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A real-time synthesis model of wind instruments sounds, based upon a classical physical model, is 
presented. The physical model describes the nonlinear coupling between the resonator and the 
excitor through the Bernoulli equation. While most synthesis methods use wave variables and their 
sampled equivalent in order to describe the resonator of the instrument, the synthesis model 
presented here uses sampled versions of the physical variables all along the synthesis process, and 
hence constitutes a straightforward digital transposition of each part of the physical model. 
Moreover, the resolution scheme of the problem �i.e., the synthesis algorithm� is explicit and all the 
parameters of the algorithm are expressed analytically as functions of the physical and the control 
parameters.
I. INTRODUCTION

The calculation of the self-sustained oscillations of
single-reed instruments such as the clarinet was proposed for
the first time by Schumacher,1 using a time domain discreti-
zation of the equations. This work, which does not attempt a
real-time implementation, has later been widely developed
�see, e.g., Gazengel et al.2 or Ducasse3�. Numerical methods,
such as the harmonic balance, have been developed by
Gilbert4 in order to study the periodic solutions. In addition,
in order to perform the calculations in real-time, several
methods yielding a time domain formulation of the waves in
the resonator have been developed. We can mention the well-
known digital waveguide method �see, e.g., Smith5 or
Välimäki6� and wave digital modeling used by van Walstijn,7

which consider the incoming and outgoing waves within
each section of a bore and their scattering at the junctions
between bores of different sections. We can also mention the
calculation of the reflection function from impedance mea-
surements using inverse Fourier transform, which has been
used for the synthesis of the trumpet by Vergez.8 Like the
Schumacher method, since these methods consider the in-
coming and outgoing waves, the problem then lays in the
formulation of the nonlinearity which, whatever the model,
can only be expressed physically in terms of acoustic pres-
sure and flow at the mouthpiece of the instrument.

In this paper, a real-time synthesis model using only
physical variables is proposed. It first consists in directly
expressing the impedance relationship at the mouthpiece be-
tween flow and pressure, which become the input and output
of the linear part of the model characterizing the bore. The
nonlinear coupling �based on the steady Bernoulli flow
model� between the bore and the reed �described classically
as a single mass-spring damped oscillator� is then modeled in
a physical way. In the case of sampled signals, thanks to a
suitable discretization scheme of the reed displacement, this
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coupling is solved explicitly whatever the shape of the bore
without iterative or table-lookup schemes such as the
K-Method described by Borin.9

The paper is organized as follows. Section II presents
the classical physical model in the case of a cylindrical bore
�see, e.g., Kergomard et al.10� allowing the construction of
the main elements of the synthesis model. Section III pre-
sents a preliminary step toward the synthesis algorithm in the
case of a cylindrical bore, extends it to the case of a trun-
cated conical bore, and builds the complete synthesis model.
A more complete formalism for bores of other geometries
and different reed models is described in Guillemain et al.11

Section IV deals with sampled variables, and presents an
explicit time-domain scheme which solves the coupled sys-
tem constituting the sampled physical model, its digital
implementation, and its real-time control. Section V is de-
voted to conclusions and perspectives of this work.

II. SIMPLIFIED PHYSICAL MODEL

We first briefly describe the three components of the
classical physical model. They are made of a linear imped-
ance relationship between acoustic pressure and flow at the
mouthpiece, a pressure driven linear oscillator modeling the
first mode of vibrations of the reed, and a nonlinear charac-
teristics coupling the flow to the pressure and the reed dis-
placement at the mouthpiece.

A. Wave equation in a cylindrical lossy bore

1. Wave number expression

The first linear part of the physical model corresponds to
the resonator of the instrument. We here consider a cylindri-
cal bore. For such a geometry, if one assumes that the radius
of the bore is large in front of the boundary layer thicknesses,
the classical Kirchhoff’s theory �see, e.g., Pierce12� leads, in
the frequency domain, to the value of the complex wave

number k��� for a plane wave:



k���2 =
�2

c2 �1 − i3/2�c2�−1/2� ,

where

� = 2/�Rc3/2���lv + � cp

cv
− 1��lt� .

R is the radius of the bore: R=7·10−3 in the clarinet case.
Typical values of the physical constants, in mK s units,
are: c=340, lv=4·10−8, lt=5.6·10−8, Cp /Cv=1.4.

For the acoustic pressure, this corresponds to the time
domain differential equation �see, e.g., Polack13�:

�2p�x,t�
�x2 −

1

c2

�2p�x,t�
�t2 − �

�3/2p�x,t�
�t3/2 = 0. �1�

To the same order of approximation, the classical ex-
pression of k���, that we shall use in the following is

k��� =
�

c
−

i3/2

2
�c�1/2. �2�

2. Expression of the losses

Let us consider a bore of infinite length, excited in x
=0 at t=0 by a Dirac impulse ��x���t�. At any point x�0,
the acoustic pressure propagating from this source in the �x
�0� direction can be written as a continuous sum of all the
waves that can propagate in the bore:

p�x,t� =� exp�− ik���x�exp�i�t�d� ,

which is the inverse Fourier transform of exp�−ik���x�. The
filtering of a pressure wave propagating in the �x�0� di-
rection between x=0 and x=L, including propagation de-
lay, dispersion, and dissipation is then given by

F��� = exp�− ik���L�

= exp�−
1

2
�c��

2
L�

�exp�− i��

c
L +

1

2
�c��

2
L�� . �3�

Dissipation, present in the modulus of F���, and disper-
sion, present in the nonlinear part of the phase of F��� are
functions of frequency, and depend both on the radius and
the length of the bore.

