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Abstract. In this paper we consider the following nonlinear parabolic equation



ut  at urr 

r ur  Fr,u  fr, t, 0  r  1, 0  t  T,

r0

lim r/2urr, t  , ur1, t  ht u1, t  u0  0,

ur, 0  u0r,

where   0, u0 are given constants, at, ht, Fr,u, fr, t are given functions. In section
III, we use the Galerkin and compactness method in appropriate Sobolev spaces with weight to
prove the existence of a unique weak solution of the problem (*) on 0,T, for every T  0. In
section IV, we prove that if the initial condition is bounded, then so is the solution. In section
V, we study asymptotic behavior of the solution as t  . In section VI we give numerical
results.

Keywords: Nonlinear parabolic equation, Galerkin method, Sobolev spaces with weight,
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I. INTRODUCTION

In this paper we will consider the following initial and boundary value problem

1.1 ut  at urr 

r ur  Fr,u  fr, t, 0  r  1, 0  t  T,

1.2
r0

lim r/2urr, t  , ur1, t  ht u1, t  u0  0,

1.3 ur, 0  u0r,

where   0, u0 are given constants, at, ht, Fr,u, fr, t, are given functions satisfying
conditions specified later.
The equation (1.1) can be rewritten in the form

1.4 u
t  at

r

r r u

r  Fr,u  fr, t, 0  r  1, 0  t  T.

For   1 with F  0, the problem describes the radial axisymmetric heat flow in a
cylinder.
With   2 and always F  0, the problem (1.2)-(1.4) represents in polar coordinates in 3 the
mass fraction of a liquid fuel droplet in the case of his evaporation inside an infinite vessel, the
boundary condition (1.2) being associated to the Rankine-Hugoniot condition on the surface of
the droplet after a changing of the scale [8].
In [6], Minasjan studied a special case of the problem (1.1), (1.2) associated with the following
T-periodic condition

1.5 ur, 0  ur,T,

with

1.6   1, Fr,u  0, u0  0.

and the functions at, ht, fr, t are T-periodic in time t. The physical interpretation of the
problem (1.1), (1.2), (1.5), (1.6) is that of a periodic heat flow in an infinite cylinder with the
assumption that the cylinder is subjected to convective heat transfer (periodic in time) at the
boundary surface r  1 at zero temperature. Inside the cylinder, there are circular symmetric
sources of heat that change periodically. Minasjan[6] gave for this problem a classical solution
using Fourier transforms. This method leads to an infinite pseudoregular system of linear
algebraic equations. However, the solvability of this system is not proved in detail in [6].
In [3] Lauerova has proved that with T-periodic data, the problem (1.1), (1.2), (1.5), (1.6) has a
T-periodic weak solution in t.
In the case of
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1.7   1, u0  0, f  0, F  Fu, F  C1, F/u  ,

  0 small enough), we have proved [4] that the problem (1.1), (1.2 ), (1.5) has a T-periodic
unique weak solution in appropriate Sobolev spaces with weight. Furthermore, the solution
also depends continuously on the functions at and ht.

The paper consists of three sections. In section III, under appropriate conditions of at,
ht, Fr,u, fr, t we prove the existence of a unique solution on 0,T, for every T  0.
Theses results generalize relatively the ones in [3, 4, 6].
In section IV, we shall show that if the initial condition is bounded, then so is the solution u.
More precisely if u0  L0,1 then the solution u  L0,1  0,T. This last result
generalizes to the nonlinear case the same result obtained in the linear case [8]. In section V,
we study asymptotic behavior of the solution as t tends to infinity: assuming some asymptotic
exponential decay on the data, we show that ut converges as t   to the solution u of the
corresponding steady state equation, with an exponential decay to 0 of the difference ut  u.

The aim of this paper is mainly to get some integral inequalities via various assumptions
on the nonlinear term Fr,u in order to have some a priori estimates for ut, tut and his
respectives derivatives in appropriate Sobolev spaces with weight. The hypotheses on Fr,u
are sufficiently large to include a class enough great of nonlinear problems. For instance if we
consider   2 ( radial Laplace in polar coordinates in 3) all the functions F of the kind
Fu  sgnu|u|,   0,2. In section VI we give numerical results.

