
√

XsdBs + dB⋆
s

√

Xs))

= log(det(X0)) +

∫ t

0
tr(
√

Xs
−1

dBs +
√

Xs
−1

dBs). �

From (9), it follows that:

Corollary 5.

Qm
x (exp

(

−ν2

2

∫ t

0
tr(X−1

s )ds

)

|Xt = y) =
det(y)

det(x)

−ν/2 pm+ν
t (x, y)

pm
t (x, y)

=
Γm(m)

Γm(m + ν)
(det(z))ν/2 0F1(m + ν, z)

0F1(m, z)

:=
Ĩν(z)

Ĩ0 (z)
,

where z =
xy

4t2
.

Now, we state the following asymptotic result:

Corollary 6. Let X be a Laguerre process L(m,m, x), then, as t → ∞:

4

(m log t)2

∫ t

0
tr(Xs)

−1ds
L→ T1 (β)

where T1 is the first hitting time of 1 by a standard Brownian motion β.

Proof : From (9), we deduce that:

Qm
x (exp

(

− 2ν2

(m log t)2

∫ t

0
tr(X−1

s )ds

)

|Xt = ty) =
Γm(m)

Γm(m + 2ν/m log t)
(det(xy/4t))ν/m log t

0F1(m + 2ν/m log t, xy/4t2)

0F1(m,xy/4t2)
.

Noting that (tm)−ν/m log t = e−ν , and since both hypergeometric functions converge to 1
as t → ∞, we obtain:

Qm
x

(

exp(− 2ν2

(m log t)2

∫ t

0
tr(X−1

s )ds|Xt = ty

)

t→∞−→ e−ν

12



Then, since

lim
t→∞

tm
2
pm

t (x, 2y) = lim
t→∞

e− tr(x)/2t

Γm(m)
e− tr(y)

0F1(m,
xy

2t
)

=
e− tr(y)

Γm(m)

we get:

Qm
x (exp

(

− 2ν2

(m log t)2

∫ t

0
tr(X−1

s )ds

)

)

=

∫

y>0
Qm

x

(

exp(− 2ν2

(m log t)2

∫ t

0
tr(X−1

s )ds|Xt = y

)

pm
t (x, y)dy

=

∫

y>0
Qm

x

(

exp(− 2ν2

(m log t)2

∫ t

0
tr(X−1

s )ds|Xt = ty

)

tm
2
pm

t (x, ty)dy

t→∞−→ e−ν ,

by dominated convergence Theorem. �

5.2. Negative Indices. Take 0 < a ≤ det(x). The same computation as in parag. 5.1

with Ht = −ν
√

Xt
−1

, 0 < ν < 1, shows that

Qm−ν
x |Ft∧Ta

=

(

det(x)

det(Xt∧Ta)

)ν/2

exp

(

−ν2

2

∫ t∧Ta

0
tr(Xs

−1)ds

)

Qm
x |Ft∧Ta

where Ta := inf{t,det(Xt) = a}. Letting a → 0 and using the fact that T0 = ∞ a.s
under Qm

x , we get :

Qm−ν
x |Ft∧T0

=

(

det(x)

det(Xt)

)ν/2

exp

(

ν2

2

∫ t

0
tr(Xs

−1)ds

)

Qm
x |Ft

=

(

det(x)

det(Xt)

)ν

Qm+ν
x |Ft

Proposition 7. For all t > 0 and 0 < ν < 1,

Qm−ν
x (T0 > t) =

Γm(m)

Γm(m + ν)
det(

x

2t
)ν1F1(ν,m + ν,− x

2t
)

Proof : From the absolute-continuity relation above, we deduce that :

Qm−ν
x (T0 > t) = Qm+ν

x

((

det(x)

det(Xt)

)ν)

,

On the other hand, using the expression of the semi-group, one has :

Qδ
x(det(Xt)

s) = (2t)ms Γm(s + δ)

Γm(δ)
1F1(−s; δ;− x

2t
)

= (2t)ms Γm(s + δ)

Γm(δ)
exp(− tr(

x

2t
))1F1(δ + s; δ;

x

2t
)

by Kummer relation (cf Th 7. 4. 3 in Muirhead 1982). Taking s = −ν, we are done. �
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6. Generalized Hartman-Watson law

Henceforth, we will write F to denote one-dimensional hypergeometric functions. We
define the generalized Hartman-Watson law as the law of

∫ t

0
tr(X−1

s )ds under Qm
x (·|Xt = y).

