N
N

N

HAL

open science

Finite volume effects for non-Gaussian multi-field
inflationary models

Francis Bernardeau, Jean-Philippe Uzan

» To cite this version:

Francis Bernardeau, Jean-Philippe Uzan. Finite volume effects for non-Gaussian multi-field inflation-
ary models. Physical Review D, 2004, 70, pp.043533. 10.1103/PhysRevD.70.043533 . hal-00009332

HAL Id: hal-00009332
https://hal.science/hal-00009332
Submitted on 8 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00009332
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW D 70, 043533 (2004

Finite volume effects for non-Gaussian multifield inflationary models

Francis Bernardedu
Service de Physique Ttique, CEA/DSM/SPhT, Unitge recherche asso@eau CNRS, CEA/Saclay 91191 Gif-sur-Yvette Cedex, France

Jean-Philippe Uzdn
Laboratoire de Physique Theque, CNRS UMR 8627, Ba210, UniversiteParis XI, F-91405 Orsay Cedex, France
and Institut d’Astrophysique de Paris, GReCO, CNRS-FRE 2435, 98 bis, Bd Arago, 75014 Paris, France
(Received 25 November 2003; published 25 August 2004

Models of multifield inflation exhibiting primordial non-Gaussianity have recently been introduced. This is
the case, in particular, if the fluctuations of a light field scalar field, transverse to the inflaton direction, with
quartic coupling can be transferred to the metric fluctuations. So far in those calculations only the ensemble
statistical properties have been considered. We explore here how finite volume effects could affect those
properties. We show that the expected non-Gaussian properties survive at a similar level when the finite
volume effects are taken into account and also find that they can skew the metric distribution even though the
ensemble distribution is symmetric.
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[. INTRODUCTION alizations of such models were presented in R&7)]. The
mechanism is based on the generation of non-Gaussian
The observations of cosmic microwave backgroundisocurvature fluctuations which are then transferred to the
(CMB) anisotropies and of the large-scale structure of theadiabatic modes through a bend in the classical inflaton tra-
universe offer a window into the physics of the inflaton. Forjectory. Natural realizations were shown to involve quartic
instance, a detailed measurement of the shape of the powself-interaction terms. The statistical properties of the result-
spectrum can give constraints on the shape of the inflatoimg metric fluctuations were then shown to be a superposition
potential. On the other hand, the detection of non-Gaussiaof a Gaussian and a non-Gaussian contribution of the same
metric fluctuations could signal the existence of effectivevariance, the relative weight of the two contributions being
couplings between the inflaton and other fields. There haveelated to the total bending of the trajectory in field space.
been a series of observational advances toward constrainifdie non-Gaussian probability distribution functiéRDF
the deviation from Gaussianity using CMB data on largewas also computed and shown to be described by a single
scales ¢~10°) [1], intermediate §~1°) [2], and small new parameter so that generically only two new parameters
scales 0~ 10') [3], as well as large-scale structufdg. The  suffice in describing this class of models.
recent CMB data from the Wilkinson Microwave Anisotropy  In order to infer constraints from, e.g., CMB data on these
Probe(WMAP) were also used by Komatst al. [5], who  kind of models predicting non-Gaussianity one needs to go
concluded that the CMB spectrum was compatible withthrough at least two steps.
Gaussianity on the basis of an analysis of the bispectrum. (1) One first needs a precise prediction of the statistical
Similar analyses using Minkowski functional6] and the properties of the curvature in order to construct an estimator
three-point correlation functiofv] reached the same conclu- adapted to the detection of this kind of non-Gaussianity. For
sions. More recently, an analysis of the WMAP data usingnstance, the analysis of Komatstial. [5] uses the bispec-
measurements of the genus and its statig@sconcluded trum and Minkowski functional and constrainsy@ devia-
that the Gaussianity of the CMB field was ruled out at a 99%ion from Gaussianity. The gravitational potential was pa-
level. As stressed later, non-Gaussianity of primordial originrametrized as<I>=<I>L+fNL(<I>f—<<IJE>) where ® is the
may still have escaped detection and further investigation&aussian linear perturbation of zero mean and it was con-
are needed. cluded that—58<fy <134 at 95% C.L. This constrains
From a theoretical point of view, Gaussianity is a genericonly a very peculiar type of non-Gaussianity and does not
prediction of slow-roll single field inflatioi9,10]. A series  apply, e.g., to the models of Ref4.0,17].
of models including features in the inflationary potential (2) Even if the form of the PDF is predicted theoretically,
[11], the existence of seeds such @&s[12], axion[13] or  one needs to investigate what is measured and how the mea-
topological defect§14], the curvaton scenaripl5], and a surements are related to the theoretical predictions.
varying inflaton decay ratgl6] have been shown to be able  The goal of this article is to investigate the observational
to generate some primordial non-Gaussianity. implications of the theoretical predictions of Ref.O]. It
In Ref. [10], we proposed a general mechanism to pro-requires further investigations, in particular, on the effect of
duce non-Gaussianity in the adiabatic mode, and explicit rethe finite volumes of the survey, while a detailed comparison
of our model to the existing data set, beyond the scope of this
work, is still left for further study. In particular, we want to
*Electronic address: fbernard@spht.saclay.cea.fr show that these finite volume effects do not suppress the
TElectronic address: uzan@th.u-psud.fr predicted non-Gaussianity.
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Section Il formulates the problem, focusing on the quanthe Heaviside function and the volume of the ball, or
tities that can actually be observed. In Sec. Ill, we recallVg=exp(—|x—y|?(2R)?)/(y27R)® for a Gaussian win-
basics of the models we consider in this paper and givelow function.
simple consequences. We then develop in Sec. IV some ar- Clearly, quantities such a?) cannot be estimated be-
guments to understand the effect of the mean value of theause they contain contributions from modes of wavelengths
non-Gaussian component on the size of the survey. Section Mrger than the size of the survey and that cannot be ob-
is devoted to the computation of the lowest order measurederved. Only modes with wavelengths in a given range are
cumulants. In particular, we will show that a nonvanishingmeasurable. This is the case for a Gaussian field in particular.
skewness appears that is directly induced by the finite volin this case one can show that, if the two scafgsand Ry,
ume effects as stressed in our concluding remarks, Sec. Vlare in large enough rati, can be good estimates 0fxs