II. PRELIMINARY RESULTS, NOTATIONS, FUNCTION SPACES

We omit the definitions of the usual function spaces Cm0,1, Lp0,1, Hm0,1,
Wm,p0,1. For any function v  C00,1 we define v0 as

2.1 v0  v0, 
1

0

 rv2rdr
1/2

and define the space V0 as completion of the space C00,1 with respect to the norm 0.
Similarly, for any function v  C10,1 we define v1 as

2.2 v1  v1,  v0
2  v /0

2 1/2

and define the space V1 as completion of the space C10,1 with respect to the norm 1.
Note that the norms 0 and 1can be defined, respectively, from the inner products

2.3

u,v 
1

0

 rurvrdr and

u,v  u/,v / 
1

0

 rurvr  u/rv /rdr.

It is then easy to prove that V0 and V1 are Hilbert spaces, with V1 continuously and densely
embedded into V0. Identifying V0 with its dual V0

/ we have V1  V0  V0
/  V1

/ . On the other
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hand, the notation ,  is used for the pairing between V1 and V1
/ .

We then have the following lemmas, the proofs of which can be found in [5].

Lemma 1. For every v  C10,1,   0,   0, and r  0,1 we have

2.4 v0
2  1

 v /0
2  v21,

2.5 |v1|  K1v1,

2.6 r/2|vr|  K2v1,

2.7 v21  v /0
2  Cv0

2,
where
2.8 K1    2 , K2    3 , C  1    1/.

Lemma 2. The embedding V1  V0 is compact.

Remark 1. The result of (2.4), (2.5) proves that v21  v /0
2 1/2

and v1 are two
equivalent norms on V1 and
2.9 

1 v1
2  v21  v /0

2    3v1
2, for all v  V1.

We also note that

2.10
r0

lim r/2vr  0, for all v  V1.

(See [1], Lemma 5.40, p.128).
On the other hand, by H1, 1  C0, 1, 0    1, and

2.11 /2vH1,1  v 1, for all v  V1, 0    1.

It follows that

2.12 v|,1  C0, 1, for all , 0    1.

From (2.10), (2.12) we deduce that

2.13 r/2v  C00,1, for all v  V1.

We denote by X the norm in the Banach space X. We call X / the dual space of X. We denote
by Lp0,T;X, 1  p   for the Banach space of the real functions u : 0,T  X
measurable, such that

uLp0,T;X 
T

0

 utX
p dt

1/p

 , for 1  p  ,

and
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uL0,T;X 
0tT

ess sup utX, for p  .

Let ut, u/t  utt, urt  ut, urrt denote ur, t, u
 t r, t,

u
 r r, t,

 2u
 r2 r, t,

respectively.

III. THE EXISTENCE AND UNIQUENESS THEOREM

We form the following assumptions

H1 u0  V0, u0  ;

H2 a, h  W1,0,T, at  a0  0;

H3 f  L20,T;V0;

F : 0,1     satisfies the Caratheodory condition, i.e.,

F1 F,u is measurable on 0,1 for every u  ,
and Fr,  is continuous on  for a.e., r  0,1.

F2 There exist positive constants C1, C1
/ , C2 and p, 1  p  2  2/

such that

i
2i

uFr,u  C1|u|p  C1
/ ,

|Fr,u|  C21  |u|p1.

The weak formulation of the initial and boundary value problem (1.1)-(1.3) can be make in the
following manner:

Find ut defined in the open set 0,T such that ut satisfies the following variational
problem

3.1
d
dt ut,v  aturt,vr  athtu1, tv1  Fr,ut,v

 ft,v  u0athtv1, for all v  V1,

and the initial condition
3.2 u0  u0.

We then have the following theorem.