Figure 1 shows the behavior of the modulus of F��� as
function of frequency. This filter expresses the modifications
encountered by a pressure wave when it travels from one end
of the bore to the other end.

3. Input impedance of a cylindrical bore „frequency
domain…

For a cylindrical resonator, according to the transmission

line theory, the Fourier transforms �Pe���, Ue��� and Ps���,
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Us���� of the dimensionless acoustic pressure and flow at the
input �pe�t� ,ue�t�� and at the open end �ps�t� ,us�t�� of the
resonator are linked by

Pe��� = cos�k���L�Ps��� + i sin�k���L�Us��� ,

Ue��� = i sin�k���L�Ps��� + cos�k���L�Us��� .

In these equations, the acoustic pressure pe,s and flow
ue,s are normalized with respect to the physical variables p̃e,s

and ũe,s in the following way: pe,s= p̃e,s /pM and ue,s

=Zc /pMũe,s, where Zc=�c / ��R2� is the characteristic imped-
ance of the resonator. The pressure pM is the static beating-
reed pressure, depending on the characteristics of the reed
and defined in the Sec. II B.

As a first approximation, we assume that the radius of
the bore is small compared to the wavelength. In this case,
the radiation losses are negligible and the radiation effect is a
length correction, taken into account in L. Under this classi-
cal hypothesis, the output impedance Ps��� /Us��� vanishes
and only the internal losses contained in k��� are taken into
account. This simplification let us express the relationship
between acoustic pressure and flow at the input of the reso-
nator in the following way:

Pe��� = i tan�k���L�Ue��� = Ze���Ue��� , �4�

where Ze���= i tan�k���L� is the dimensionless input im-
pedance of the resonator.

B. Simple reed model

We here consider a reed model based upon a classical
single mode model. This model describes in a simple way
the dimensionless displacement x�t� of the reed with respect
to its equilibrium point x=0 when it is submitted to a dimen-

FIG. 1. Modulus of F��� as function of the frequency �in hertz�. L=0.5 m,
R=7 mm.
sionless acoustic pressure pe�t�:



1

�r
2

d2x�t�
dt2 +

qr

�r

dx�t�
dt

+ x�t� = pe�t� , �5�

where �r=2�fr and qr are, respectively, the circular fre-
quency and the quality factor of the reed. Typical values for
these parameters are: fr=2500 Hz and qr=0.2 in the clarinet
case.

The dimensionless displacement x of the reed is defined
from the physical reed displacement ỹ by: x= ỹ /H+pm /pM,
where H is the height of the opening between the reed and
the mouthpiece and pm is the static �slowly varying� pressure
within the mouth. The static beating-reed pressure is ex-
pressed by: pM =�rH�r

2, where �r is the mass per unit sur-
face of the reed.

Assuming that the initial conditions of the reed move-
ment correspond to a displacement and a velocity equal to
zero, the Fourier domain equivalent of this equation gives
the transfer function of the reed:

X���
Pe���

=
�r

2

�r
2 − �2 + i�qr�r

. �6�

The reed displacement due to an impulse pressure pe�t�
=��t� is then given by

x�t� =
2�r

�4 − qr2
exp�−

1

2
�rqrt�sin�1

2
�4 − qr2�rt� . �7�

Equation �7� shows that the response of the reed to an im-
pulse can be considered noninstantaneous, since x�0�=0.
Since the relation between x�t� and pe�t� is a convolution,
this property will be true for any excitation pe�t�, and we will
take advantage of this in the following.

Figures 2 and 3 show, respectively, the transfer function
and the impulse response of this reed model.

C. Nonlinear characteristics

The dimensionless acoustic pressure pe�t�, the dimen-

FIG. 2. Transfer function of the reed model �horizontal axis in hertz� �fr

=2500,qr=0.2�.
sionless acoustic flow ue�t�, and the dimensionless reed dis-
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placement x�t� are linked in a nonlinear way at the input of
the resonator through the stationary Bernoulli equation:

ue�t� = 	�1 − 
 + x�t����1 − 
 + x�t��

�sign�
 − pe�t���	
 − pe�t�	 , �8�

where 	 is the Heaviside function, the role of which is to
keep the opening of the reed positive.

This simplified nonlinear characteristics is obtained
through classical hypothesis �see, e.g., Hirschberg14 and
Kergomard15�. The opening of the reed channel is propor-
tional to the reed displacement. The acoustic flow generated
by the reed �proportional to the reed velocity� and the un-
steady term in the Bernoulli equation �proportional to the
time derivative of the acoustic velocity� are ignored.

