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Real-time synthesis of clarinet-like instruments using digital impedance models

A real-time synthesis model of wind instruments sounds, based upon a classical physical model, is presented. The physical model describes the nonlinear coupling between the resonator and the excitor through the Bernoulli equation. While most synthesis methods use wave variables and their sampled equivalent in order to describe the resonator of the instrument, the synthesis model presented here uses sampled versions of the physical variables all along the synthesis process, and hence constitutes a straightforward digital transposition of each part of the physical model. Moreover, the resolution scheme of the problem ͑i.e., the synthesis algorithm͒ is explicit and all the parameters of the algorithm are expressed analytically as functions of the physical and the control parameters.

I. INTRODUCTION

The calculation of the self-sustained oscillations of single-reed instruments such as the clarinet was proposed for the first time by Schumacher, 1 using a time domain discretization of the equations. This work, which does not attempt a real-time implementation, has later been widely developed ͑see, e.g., Gazengel et al. [START_REF] Gazengel | Time domain simulation of single reed wind instruments. From the measured input impedance to the synthesis signal. Where are the traps?[END_REF] or Ducasse [START_REF] Ducasse | Modélisation et simulation dans le domaine temporel d'instruments à vent à anche simple en situation de jeu: Méthodes et modèles[END_REF] ͒. Numerical methods, such as the harmonic balance, have been developed by Gilbert 4 in order to study the periodic solutions. In addition, in order to perform the calculations in real-time, several methods yielding a time domain formulation of the waves in the resonator have been developed. We can mention the wellknown digital waveguide method ͑see, e.g., Smith [START_REF] Smith | Principles of digital waveguide models of musical instruments[END_REF] or Välimäki [START_REF] Välimäki | Discrete-time modeling of acoustic tubes using fractional delay filters[END_REF] ͒ and wave digital modeling used by van Walstijn, [START_REF] Van Walstijn | Discrete-time modelling of woodwind instrument bores using wave variables[END_REF] which consider the incoming and outgoing waves within each section of a bore and their scattering at the junctions between bores of different sections. We can also mention the calculation of the reflection function from impedance measurements using inverse Fourier transform, which has been used for the synthesis of the trumpet by Vergez. [START_REF] Vergez | Trompette et trompettiste: Un système dynamique non linéaire analysé modélisé et simulé dans un contexte musical" ͑Trumpet and trumpet player: A nonlinear dynamical system[END_REF] Like the Schumacher method, since these methods consider the incoming and outgoing waves, the problem then lays in the formulation of the nonlinearity which, whatever the model, can only be expressed physically in terms of acoustic pressure and flow at the mouthpiece of the instrument.

In this paper, a real-time synthesis model using only physical variables is proposed. It first consists in directly expressing the impedance relationship at the mouthpiece between flow and pressure, which become the input and output of the linear part of the model characterizing the bore. The nonlinear coupling ͑based on the steady Bernoulli flow model͒ between the bore and the reed ͑described classically as a single mass-spring damped oscillator͒ is then modeled in a physical way. In the case of sampled signals, thanks to a suitable discretization scheme of the reed displacement, this coupling is solved explicitly whatever the shape of the bore without iterative or table-lookup schemes such as the K-Method described by Borin. [START_REF] Borin | Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems[END_REF] The paper is organized as follows. Section II presents the classical physical model in the case of a cylindrical bore ͑see, e.g., Kergomard et al. [START_REF] Kergomard | Calculation of the spectrum of self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments[END_REF] ͒ allowing the construction of the main elements of the synthesis model. Section III presents a preliminary step toward the synthesis algorithm in the case of a cylindrical bore, extends it to the case of a truncated conical bore, and builds the complete synthesis model. A more complete formalism for bores of other geometries and different reed models is described in Guillemain et al. [START_REF] Ph | Procédé de simulation et de synthèse numérique d'un phénomène oscillant" ͑Process of simulation and digital synthesis of an oscillating phenomenon͒[END_REF] Section IV deals with sampled variables, and presents an explicit time-domain scheme which solves the coupled system constituting the sampled physical model, its digital implementation, and its real-time control. Section V is devoted to conclusions and perspectives of this work.

II. SIMPLIFIED PHYSICAL MODEL

We first briefly describe the three components of the classical physical model. They are made of a linear impedance relationship between acoustic pressure and flow at the mouthpiece, a pressure driven linear oscillator modeling the first mode of vibrations of the reed, and a nonlinear characteristics coupling the flow to the pressure and the reed displacement at the mouthpiece.

A. Wave equation in a cylindrical lossy bore

Wave number expression

The first linear part of the physical model corresponds to the resonator of the instrument. We here consider a cylindrical bore. For such a geometry, if one assumes that the radius of the bore is large in front of the boundary layer thicknesses, the classical Kirchhoff's theory ͑see, e.g., Pierce [START_REF] Pierce | Acoustics ͑McGraw-Hill[END_REF] ͒ leads, in the frequency domain, to the value of the complex wave number k͑͒ for a plane wave: a͒ Electronic mail: guillem@lma.cnrs-mrs.fr

k͑͒ 2 = 2 c 2 ͑1 -i 3/2 ␣c 2 -1/2 ͒, where ␣ = 2/͑Rc 3/2 ͒ͩ ͱ l v + ͩ c p c v -1ͪ ͱ l t ͪ.
R is the radius of the bore: R =7•10 -3 in the clarinet case. Typical values of the physical constants, in mK s units, are:

c = 340, l v =4•10 -8 , l t = 5.6• 10 -8 , C p / C v = 1.4.
For the acoustic pressure, this corresponds to the time domain differential equation ͑see, e.g., Polack [START_REF] Polack | Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: A diffusion process[END_REF] ͒:

