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Abstract : Let ) be a heat conduction body and let ¢ = ¢(¢) be
given. We consider the problem of finding a two-dimensional heat source
having the form ¢(t) f(#,y) in . The problem is ill-posed. Assuming 0
is insulated and ¢ # 0, we show that the heat source is defined uniquely
by the temperature history on 0@ and the temperature distribution in ¢)
at the initial time ¢ = 0 and at the final time ¢ = 1. Using the method of
truncated integration and the Fourier transform, we construct regularized
solutions and derive explicitly error estimate.
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1. Introduction

Let ¢ be a heat conduction body having a constant conductivity, as-
sumed to be equal 1, and having an insulated boundary. In this paper,
we consider the problem of identifying a heat source in the inside of ¢
from the temperature history on a part of 0Q) and the temperature dis-
tribution in ¢ at the initial time ¢ = 0 and at the final time ¢t = 1, say.
In other words, the problem has Cauchy data on a part of the boundary.
The problem has been studied intensively for the last three decades (see,
e.g., [STY, WZ, 11, 12, LZ, ATL]). Letting u be the temperature in ¢ and



F = F(z,y,t,u) be the heat source, one has the equation

—88—?; + Au = F(z,y,t,u).

The problem is severely ill-posed. In fact, because of the extreme
sensitiveness to measurement errors (see, e.g., [BBC]), the inverse heat
source problem is difficult. Measured data is usually the result of discretely
experimental measurements and, of course, is subject to error. Hence, a
solution corresponding to the data does not always exist and moreover,
solutions, event thought they exist, do not depend continuously on the
given data. This, of course, makes a numerical treatment impossible.
Thus, one has to resort to a regularization.

To simplify the problem, many preassumptions on the form of the
heat source had been given. Roughly speaking, we can approximate the
function F(z,y,t,u) by a function which has the form

N

S (el t)fale, y)

n=0
The first order of the latter form can be written as
F = Wo(u) + @o(t) + folz,y) + w1(t) filz,y) + ...

In [I1, I2], the author assumed that
F(z,y,t,u) = go(x,t) + fi(z)g:(t) + fa(t)g2(z)
where fi, fo are unknown. In [LZ],
Fle,y,t,u) = f(u)+r(z,1)

where f is unknown (see also [K] for a similar form of the heat source).
In [STY, Y, CE1, CE2], we get the separated form

Fa,y,t,u) = o(t) f(x)

in which one of two functions is unknown.

Now, in the present paper, for simplicity, as in [ATL], we shall consider
a model in which the heat source has the separated form ¢(t) f(z,y) where
f is unknown. As we shall see, with minimum smoothness assumption,



the given Cauchy data is sufficient to the uniqueness of solution. However,
as discussed the problem is still ill - posed.

Precisely, we assume that () is represented by the square (0,1) x (0, 1).
Letting w = u(x,y,t) be the temperature in (), we consider the problem
of identifying a pair of functions (u, f) satisfying

S A= p(0)f(e) 1)

for (z,y,t) € @ x (0,1).

Since the boundary of ) is insulated, we have

{ ul’(ovyvt) = ux(lvyvt) = 07

Uy($,0,t) = uy(ac, 1,t) =0, (f,y,t) € Q X (0, 1) (2)

Finally, we have the temperature history on a part of 9¢)

w(l,y,t)=u(z,1,t)=0 (z,y,t) € Q x(0,1), (3)
and the temperature distribution in ¢) at ¢t = 0 and ¢ = 1,
u(z,y,0) = 0su(z,y,1)=g(z,y) (z,y)€ Q. (4)

Here, ¢, g are given functions. In (3), (4) the conditions, in which u(1,y,?),
u(z,1,t), u(z,y,0) are vanished, are simplified. In fact, the method of our
paper can be thoroughly applied to the problem associated with more
general data. Hence, to simplify computation and to point out clearly
main ideas of the method, we only consider the simplified conditions as in