The parameter � is characteristic of the whole embou-
chure and is related to the maximum flow entering the instru-
ment. It is defined by Kergomard,15 after Wilson and
Beavers,16 and depends on the ratio between the reed open-
ing and the tube cross-section area and on the reed stiffness:
�=ZcwH�2/ ��pM�, where w is the width of the reed. Com-
mon values lay between 0.2 and 0.6 in the clarinet case. The
parameter 
 is the ratio between the pressure inside the
mouth of the player and the static beating-reed pressure: 

=pm /pM. For a lossless bore and a massless reed, it evolves
from 1/3, which is the oscillation threshold, to 1/2, which
corresponds to the threshold of beating-reed. The parameters
� and 
 constitute two important performance parameters
since they, respectively, represent the way the player holds
the reed and its blowing pressure inside the instrument.
Though, for clarity in the notations, the t variable is omitted,
the playing parameters 
 and � are functions of time, but
slowly varying compared to the other time-dependent vari-
ables.

Figure 4 represents the nonlinear characteristics of the
reed for the limit case �r=�. In this case, the displacement
x�t� of the reed reduces to the acoustic pressure pe�t� itself

FIG. 3. Impulse response of the reed model �in samples, fe=44 100�.
and the reed behaves as a single spring.



D. Coupling of the reed and the cylindrical resonator

Combining the reed displacement equation, the imped-
ance relation, and the nonlinear characteristics, the acoustic
pressure at the mouthpiece level can finally be found by
solving the following set of coupled equations:

1

�r
2

d2x�t�
dt2 +

qr

�r

dx�t�
dt

+ x�t� = pe�t� , �9�

Pe��� = Ze���Ue��� , �10�

ue�t� = 	�1 − 
 + x�t����1 − 
 + x�t��

�sign�
 − pe�t���	
 − pe�t�	 . �11�

The following sections will present a way of solving
these equations in the time domain for sampled variables.

III. CONSTRUCTION OF THE SYNTHESIS MODEL
FROM THE PHYSICAL MODEL

In order to solve this system of three equations, we first
propose a different formulation of the impedance relation,
compatible with a time-domain implementation. We first
consider the case of a cylindrical bore, and further extend it
to the case of a conical bore.

A. Expression of the input impedance of the
resonator

1. Cylindrical bore

The input impedance, denoted C���, of a cylindrical
resonator is first described as a combination of looped filters.
For that purpose, the impedance Ze��� is written as

C��� = Ze��� = i tan�k���L� = i
sin�k���L�
cos�k���L�

=
exp�ik���L� − exp�− ik���L�
exp�ik���L� + exp�− ik���L�

.

FIG. 4. Nonlinear characteristics of the reed �u as a function of p, �=0.3,

=0.45�.
This last expression can be written as follows:
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C��� =
1 − exp�− 2ik���L�
1 + exp�− 2ik���L�

=
1

1 + exp�− 2ik���L�
−

exp�− 2ik���L�
1 + exp�− 2ik���L�

. �12�

Figure 5�a� shows the interpretation of Eq. �12� in terms
of looped filters. The transfer function of this model is di-
rectly the dimensionless input impedance of a cylindrical
resonator. It is made of a sum of two elementary blocks. The
upper block corresponds to the first term of the second equal-
ity in Eq. �12� and the lower block corresponds to the second
term.

Figure 5�b� shows that the impedance C��� of the cylin-
drical bore can be related to a Schroeder17 all-pass filter, used
for reverberation effects, by replacing the loop delay of the
form exp�−i�D� by −exp�−2ik���L� and removing the gains
and their signs. This interpretation will make the digital
implementation of such filters similar up to the losses con-
tained in exp�−2ik���L�.

Figure 6 shows �top panel� the input impedance of the
resonator with respect to frequency and �bottom panel� its

FIG. 5. Top panel: �a� Model representing the input impedance of a cylin-
drical resonator. Bottom panel: �b� Same model using a modified Schroeder
representation.

FIG. 6. Top panel: Input impedance of a cylindrical resonator �f in hertz�.

Bottom panel: Impulse response of a cylindrical resonator �t in seconds�.



impulse response computed through an inverse Fourier trans-
form. Bore length: L=0.5 m, radius R=7 mm.

Similarly, we denote by C−1��� the admittance of a cy-
lindrical bore:

C−1��� =
1 + exp�− 2ik���L�
1 − exp�− 2ik���L�

.

It is worth noticing that in the case of a perfectly cylin-
drical bore, Eq. �12� is not the most efficient way to describe
the resonator. Indeed, in this case, the description based on
wave variables and used, e.g., in the digital waveguides mod-
els is more efficient.

If we decompose the acoustic pressure and flow into
wave variables: Pe���= P+���+ P−��� and Ue���= P+���
− P−���, we obtain P+���= �Pe���+Ue���� /2 and P−���
= �Pe���−Ue���� /2. By denoting R��� the reflection func-
tion satisfying P−���=R���P+���, it becomes

R��� =
Ze��� − 1

Ze��� + 1
= − F���2 = − exp�− 2ik���L� .