Theorem 1. Let T  0 and H1  H3, F1, F2 hold. Then, there exists a solution u of
problem (3.1)- (3.2) such that

3.3
u  L20,T;V1  L0,T;V0, r/pu  LpQT,
tu  L0,T;V1, tut  L20,T;V0.
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Furthermore, if F satisfies the following condition, in addition,

F3 Fr,u  Fr,vu  v  |u  v|2 , for all u,v  ,
for a.e. , r  0,1, with   0 sufficiently small,

then the solution is unique.

Proof. The proof consists of several steps.

Step1. The Galerkin method. Denote by wj, j  1,2, . . . an orthonormal basis in the separable
Hilbert space V1. We find umt of the form

3.4 umt 
m

j1
 cmjtwj,

where cmj satisfy the following system of nonlinear differential equations

3.5
um

/ t,wj  at umrt,wjr  athtum1, twj1  Fr,umt,wj

 ft,wj 
u0athtwj1, 1  j  m,

3.6 um0  u0m,
where

3.7 u0m  u0 strongly in V0.

It is clear that for each m there exists a solution umt in form (3.4) which satisfies (3.5)
and (3.6) almost everywhere on 0  t  Tm for some Tm, 0  Tm  T. The following estimates
allow one to take Tm  T for all m.
Step 2. A priori estimates.
a) The first estimate. Multiplying the jth equation of the system (3.5) by cmjt and summing up
with respect to j, we have

3.8

d
dt umt0

2  2atumrt0
2  2um

2 1, t  2Fr,umt,umt

 21  athtum
2 1, t  2ft,umt

2u0athtum1, t.

By the assumptions H2, F2, i, and the inequalities (2.5), (2.7), (2.9), it follows from (3.8),
that
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3.9

d
dt umt0

2  2C3umt1
2  2C1

1

0

 r|umr, t|pdr

 2C1


1  1
21

|u0 |2K1
2 ahL0,T

2  ft0
2

 21 2  ahL0,T umt1
2

 1  2C11  ahL0,T umt0
2,

for all 1  0. Choosing 1  0 such that

3.10 212  ahL0,T  
1 min1,a0  C3.

Hence, from (3.9), (3.10) we obtain

3.11

d
dt umt0

2  C3umt1
2  2C1

1

0

 r|umr, t|pdr

 2C1
/

1  1
21

|u0 |2K1
2 ahL0,T

2  ft0
2

 1  2C11  ahL0,T umt0
2.

Integrating (3.11) and by means of (3.7), we have

3.12

umt0
2  C3

t

0

 ums1
2ds  2C1

t

0

 ds
1

0

 r|umr, s|pdr

 MT
2  MT

1
t

0

 ums0
2ds,

where MT
1, MT

2are the constants depending only on T, with

MT
1  1  2C11  ahL0,T,

MT
2  u0m0

2  2C1
/

1  1
21

|u0 |2K1
2 ahL0,T

2 T 
T

0

 fs0
2ds,

for all m.

By the Gronwall’s lemma, we obtain from (3.12), that
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3.13
umt0

2  C3

t

0

 ums1
2ds  2C1

t

0

 ds
1

0

 r|umr, s|pdr

 MT
2 exptMT

1  MT,

for all m, for all t, 0  t  Tm  T, i.e., Tm  T.

b) The second estimate. Multiplying the jth equation of the system (3.5) by t2cmj
/ t and

summing up with respect to j, we have

3.14

2 tum
/ t

0

2
 d

dt attumrt0
2  athtt2um

2 1, t

2 d
dt t2

1

0

 rFr,umr, tdr

 umrt0
2 d

dt t
2at  um

2 1, t d
dt t

2atht

4t
1

0

 rFr,umr, tdr  2tft, tum
/ t

 2u0
d
dt t

2athtum1, t  2u0um1, t d
dt t

2atht,

where

3.15 Fr, 


0

 Fr, sds.