Its Laplace transform is given by:

Qm
x (exp

(−ν2

2

∫ t

0
tr(X−1

s )ds

)

|Xt = y) =
Γm(m)

Γm(m + ν)
det(z)ν/2 0F1(m + ν, z)

0F1(m, z)
(10)

z = xy/4t2. Recall that for m = 1, this is the well-known Hartman-Watson law and
that its density was computed by Yor (1980). Here, we will investigate the case m = 2.
The Gross and Richards formula is written for p = 0 and q = 1 :

0F1(m + ν, z) =
det(zm−j

i 0F1(m + ν − j + 1, zi))

V (z)
,

where (zi) denote the eigenvalues of z and V (z) =
∏

i<j(zi − zj) is the Vandermonde

determinant . Noting that Γm(m + ν) =
∏m

j=1 Γ(m + ν − j + 1), then :

(10) =
det(z

(m−j)/2
i Im+ν−j(2

√
zi))

det(z
(m−j)/2
i Im−j(2

√
zi))

Without loss of generality, we will take t = 1.

Proposition 8. For m = 2, let λ1 > λ2 be the eigenvalues of
√

xy. Then, the density
of the generalized Hartman-Watson law is given by :

f(v) =

√
λ1λ2v

pπ
√

2πv3

∫ 1
0

∫∞
0 z sinh(p

√
1 − z2)e−2

√
λ1λ2z cosh ye−

2(y2−π2)
v (sinh y) sin(4πy

v )dzdy
∫ 1
0

∫ 1
0

u cosh(pu
√

1−x2)√
1−x2

I0 (2
√

λ1λ2ux )dudx
,

for v > 0, where p = λ1 − λ2. Furthermore, if λ1 = λ2 := λ, then:

f(v) =
4λve

2π2

v

π2
√

2πv3

∫∞
0 g(y)e−

2y2

v (sinh y) sin(4πy
v )dy

1F2(
1
2 ; 1; 2;λ2)

,

where

g(y) =
1

3
+

π

2

I2(2λ cosh y) + L2(2λ cosh y)

2λ cosh y
,

and L2 is the Struve function (Gradshteyn and Ryzhik, 1994).

Proof : For m = 2 , (10) becomes:

(10) =
λ1Iν+1(λ1)Iν(λ2) − λ2Iν+1(λ2)Iν(λ1)

λ1I1 (λ1 )I0 (λ2 ) − λ2 I1 (λ2 )I0 (λ1 )
,

so, using the integral representations below (Brychkov, Marichev, Prudnikov 1986, p.
46) :

x(aIν+1 (ax )Iν(bx ) − bIν+1 (bx )Iν(ax )) = (a2 − b2 )

∫

x

0

uIν(au)Iν(bu)du

14



with x = 1, a = λ1, b = λ2, and (Gradshteyn and Ryzhik 1994, p. 734):

π

2
Iν(

a

2
(
√

b2 + c2 + b))Iν(
a

2
(
√

b2 + c2 − b)) =

∫

a

0

cosh(b
√

a2 − x2 )√
a2 − x2

I2ν(cx )dx

where a > 0,ℜ(ν) > −1, with a = 1, b = (λ1 − λ2)u := pu et c = 2
√

λ1λ2u, the
numerator of (10) is then equal to:

2

π
(λ2

1 − λ2
2)

∫ 1

0

∫ 1

0

u cosh(pu
√

1 − x2)√
1 − x2

I2ν(2
√

λ1λ2ux )dudx .

Taking ν = 0, the denominator is then equal to:

2

π
(λ2

1 − λ2
2)

∫ 1

0

∫ 1

0

u cosh(pu
√

1 − x2)√
1 − x2

I0 (2
√

λ1λ2ux )dudx .