This last equation shows that the reflection function
R��� models the back and forth propagation of the pressure
waves themselves, while Eq. �12� directly models the conse-
quence of the propagation through the introduction of the
reflection function inside two loops. This constitutes a differ-
ence between the method described here and wave variables
methods, though both of them are physically equivalent since
they consider the bore as an acoustic waveguide.

2. Conical bore

In the case of a conical bore, by assuming again that the
radiation impedance can be ignored and by considering the
propagation of spherical waves, the input impedance, de-
noted S���, is written classically as a parallel combination of
a cylindrical bore and an “air” bore:

S��� =
1

1

i�
xe

c

+
1

C���

,

where xe is the distance between the apex and the input,
expressed in terms of the angle  of the cone and the input
radius R as xe=R / sin� /2�.

Noting D the differentiation operator: D���= i�, the in-
put impedance of a conical bore can be written in the form

S��� =

xe

c
D���

1 +
xe

c
D���C−1���

,

yielding the equivalent scheme in Fig. 7.
As was the case for the cylindrical bore, this scheme

shows that the wave variables and the reflection function are
embedded in the model and that only the consequence of the

propagation is considered.
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Moreover, as opposed to the case of a cylindrical bore,
the use of wave variables in the case of a conical bore does
not lead to a more compact description of the resonator since
the reflection function R��� is given by

R��� = −

2
xe

c
i� exp�− 2ik���L� + 1 − exp�− 2ik���L�

2
xe

c
i� + 1 − exp�− 2ik���L�

.

Here, R��� does not reduce to a simple delay+filter and
exhibits an instantaneous response proportional to
	�t�exp�−ct / �2xe�� for t�2L /c. This is due to the presence
of the “air” bore, which is a lumped element. These facts
have been largely studied �see, e.g., Ref. 18�.

B. Coupling of the resonator with the reed and the
nonlinear characteristics

The system of two coupled equations �9� and �11�, com-
bined with any impedance model corresponding to Eq. �10�,
leads to the introduction of the reed and the nonlinearity as a
nonlinear loop linking the output pe to the input ue of the
resonator, as shown in Fig. 8 in the case of a cylindrical bore.
The output of the model is made of the three coupled vari-
ables pe, ue, and x.

The model is piloted by the length L of the bore, the
opening of the reed channel represented by the parameter
��t�, and the blowing pressure represented by the parameter

�t�.

C. External pressure

When a real instrument is simulated, the acoustic pres-
sure in the mouthpiece is not the most perceptively relevant
variable and the calculation of the external pressure is nec-
essary. For a cylindrical bore, if we assume that the diameter
is small compared to the wavelength of the frequencies

FIG. 7. Impedance model of a conical bore.
FIG. 8. Synthesis model in the case of a cylindrical bore.



propagating within the bore, the radiation is monopolar and
the external pressure is expressed classically as the time de-
rivative of the output flow: pext�t�=dus�t� /dt. Let us express
the output flow as a function of the dimensionless variables
pe�t� and ue�t�. Assuming again that the radiation impedance
is negligible �Ps��� /Us���=0�, the following expression is
obtained from the transmission line theory:

Pe��� = i sin�k���L�Us��� ,

Ue��� = cos�k���L�Us��� ,

which yields

Us��� = exp�− ik���L��Pe��� + Ue���� .

From a perceptive point of view, the quantity exp�−ik���L�
can be ignored, since it represents the delay and the losses
encountered by the acoustic pressure during a simple
travel between the embouchure and the open end �see Fig.
1�. This simplification leads to the following expression of
the external pressure:

pext�t� =
d

dt
�pe�t� + ue�t�� . �13�

This approximation overestimates the high frequencies,
but we point out that a deeper physical description of the
radiation impedance and radiation losses is beyond the scope
of this paper. For a deeper discussion, we refer the reader,
e.g., to Ref. 19 for acoustic modeling or Ref. 20 for signal
modeling.

IV. DISCRETE-TIME FORMULATION OF THE
CONTINUOUS SYSTEM

In order to draw up the synthesis model, it is necessary
to use a discrete formulation in the time domain for the im-
pedance and the reed displacement models.

A. Approximation of the loop filter

The construction of a discrete version of the impedance
relationship first requires an expression of the losses con-
tained in F���2=exp�−2ik���L� through a digital filter. In
order to be modified easily according to the geometry of the
resonator, the coefficients of the filter should make an ex-
plicit use of the geometrical variables such as the length of
the bore and its radius. This requirement led us to express
analytically the coefficients of the digital filter as functions
of the geometrical parameters, rather than use numerical ap-
proximations and minimization techniques to compute the
values of these coefficients. For that purpose, we use a clas-
sical one pole filter �see, e.g., Ref. 6�, written in the follow-
ing form:

F̃��̃� =
b0 exp�− i�̃D�

1 − a1 exp�− i�̃�
, �14�

where fe is the sampling frequency, �̃=� / fe, and D
=2feL /c is the pure delay corresponding to the linear part of

k���.
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Let us express the parameters b0 and a1 as functions of

the physical parameters, so that 	F���2	2= 	F̃��̃�	2 for two
given values �1 and �2 of �. These two values will be dif-
ferent in the case of a cylindrical bore and in the case of a
conical bore and will in both cases correspond to the fre-
quencies of the two first impedance peaks, in order to ensure
their exact heights. It is important to preserve this feature for
a faithful simulation of the continuous dynamical system,
since the linear impedance is coupled with the nonlinear
characteristics. It will allow the decay times of the first two
modes of the approximated impulse response of the imped-
ance to match those of the exact impulse response, which is
important for the transients induced by quick changes of 
�t�
and ��t�. A detailed discussion on the role of the height of the
first impedance peaks for the functioning of the clarinet, in
particular for the oscillation threshold, can be found, e.g., in
Ref. 10.