ץ 2 p͑x,t͒ ץx 2 - 1 c 2 ץ 2 p͑x,t͒ ץt 2 -␣ ץ 3/2 p͑x,t͒ ץt 3/2 = 0. ͑1͒
To the same order of approximation, the classical expression of k͑͒, that we shall use in the following is

k͑͒ = c - i 3/2 2 ␣c 1/2 . ͑2͒

Expression of the losses

Let us consider a bore of infinite length, excited in x =0 at t = 0 by a Dirac impulse ␦͑x͒␦͑t͒. At any point x Ͼ 0, the acoustic pressure propagating from this source in the ͑x Ͼ 0͒ direction can be written as a continuous sum of all the waves that can propagate in the bore:

p͑x,t͒ = ͵ exp͑-ik͑͒x͒exp͑it͒d,
which is the inverse Fourier transform of exp͑-ik͑͒x͒. The filtering of a pressure wave propagating in the ͑x Ͼ 0͒ direction between x = 0 and x = L, including propagation delay, dispersion, and dissipation is then given by

F͑͒ = exp͑-ik͑͒L͒ = expͩ- 1 2 ␣cͱ 2 Lͪ ϫexpͩ-iͩ c L + 1 2 ␣cͱ 2 Lͪͪ . ͑3͒
Dissipation, present in the modulus of F͑͒, and dispersion, present in the nonlinear part of the phase of F͑͒ are functions of frequency, and depend both on the radius and the length of the bore.

Figure 1 shows the behavior of the modulus of F͑͒ as function of frequency. This filter expresses the modifications encountered by a pressure wave when it travels from one end of the bore to the other end.

Input impedance of a cylindrical bore "frequency domain…

For a cylindrical resonator, according to the transmission line theory, the Fourier transforms ͓P e ͑͒, U e ͑͒ and P s ͑͒, U s ͔͑͒ of the dimensionless acoustic pressure and flow at the input ͓p e ͑t͒ , u e ͑t͔͒ and at the open end ͓p s ͑t͒ , u s ͑t͔͒ of the resonator are linked by

P e ͑͒ = cos͑k͑͒L͒P s ͑͒ + i sin͑k͑͒L͒U s ͑͒, U e ͑͒ = i sin͑k͑͒L͒P s ͑͒ + cos͑k͑͒L͒U s ͑͒.
In these equations, the acoustic pressure p e,s and flow u e,s are normalized with respect to the physical variables p ˜e,s and u ˜e,s in the following way: p e,s = p ˜e,s / p M and u e,s = Z c / p M u ˜e,s , where Z c = c / ͑R 2 ͒ is the characteristic impedance of the resonator. The pressure p M is the static beatingreed pressure, depending on the characteristics of the reed and defined in the Sec. II B.

As a first approximation, we assume that the radius of the bore is small compared to the wavelength. In this case, the radiation losses are negligible and the radiation effect is a length correction, taken into account in L. Under this classical hypothesis, the output impedance P s ͑͒ / U s ͑͒ vanishes and only the internal losses contained in k͑͒ are taken into account. This simplification let us express the relationship between acoustic pressure and flow at the input of the resonator in the following way:

P e ͑͒ = i tan͑k͑͒L͒U e ͑͒ = Z e ͑͒U e ͑͒, ͑4͒
where Z e ͑͒ = i tan͑k͑͒L͒ is the dimensionless input impedance of the resonator.

B. Simple reed model

We here consider a reed model based upon a classical single mode model. This model describes in a simple way the dimensionless displacement x͑t͒ of the reed with respect to its equilibrium point x = 0 when it is submitted to a dimensionless acoustic pressure p e ͑t͒: where r =2f r and q r are, respectively, the circular frequency and the quality factor of the reed. Typical values for these parameters are: f r = 2500 Hz and q r = 0.2 in the clarinet case.

The dimensionless displacement x of the reed is defined from the physical reed displacement y ˜by: x = y ˜/ H + p m / p M , where H is the height of the opening between the reed and the mouthpiece and p m is the static ͑slowly varying͒ pressure within the mouth. The static beating-reed pressure is expressed by: p M = r H r 2 , where r is the mass per unit surface of the reed.

Assuming that the initial conditions of the reed movement correspond to a displacement and a velocity equal to zero, the Fourier domain equivalent of this equation gives the transfer function of the reed:

X͑͒ P e ͑͒ = r 2 r 2 -2 + iq r r . ͑6͒
The reed displacement due to an impulse pressure p e ͑t͒ = ␦͑t͒ is then given by

x͑t͒ = 2 r ͱ 4 -qr 2 expͩ- 1 2 r q r tͪsinͩ 1 2 ͱ 4 -qr 2 r tͪ . ͑7͒
Equation ͑7͒ shows that the response of the reed to an impulse can be considered noninstantaneous, since x͑0͒ =0. Since the relation between x͑t͒ and p e ͑t͒ is a convolution, this property will be true for any excitation p e ͑t͒, and we will take advantage of this in the following. Figures 2 and3 show, respectively, the transfer function and the impulse response of this reed model.