Thus, (10) becomes:
∫ 1
0

∫ 1
0

u cosh(pu
√

1−x2)√
1−x2

I2ν(2
√

λ1λ2ux )dudx
∫ 1
0

∫ 1
0

u cosh(pu
√

1−x2)√
1−x2

I0 (2
√

λ1λ2ux )dudx

Now, we only have to use the integral representation of I2ν (Yor 1980):

I2ν(2
√

λ1λ2ux ) =
1

2iπ

∫

C
e2

√
λ1λ2ux cosh ωe−2νωdω

=
1

2iπ

∫

C
e2

√
λ1λ2ux cosh ω

∫ ∞

0

2ωe−vν2/2

(2πv3)1/2
e−

2ω2

v dvdω

where C is the contour indicated in Yor (1980), hence, the density function is given by:

f(v) =
1

iπ
√

2πv3

∫ 1
0

∫ 1
0

∫

C uω cosh(pu
√

1−x2)√
1−x2

e2
√

λ1λ2ux cosh ωe−
2ω2

v dudxdω
∫ 1
0

∫ 1
0

u cosh(pu
√

1−x2)√
1−x2

I0 (2
√

λ1λ2ux )dudx
1{v>0}

We can simplify this expression by integrating over C to see that the numerator is equal
to (Yor 1980):
√

λ1λ2v

π
√

2πv3

∫ 1

0

∫ 1

0

∫ ∞

0
u2x

cosh(pu
√

1 − x2)√
1 − x2

e−2
√

λ1λ2ux cosh ye−
−2(y2−π2)

v (sinh y) sin(
4πy

v
)dudxdy

Setting z = ux, The numerator is written
√

λ1λ2v

π
√

2πv3

∫ 1

0

∫ u

0

∫ ∞

0
z
u cosh(p

√
u2 − z2)√

u2 − z2
e−2

√
λ1λ2z cosh ye−

2(y2−π2)
v (sinh y) sin(

4πy

v
)dudzdy,

that we can integrate with respect to u to get
√

λ1λ2v

pπ
√

2πv3

∫ 1

0

∫ ∞

0
z sinh(p

√

1 − z2)e−2
√

λ1λ2z cosh ye−
2(y2−π2)

v (sinh y) sin(
4πy

v
)dzdy.

Now, we prove the second part. In this case, p = 0 and we have to evaluate :

λve
2π2

v

π
√

2πv3

∫ 1
0

∫ 1
0

∫∞
0

u2x√
1−x2

e−2λux cosh ye−
2y2

v (sinh y) sin(4πy
v )dudxdy

∫ 1
0

∫ 1
0

uI0 (2λux)√
1−x2

dudx
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Setting z = ux, the numerator reads :

λve
2π2

v

π
√

2πv3

∫ 1

0

∫ ∞

0
z
√

1 − z2e−2λz cosh ye−
2y2

v (shy)sin(
4πy

v
)dzdy,

Integration with respect to z yields (Gradshteyn and Ryzhik 1994, p. 369):

λve
2π2

v

π
√

2πv3

∫ ∞

0
g(y)e−

2y2

v (shy)sin(
4πy

v
)dy

For the denominator, we use the fact that d
dz (zI1 (z )) = zI0 (z ), which yields:

∫ 1

0

∫ 1

0

uI0 (2λux )√
1 − x2

dudx =

∫ 1

0

I1 (2λx )

2λx
√

1 − x2
dx

Then, the following formula
∫ a

0
xα−1(a2 − x2)β−1Iν(cx )dx = 2−ν−1a2β+α+ν−2cν Γ(β)Γ((α + ν)/2)

Γ(β + (α + ν)/2)Γ(ν + 1)
(11)

1F2(
α + ν

2
;β +

α + ν

2
; ν + 1;

a2c2

4
)

taken with α = 0, a = 1, β = 1/2, c = 2λ, ν = 1 gives:
∫ 1

0

I1 (2λx )

2λx
√

1 − x2
dx =

π

4
1F2(

1

2
; 1; 2;λ2)

We can proceed differently : let λ1 = λ2 + h then (10) reads:

((λ2 + h)Iν+1 (λ2 + h)Iν(λ2) − λ2Iν+1 (λ2)Iν(λ2 + h))/h

((λ2 + h)I1 (λ2 + h)I0 (λ2) − λ2I1 (λ2)I0 (λ2 + h))/h
.