Integrating (3.14) with respect to time variable from 0 to t, we shall have, after some
rearrangements

3.16 2
t

0

 sum
/ s

0

2ds  attumrt0
2  t2um

2 1, t
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 1  athtt2um
2 1, t 

t

0

 s2as/umrs0
2ds


t

0

 s2ashs/um
2 1, sds

4
t

0

 sds
1

0

 rFr,umr, sdr  2t2
1

0

 rFr,umr, tdr

2
t

0

 sfs, sum
/ sds  2u0t2athtum1, t

2u0

t

0

 s2ashsum1, sds.

By means of the assumption H2 and the inequality (2.9), we have

3.17 attumrt0
2  t2um

2 1, t  C3tumt1
2

for all t  0,T, for all m, where C3 is constant defined by (3.10).
Using the inequalities (2.5), (2.7), and with 1  0 as in (3.10), we estimate without difficulty
the following terms in the right-hand side of (3.16) as follows

3.18 1  athtt2um
2 1, t  1  ahL0,T 1tumt1

2  C1 t2MT ,

3.19

t

0

 s2as/umrs0
2ds 

t

0

 s2ashs/um
2 1, sds

 t2a/L0,T  K1
2t2ah/L0,T MT/C3,

3.20 2 u0

t

0

 s2ashs/um1, sds  2|u0 |t2ah/L0,TK1 t MT/C31/2,

3.21 2|u0t2athtum1, t|  1tumt1
2  1

1 K1
u0tahL0,T

2,

3.22 2
t

0

 sfs, sum
/ sds 

t

0

 sfs0
2ds 

t

0

 sum
/ s

0

2ds.

On the other hand, from the assumptions F1, F2, we have

3.23
m0  

0

0

 |Fr, s|ds  Fr, 


0

 Fr, sds

 C2||  | |p
p , for all   ,
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where 0  C1
/ /C1

1/p.

Using the inequalities (2.6), (3.13), (3.23), we obtain

3.24

4
t

0

 sds
1

0

 rFr,umr, sdr  2t2
1

0

 rFr,umr, tdr

 4C2K2
1/2

t

0

 sums1ds

 4C2t
p MT/2C1  2m0t2

1 .

Hence, we deduce from (3.16) - (3.22), and (3.24) that

3.25

t

0

 sum
/ s

0

2ds  1
2 C3tumt1

2

 MT
3  4C2K2

1/2

t

0

 sums1ds  MT
4 

t

0

 sums1
2ds,

where MT
3, MT

4are the constants depending only on T.
By the Gronwall’s lemma, we obtain from (3.25), that

3.26
t

0

 sum
/ s

0

2ds  1
2 C3tumt1

2  MT
4 expt  MT

5.

On the other hand, by using (3.13), and assumption F2 we have

3.27

t

0

 ds
1

0

 r/p/Fr,umr, s
p/

dr

 2p/1C2
p/ T

1 
t

0

 ds
1

0

 r|umr, s|pdr  MT
6,

where MT
6 is a constant depending only on T.

Step 3. The limiting process.

By (3.13), (3.26), (3.27) we deduce that, there exists a subsequence of um, still denoted
by um such that
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3.28 um  u in L0,T;V0 weak*,

3.29 um  u in L20,T;V1 weak,

3.30 r/pum  r/pu in LpQT weak,

3.31 tum  tu in L0,T;V1 weak*,

3.32 tum/  tu/ in L20,T;V0 weak.

Using a compactness lemma ( [2], Lions, p.57) applied to (3.31), (3.32), we can extract from
the sequence um a subsequence still denotes by um, such that

3.33 tum  tu strongly in L20,T;V0.

By the Riesz- Fischer theorem, we can extract from um a subsequence still denoted by um,
such that

3.34 umr, t  ur, t a.e. r, t in QT  0,1  0,T.

Because F is continuous, then

3.35 Fr,umr, t  Fr,ur, t a.e. r, t in QT.

We shall now require the following lemma, the proof of which can be found in [2].
Lemma 3. Let Q be a bounded open set of N and Gm, G  LqQ, 1  q  , such that,

GmLqQ  C, where C is a constant independent of m

and
Gm  G a.e. r, t in Q.