C. Nonlinear characteristics

The dimensionless acoustic pressure p e ͑t͒, the dimensionless acoustic flow u e ͑t͒, and the dimensionless reed dis-placement x͑t͒ are linked in a nonlinear way at the input of the resonator through the stationary Bernoulli equation:

u e ͑t͒ = ⌰͑1 -␥ + x͑t͒͒͑1 -␥ + x͑t͒͒ ϫsign͑␥ -p e ͑t͒͒ ͱ ͉␥ -p e ͑t͉͒, ͑8͒
where ⌰ is the Heaviside function, the role of which is to keep the opening of the reed positive.

This simplified nonlinear characteristics is obtained through classical hypothesis ͑see, e.g., Hirschberg [START_REF] Hirschberg | Aero-acoustics of wind instruments[END_REF] and Kergomard [START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF] ͒. The opening of the reed channel is proportional to the reed displacement. The acoustic flow generated by the reed ͑proportional to the reed velocity͒ and the unsteady term in the Bernoulli equation ͑proportional to the time derivative of the acoustic velocity͒ are ignored.

The parameter is characteristic of the whole embouchure and is related to the maximum flow entering the instrument. It is defined by Kergomard, [START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF] after Wilson and Beavers, 16 and depends on the ratio between the reed opening and the tube cross-section area and on the reed stiffness: = Z c wH ͱ 2/͑p M ͒, where w is the width of the reed. Com- mon values lay between 0.2 and 0.6 in the clarinet case. The parameter ␥ is the ratio between the pressure inside the mouth of the player and the static beating-reed pressure: ␥ = p m / p M . For a lossless bore and a massless reed, it evolves from 1 / 3, which is the oscillation threshold, to 1 / 2, which corresponds to the threshold of beating-reed. The parameters and ␥ constitute two important performance parameters since they, respectively, represent the way the player holds the reed and its blowing pressure inside the instrument. Though, for clarity in the notations, the t variable is omitted, the playing parameters ␥ and are functions of time, but slowly varying compared to the other time-dependent variables.

Figure 4 represents the nonlinear characteristics of the reed for the limit case r = ϱ. In this case, the displacement x͑t͒ of the reed reduces to the acoustic pressure p e ͑t͒ itself and the reed behaves as a single spring. 

D. Coupling of the reed and the cylindrical resonator

Combining the reed displacement equation, the impedance relation, and the nonlinear characteristics, the acoustic pressure at the mouthpiece level can finally be found by solving the following set of coupled equations:

1 r 2 d 2 x͑t͒ dt 2 + q r r dx͑t͒ dt + x͑t͒ = p e ͑t͒, ͑9͒ 
P e ͑͒ = Z e ͑͒U e ͑͒, ͑10͒ 
u e ͑t͒ = ⌰͑1 -␥ + x͑t͒͒͑1 -␥ + x͑t͒͒ ϫsign͑␥ -p e ͑t͒͒ ͱ ͉␥ -p e ͑t͉͒.

͑11͒

The following sections will present a way of solving these equations in the time domain for sampled variables.

III. CONSTRUCTION OF THE SYNTHESIS MODEL FROM THE PHYSICAL MODEL

In order to solve this system of three equations, we first propose a different formulation of the impedance relation, compatible with a time-domain implementation. We first consider the case of a cylindrical bore, and further extend it to the case of a conical bore.

A. Expression of the input impedance of the resonator

Cylindrical bore

The input impedance, denoted C͑͒, of a cylindrical resonator is first described as a combination of looped filters. For that purpose, the impedance Z e ͑͒ is written as

C͑͒ = Z e ͑͒ = i tan͑k͑͒L͒ = i sin͑k͑͒L͒ cos͑k͑͒L͒ = exp͑ik͑͒L͒ -exp͑-ik͑͒L͒ exp͑ik͑͒L͒ + exp͑-ik͑͒L͒ .
This last expression can be written as follows:

C͑͒ = 1 -exp͑-2ik͑͒L͒ 1 + exp͑-2ik͑͒L͒ = 1 1 + exp͑-2ik͑͒L͒ - exp͑-2ik͑͒L͒ 1 + exp͑-2ik͑͒L͒
. ͑12͒

Figure 5͑a͒ shows the interpretation of Eq. ͑12͒ in terms of looped filters. The transfer function of this model is directly the dimensionless input impedance of a cylindrical resonator. It is made of a sum of two elementary blocks. The upper block corresponds to the first term of the second equality in Eq. ͑12͒ and the lower block corresponds to the second term.

Figure 5͑b͒ shows that the impedance C͑͒ of the cylindrical bore can be related to a Schroeder 17 all-pass filter, used for reverberation effects, by replacing the loop delay of the form exp͑-iD͒ by -exp͑-2ik͑͒L͒ and removing the gains and their signs. This interpretation will make the digital implementation of such filters similar up to the losses contained in exp͑-2ik͑͒L͒.

Figure 6 shows ͑top panel͒ the input impedance of the resonator with respect to frequency and ͑bottom panel͒ its impulse response computed through an inverse Fourier transform. Bore length: L = 0.5 m, radius R = 7 mm.