(3), (4).
Our problem is equivalent to the one of finding the function f = f(z,y)
satisfying a Volterra equation of the first kind (see, e.g., [I'])

Kyf(z,y)=—g(z,y) (5)

for (z,y) € Q, where

N(z, y,tfn,

== (i) [ () e ()

1 1 1
K, f(z.y) / / / N,y 13 €., 7)o (1) F(E, m)d€dndr.
0O 0 O

~~

q;



We note at once that the problem of existence of a solution is not
considered here. The set of the (¢, ¢)’s for which the system (1)-(4) has
no solution is dense in L2(0, 1) x L*(Q). Indeed, from (5) we can show that
g is smooth if f € L3(Q), ¢ € L*(0,1). However, in practice, g and ¢ come
from experimental measurements and thus given as finite sets of points
that are conveniently patched into L2-functions. Hence g is in general
non-smooth. With these non-exact data, the system (1)-(4) usually has
no solution. Thus, as mentioned, we deal with a problem that possibly has
not a solution and hence we would have to resort to a regularization. If we
denote by (go, ¢o) the (probably unknown) exact data corresponding to an
exact solution (ug, fo) of the system (1)-(4) then, from the (known) non-
exact data (g, ) approximating (go, o), we shall construct regularized
solutions of (1)-(4).

As we shown in (5), the integral operator K, depends on the non- ex-
act data ¢ which implies that K, is also non-exact. Hence, it is difficult to
derive error estimate of a regularization method. In the case of one spatial
dimension, the linear integral equation has been treated widely in the past
few decades (see, e.g., [G, B, TA, ADT] and our recent paper [ATL]). Al-
though the mathematical literature in the one-dimensional case is rather
impressive, it is quite scarce in the two dimensional case. In the present
paper, using a variational form of (1)-(4) we shall transform the problem
to the one of finding f from its Fourier transform calculated from the giv-
en data (g, ) (see Lemma 1 below). Assuming the discrepancy between
the exact data (go, o) and the non-exact data (g,¢) is of order ¢ > 0,
we shall use a new method of truncated integration to construct (from
the non-exact data (g, ¢)) a regularized solution f.. Moreover, the error
between f. and the exact solution fy (which depends on the properties
of o and the smoothness of fy) will be given explicitly. The remainder
of the paper is divided into two sections. In Section 2, we shall set some
notations and state main results of our paper. In Section 3, we give the
proofs of the main results.

2. Notations and Main Results

We recall that @ = (0,1)x(0,1). We denote by C'([0,1], H}(Q)) the set
of continuous functions u(.,t) : [0,1] — HYQ) and by C*([0,1], L*(Q))
the set of C''-functions u(.,t) : [0,1] — L*(Q). From now on, we shall
assume that ¢ € L?(Q) and ¢ € L*(0,1). We also denote by ¢(.),s(.)
respectively the functions cos(.), sin(.) for short. From (1)-(2) we get



_%<u¢> Ctlptby > — < Uy >= o< b > Ve HY(Q) (6)

where <, > is the inner product in L?(Q).
Using (6), we first have the following Lemma.

Lemma 1

Ifue 0,1 L%Q)) n C([0,1]; H' (Q)), f € L*(Q) satisty (3), (4),
(6) then, for all o, 3 € C,

1 1
TR g(x Je(By)dady = (7)
/ 0/

1 1
gttt [ [ i, g)etan)e ooy
0 0

o\

We note that, it may undergo nontrivial changes when applied (5) to
get an equation as (7).
From Lemma 1, we have in formally

[

Hence, the function f is possibly identified if the set

1
et [ [ gz, y)elaz)e(By)dudy
0

f(@,y)e(az)e(By)dady =

o

S| o .

el +62)t (1) dt

€R2|/ (@450 o(1)dt = 0

is negligible in an appropriate sense. In fact, from the properties of ana-

lytic functions, we can show that, if ¢ # 0, the set is a union of countable

concentric circles and, hence, the Lebesgue measure of the set is zero.
Moreover, we have