Next, we let h → 0. As usual, we first compute the numerator and then take ν = 0. To
do this, we shall evaluate :

A = lim
h→0

(λ2 + h)Iν+1 (λ2 + h) − λ2Iν+1 (λ2)

h

B = lim
h→0

Iν(λ2 + h) − Iν(λ2)

h

which are equal respectively to
d

dx
(xIν+1 (x)) and

d

dx
(Iν(x)) taken for x = λ = λ1 = λ2.

Using the differentiation formula
d

dx
(xνIν(x)) = xνIν−1 (x) (Lebedev 1972, p. 110), we

get:

d

dx
(xIν+1 (x)) = −νIν+1 (x) + xIν(x),

d

dx
(Iν(x)) = −ν

x
Iν(x) + Iν−1 (x),

thus:

N = Iν(λ)(−νIν+1 (λ) + λIν(λ)) − λIν+1 (λ)(−ν

λ
Iν(λ) + Iν−1 (λ))

= λ(Iν
2(λ) − Iν+1 (λ)Iν−1 (λ))

A =
Iν

2(λ) − Iν+1 (λ)Iν−1 (λ)

I0
2(λ) − I1 (λ)I−1 (λ)

16



Using the integral representation below (Gradshteyn and Ryzhik 1994, p. 757):

Iµ(z)Iν(z) =
2

π

∫ π/2

0
cos((µ − ν)θ)Iµ+ν(2z cos θ)dθ, ℜ(µ + ν) > −1.

the numerator is written as :

N =
2

π

∫ π/2

0
(1 − cos 2θ)I2ν(2λ cos θ)dθ =

4

π

∫ π/2

0
(sin2 θ)I2ν(2λ cos θ)dθ

=
4

π

∫ 1

0

√

1 − r2I2ν(2λr)dr,

Thus, using (11), the denominator is equal to

D =
4

π

∫ 1

0

√

1 − r2I0 (2λr)dr =
π

4
1F2(

1

2
; 1; 2;λ2)

Finally, the integral representation of Iν gives :

f(u) =
λue2π2/u

π
√

2πu3

∫∞
0 e−2y2/u sinh(y) sin

(

4πy

u

)

∫ 1
0 r

√
1 − r2e−2λr cosh ydr du

∫ 1
0

√
1 − r2I0 (2λr)dr

=
λue2π2/u

π
√

2πu3

∫∞
0 g(y)e−2y2/u sinh(y) sin

(

4πy

u

)

du

∫ 1
0

√
1 − r2I0 (2λr)dr

,

7. The Law of T0

Recall that: For 0 < ν < 1,

Qm−ν
x (T0 > t) =

Γm(m)

Γm(m + ν)
det(

x

2t
)ν1F1(ν,m + ν,− x

2t
)

Proposition 9. Let m = 2 and λ1 > λ2 be the eigenvalues of x. The density of
S0 := 1/(2T0) under Qm−ν

x is given by:

f(u) =
(λ1λ2)

νu2ν−2e−(λ1+λ2)u

Γ(ν + 1)Γ(ν)
1F1(2, ν + 1, λ1u) − 1F1(2, ν + 1, λ2u)

(λ1 − λ2)

Corollary 7. If λ1 = λ2 := λ, the density is written:

f(u) =
2λ2νu2ν−1e−λu

Γ(ν + 2)Γ(ν)
1F1(ν − 1, ν + 2,−λu)

Proof : Recall first that when m = 1, S0
L
= γν/x, where γν is a Gamma variable

with density rν−1e−rdr. With the help of the Gross-Richards formula, it follows that
for m = 2,