By ignoring the �small� dispersion introduced by the
nonlinear part of the phase of F��� in the cylindrical case,
the frequencies of the resonance peaks are given by �n

=c��n−1/2� /L, n being an integer.
In the conical case, the frequencies of the impedance

peaks are solutions of the following equation: sin��L /c
+��=�xe /c cos��L /c�. In order to express the coefficients
of the filter as functions of the physical parameters analyti-
cally, we use an approximation of the resonance frequencies,
rather than a numerical method to solve this equation. The
method consists in finding a first approximation of the solu-
tion and use a polynomial expansion around this approxima-
tion to find the final approximation. This first approximation
is taken as the solution of the equation: sin��L /c+��
=cos��L /c� and is given by �n=n�c /L−�c / �4L�. Using a
first-order limited expansion of sin��L /c+�� and
�xe /c cos��L /c� around �=�n+�n and identifying the pow-
ers of �n gives directly �n=−c��4n−1�xe�−4nL� / �L�4L
+ �4n−1�xe�+4xe��. This lets us express the first two fre-
quencies �1 and �2:

�1 =
c�12�L + 9�2xe + 16L�

4L�4L + 3�xe + 4xe�
,

�2 =
c�28�L + 49�2xe + 16L�

4L�4L + 7�xe + 4xe�
.

Moreover, for the computation of 	F���2	2 at frequencies �1

and �2, the radius R is replaced by an equivalent radius rp

defined by rp=R�1+5L / �12xe��. This value was determined
empirically by comparing the impedance of a conical bore
obtained by considering the propagation of spherical
waves with an impedance of the same conical bore ob-
tained with a concatenation of small elementary cylinders
with different diameters �stepped cone�, using the trans-
mission line theory.

The system of equations to solve is then given by

	F��1�2	2�1 + a1
2 − 2a1 cos��̃1�� = b0

2,

	F��2�2	2�1 + a1
2 − 2a1 cos��̃2�� = b0

2,

2 2 �
where 	F��� 	 =exp�−2�c � /2L�.



By denoting c1=cos��̃1�, c2=cos��̃2�, F1= 	F��1�2	2,
F2= 	F��2�2	2, A1=F1c1, A2=F2c2, A12=A1−A2, F12=F1−F2,
the coefficients a1 and b0 are given by

a1 =
A12 − �A12

2 − F12
2

F12
, �15�

b0 =
�2F1F2�c1 − c2��A12 − �A12

2 − F12
2 �

F12
. �16�

B. Expression of the impedance

1. Cylindrical bore

From the expression of the input impedance of the cy-
lindrical resonator �Eq. �12��, by denoting z=exp�i�̃� it be-
comes directly:

C�z� =
1

1 + � b0

1 − a1z
−1�z−D

−
� b0

1 − a1z
−1�z−D

1 + � b0

1 − a1z
−1�z−D

=
1 − a1z

−1 − b0z
−D

1 − a1z
−1 + b0z

−D

yielding the difference equation:

pe�n� = ue�n� − a1ue�n − 1� − b0ue�n − D� + a1pe�n − 1�

− b0pe�n − D� . �17�

Figure 9 shows the approximated input impedance as
function of frequency and the impulse response of the reso-
nator computed by the use of the difference equation. The
length of the bore is L=0.5 m and its radius is R=7 mm.
Comparisons with Fig. 6 show that the heights of the two
first impedance peaks are equal, but that the heights of the
higher order peaks are smaller. As a consequence, higher
order modes decrease faster, yielding an apparently faster
decay of the impulse response. Nevertheless, the decays of

FIG. 9. Top panel: Approximated input impedance �f in hertz�. Bottom
panel: Approximated impulse response of the resonator �t in seconds�.
the first two resonance frequencies are exact. Though this
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phenomenon might appear as an inconvenience to the use of
a first-order low pass filter to model the losses at high fre-
quency, one can also consider it as an advantage. Indeed, it
constitutes a way to take into account additional losses in the
bore �coming, e.g., from a bell or tone holes radiation� that
are not taken into account in the physical model, since they
can be ignored at low frequencies but may play a role at
higher frequencies.

2. Conical bore

In the case of a conical bore, we use the bilinear trans-
formation: D�z�=2fe�z−1� / �z+1� to approximate the differ-
entiation operator D���. The cylindrical bore admittance
C−1�z� is given by C−1�z�= �1−a1z

−1+b0z
−D� / �1−a1z

−1

−b0z
−D�, and the digital transfer function of the conical bore

is

S�z� =
1

z + 1

2fe
xe

c
�z − 1�

+
1 − a1z

−1 + b0z
−D

1 − a1z
−1 − b0z

−D

.