-x)"), e.g., the expected dispersion of the measured values
Il. AN OVERVIEW OF FINITE VOLUME EFFECTS X,, decreases with increasiRy,/Rs to a power that depends
Gasicaly, what we want o measure are the staisicaf 1 PO spectum shape. I aur cese however, ot oy
properties of a scalar fielgt of zero mean that can be observed are correlated and also correlated to the
(x)=0, super-Hubble modes.

In the following, we will explore the consequences of
where and from now on angular brackéts) refer specifi- both the facts that only modes in specific wavelengths are
cally to ensemble averages. Such a scalar field will be idenmeasurable and that they are correlated. Ideally, cosmologi-
tified in the following with the gravitational potential, but the cal models should be able to predict the PDFs of the mea-
actual observations may be complex linear transforms of thagured cumulants,
field, such as temperature anisotropies or polarization of the
CMB or large-scale cosmic density fluctuations. The general P(Xn),
guestions raised by precision measurements of statistical
properties of cosmic fields can be very intricate. We refer, folout such predictions are obviously difficult to do in general.
instance, td18, Sec. V] for extensive developments regard- We will see in the following how we can estimate these
ing such issues. We will restrict our discussion to their overdistributions for some families of multifield inflationary

all aspects. models.
In practice, while performing such measurements, two
scales enter the problem, the scBlgat whichy is measured Ill. MODELS

(e.g., somehow smoothednd the sizér, of the survey. The
smoothed fieldys can be measured at different locations in
the survey. The idea is that its spatial fluctuations should Before we start to investigate the statistics of the observed
provide us with hints of the actual statistical properties of thequantities let us recall the basics of the models we have in
field. Ensemble averages, however, are inaccessible as suchind. In the model§10,17], the non-Gaussianities are first
The values ofys we have access to are in finite number andgenerated by an auxiliary fielg self-interacting in a poten-
are all inherited from a single stochastic process, that of outial, typically quartic,

universe. One can, however, get insights into the stochastic

properties ofy from geometrical averages. In the following, A 3)

. —~ ) V(x)= EX4'
we denote such a geometrical averagand its connected :

_C - .
partA®. For instance, one can have access to quantities Sucﬂﬂs field is assumed to be a test field so that it does not

as affect the dynamics of inflation driven by another scalar field
o= (v )= Sy ® ¢. Assuming an almost de Sitter inflation and neglecting the
n=(Xs=X)" = dxs' gravitational back reaction on the evolution of the universe,

The X,, are themselves stochastic quantities that depend oiﬁs evolution will be dictated by

the stochastic fielgy. To be more specific, we have

A. Self-interacting scalar fields in de Sitter space

. 1 N,
_ , X+3Hx— ;AX:—QX (4)
x= | x(¥,OWr (Y)d%Y ()

whereH=a/a is the Hubble constant anti the comoving
Laplacian. The evolution of the scale factor is given by