Then Gm  G in LqQ weakly.

Applying Lemma 3 with N  2, q  p/, Gm  r/p/Fr,um, G  r/p/Fr,u, we deduce
from (3.27), (3.35) that in

3.36 r/p/Fr,um  r/p/Fr,u in Lp/QT weakly.

Passing to the limit in (3.5), (3.6) by (3.7), (3.28), (3.29), (3.36) we have satisfying the
equation
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3.37
d
dt ut,v  aturt,vr  athtu1, tv1  Fr,ut,v

 ft,v  u0athtv1, for all v  V1,

3.38 u0  u0.

Step 4. Uniqueness of the solutions.

First, we shall need the following Lemma.

Lemma 4. Let w be the weak solution of the following problem

3.39 wt  atwrr 

r wr 


f r, t, 0  r  1, 0  t  T,

3.40
r0

lim r/2wrr, t  , wr1, t  htw1, t  0,

3.41 wr, 0  0,

3.42
w  L20,T;V1  L0,T;V0, r/pw  LpQT,
tw  L0,T;V1, twt  L20,T;V0.

Then

3.43

1
2 wt0

2 
t

0

 aswrs0
2  hsw21, sds


t

0

 

f s,wsds  0, a.e. t  0,T.

The lemma 4 is a slight improvement of a lemma used in [8] ( see also Lions’s book [2]).
Now, we will prove the uniqueness of the solutions. Let u and v be two weak solutions of
(1.1)- (1.3). Then w  u  v is a weak solution of the following problem (3.39)- (3.42) with the
right hand side function replaced by


f r, t  Fu  Fv. Using Lemma 4 we have equality

3.44

1
2 wt0

2 
t

0

 aswrs0
2  hsw21, sds

 
t

0

 Fr,u  Fr,v,wsds.

Using the monotonicity of Fr,u  u, we obtain
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3.45
t

0

 Fr,u  Fr,v,wsds  
t

0

 ws0
2ds.

It follows from (3.44), (3.45) and Gronwall’s Lemma that w  0.
Therefore, Theorem 1 is proved.

IV. THE BOUNDEDNESS OF THE SOLUTION

Now we make the following assumptions

H1
/  u0  L0,1, u0  , max|u0r|, |u0 |  M a.e. r  0,1.

H2
/  a, h  W1,0,, at  a0  0, ht  h0  0;

H3
/  f  L20,T;V0, fr, t  0 a.e. r, t  QT.

F1
/  uFr,u  0 u  , |u|  u0L0,1, for a.e. , r  0,1.

We then have the following theorem.

Theorem 2. Let H1
/   H3

/ , F1  F3, F1
/  hold. Then the unique weak solution of the

initial and boundary value problem (3.1) - (3.2), as given by theorem 1, belongs to

LQT.

Remark 3. Assumption H1
/  is both physically and mathematically natural in the study of

partial differential equation of the kind of (1.1)-(1.3), by means of the maximum principle.
Proof of Theorem 2. First, let us assume that u0r  M and u0. Then z  u  M satisfies the
initial and boundary value

4.1 zt  atzrr 

r zr  Fr, z  M  fr, t, 0  r  1, 0  t  T,

4.2 r0

lim r/2zrr, t  ,

zr1, t  ht z1, t  M  u0  0,

4.3 zr, 0  u0r  M.

Multiplying equation (4.1) by rv, for v  V1 integrating by parts with respect to variable
r and taking into account boundary condition (4.2), one has after some rearrangements
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4.4

1

0

 rztvdr  at
1

0

 rzrvrdr  athtz1, tv1


1

0

 rFr, z  Mvdr


1

0

 rfvdr  u0  Mathtv1, for all v  V1.