By denoting Gp=1+c / �2fexe� and Gm=1−c / �2fexe�, the
transfer function reduces to

S�z�

=
1 − �a1 + 1�z−1 + a1z

−2 − b0z
−D + b0z

−D−1

Gp − �a1Gp + Gm�z−1 + a1Gmz−2 + b0Gmz−D − b0Gpz
−D−1

yielding the difference equation:

pe�n� = bc0ue�n� + bc1ue�n − 1� + bc2ue�n − 2�

+ bcDue�n − D� + bcD1ue�n − D − 1�

+ ac1pe�n − 1� + ac2pe�n − 2� + acDpe�n − D�

+ acD1pe�n − D − 1� , �18�

where the coefficients bc0, bc1, bc2, bcD, and bcD1 are defined
by

bc0 =
1

Gp
, bc1 = −

a1 + 1

Gp
, bc2 =

a1

Gp
,

bcD = −
b0

Gp
, bcD1 =

b0

Gp

and the coefficients ac1, ac2, acD, and acD1 are defined by

ac1 =
a1Gp + Gm

Gp
, ac2 = −

a1Gm

Gp
,

acD = −
b0Gm

Gp
, acD1 = b0.

Figure 10 shows the exact and approximated impedance
of a conical bore. The characteristics of the bore are: R
=4·10−3, L=0.67, =2°. One can notice that the values of
the exact and approximated impedances correspond for the

frequencies of the first two peaks.



Figure 11 shows, for the same bore, the impulse re-
sponse of the exact impedance computed through an inverse
Fourier transform, and the impulse response of the approxi-
mated impedance computed through the difference equation.

As in the case of the cylindrical bore, the digital ap-
proximation of the losses leads to an underestimation of the
height of high frequency impedance peaks and a faster decay
of the impulse response. Nevertheless, it is worth noticing
that the functioning of the whole system �e.g., its oscillation
threshold� is mainly driven by the heights and frequencies of
the first impedance peaks �see, e.g., Ref. 21 for a justifica-
tion� and that mainly the nonlinear coupling of the imped-
ance with the exciter, rather than the impedance itself, is
responsible of the production of high frequency harmonics.

C. Approximation of the reed displacement

Similar to the propagation filter, the relationship be-
tween the acoustic pressure and the reed displacement is dis-
cretized in the time domain. Since the continuous impulse
response of the reed is an exponentially damped sine func-
tion satisfying x�0�=0, it is natural to build a digital filter in

FIG. 10. Top panel: Exact impedance of a conical bore. Bottom panel:
Approximated impedance of a conical bore �horizontal axis in hertz�.

FIG. 11. Top panel: Exact impulse response of a conical bore. Bottom
panel: Approximated impulse response of a conical bore �horizontal axis in

samples, fe=44 100�.
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which the displacement of the reed at time tn=n / fe is not a
function of the acoustic pressure at time tn but at least at time
tn−1= �n−1� / fe. It is important to point out that this is not an
artificial shift of one sample that may introduce numerical
instabilities in the whole scheme, as mentioned, e.g., in Ref.
22, but that it will let us keep the property x�0�=0 of the
continuous system when the reed is submitted to a Dirac
excitation. In order to satisfy this requirement, rather than
using the bilinear transformation or other discretization
schemes such as those studied in Ref. 22 to approximate the
terms i� and −�2 appearing in the continuous transfer func-
tion of the reed, we use i�
 fe /2�z−z−1� and −�2
 fe

2�z−2
+z−1�. These two formulas correspond to classical centered
numerical differentiation schemes that are both exact for
second-order polynomials. Under these approximations, the
digital transfer function of the reed is given by

X�z�
Pe�z�

=
�r

2

�r
2 + fe

2�z − 2 + z−1� +
fe

2
�z − z−1�qr�r

=
z−1

fe
2

�r
2 +

feqr

2�r
− z−1�2fe

2

�r
2 − 1� − z−2� feqr

2�r
−

fe
2

�r
2�

yielding the difference equation:

x�n� = 0 � pe�n� + b1a
pe�n − 1� + a1a

x�n − 1�

+ a2a
x�n − 2� , �19�

where the coefficients b1a
, a1a

, and a2a
are defined by

a0a
=

fe
2

�r
2 +

feqr

2�r
, b1a

=
1

a0a

, a1a
=

2fe
2

�r
2 − 1

a0a

,

a2a
=

feqr

2�r
−

fe
2

�r
2

a0a

.

Figures 12 and 13 show, respectively, the transfer func-
tion and the impulse response of this approximated reed
model �fr=2500 Hz,qr=0.2�. Comparisons with Figs. 2 and
3 show the relevance of the approximation we used.