_ _ d3 2 —Ht
X0 [ XYWy, @ a=ag® =Sty Hin s

and

where Wy is a window function of volume unity and for
simplicity assumed to be spherically symmetric, e.g., for avheret is the cosmic time and;, which is negative, the
top hat filtering we havéVg=0(|]x—y|—R)/V where® is  conformal time.
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For a free massless scalar field=0), the Klein-Gordon  with
equation(4) in the de Sitter background takes the form

W(k)=W(kRg) —W(KRy). (12)
2
v"+ | k2= —2> v=0, (6) It follows immediately that
n
where we have introduceg= y/a. The general solution of (5X§)=4wJ k2P (k) W?(k)dk. (13

this equation is

Such an expression can be easily computed in the case of a
()= — _77( 14 _) o= ik7 7) Harrison-Zel'dovich spectrum andkaspace top-hat window
K J2k ikzn ’ function. Defining kg and ky, respectively, as Rg and
1/Ry, the second moment afys reduces to
once the quantum fielgy is decomposed in Fourier modes

k
as <5X2>=2WH2|n(—S) =05. (14)
3 ° kH
x(x,t)= j 2—3,2[)(k(t)1‘-‘ik'xf)kJr H.c], ® It follows from this calculation that the expectation value
(2m) of the observable quantity, is given by
where[by,b!, 1= (27)35(k—k"). (Xoy=(5xD) =02, (15)
This implies that the fielgy has a correlator given by S
, , Its (cosmig variance(X3)¥2 can similarly be computed and
(x(k)x* (K)y=(2m)*P(k) S(k—k), (@ 1S (cosmio &Xz)e Y P

it scales likeRs/Ry, in case of a Gaussian fiefd.

whereP(K) is the power spectrum, which is equal Rgk) Furthermore, the expectation valueXf is given by
=H?/2k® on super-Hubble scales for a free scalar field living (Xa)=(5xY
in de Sitter space. This is the so-called Harrison-Zel'dovich 4 Xs/c
spectrum. . _ _ P, -k, ~

~Moreover, the self-interaction term gf induces nonzero :f ——————W(ky)- - W(Kg) Xk, * * Xie)e
high order correlation functions. For a quartic potential the (2m)
odd order correlation functions vanish; the even order ones (16)
can be computed from a perturbation theory approach at the

tree order. For instance, the four-point function in the supergxpressing the four-point correlator by mean of Ex) and

Hubble limit reads assuming a Harrison-Zel'dovich spectrum and a top-hat win-
dow function ink space, this expression finally reads
|09( 7> ki)

i AN [H?\3 (ks d®ky (ks Ak, (ks d®k
e r2m L4 Sk, Hom— o (B ] et
i - - - X 3( ™ H2 (E' I) (X 3H? 2) ka kS ko k3 Jre K3
X[P(ky)P(k,)P(k3)+ permutations, X W(| K+ Ko+ Ks))
(10)

Xlog[ (k;+kotks+ ki tkotks)) ],  (17)
as explicitly shown in Ref{26]. ~
where W(|k,+k,+ks|), defined in Eq.(12), simply ex-
B. Second and fourth moments presses the conditioky,< |k, +k,+ks|<kg and is inherited

. for the termW(k,). When the raticks/ky is large this ex-
When one wants to relate the expectation values of ob- (ka) SLoH g

servable quantities such as tKg to the statistical properties pression can be easily computed after noting that, in this
; o ) f thig; icall i he oth -
of the field, filtering effects should properly be taken into case, one of thi generically dominates the otheithe con

t The ob bl fitie b itten i tributions to the integral being roughly uniform over the in-
account. The observable quantilieys can be writien in tegration domain when the wave-vector norms are logarith-
terms of the Fourier modeg, as

mically spaced In this limit it is therefore possible to
Pk approximatek;+k,+ks by, say,k; and k;+k,+ks+ |k
5XS:J > )Slzeik-xx(k)W(k) (11) +k,+Kkg| by 2k, . Finally, the integral reads

a

°The cosmic variance for the measur¥d is expected to be
!Note that the convention of E¢8) differs by a factor of (2r)%? strongly affected by the existence of a nonvanishing large-scale
compared to the one of R426]. It implies that Eq(10) differs by  four-point function fory. But it is beyond the scope of this paper to
a factor of (27)® compared to its original form. investigate such effects.
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6 Xu

4 o3
(xYe=— M log(27k¥4 22, (19

Langevin

which corresponds to what was found in our previous work
provided the number ofefolds is identified with I 7/ Y S
log(274%/*™%). This means that the kurtosis of tixs field -
is significant if \ log(27k¥%") approaches unity. This re-
sult demonstrates that the mechanism described in our pre- 0
vious study survives finite volume effects. We can also note
that observable quantities are insensitive to the behavior of
P(k) in the smallk limit.