Noticing from assumption H1
/  we deduce that the solution of the initial and boundary

value problem (3.1) - (3.2) belongs to L20,T;V1  L0,T;V0, so that we are allowed to
take v  z  1

2 |z|  z in (4.4). Thus, it follows that

4.5

1
2

d
dt

1

0

 r|z |2dr  at
1

0

 r|zr |2dr  atht|z1, t|2


1

0

 rFr, z  Mzdr


1

0

 rfzdr  u0  Mathtz1, t  0,

since
1

0

 rztzdr 
1

0, z0

 rzt zdr  1
2

d
dt

1

0, z0

 r|z |2dr

 1
2

d
dt

1

0

 r|z |2dr  1
2

d
dt zt0

2,

and on the domain z  0 we have z  z and zr  zr.
On the other hand, by the assumption H2

/  and the inequality (2.9), we obtain

4.6
at

1

0

 r|zr |2dr  atht|z1, t|2

 a0
1 min1,h0zt1

2  C0zt1
2.

Using the monotonicity of Fr,u  u and F1
/  we obtain



15

4.7

1

0

 rFr, z  Mzdr 
1

0

 rFr, z  M  Fr,Mzdr 
1

0

 rFr,Mzdr

 
1

0

 r|z |2dr 
1

0

 rFr,Mzdr  zt0
2.

Hence, it follows from (4.5)-(4.7) that

4.8 d
dt zt0

2  2C0zt1
2  2zt0

2.

Integrating (4.8), we get

4.9 zt0
2  z00

2  2
t

0

 zs0
2ds.

Since z0  ur, 0  M  u0r  M  0, hence, using Gronwall’s Lemma, we obtain
zt0

2  0. Thus z  0 and ur, t  M for a.e. r, t  QT.
The case M  u0r and M  u0 can be dealt with, in the same manner as above, by

considering z  u  M and z  1
2 |z|  z, we also obtain z  0 and hence

ur, t  M for a.e. r, t  QT.
From all above, one obtains |ur, t|  M a.e. r, t  QT and this ends the proof of Theorem
2.

V. ASYMPTOTIC BEHAVIOR OF THE SOLUTION AS t  .

In this part, let T  0, H1  H3, and F1  F3 hold. Then, there exists a unique
solution u of problem (3.1) - (3.2) such that

u  L20,T;V1  L0,T;V0, r/pu  LpQT,

tu  L0,T;V1, tu/  L20,T;V0.

We shall study asymptotic behavior of the solution ut as t  .
We make the following supplementary assumptions on the functions a, h, f.

H3
// f  L0,;V0;

H4
There exist the positive constants Ca, Ch, Cf, a, h, f, a, h

and a function f  V0 such that
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i
ii
iii

|at  a |  Caeat, t  0,
|ht  h |  Cheht, t  0,
ft  f0  Cfeft, t  0.

First, we consider the following stationary problem

5.1 a u
// r  

r u
/ r  Fr,ur  fr, 0  r  1,

5.2
r0

lim r/2u
/ r  , u

/ 1  hu1  h
u0.

The weak solution of problem (5.1)-(5.2) is obtained from the following variational problem.

Find u  V1 such that

5.3
au

/ ,v /  ahu1v1  Fr,u,v

 f,v  u0ahv1, for all v  V1.

We then have the following theorem.

Theorem 3. Let F1, F2, H4 hold. Then there exists a solution u of the variational
problem (5.3) such that

u  V1 and r/pu  Lp0,1.

Furthermore, if F satisfies the following condition, in addition,

F4
Fr,u  u is nondecreasing with respect to variable u,

with 0    a

1 min1,h.

Then the solution is unique.

Proof. Denote by wj, j  1,2, . . . an orthonormal basis in the separable Hilbert space V1. Put

5.4 ym 
m

j1
 dmjwj,

where dmj satisfy the following nonlinear equation system:
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5.5
aym

/ ,wj
/  ahym1wj1  Fr,ym,wj

 f,wj 
u0ahwj1, 1  j  m.