D. Explicit solution of the nonlinear coupled system

Either in the case of a cylindrical or a conical bore, the
difference equation expressing the pressure pe�n� as function
of the flow ue�n� can be written in the general form:

pe�n� = bc0ue�n� + V

where V=V�pe�n−k� ,ue�n−k��, k�1, contains all the terms
in Eq. �17� or �18� that are known and do not depend on the
time sample n. In the case of a cylindrical bore, the value of
bc0 is set to bc0=1, according to Eq. �17�. Such a notation
will let us propose a single resolution scheme valid for any

bore geometry.



The sampled formulations of the impulse responses of
the reed displacement and of the impedance let us write the
sampled version of the system of Eqs. �9�–�11�:

x�n� = b1a
pe�n − 1� + a1a

x�n − 1� + a2a
x�n − 2� , �20�

pe�n� = bc0ue�n� + V , �21�

ue�n� = 	�1 − 
 + x�n����1 − 
 + x�n��

�sign�
 − pe�n���	
 − pe�n�	 . �22�

This system of equations is not explicit, but implicit,
since the computation of pe�n� with the impedance equation
�21� requires the knowledge of ue�n�. In a similar way, ue�n�
is obtained from the nonlinear equation �22� and requires
pe�n�.

Such a “delay-free loop” problem could be solved using,
e.g., the K-method9 for constant values of � and 
, but
thanks to the discretization scheme of the reed displacement,
the computation of x�n� with Eq. �20� does not require the

FIG. 12. Transfer function of the approximated reed model �in hertz�.

FIG. 13. Impulse response of the approximated reed model �in samples,

fe=44 100�.
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knowledge of pe�n� �but this of pe�n−1� which is known at
time n�. This makes it possible to solve simply and exactly
the coupled system in the case of time-varying values of �
and 
.

For that purpose, we use W �W=W�pe�n−k�� ,k�1� to
denote all the terms in Eq. �22� that are known at time
sample n:

W = 	�1 − 
 + x�n����1 − 
 + x�n�� . �23�

With this notation, the two equations �21� and �22� can
be written as

pe�n� = bc0ue�n� + V , �24�

ue�n� = W sign�
 − pe�n���	
 − pe�n�	 . �25�

Since the role of the term 	�1−
+x�n�� is to cancel W
when �1−
+x�n�� is negative, W always remain positive. We
successively consider the two cases: 
−pe�n��0 and 

−pe�n��0 corresponding, respectively, to the cases ue�n�
�0 and ue�n��0.

When ue�n��0, substituting the expression of pe�n� �Eq.
�24�� into the equation giving ue�n� �Eq. �25�� gives

ue�n� = W�
 − �bc0ue�n� + V� .

By taking the square of ue�n� and solving a second-order
polynomial in ue�n�, this expression yields

ue�n� =
1

2
�− bc0W

2 ± W��bc0W�2 + 4�
 − V�� .

In this case, the �+� solution is the only solution for which
ue�n� is real and positive �
−V�0 since 
−pe�n��0 and
bc0ue�n��0�.

Similarly, when ue�n� is negative, one obtains

ue�n� = − W��bc0ue�n� + V� − 
 ,

yielding

ue�n� =
1

2
�bc0W

2 ± W��bc0W�2 − 4�
 − V��

and the ��� solution is the only solution for which ue�n� is
real and negative �
−V�0 since 
−pe�n��0 and bc0ue�n�
�0�.

From these two solutions, one finally obtains

ue�n� =
1

2
sign�
 − V��− bc0W

2 + W��bc0W�2 + 4	
 − V	� .

This solution is unique since the function sign�

−pe�n���	
−pe�n�	 is a decreasing monotonous function of
pe.

The computation of the acoustic pressure and flow in the
mouthpiece at time sample n is finally obtained by the se-
quential use of

x�n� = b1a
pe�n − 1� + a1a

x�n − 1� + a2a
x�n − 2� , �26�

V = V�pe�n − k�,ue�n − k�� k � 1, �27�
W = 	�1 − 
 + x�n����1 − 
 + x�n�� , �28�



ue�n� =
1

2
sign�
 − V��− bc0W

2 + W��bc0W�2 + 4	
 − V	� ,

�29�

pe�n� = bc0ue�n� + V . �30�

The calculation of the sampled external pressure pext�n�
is performed by the use of a difference between the sum of
internal pressure and flow at sample n and at sample n−1,
corresponding to the simplest and classical approximation of
the derivative of pext�t�. This approximation has the advan-
tage of providing a light low-pass filtering compared to the
perfect derivation, which “simulates” the radiation losses ef-
fects.

It is worth noting that this simple and explicit solution of
the discrete nonlinear coupled problem is obtained thanks to
the specific discretization scheme of the reed model, which
allows a reduction of the complexity of the problem to the
solution of a second-order polynomial equation rather than a
third-order equation. Though there exist analytic solutions of
such an equation, their use is probably not well adapted to a
real-time implementation. In the same way, a traveling wave
formulation of the whole problem would lead to a similar
explicit resolution scheme, provided that the nonlinear char-
acteristics and reed displacement are expressed first with
wave variables. In the case of a cylindrical bore, this increase
in complexity would be compensated by the simplified for-
mulation of the resonator and the noninstantaneous response
of its reflection function, but this gain would no longer re-
main in the case of a conical bore.