Finite volume effects have, however, other consequences oY
due to the fact that the observable modes are correlated. The ’ ‘Sxi
physical reason for these correlations is that they share the n

same history, e.g., they have been produced in the same sto- FIG. 1. The different filtered quantities and scales entering our

chastic Process. We found t'hat a ra”do"‘.‘ walk ap'proa(':h forgroblem.XH follows a stochastic dynamics that can be described by
the evolution of the locak field values gives precious in- a Langevin equation; it has a time-dependent smoothing scale so

determinist

Inflation

sights into those more subtle finite volume effects. that more and more modes contribute to the filtered field. The field
valuesy andys evolve according to a classical Klein-Gordon equa-
IV. LESSONS FROM A RANDOM WALK APPROACH tion; their smoothing scale is time independent; they coincide with

_ xn at horizon crossing times.
From the previous definitions, it is clear thatand the o
different values of yg share the contributions of super-  (2) On the other hand, the field valugsand x5 can be
Hubble modes. Those cannot be observed but they shape tbeen as time-dependent quantities but they correspond to the

values of y and xs. Actually, the value ofyg at a given filtering of x at fixed physical scales. They identify, though,
scale, whether it iR, or Rg, is dynamically built from the ~ Wwith xy at precisely the timey at which the scale&; and
stacking of modes that successively leave the horizon. Rs, respectively, cross the horizon, e.g«(7=—1Ry)

A random walk approach can then be used to describe the ,, (,— — 1Ry ) and ys(7=—1Rg)=xu(7=—1IRy).

stochastic growth ofyg. It will allow two things, to get e i =
After these coincidental times the two fielggsand x5 behave

insights into the excursion values' #f and to see hows . classically, i.e., they follow an inflationary classical Klein-
values are correlated through their common history. In th'%ordon equation without stochastic source terms

approa(_:h the fl_eld valqe e_volut_lon is described in term of a To summarize, two of the comoving scalBs and Ry
Langevin equation during inflation. i ) ) ) ] 0
Before we go to this equation, let us sort out how the@'® fixed while ondr is a time-dependent quantity. A sketch

different scales and the evolution equation are related to®f the different sequences that the field dynamics follow is
gether. shown on Fig. 1.

. I B. The late time PDF of xy( %)
A. Scales intervening in the problem
. . e . We follow a formalism first developed to deal with self-
Different scales will have to be distinguished in our study.; .

1) During the inflati h Hubbl q eracting fields in a de Sitter backgroui®], based on the
(1) During t. e Inflationary stage, the Super-rubblé MOA€Sya, that the infrared part of the scalar field may be treated as
of the scalar field can be treated as classical. In a de Sitt

& classical spacetime-dependent stochastic field satisfying a
spacetime, the physical Hubble radius is const&{e"s P P fying

Langevin equationf20,21] (see Ref[22] for the case of a
=H"1, so that the comoving smoothing scale is time depe”'masqsless frge fie]g e [22]

dent, R=(aH) *. The evolution equation of the classical Assuming thaty is slow rolling, the dynamics of, can
part will thus contain a stochastic force simulating the effect o gpiained by averaging E¢f), in which both the second
of the quantum noise due to the modes that are crossing thene gerivative and the Laplacian term can be neglected,

horizon at each time step to become classical. We thus defirgq : ;
nce yy contains only long wavelength modes. Using the
a stochastic fieldyy(t), for which the filtering scale is de- XH y long g g

identit
pendent on and always equal to the horizon sEg,‘ys I v
=a(t)Ry with RPYS~H ! so that Xric= (X0 R, WIKRy) = KR xi W' (KRy) (20)
XH= XR=1/aH - (19 whereW’ (u)=dW(u)/du and where we have used E&)

to express the time derivative & . It follows that
The dynamics ofyy will follow a Langevin equation. We
investigate the dynamics and the statistical propertiegof o i VT
in Sec. IV B. Xw="3V (xw+ 0x) + &qlxt) (21)