Similarly, we denote by C -1 ͑͒ the admittance of a cylindrical bore:

C -1 ͑͒ = 1 + exp͑-2ik͑͒L͒ 1 -exp͑-2ik͑͒L͒ .
It is worth noticing that in the case of a perfectly cylindrical bore, Eq. ͑12͒ is not the most efficient way to describe the resonator. Indeed, in this case, the description based on wave variables and used, e.g., in the digital waveguides models is more efficient.

If we decompose the acoustic pressure and flow into wave variables: P e ͑͒ = P + ͑͒ + P -͑͒ and U e ͑͒ = P + ͑͒ -P -͑͒, we obtain P + ͑͒ = ͑P e ͑͒ + U e ͑͒͒ / 2 and P -͑͒ = ͑P e ͑͒ -U e ͑͒͒ / 2. By denoting R͑͒ the reflection function satisfying P -͑͒ = R͑͒P + ͑͒, it becomes

R͑͒ = Z e ͑͒ -1 Z e ͑͒ + 1 = -F͑͒ 2 = -exp͑-2ik͑͒L͒.
This last equation shows that the reflection function R͑͒ models the back and forth propagation of the pressure waves themselves, while Eq. ͑12͒ directly models the consequence of the propagation through the introduction of the reflection function inside two loops. This constitutes a difference between the method described here and wave variables methods, though both of them are physically equivalent since they consider the bore as an acoustic waveguide.

Conical bore

In the case of a conical bore, by assuming again that the radiation impedance can be ignored and by considering the propagation of spherical waves, the input impedance, denoted S͑͒, is written classically as a parallel combination of a cylindrical bore and an "air" bore:

S͑͒ = 1 1 i x e c + 1 C͑͒ ,
where x e is the distance between the apex and the input, expressed in terms of the angle of the cone and the input radius R as x e = R / sin͑ /2͒.

Noting D the differentiation operator: D͑͒ = i, the input impedance of a conical bore can be written in the form

S͑͒ = x e c D͑͒ 1 +
x e c D͑͒C -1 ͑͒ , yielding the equivalent scheme in Fig. 7.

As was the case for the cylindrical bore, this scheme shows that the wave variables and the reflection function are embedded in the model and that only the consequence of the propagation is considered.

Moreover, as opposed to the case of a cylindrical bore, the use of wave variables in the case of a conical bore does not lead to a more compact description of the resonator since the reflection function R͑͒ is given by

R͑͒ = - 2 x e c i exp͑-2ik͑͒L͒ + 1 -exp͑-2ik͑͒L͒ 2 x e c i + 1 -exp͑-2ik͑͒L͒
.

Here, R͑͒ does not reduce to a simple delay+ filter and exhibits an instantaneous response proportional to ⌰͑t͒exp͑-ct / ͑2x e ͒͒ for t ഛ 2L / c. This is due to the presence of the "air" bore, which is a lumped element. These facts have been largely studied ͑see, e.g., Ref. 18͒.

B. Coupling of the resonator with the reed and the nonlinear characteristics

The system of two coupled equations ͑9͒ and ͑11͒, combined with any impedance model corresponding to Eq. ͑10͒, leads to the introduction of the reed and the nonlinearity as a nonlinear loop linking the output p e to the input u e of the resonator, as shown in Fig. 8 in the case of a cylindrical bore. The output of the model is made of the three coupled variables p e , u e , and x.

The model is piloted by the length L of the bore, the opening of the reed channel represented by the parameter ͑t͒, and the blowing pressure represented by the parameter ␥͑t͒.

C. External pressure

When a real instrument is simulated, the acoustic pressure in the mouthpiece is not the most perceptively relevant variable and the calculation of the external pressure is necessary. For a cylindrical bore, if we assume that the diameter is small compared to the wavelength of the frequencies propagating within the bore, the radiation is monopolar and the external pressure is expressed classically as the time derivative of the output flow: p ext ͑t͒ = du s ͑t͒ / dt. Let us express the output flow as a function of the dimensionless variables p e ͑t͒ and u e ͑t͒. Assuming again that the radiation impedance is negligible ͓P s ͑͒ / U s ͑͒ =0͔, the following expression is obtained from the transmission line theory:

P e ͑͒ = i sin͑k͑͒L͒U s ͑͒, U e ͑͒ = cos͑k͑͒L͒U s ͑͒, which yields U s ͑͒ = exp͑-ik͑͒L͒͑P e ͑͒ + U e ͑͒͒.
From a perceptive point of view, the quantity exp͑-ik͑͒L͒ can be ignored, since it represents the delay and the losses encountered by the acoustic pressure during a simple travel between the embouchure and the open end ͑see Fig. 1͒. This simplification leads to the following expression of the external pressure:

p ext ͑t͒ = d dt ͑p e ͑t͒ + u e ͑t͒͒. ͑13͒
This approximation overestimates the high frequencies, but we point out that a deeper physical description of the radiation impedance and radiation losses is beyond the scope of this paper. For a deeper discussion, we refer the reader, e.g., to Ref. 19 for acoustic modeling or Ref. 20 for signal modeling.

IV. DISCRETE-TIME FORMULATION OF THE CONTINUOUS SYSTEM

In order to draw up the synthesis model, it is necessary to use a discrete formulation in the time domain for the impedance and the reed displacement models.