By the Brouwer’s lemma( see Lions [2], Lemma 4.3, p.53), it follows from the hypotheses
F1, F2, H4 that system (5.4), (5.5) has a solution ym.
Multiplying the jth equation of system (5.5) by dmj, then summing up with respect to j, we have

5.6
a ym

/
0

2
 ahym

2 1  Fr,ym,ym

 f,ym 
u0ahym1.

By using the inequalities (2.5), (2.9) and by the hypotheses F1, H4, we obtain

5.7
C0ym1

2  C1

1

0

 r|ymr|pdr

 f0  |u0 |ahK1ym1 
C1


1 ,

where C0  a

1 min1,h.

Hence, we deduce from (5.7) that

5.8 ym1  C,

5.9
1

0

 r|ymr|pdr  C,

C is a constant independent of m.
By means of (5.8), (5.9) and Lemma 2, the sequence ym has a subsequence still denoted by
ym such that

5.10 ym  u in V1 weakly,

5.11 ym  u in V0 strongly and a.e. in 0,1,

5.12 r/pym  r/pu in Lp0,1 weakly.

On the other hand, by (5.11) and the hypothesis F1, F2 we have
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5.13 Fr,ym  Fr,u a.e. in 0,1,

We also deduce from the hypothesis F2 and from (5.9) that

5.14
1

0

 r/p/Fr,ymr
p/

dr  2p/1C2
p/
1 

1

0

 r|ymr|pdr  C,

where C is a constant independing of m.
Applying Lemma 3 with N  1, q  p/, Gm  r/p/Fr,ym, G  r/p/Fr,u, we deduce

from (5.13), (5.14) that

5.15 r/p/Fr,ym  r/p/Fr,u in Lp/0,1 weakly.

Passing to the limit in Eq.(5.5), we find without difficulty from (5.10), (5.15) that u satisfies
the equation

5.16 au
/ ,wj

/  ahu1wj1  Fr,u,wj  f,wj 
u0ahwj1.

Equation (5.16) holds for every j  1,2, . . . , i.e., (5.3) holds.
The solution of the problem (5.3) is unique; that can be showed using the same arguments as in
the proof of Theorem 1.

Remark 4. The result of Theorem 3 is similar to one in [7].

Now we consider asymptotic behavior of the solution ut as t  .

We then have the following theorem.

Theorem 4. Let F1, F2, F4, H1, H2
/ , H3

//, H4 hold. Then we have

ut  u0
2  u0  u0

2  C2
210

e20t, t  0,

where

C2  1
 C

2Ca
2  Cf

2  K1
2|u0 |  CK12Cah  Cha2,

  1
4

a0
1 min1,h0   ,

0 is a constant depending only on the constants 1  mina,h,f and
C1  a0

1 min1,h0  .

Proof. Put Zmt  umt  ym. Let us subtract (3.5) with (5.5) to obtain
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5.17

Zm
/ t,wj  atZmrt,wjr  at  aymr,wjr

 athtZm1, twj1  atht  ahym1wj1

Fr,umt  Fr,ym,wj

 ft  f,wj 
u0atht  ahwj1, 1  j  m,

Zm0  u0m  ym.

By multiplying (5.17) by cmjt  dmj and summing up in j, we obtain

5.18

1
2

d
dt Zmt0

2  atZmrt0
2  at  aymr,Zmrt

 athtZm
2 1, t  atht  ahym1Zm1, t

 Fr,umt  Fr,ym,Zm

 ft  f,Zm 
u0atht  ahZm1.

From the assumption H2
/  and the inequality (2.9), it follows that

5.19 atZmrt0
2  athtZm

2 1, t  C0Zmt1
2,

where C0  a0
1 min1,h0.

By F4, we get
5.20 Fr,umt  Fr,ym,Zm  Zmt0

2.

It follows from (5.18)-(5.20), and (2.5), that

5.21

d
dt Zmt0

2  2C0Zmt1
2  2|at  a |ymr0Zmrt0

 2|atht  ah |K1
2ym1Zmt1  2Zmt0

2

 2ft  f0Zmt0  2|u0 ||atht  ah |K1Zmt1.