043533-4
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which reduces §x<<yy) to where we assume the two coefficiefisand « to be inde-
V) pendent ofy,, one can deduce an equati®#|, the Fokker-
1 dVixu Planck equation, for the PDF qf,, of the form
XH= 3_HW+§Q(XJ)- (22
_ 2 g ’
The term éq(x,t) appears from the commutation between WP=p aXH’P+ 2 aXH[V Pl 29

Y)r. and yy Using Eq.(20). It is a stochastic noise describ-
.(X)F,EF] ﬁXHt fgt]h a< )” | t + exit It follows from the Langevin equatiof22) with a top-hat
ing the effects of the small-wavelengtquantum part exit- window function for which the noise is given by E7)

ing the horizon on the classical stochastic part. Using(&q. with B=—1/3H and a=H¥%27 that the one-point PDF
one obtains its expression as Plew ) is a solution of
H»

§<xt>=—f ﬂ<|<HRH>[xk<t>\7V'<kRH>e‘k'X6k H® o 1
QLA (27T)3/2 &IP: ﬁaxHP—'— 3_HaXH

(V'P). (30

+H.c]. @3 In a cosmological context, this equation was first derived in

Ref.[19] in the caseH =const, which we are interested in,
and then in Ref[22] in the case/’' =0. It was generalized to
Jgpore involved situations in Ref25].

The solution of Eq(30) was studied in Ref.21] in which
it is shown thatP approaches the static equilibrium solution

Indeed, {q is quantum noise so that we replace it heuristi-
cally by a Gaussian stochastic noigevith a correlator that
matches the quantum expectation value in the standal
Bunch-Davies vacuum, that is,

(EXDEX 1)) =(0[£(x, ) (X", 1)[0). (29

8 2
— N1 _lv
It follows that Peq= N ex;{ 34 (xw) |
k3dk sinkr xi(t)xg(t') .. k ) 2
Iy — 4 *® 8
(E(x,1)E(X',17)) J 472 T aat) a(hOH N= fxeXp( _WV(XH) dyn, (31)
SOW’ k (25) irrespective of the initial conditions.
a(t)h)H/’ For the quartic potential Eq3) we find
with r=|x—x’|, which reduces, using the expressid on 1 e | V4 Y .
small scales, t§23] Peq(XH):m -5 ] & ~oni Nl (32

H%9 7' There are few lessons to learn from this result. The excur-
’ ’ — H + .
(E(DEOED) A7%r f dksinkr(1+ikz) sion values ofy, are bounded. Their distribution does not
depend on the remote past historyyofind, importantly for

X (1—ikp')e*” = DWW’ (—kyp)W’ the following, the typical value one can expect gy, and
W 1/4
X (—kap'). (26) thereforey, is H/N"".
Even thoughyy remains a quantum operator, it was replaced C. Consequences for the shape of the PDF dxs

by a stochastic field in such a way that, for all observables, \yg can then gain insights into the shape of the probability
the expectation values of the two fields are in excellentdistribution function ofsys as a function 01?
S .

agrlﬁetrr?gr;gllowin and for the sake of simolicity. we con- Quantitative results can be drawn from the perturbation
g plicity, approach we initially developed in our previous w¢do].

sider a WmdPW function reduqng t_o 6.1 t°!° hat in I:Ou”erWe expand the filtered field in terms of the coupling constant
space so thaty’ reduces to a Dirac distribution. In that case, g

using the solutior(7) one obtains
xs(m=xO(m+xB(m+- - (33
o H3 sina(t)Hr ,
(E(xDEX )= a2 Wé(t_t ). (27) x\? represents the value of the filtered field when the inter-
action term is switched off. In the slow-roll regime the field
The case of more realistic window functiorisuch as a xg follows the Klein-Gordon equatiof22). Contrary to the
Gaussiahwas discussed in Reff23]. previously studied case of,, the evolution equation does
From a Langevin equation of the form not contain any noise term because the smoothing stade
now fixed and there are no new modes enteigg The free
xu=—BV' +aé, (E(XDEXt))y=8(t—1"), (28  filtered fieldx(so) is therefore constant and, from the discus-
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sion of the previous section, it cannot be assumed to be 0
Gaussian distributed with a zero mean: its expectation value

@ is actually the value o? at time »=1/Ry. Since this

field value is going to be only weakly affected by its subse- -1
quent evolution, in the following we will identify® andy. is

The difference&xgo)zx(so)—x_(sm has been built up from the
modes that have left the horizon betweenl/k, and
—1/Kks. It can be assumed to be Gaussian distributed with a -5
width precisely given byrs.