A. Approximation of the loop filter

The construction of a discrete version of the impedance relationship first requires an expression of the losses contained in F͑͒ 2 = exp͑-2ik͑͒L͒ through a digital filter. In order to be modified easily according to the geometry of the resonator, the coefficients of the filter should make an explicit use of the geometrical variables such as the length of the bore and its radius. This requirement led us to express analytically the coefficients of the digital filter as functions of the geometrical parameters, rather than use numerical approximations and minimization techniques to compute the values of these coefficients. For that purpose, we use a classical one pole filter ͑see, e.g., Ref. 6͒, written in the following form:

F ˜͑ ˜͒ = b 0 exp͑-i ˜D͒ 1 -a 1 exp͑-i ˜͒ , ͑14͒
where f e is the sampling frequency, ˜= / f e , and D =2f e L / c is the pure delay corresponding to the linear part of k͑͒.

Let us express the parameters b 0 and a 1 as functions of the physical parameters, so that ͉F͑͒ 2 ͉ 2 = ͉F ˜͑ ˜͉͒ 2 for two given values 1 and 2 of . These two values will be different in the case of a cylindrical bore and in the case of a conical bore and will in both cases correspond to the frequencies of the two first impedance peaks, in order to ensure their exact heights. It is important to preserve this feature for a faithful simulation of the continuous dynamical system, since the linear impedance is coupled with the nonlinear characteristics. It will allow the decay times of the first two modes of the approximated impulse response of the impedance to match those of the exact impulse response, which is important for the transients induced by quick changes of ␥͑t͒ and ͑t͒. A detailed discussion on the role of the height of the first impedance peaks for the functioning of the clarinet, in particular for the oscillation threshold, can be found, e.g., in Ref. 10.

By ignoring the ͑small͒ dispersion introduced by the nonlinear part of the phase of F͑͒ in the cylindrical case, the frequencies of the resonance peaks are given by n = c͑n -1/2͒ / L, n being an integer.

In the conical case, the frequencies of the impedance peaks are solutions of the following equation: sin͑L / c + ͒ = x e / c cos͑L / c͒. In order to express the coefficients of the filter as functions of the physical parameters analytically, we use an approximation of the resonance frequencies, rather than a numerical method to solve this equation. The method consists in finding a first approximation of the solution and use a polynomial expansion around this approximation to find the final approximation. This first approximation is taken as the solution of the equation: sin͑L / c + ͒ = cos͑L / c͒ and is given by n = nc / L -c / ͑4L͒. Using a first-order limited expansion of sin͑L / c + ͒ and x e / c cos͑L / c͒ around = n + ⑀ n and identifying the powers of ⑀ n gives directly ⑀ n =-c͑͑4n -1͒x e -4nL͒ / ͑L͑4L + ͑4n -1͒x e +4x e ͒͒. This lets us express the first two frequencies 1 and 2 : 1 = c͑12L + 9 2 x e + 16L͒ 4L͑4L + 3x e + 4x e ͒ , 2 = c͑28L + 49 2 x e + 16L͒ 4L͑4L + 7x e + 4x e ͒ .

Moreover, for the computation of ͉F͑͒ 2 ͉ 2 at frequencies 1 and 2 , the radius R is replaced by an equivalent radius r p defined by r p = R͑1+5L / ͑12x e ͒͒. This value was determined empirically by comparing the impedance of a conical bore obtained by considering the propagation of spherical waves with an impedance of the same conical bore obtained with a concatenation of small elementary cylinders with different diameters ͑stepped cone͒, using the transmission line theory.

The system of equations to solve is then given by

͉F͑ 1 ͒ 2 ͉ 2 ͑1 + a 1 2 -2a 1 cos͑ ˜1͒͒ = b 0 2 , ͉F͑ 2 ͒ 2 ͉ 2 ͑1 + a 1 2 -2a 1 cos͑ ˜2͒͒ = b 0 2 ,
where

͉F͑͒ 2 ͉ 2 = exp͑-2␣c ͱ /2L͒. By denoting c 1 = cos͑ ˜1͒, c 2 = cos͑ ˜2͒, F 1 = ͉F͑ 1 ͒ 2 ͉ 2 , F 2 = ͉F͑ 2 ͒ 2 ͉ 2 , A 1 = F 1 c 1 , A 2 = F 2 c 2 , A 12 = A 1 -A 2 , F 12 = F 1 -F 2 ,
the coefficients a 1 and b 0 are given by

a 1 = A 12 -ͱ A 12 2 -F 12 2 F 12 , ͑15͒ b 0 = ͱ 2F 1 F 2 ͑c 1 -c 2 ͒͑A 12 -ͱ A 12 2 -F 12 2 ͒ F 12 . ͑16͒ 

B. Expression of the impedance

Cylindrical bore

From the expression of the input impedance of the cylindrical resonator ͓Eq. ͑12͔͒, by denoting z = exp͑i ˜͒ it becomes directly:

C͑z͒ = 1 1 + ͩ b 0 1 -a 1 z -1 ͪz -D -ͩ b 0 1 -a 1 z -1 ͪz -D 1 + ͩ b 0 1 -a 1 z -1 ͪz -D = 1 -a 1 z -1 -b 0 z -D 1 -a 1 z -1 + b 0 z -D
yielding the difference equation:

p e ͑n͒ = u e ͑n͒ -a 1 u e ͑n -1͒ -b 0 u e ͑n -D͒ + a 1 p e ͑n -1͒
-b 0 p e ͑n -D͒. ͑17͒