Qm−ν
x (S0 ≤ u) =

(λ1λ2)
ν

(λ1 − λ2)Γ2(ν + 2)
u2ν(λ11F1(ν, ν + 2,−λ1u)1F1(ν − 1, ν + 1,−λ2u)

− λ21F1(ν, ν + 2,−λ2u)1F1(ν − 1, ν + 1,−λ1u)),
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where S0 := 1/(2T0). This is a C∞ function in u. Hence, we will compute its derivative
to get the density. Recall that :

d

dz
1F1(a, b, z) =

a

b
1F1(a + 1, b + 1, z),

thus :

f(u) =
d

du
Qm−ν

x (S0 ≤ u) = K(ν, λ1, λ2)u
2ν−1(A − B)

where

K(ν, λ1, λ2) =
(λ1λ2)

ν

Γ2(ν + 2)(λ1 − λ2)

A = 2ν((λ11F1(ν, ν + 2,−λ1u)1F1(ν − 1, ν + 1,−λ2u)

− λ21F1(ν, ν + 2,−λ2u)1F1(ν − 1, ν + 1,−λ1u))

B =
ν

ν + 2
((λ2

1u1F1(ν + 1, ν + 3,−λ1u)1F1(ν − 1, ν + 1,−λ2u)

− λ2
2u1F1(ν + 1, ν + 3,−λ2u)1F1(ν − 1, ν + 1,−λ1u)).

Then, we use the contiguous relation :

b 1F1(a, b, z) − b 1F1(a − 1, b, z) = z 1F1(a, b + 1, z)

to see that

λ1u1F1(ν + 1, ν + 3,−λ1u) = (ν + 2)(1F1(ν, ν + 2,−λ1u) − 1F1(ν + 1, ν + 2,−λ1u))

λ2u1F1(ν + 1, ν + 3,−λ2u) = (ν + 2)(1F1(ν, ν + 2,−λ2u) − 1F1(ν + 1, ν + 2,−λ2u))

implies that:

f(u) = K1(ν, λ1, λ2)u
2ν−1(C + D − E − F )

where

K1(ν, λ1, λ2) =
ν(λ1λ2)

ν

Γ2(ν + 2)(λ1 − λ2)

C = λ11F1(ν, ν + 2,−λ1u)1F1(ν − 1, ν + 1,−λ2u)

D = λ11F1(ν + 1, ν + 2,−λ1u)1F1(ν − 1, ν + 1,−λ2u)

E = λ21F1(ν, ν + 2,−λ2u)1F1(ν − 1, ν + 1,−λ1u)

F = λ21F1(ν + 1, ν + 2,−λ2u)1F1(ν − 1, ν + 1,−λ1u),

Applying again the above contiguous relation yields:

λ1u1F1(ν + 1, ν + 2,−λ1u) = (ν + 1)(1F1(ν, ν + 1,−λ1u) − 1F1(ν + 1, ν + 1,−λ1u))

λ2u1F1(ν + 1, ν + 2,−λ2u) = (ν + 1)(1F1(ν, ν + 1,−λ2u) − 1F1(ν + 1, ν + 1,−λ2u))

λ2u1F1(ν, ν + 2,−λ2u) = (ν + 1)(1F1(ν − 1, ν + 1,−λ2u) − 1F1(ν, ν + 1,−λ2u))

λ1u1F1(ν, ν + 2,−λ1u) = (ν + 1)(1F1(ν − 1, ν + 1,−λ1u) − 1F1(ν, ν + 1,−λ1u))

Replacing in the expression of f , we obtain

f(u) = K2(ν, λ1, λ2)u
2ν−2(G − H),
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where

K2(ν, λ1, λ2) =
ν(ν + 1)(λ1λ2)

ν

Γ2(ν + 2)(λ1 − λ2)

G = 1F1(ν + 1, ν + 1,−λ2u)1F1(ν − 1, ν + 1,−λ1u)

H = 1F1(ν + 1, ν + 1,−λ1u)1F1(ν − 1, ν + 1,−λ2u)