The first order term inv, xs), evolves according to P P
SH}(S(”: B l[)((o)]a. (34) FIG. 2 PDF of dxs= 5XS—;for Qiﬁergnt.valyes. of;. The
31t1s dashed line corresponds to a Gaussian distribution; the dot-dashed

line to the deformed distribution ofys when\No/H2=1 andy

In this .approaclh the t“?atme”t of the filtering of the right'=0, and the solid lines to the deformed distribution wheaquals
hand side of this equation is very crude. The results we arg 5 gnq 1.

going to find can in any case be checked against more rigor- -
ous calculations based on the computed shape of the trispegess ofsys, dxs°/(Sxs2)¥?~N¥*N,o5/H, is significant as
trum. Our goal now is to capture the essential effects of @oon as\**N, approaches unity, a condition similar to that

nonvanishingy on the statistical properties dys. encountered in Sec. Il B. _
The equation of evolutioi34) can be solved to get Actually the evolution equation foyg can be solved by
0
W(t)= —\(t—t )& (35) Xs= 1 (40)
Xs W1eH V1= (ANe/9H?)(x )
which also reads and the distribution ofyg can then be inferred from that of

x?, assuming that the latter is Gaussian distributed with a

nonzero mean valug.
In Fig. 2, we present the deformation of the PDF&yfg
_ while y is varied. As expected, it shows that whers not
N being the number oé-folds betweert,, and the end of  zero, the PDF gets skewed in a way that can be easily un-
inflation. _ derstood: whery is positive it gets more difficult to have
These results imply that excursions toward larger values gf;, but easier to roll
AN down to smaller values. It is as if the fiejd was actually
;%E_ eﬂ(@)% 3@02], (37)  evolving in the potentiak (x+ x)/4!. As a result one natu-
184 rally expects the fieldy to have a nonvanishing three-point
_ o _ _ function. As mentioned before, these calculations treat the
which explicitly shows that and x©@ are equal at leading smoothing in a rather simplified way but we think that for

Ne

A
xPo=-

Y (X3, (36)

order in\. It also gives illustrative purposes it encapsulates the main effects that we
want to describe.
NNg It nonetheless shows the way for the computation of the
Oxs= 5)((30)— 18H2{(5X(30))3 finite volume effects on the expected stochastic properties of
the field.
T3NS = o5+ 30X X} (38) V. FINITE VOLUME EFFECTS ON HIGH ORDER

. . . CUMULANTS
It is straightforward to see thalys has acquired a nonzero

third order moment What the Langevin picture suggests is that finite volume
effects on the observed quantities are not due to the whole
— AN
Sx3=— Fe;ffs (39
3As noted in Ref[10], such a simple variable change implicitly
at leading order in\. This is a finite volume effect in the incorporates “loop order” effects that, because of sub-Hubble phys-
sense that it exists for a fixddot ensemble averagedalue ics, are not necessarily correctly estimated. In that paper we devel-

£ This effect t b lectad oriori. E th oped a more elaborate method which allows the reconstruction of
of x- IS €elfect cannot be negiec priort. From € e PDF from only the tree order contributions of each cumulant. As

study of the previous paragraph, we know tlyashould be  the two approaches eventually give the same qualitative results, we
of the order ofH/\ Y4 which implies that the reduced skew- here restrict our analysis to the simplest method.
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stochastic process that created the observed field but mainighe factorW(|k,+ - - - +ks|Ry), which arises from the con-

to the value ofy alone. In other words, we expect to have tribution of modes with k< 1/R, to x, ensures that
|ki+ - - - +ks| is small compared to each of the, and thus
DX :f P) (X — — ™) dy 41 can 'be neglectgd in the log term. It implies that for a
(Xo) (0080 =((xs= X)) dx “D Harrison-Zel'dovich type spectrum P(|ky+ - - - +Kg)

) S _ >P(k;) so that the first term of Eq45) is negligible. As a
This form (41) implies in particular that the PDF oX,,, result we deduce that

P(X,), is expected to be peaked around the expectation

value of 57 at y fixed. In particular, it implies that (x(kp)x(k2)x(ka))y
Ax

(XR)=(((8x2)")- (42) =—ﬁ(277)9’2|09 (E. ki) 7|[P(k1)P(kz)
We will explicitly check this property for the lower order .
cumulants. B P(EI ki‘)w<2i k; RH>

In general, for small enough values pf the constrained + permutation$ 5 .
ensemble averages of the foKA(x)), should be given by oy
(46)