Note that ym1  C, we obtain from (5.21) that
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5.22

d
dt Zmt0

2  2C0Zmt1
2

 2C|at  a |Zmt1  2Zmt1
2  2ft  f0Zmt0

2K1|u0 |  CK1|atht  ah |Zmt1.

Choose   0 such that 3  C0    C1, then we have from (5.22)

5.23

d
dt Zmt0

2  C1Zmt1
2

 1
 C2|at  a |2  1

 ft  f0
2

 1
 K1

2|u0 |  CK12|atht  ah |2.

Put 1  mina,h,f, we deduce from (5.23) and H4 that

5.24

d
dt Zmt0

2  C1Zmt1
2

 1
 C

2Ca
2  Cf

2  K1
2|u0 |  CK12Cah  Cha2e21t

 C2e21t, for all t  0.

Put 0  1
2 min1,C1. Hence, we obtain from (5.24) that

5.25

Zmt0
2  e20tZ0m1

2  C2e20t
t

0

 e210sds

 e20tZ0m1
2  C2

210
e20t1  e210t

 Z0m1
2  C2

210
e20t.

Letting m   in (5.25) we obtain

5.26
ut  u0

2 
m

lim inf umt  ym0
2

 u0  u0
2  C2

210
e20t, for all t  0.

This completes the proof of Theorem 4.

VI. NUMERICAL RESULTS

First, we present some results of numerical comparison of the approximated representation
of the solution of a nonlinear problem of the type (1.1)-(1.3) and the corresponding exact
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solution of this problem.
Let the problem

6.1 ut  urr  2
r ur  Fu  0,

6.2 ur1, t  u1, t  0, ur0, t  0,

6.3 ur, 0  0,

where

fr, t  er1  rcos t  2er sin t3  r  e 3
2 r1  r3/2sgnsin t,

Fu  |u|3/2sgnu;

  1 5
2 , and the domain D  r, t : 0  r  1, 0  t  1.

The exact solution of the problem (6.1)-(6.3) is vr, t  er1  r sin t.
To solve numerically the problem (6.1)-(6.3), we consider the nonlinear differential

system for the unknowns ukt  urk, t, rk  kh, h  1/N.

6.4

duk
dt  1

h2 1  2
k uk1  2

h2
1
k  1 uk 

uk1

h2  Fuk  frk, t,

u1  u0, uN  uN1
h1 ,

uk0  0, k  1,2, . . . ,N  1.

To solve the nonlinear differential (6.4) at the time t, we use the following linear recursive
scheme generated by the nonlinear term Fuk:

6.5
duk,n

dt  1
h2 1  2

k uk1,n  2
h2

1
k  1 uk,n 

uk1,n

h2  Fuk,n  frk, t,

uk,n0  0, k  1,2, . . . ,N  1.

The linear differential system (6.5) is solved by searching the associated eigenvalues and
eigenfunctions. With a spatial step h  1

10 on the interval 0,1 and for t  0,2, we have
drawn the corresponding approximate surface solution t, t  ur, t in figure 1, obtained by
successive re-initializations in t with a time step t  1

50 . For comparison in figure 2, we have
also drawn the exact surface solution t, t  vr, t.

Now consider the following problem

6.6 ut  urr  2
r ur  |u|3/2sgnu  0,

6.7 ur1, t  u1, t  0, ur0, t  0,

6.8 ur, 0  1
4 .

Using the same method as previously we have drawn in figure 3 the approximate surface
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solution t, t  ur, t which decreases exponentially to 0 as t tends to infinity, 0 being the
unique solution ot the corresponding steady state problem

6.9 urr  2
r ur  |u|3/2sgnu  0,

6.10 ur1  u1  0, ur0  0.

Notice, since the function Fu  |u|3/2sgnu has a derivative positive the solution of the
problem (6.6)-(6.8) is bounded and unique according section IV.

Figure 1.Approximate solution
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Figure 2. Exact solution

Figure 3. Asymptotic behavior
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