Eventually, writing

Γ2(ν + 2) = Γ(ν + 2)Γ(ν + 1) = ν(ν + 1)Γ(ν + 1)Γ(ν)

1F1(a, a, z) = e−z
1F1(a, b,−z) = e−z

1F1(b − a, b, z),

we get

f(u) =
(λ1λ2)

νu2ν−2e−(λ1+λ2)u

Γ(ν + 1)Γ(ν)
1F1(2, ν + 1, λ1u) − 1F1(2, ν + 1, λ2u)

(λ1 − λ2)

Th case λ1 = λ2 is treated in the same way as before (for the Hartman-Watson law). In
fact , writing λ1 = λ2 + h and letting h → 0, we see that the density is given by :

f(u) =
λ2νu2ν−2e−2λu

Γ(ν + 1)Γ(ν)

d

dλ
1F1(2, ν + 1, λu) =

2λ2νu2ν−1e−2λu

Γ(ν + 2)Γ(ν)
1F1(3, ν + 2, λu)

=
2λ2νu2ν−1e−λu

Γ(ν + 2)Γ(ν)
1F1(ν − 1, ν + 2,−λu)�

8. Conclusion

The Gross-Richards formula has been the main ingredient in this paper, since it
enables us to express more explicitly the special functions of matrix argument. The case
m = 3 can be treated in the same way, but computation becomes too complicated. So,
if we want to deal with the general case, it will be convenient to find a more explicit
formula. Indeed, Schur functions can be expressed as polynomials in the elementary
symmetric functions er or as polynomials in the completely symmetric functions hr.
More precisely, we have :

sλ = det(eλi−i+j) 1 ≤ i, j ≤ n

sλ = det(hλ′
i−i+j) 1 ≤ i, j ≤ n

where λ is a partition of length ≤ n, and λ′ is the conjugate of λ (Macdonald 1995). So,
using these two identities, can we improve our results?

9. Appendix: special functions

9.1. The hypergeometric series. The multivariate hypergeometric functions were
studied by Muirhead (1982) in the real symmetric case, Chikuze (1976) for the complex
Hermitian case and Faraut and Korànyi (1994) in a more general setting. For Hermitian
matrix argument, they are defined by:

pFq((ai)1≤i≤p, (bj)1≤j≤q;X) =
∑

k≥0

∑

τ⊥k

(a1)τ · · · (ap)τ
(b1)τ · · · (bq)τ

Cτ (X)

k!
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where τ = (k1, . . . , km) is a partition of weight k and length m such that k1 ≥ . . . ≥ km,
(a)τ is the generalised Pochammer symbol defined by:

(a)τ =

m
∏

i=1

Γ(a + ki − i + 1)

Γ(a − i + 1)
, τ = (k1, . . . , km)

and Cτ (X) is the zonal polynomial of X such that :

(tr(X))k =
∑

τ⊥k

Cτ (X)

Several normalizations for this polynomial exist in the litterature but we consider this
one. This polynomial is symmetric, homogeneous, of degree k in the eigenvalues of X
and is an eigenfunction of the following differential operator :

∆X =

m
∑

i=1

x2
i

∂2

∂x2
i

+ 2

m
∑

i=1

∑

1≤k 6=i≤m

x2
i

xi − xk

∂

∂xi

Besides, it is identified with the Schur function sτ and Cτ (Y X) = Cτ (
√

Y X
√

Y ) for any
Hermitian matrix Y . It is well-known that, if p = q + 1, then the hypergeometric series
is convergent for 0 ≤ ||X|| < 1 (|| · || is the norm given by the spectral radius) , if p ≤ q,
then it converges everywhere and else, it diverges.

9.2. The modified Bessel function (Lebedev 1972). The modified Bessel function
with index ν ∈ R is given by the following series :

Iν(z) =

∞
∑

k=0

1

k!Γ(ν + k + 1)

(z

2

)2k+ν
, z ∈ C.

It can be represented through standard hypergeometric functions 0F1 and 1F1 :

Iν(z) =
1

Γ(ν + 1)

(z

2

)ν

0F1(ν + 1; z2)
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725-728.
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