(A =(AX)X) (43} Now, noting that, by definitionP(k)W(kRH)d3k/a)2(— inte-

grates to unity and that the functid®(|=k;|)W(|= ki|Ry)

where o2 is the variance sauare of tb_(efluctuations This is, for the modes we are interested in, peaked near the origin,
X q ' we obtain that this factor is essentially equaldc;k;). It

relation, exact for Gaussian fields, is only approximate i“therefore implies that
general. It can be derived for stochastic variables following a

Tl > |

guasi-Gaussian distribution. Here, it will be valid only if the (x(ky)x(kp) x(ks))y

excursion values of are modest compared to the fluctua- -

tions of Sys. A, SYPN-T- S k | »ITP(k)P(K
Not surprisingly, it implies that the even order cumulants 3H2( m™)og Z 1| 7|[Pka)Plke)

are left unchanged.

+permuation};5( > ki). (47)
A. The bispectrum i

Nontrivial finite volume effects are then going to appearHere is one of the main points of this paper: Finite volume
at the level of the third order cumulants or correlation func-effects induce a nonvanishing three-point function although
tions. In particular, it induces a nonvanishing bispectrum, &he potential in whichy evolves is symmetric.
three-point correlation function of the wave vectors, which is  From this bispectrum it is possible to compute the third
going to be given by order moment oféys. Its amplitude will be in agreement
with what was obtained from the Langevin equation. It is
also the three-point function one expects for a field evolving

in the potential y x/3! (see Ref[26] for detail9.

<X(kl))((kZ)X(k3)>;:<)((kl)X(kZ)X(kS)Eca_iz_ (44)
X

— . . B. The three-point cumulant
when y is small enough. Using Eq(10) to express P

(X, " Xk)e and using that Eq.(2) implies that yi We now turn to the lowest order cumulant exhibiting a

A . . nontrivial result due to a nonvanishing that is, X5, which
= xkW(kRy), the previous expression reduces to " 3

reads
(x(kp)x(k2) x(ka))y a3k, - - - ks
_ X3:f —9/2W(|k1+k2+ k3|RH)
A o2 X (2m)
=—ﬁ(277) Slog | X ki+| X ki |7 o
T L ' X W(ky) W(ka) W(Ks) Xic, Xk Xy - (48)
x{ P(ky)P(ky)P(k3)+P| | > ki‘) Obviously its ensemble average vanishes,
i
(X3)=0,

x[P(kl)P(k2)+permutation};] W( > ki‘ RH)- but not(X3).. Let us check, as expected from our analysis
' [see Eqgs.(41), (42)], that it is well approximated by
45 (X302

043533-7
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To evaluate the latter expression, we start from the ex- Pk - Bk B! - - Bk
pression of X3);, which is defined by (X§>=J (1 3J : 2
2

,77)9/2 (27T)9/2

X [ &y dks Fike) - - ko) T(K) - -- Fk!

(Xayo= X f o Wikt Ry X Wiky) - Wik W(kp) - - - Wiky)
ar ~ ~
~ ~ XW(|ky+ - - - + kg Ry)W([ki+ - - - +k3[Ry)
XW(kq)---W(k o 49
( 1) ( 3)<Xk1 Xk3>)( ( ) X<Xkl' X 'Xk3Xk£' . 'Xké>c- (55)
Using Eq.(47), it reduces after integration ovég to It involves the expression of the six-point correlation func-

tion (x, " “XkgXK]" ‘Xké)c which, in a perturbation theory

(Xav= 3_|_)|(2J' 6Bk P, (k) W) W Ky K] ) approach, can be split into two contributions

(0). (1), (0)_(0) (1)>

IE<XE<(;)Xk2Xk3inXkéXké
X{P(ky)P(kp)+P(lky+ko)[P(ky)+ P(kp) 1},
— 7 (0)(0) (2) (0)_(0)_(0)
(50) I={xie, Xk, Xk, Xi, Xy X ),

where the window functionW(|k,+ - --+ks/Ry) was Where
aborbed during the integration ovies due to the Dirac dis- 5 12
tribution. This expression can be computed following the (1)(x)~—i&[x(°)(x)]3 X(z)(x)~)\—&[)((°)(x)]5
same lines as for the computation of the expectation value 18 42 ' 8 H4 '
the fourth order cumulan(tl?),

This implies that

. x;(HZ)ZJde?’kl ksd3k23\7\/|k o) \2 2
Hv="g21 2] U, e L, e Wikt I=(2m? 18Pk PGPy
Xlog[ (ky+kp+ [ky+ka|) 7], (51

+kz|>P<k§>P<kg)5(2 ki+ 2 k{) (56)
where, again,\7V(|k1+ k,|) simply expresses the conditions
ky<|k;+k,|<ks. A simple expression for this integral can and
be obtained wherkg is much larger tharky, where it is
possible to replack;+k, andk;+k,+|k;+k,| by respec-

tively eitherk,; and X, or k, and X,. Finally, the integral

reads

A2 N2
I =(2w)9§6!mP(kl)P(kz)P(ki)

2,2 X P(ky)P(k3) 8| 2 ki+ 2 k{) (57
_ H ks
3)y= —Ax(4m)"| —-| 10g7| 7 —[log(27n ,
(Xa)y=—Ax(4m)? log?| —|log(2 7k233)
2 k S H
H (52) where 18 and 6! are symmetry factors.