Figure 9 shows the approximated input impedance as function of frequency and the impulse response of the resonator computed by the use of the difference equation. The length of the bore is L = 0.5 m and its radius is R = 7 mm. Comparisons with Fig. 6 show that the heights of the two first impedance peaks are equal, but that the heights of the higher order peaks are smaller. As a consequence, higher order modes decrease faster, yielding an apparently faster decay of the impulse response. Nevertheless, the decays of the first two resonance frequencies are exact. Though this phenomenon might appear as an inconvenience to the use of a first-order low pass filter to model the losses at high frequency, one can also consider it as an advantage. Indeed, it constitutes a way to take into account additional losses in the bore ͑coming, e.g., from a bell or tone holes radiation͒ that are not taken into account in the physical model, since they can be ignored at low frequencies but may play a role at higher frequencies.

Conical bore

In the case of a conical bore, we use the bilinear transformation: D͑z͒ =2f e ͑z -1͒ / ͑z +1͒ to approximate the differentiation operator D͑͒. The cylindrical bore admittance C -1 ͑z͒ is given by

C -1 ͑z͒ = ͑1-a 1 z -1 + b 0 z -D ͒ / ͑1-a 1 z -1 -b 0 z -D ͒,

and the digital transfer function of the conical bore is

S͑z͒ = 1 z + 1 2f e x e c ͑z -1͒ + 1 -a 1 z -1 + b 0 z -D 1 -a 1 z -1 -b 0 z -D .
By denoting G p =1+c / ͑2f e x e ͒ and G m =1-c / ͑2f e x e ͒, the transfer function reduces to

S͑z͒ = 1 -͑a 1 + 1͒z -1 + a 1 z -2 -b 0 z -D + b 0 z -D-1 G p -͑a 1 G p + G m ͒z -1 + a 1 G m z -2 + b 0 G m z -D -b 0 G p z -D-1
yielding the difference equation: 

b c0 = 1 G p , b c1 = - a 1 + 1 G p , b c2 = a 1 G p , b cD = - b 0 G p , b cD1 = b 0 G p
and the coefficients a c1 , a c2 , a cD , and a cD1 are defined by

a c1 = a 1 G p + G m G p , a c2 = - a 1 G m G p , a cD = - b 0 G m G p , a cD1 = b 0 .
Figure 10 shows the exact and approximated impedance of a conical bore. The characteristics of the bore are: R =4•10 -3 , L = 0.67, = 2°. One can notice that the values of the exact and approximated impedances correspond for the frequencies of the first two peaks. Figure 11 shows, for the same bore, the impulse response of the exact impedance computed through an inverse Fourier transform, and the impulse response of the approximated impedance computed through the difference equation.

As in the case of the cylindrical bore, the digital approximation of the losses leads to an underestimation of the height of high frequency impedance peaks and a faster decay of the impulse response. Nevertheless, it is worth noticing that the functioning of the whole system ͑e.g., its oscillation threshold͒ is mainly driven by the heights and frequencies of the first impedance peaks ͑see, e.g., Ref. 21 for a justifica-tion͒ and that mainly the nonlinear coupling of the impedance with the exciter, rather than the impedance itself, is responsible of the production of high frequency harmonics.

C. Approximation of the reed displacement

Similar to the propagation filter, the relationship between the acoustic pressure and the reed displacement is discretized in the time domain. Since the continuous impulse response of the reed is an exponentially damped sine function satisfying x͑0͒ = 0, it is natural to build a digital filter in which the displacement of the reed at time t n = n / f e is not a function of the acoustic pressure at time t n but at least at time t n-1 = ͑n -1͒ / f e . It is important to point out that this is not an artificial shift of one sample that may introduce numerical instabilities in the whole scheme, as mentioned, e.g., in Ref.

22, but that it will let us keep the property x͑0͒ = 0 of the continuous system when the reed is submitted to a Dirac excitation. In order to satisfy this requirement, rather than using the bilinear transformation or other discretization schemes such as those studied in Ref. 22 to approximate the terms i and -2 appearing in the continuous transfer function of the reed, we use i Ӎ f e /2͑z -z -1 ͒ and -2 Ӎ f e 2 ͑z -2 + z -1 ͒. These two formulas correspond to classical centered numerical differentiation schemes that are both exact for second-order polynomials. Under these approximations, the digital transfer function of the reed is given by

X͑z͒ P e ͑z͒ = r 2 r 2 + f e 2 ͑z -2 + z -1 ͒ + f e 2 ͑z -z -1 ͒q r r = z -1 f e 2 r 2 + f e q r 2 r -z -1 ͩ 2f e 2 r 2 -1 ͪ -z -2 ͩ f e q r 2 r - f e 2 r 2 ͪ
yielding the difference equation:

x͑n͒ = 0 ϫ p e ͑n͒ + b 1 a p e ͑n -1͒ + a 1 a x͑n -1͒ + a 2 a x͑n -2͒, ͑19͒
where the coefficients b 1 a , a 1 a , and a 2 a are defined by

a 0 a = f e 2 r 2 + f e q r 2 r , b 1 a = 1 a 0 a , a 1 a = 2f e 2 r 2 -1 a 0 a , a 2 a = f e q r 2 r - f e 2 r 2 a 0 a .
Figures 12 and13 show, respectively, the transfer function and the impulse response of this approximated reed model ͑f r = 2500 Hz, q r = 0.2͒. Comparisons with Figs. 2 and3 show the relevance of the approximation we used.