E. Results of simulation

Figure 14 shows the internal acoustic pressure in the
mouthpiece for a cylindrical bore of length L=0.5 and radius
R=7·10−3. The values of the parameters are: 
=0.4, �=0.4,
fr=2205, qr=0.3. Three phases in the signal are visible: The

FIG. 14. Top panel: Internal acoustic pressure �in seconds�. Middle panel:
Blow-up of the attack transient �in samples, fe=44 100�. Bottom panel:
Blow-up of the decay transient �in samples, fe=44 100�.
attack transient corresponding to an abrupt increase of 
, the
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steady state oscillations during which 
 is constant, the de-
cay during which 
 and � slowly and linearly decrease to-
ward zero.

F. Real-time synthesis implementation

The synthesis model has been implemented in real-time
in the C language as an external Max-MSP object, piloted
from MIDI commands given by a Yamaha WX5 controller.
This controller measures, as a function of time, the lip pres-
sure controlling the parameter ��t�, and the blowing pressure
controlling the parameter 
�t�. This information is received
in MIDI format �between 0 and 127� and is scaled so that it
corresponds to the range of the physical parameters. The
tuning of the model is performed by the use of the MIDI
Pitch information coming from the fingering that controls the
length L of the bore by the relation L=c / �4fp� in the cylin-
drical case, where fp is the playing frequency. The delay D is
implemented through a circular delay line. Like in a real
single-reed instrument, since the pitch changes with respect
to physical parameters such as 
, �, �r, and qr and since the
real instrument is not perfectly tuned for all the fingerings, it
seemed unnecessary, at least in a first step, to implement a
fractional delay line. The transitions between two notes are
handled through a cross-fade in the time domain between the
difference equations corresponding to the two different reso-
nator lengths.

In the example to follow, the real-time synthesis model
has been used to play the first beats of the “cat” theme of
Pierre et le loup by Serge Prokofiev. The sound file can be
downloaded at: http://www.lma.cnrs-mrs.fr/�guillemain/
jasa.mp3. The duration of the sequence is 11 s. The reed
resonance frequency �r /2� and damping factor qr have been
set in order to facilitate the raising of squeaks, respectively,
1850 Hz and 0.2. During the performance, the external pres-
sure pext, together with the three playing parameters made of
��t�, 
�t�, and the midi pitch were recorded.

FIG. 15. Top panel: Control parameter 
�t�. Middle panel: Control param-
eter ��t�. Bottom panel: Frequency of the note �in hertz� �horizontal axis in
ms�.
Figure 15 represents, with respect to time �in ms�, from



top to bottom, the parameter 
, the parameter �, and the
frequency of the midi pitch �in hertz�.

Figure 16 shows the spectrogram �between 0 and
5500 Hz� of the sound sequence �vertical axis in kilohertz,
horizontal axis in seconds�.

One can notice that on long sustained notes, the blowing
pressure is higher during the attack and decreases when the
steady state of the self-oscillations is established. Reed
squeaks in the sequence can be seen on the spectrogram
around t=5 s and t=6.5 s. In this situation, the reed vibrates
at a fundamental frequency located around the impedance
peak the frequency of which is close to the reed resonance
frequency, producing a treble sound with harmonic content.

Sound examples simulating various wind instruments
are available from http://www.lma.cnrs-mrs.fr/�guillemain/
index.html

V. CONCLUSION

The real-time synthesis model described in this paper
has been obtained through a straightforward transposition of
the simplified equations of the physical behavior of a single-
reed instrument. In particular, the formulation of the input
impedance of the bore, avoiding the classical P+ / P− decom-
positions allows the addition of a nonlinear loop modeling
the interaction between pressure, reed displacement, and
flow to the linear parts of the model, as it is expressed physi-
cally. An explicit resolution scheme of the discretized ver-
sion in time of the coupled system has been proposed. The
structure of this scheme makes it possible to extend the
model by replacing the linear parts of the system by equa-
tions obtained from more complex geometries of the bore
and different reed models. Although there are strong connec-
tions between this method and other approaches based on
wave variables �since the bore is also considered as an acous-
tic waveguide�, working all along the synthesis process with
physical variables makes it easy to use refined physical mod-

FIG. 16. Spectrogram of the sound sequence �vertical axis in kilohertz,
horizontal axis in seconds�.
els of the nonlinear characteristics for real-time synthesis ap-
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plications. Among such refinements, one can mention the
additional flow generated by the reed displacement and un-
steady terms in the Bernoulli model.

The advantage of this model is its ability to control all
the synthesis parameters of the instrument in real-time. In-
deed, all the coefficients of the digital filters and the control
parameters are explicitly expressed in terms of physical pa-
rameters.

Future works using the same approach will present the
modeling of other instruments such as saxophones and
brasses and the piloting of the synthesis. The vocal tract, for
example, could also be modeled through this approach, as
has been done, e.g., by Kelly et al.23 and Cook24 using digital
waveguides.

Similarily, mechanical impedance can be modeled using
the same formalism. Current works are dealing with the
simulation of hammer–string interaction using the nonlinear
model described by Hunt et al.25
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