Let us evaluate the first contribution:

e.g., N2 I
OGO =12 [ P (k) Pl ) k)
4
Ts

(Xg)y=—Nxlog(27kZ%R) v (53)

xf d®kgP([kz+ Ky + ko) Wi(ks)

which reproduces the resu(B9) if N, is identified with .
log(27kZ%"3). In conclusion, we end up with X WA (| kq+kp+ k3|RH)f d’k;d*k;P(kq)P(ky)
ol x W(k;)W(ks)
X3} V2= log(27k2KY) —X (54 _
(X207 A2k e 59 (kg + Ko+ kg K]+ K| (58

In this case, it is actually possible to comp(¥) froma ~ 1he term W2£|k1+ ko +ks|Ry) implies that [ky+kz+Ks|
perturbation theory approach in order to check that its domi=<Ry 0 thatW(ks) ~W(|ky+ka|) andW([k;+ka+ks+k;
nant contribution is indeet{((Xs);)2). (X3) is given in gen-  +kj|)~W(|k;+kj|). Settinge=k,+k,+ks, we conclude
eral by that

043533-8
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N2 ~
<X§>£')~AZH—Z[ f oy kP (ky) P ko) Wiky)

2
X W(ky) W(|kq+ k2|)} f d*eP(e)W3(eR,).

(59
The integral ovee reduces tar)% so that
2\ (I 2N62«‘ 2 31 A3 0
(X3 ~N g0y J oy kP (ky) P(ke) Wiky)
~ ~ 2
XW(k)W(|ky+Kks|) | - (60)

The second contribution reduces to

N3 -
O@I~90n ¢ [ ik Pk k) k)

Xk +il) | PRI (K P P(KS)

X Wi(kq) W(kg) W(k)W2([kj+ K+ k3| Ryy).  (61)

The second integral reduces to
[ PP Pk ke k)
x\7\/(k§)\7v(|k1+k§|)f d*eW?(eRy).

The integral ovee gives ~ R;3 so that

N2 -
<x§>g">~9ox2H—jRH—3f Bk, d*k,P(Kq) P(ky) Wi(ky)

X Wik WK o) [ PRAPKLP(K) PIKS)

X P(|ky+ k5| W(ky) W(ky)W(|kq+Kks|).  (62)

Due to the termV( |k} +kj|), we deduce that, in the case of

a  Harrison-Zeldovich  spectrum, Rg/Ry)3<|k;

PHYSICAL REVIEW D0, 043533 (2004

(X=X, (63)
From Eg.(60), this reduces to
00,
<><§>1’2:xNe<2w>3—|j;, (64)

which can be identified with the expectation valug éj@%

over the distribution oﬁ as obtained in Eq54).
This explicit computation shows that, as expected, the
fluctuations of the measured valuesXf are mainly due to

the fluctuations oﬁ It justifies, for instance, that one should
expect to see a bhispectrum of the fofd¥) for such infla-
tionary models.

VI. CONCLUSIONS

In this article we have focused on the phenomenology of
the non-Gaussianity generated in models developed in Refs.
[10,17. Interestingly, whereas the metric perturbation statis-
tics involve only two microscopic parameters related, respec-
tively, to the weight of the non-Gaussian component and to
its PDF, the finite volume effects imply that the statistical
properties of any observational quantity will involve a third
parameter. This new parameter arises from the fact that the

mean vaIue; of the field over the size of the observable

universe does not vanish priori. Obviously y cannot be
determined on the basis of any observation. As described in
Sec. 1V, this implies that the originally symmetric PDF can
be skewed, and that this skewness is directly proportional to

X, Which needs to be considered as a new parameter of the
PDF while dealing with observations.

These results open the way for more detailed phenomeno-
logical studies. To see how those properties translate to the
temperature and local density fields is not easy. Such an in-
vestigation will probably require numerical tools such as
those developed in Reff27].
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