D. Explicit solution of the nonlinear coupled system

Either in the case of a cylindrical or a conical bore, the difference equation expressing the pressure p e ͑n͒ as function of the flow u e ͑n͒ can be written in the general form:

p e ͑n͒ = b c0 u e ͑n͒ + V
where V = V͑p e ͑n -k͒ , u e ͑n -k͒͒, k ജ 1, contains all the terms in Eq. ͑17͒ or ͑18͒ that are known and do not depend on the time sample n. In the case of a cylindrical bore, the value of b c0 is set to b c0 = 1, according to Eq. ͑17͒. Such a notation will let us propose a single resolution scheme valid for any bore geometry. 

͑22͒

This system of equations is not explicit, but implicit, since the computation of p e ͑n͒ with the impedance equation ͑21͒ requires the knowledge of u e ͑n͒. In a similar way, u e ͑n͒ is obtained from the nonlinear equation ͑22͒ and requires p e ͑n͒.

Such a "delay-free loop" problem could be solved using, e.g., the K-method [START_REF] Borin | Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems[END_REF] for constant values of and ␥, but thanks to the discretization scheme of the reed displacement, the computation of x͑n͒ with Eq. ͑20͒ does not require the knowledge of p e ͑n͒ ͓but this of p e ͑n -1͒ which is known at time n͔. This makes it possible to solve simply and exactly the coupled system in the case of time-varying values of and ␥.

For that purpose, we use W ͓W = W͑p e ͑n -k͒͒ , k ജ 1͔ to denote all the terms in Eq. ͑22͒ that are known at time sample n:

W = ⌰͑1 -␥ + x͑n͒͒͑1 -␥ + x͑n͒͒. ͑23͒
With this notation, the two equations ͑21͒ and ͑22͒ can be written as p e ͑n͒ = b c0 u e ͑n͒ + V, ͑24͒

u e ͑n͒ = W sign͑␥ -p e ͑n͒͒ ͱ ͉␥ -p e ͑n͉͒.

͑25͒

Since the role of the term ⌰͑1-␥ + x͑n͒͒ is to cancel W when ͑1-␥ + x͑n͒͒ is negative, W always remain positive. We successively consider the two cases: ␥ -p e ͑n͒ ജ 0 and ␥ -p e ͑n͒ Ͻ 0 corresponding, respectively, to the cases u e ͑n͒ ജ 0 and u e ͑n͒ Ͻ 0.

When u e ͑n͒ ജ 0, substituting the expression of p e ͑n͒ ͓Eq. ͑24͔͒ into the equation giving u e ͑n͒ ͓Eq. ͑25͔͒ gives u e ͑n͒ = W ͱ ␥ -͑b c0 u e ͑n͒ + V͒.

By taking the square of u e ͑n͒ and solving a second-order polynomial in u e ͑n͒, this expression yields

u e ͑n͒ = 1 2 ͑-b c0 W 2 ± W ͱ ͑b c0 W͒ 2 + 4͑␥ -V͒͒.
In this case, the ͑+͒ solution is the only solution for which u e ͑n͒ is real and positive ͓␥ -V ജ 0 since ␥ -p e ͑n͒ ജ 0 and b c0 u e ͑n͒ ജ 0͔. Similarly, when u e ͑n͒ is negative, one obtains The calculation of the sampled external pressure p ext ͑n͒ is performed by the use of a difference between the sum of internal pressure and flow at sample n and at sample n -1, corresponding to the simplest and classical approximation of the derivative of p ext ͑t͒. This approximation has the advantage of providing a light low-pass filtering compared to the perfect derivation, which "simulates" the radiation losses effects.

It is worth noting that this simple and explicit solution of the discrete nonlinear coupled problem is obtained thanks to the specific discretization scheme of the reed model, which allows a reduction of the complexity of the problem to the solution of a second-order polynomial equation rather than a third-order equation. Though there exist analytic solutions of such an equation, their use is probably not well adapted to a real-time implementation. In the same way, a traveling wave formulation of the whole problem would lead to a similar explicit resolution scheme, provided that the nonlinear characteristics and reed displacement are expressed first with wave variables. In the case of a cylindrical bore, this increase in complexity would be compensated by the simplified formulation of the resonator and the noninstantaneous response of its reflection function, but this gain would no longer remain in the case of a conical bore.

E. Results of simulation

Figure 14 shows the internal acoustic pressure in the mouthpiece for a cylindrical bore of length L = 0.5 and radius R =7•10 -3 . The values of the parameters are: ␥ = 0.4, = 0.4, f r = 2205, q r = 0.3. Three phases in the signal are visible: The attack transient corresponding to an abrupt increase of ␥, the steady state oscillations during which ␥ is constant, the decay during which ␥ and slowly and linearly decrease toward zero.

F. Real-time synthesis implementation

The synthesis model has been implemented in real-time in the C language as an external Max-MSP object, piloted from MIDI commands given by a Yamaha WX5 controller. This controller measures, as a function of time, the lip pressure controlling the parameter ͑t͒, and the blowing pressure controlling the parameter ␥͑t͒. This information is received in MIDI format ͑between 0 and 127͒ and is scaled so that it corresponds to the range of the physical parameters. The tuning of the model is performed by the use of the MIDI Pitch information coming from the fingering that controls the length L of the bore by the relation L = c / ͑4f p ͒ in the cylindrical case, where f p is the playing frequency. The delay D is implemented through a circular delay line. Like in a real single-reed instrument, since the pitch changes with respect to physical parameters such as ␥, , r , and q r and since the real instrument is not perfectly tuned for all the fingerings, it seemed unnecessary, at least in a first step, to implement a fractional delay line. The transitions between two notes are handled through a cross-fade in the time domain between the difference equations corresponding to the two different resonator lengths.

In the example to follow, the real-time synthesis model has been used to play the first beats of the "cat" theme of Pierre et le loup by Serge Prokofiev. The sound file can be downloaded at: http://www.lma.cnrs-mrs.fr/ϳguillemain/ jasa.mp3. The duration of the sequence is 11 s. The reed resonance frequency r /2 and damping factor q r have been set in order to facilitate the raising of squeaks, respectively, 1850 Hz and 0.2. During the performance, the external pressure p ext , together with the three playing parameters made of ͑t͒, ␥͑t͒, and the midi pitch were recorded.

Figure 15 represents, with respect to time ͑in ms͒, from top to bottom, the parameter ␥, the parameter , and the frequency of the midi pitch ͑in hertz͒.

Figure 16 shows the spectrogram ͑between 0 and 5500 Hz͒ of the sound sequence ͑vertical axis in kilohertz, horizontal axis in seconds͒.

One can notice that on long sustained notes, the blowing pressure is higher during the attack and decreases when the steady state of the self-oscillations is established. Reed squeaks in the sequence can be seen on the spectrogram around t = 5 s and t = 6.5 s. In this situation, the reed vibrates at a fundamental frequency located around the impedance peak the frequency of which is close to the reed resonance frequency, producing a treble sound with harmonic content.

Sound examples simulating various wind instruments are available from http://www.lma.cnrs-mrs.fr/ϳguillemain/ index.html

V. CONCLUSION

The real-time synthesis model described in this paper has been obtained through a straightforward transposition of the simplified equations of the physical behavior of a singlereed instrument. In particular, the formulation of the input impedance of the bore, avoiding the classical P + / P -decompositions allows the addition of a nonlinear loop modeling the interaction between pressure, reed displacement, and flow to the linear parts of the model, as it is expressed physically. An explicit resolution scheme of the discretized version in time of the coupled system has been proposed. The structure of this scheme makes it possible to extend the model by replacing the linear parts of the system by equations obtained from more complex geometries of the bore and different reed models. Although there are strong connections between this method and other approaches based on wave variables ͑since the bore is also considered as an acoustic waveguide͒, working all along the synthesis process with physical variables makes it easy to use refined physical models of the nonlinear characteristics for real-time synthesis ap-plications. Among such refinements, one can mention the additional flow generated by the reed displacement and unsteady terms in the Bernoulli model.

The advantage of this model is its ability to control all the synthesis parameters of the instrument in real-time. Indeed, all the coefficients of the digital filters and the control parameters are explicitly expressed in terms of physical parameters.

Future works using the same approach will present the modeling of other instruments such as saxophones and brasses and the piloting of the synthesis. The vocal tract, for example, could also be modeled through this approach, as has been done, e.g., by Kelly et al. [START_REF] Kelly | Speech synthesis[END_REF] and Cook 24 using digital waveguides.

Similarily, mechanical impedance can be modeled using the same formalism. Current works are dealing with the simulation of hammer-string interaction using the nonlinear model described by Hunt et al. [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF] 
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 1 FIG. 1. Modulus of F͑͒ as function of the frequency ͑in hertz͒. L =0.5 m, R = 7 mm.
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 2 FIG. 2. Transfer function of the reed model ͑horizontal axis in hertz͒ ͑f r = 2500, q r = 0.2͒.
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 4 FIG. 4. Nonlinear characteristics of the reed ͑u as a function of p, = 0.3, ␥ = 0.45͒.
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 9 FIG. 9. Top panel: Approximated input impedance ͑f in hertz͒. Bottom panel: Approximated impulse response of the resonator ͑t in seconds͒.

FIG. 10 .

 10 FIG. 10. Top panel: Exact impedance of a conical bore. Bottom panel: Approximated impedance of a conical bore ͑horizontal axis in hertz͒.

  FIG. 12. Transfer function of the approximated reed model ͑in hertz͒.

u e ͑n͒ = 1 2 sign͑␥-

 2 V͒͑-b c0 W 2 + W ͱ ͑b c0 W͒ 2 + 4͉␥ -V͉͒, ͑29͒ p e ͑n͒ = b c0 u e ͑n͒ + V.͑30͒

FIG. 14 .

 14 FIG. 14. Top panel: Internal acoustic pressure ͑in seconds͒. Middle panel: Blow-up of the attack transient ͑in samples, f e = 44 100͒. Bottom panel: Blow-up of the decay transient ͑in samples, f e = 44 100͒.
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