Lemma 2
Let po € L?(0,1) and R > 0. Put

Po(p) = et @olt

vo(t) = wo(s

/
Bp = { 3)®of a2—|—ﬁ2)<R}
i

If there exists a 6 € (0, 1) such that vy is nonpositive (or nonnegative)
on [0,1] and that vg # 0 on [6,1] then we can find constants v, Ry €
(0,1),Cq > 0 independent of R such that

m(Br) < CoRY  for all 0 < R < Ry,

where m(Bp) is the Lebesgue measure of Bp.
The set of the function g satisfying Lemma 2 is very large. For
example, if

wo(t) = (1 =t)™(a+ (1 —t)(t)),m integer > 0 with a # 0, € L*(0,1),

then vy satisfies the condition of Lemma 2. Now, we have the uniqueness
result.

Theorem 1

Let uy,uy € CH([0,1]; L%Q)) 0 C([0,1; HY(Q)) and f1, [ € L*(Q).
If wy, f; satisty (1)-(4) (¢ = 1,2) and ¢ # 0, then

(ur, f1) = (u2, f2).

We give two regularization results :

Theorem 2 Let Co,e > 0 and let wo € L*(0,1),90 € L*(Q) and
(ug, fo) be the exact solution of (1)-(4) corresponding (g, ¢go) in right
hand side. Assume that @, g satisfy

[l = @ollzzo,1) < € ll9 = 9ollr2(q) <€ (8)



and ¢(t) > Co, @o(t) > Cp a. e. on (0,1).

Then from ¢, @ we can construct a regularized solution f. , such that

gigg)Hfs - f0HL2(Q) =0 (9)

If we assume, in addition, that fo € H*(Q), then

1= = Jollz2 () < 4\/04 (Co+ llgollz2(q) +1)% + — HfOH el/®.

H2(Q)

Theorem 3 Let ¢ > 0,a € (0, %) and let assumptions of Lemma 2
hold. If g, are the measured data satislying

e — 990HL2(0,1) <eand ||g — gol| .2 Q) < ¢

then, for each a € (0, %), we can construct from g, a function f. such
that

lim [ fo = follz2(q) = 0-

Moreover, if fo € H*(Q) then for each b € (max {0,152}, 1=2¢
can find Cy > 0,7, > 0 independent of fy, go, wo,€ such that

384 1\ /2
/e = f0HL2(Q) < \/Cbg% + T Hf0HH2(Q) (bhl g) .

3. Proofs

Proof of Lemma 1

Choosing ¥(z,y) = c(az)e(fy) in (6), we get

),We

&I&

1 1 1
//u ,y,t)e(ax)e( By)dedy + a/ Uz (2, y,t)s(ax)c(By)dedy
0 0 0

1

/

1 1 1 1
+ﬂ0/0/uy$y, az)s(fy)dzdy = ¢ O/O/f

Je(By)dady. (10)



Since u(1,y,t) = 0, we have

o
o

1
[ w5tz )c(By)dady = —a
0

o

Similarly,

1 1
/uy e, 9, O)c(az)s(By dwdy——ﬂ/
0 0

Substituting (11), (12) into (10) gives

u(z,y,t)c(ax)c(By)drdy.

o
SR

4
d

u(z,y,t Je(By)dady

o~

I
/I

Noting that

=

1 1
e+ u(w,y,wc(aw)c(ﬁy)dwdy)
( /]
1 1
(a24+52)t f ﬁ@/ dxdy,
e

1 1
ea2+ﬁ2//g c(By)dady =
0 0
1 1
—/ (a?+62) fdt//f o(By)dzdy.
0 0

This completes the proof of Lemma 1.

we get

uw(z,y,t)c(az)e(fy)dedy.

(@ + 8%)u(z,y,t) + o(t) f(,y)] c(ax)e(By)dudy.

(11)

(12)

(13)



Proof of Lemma 2
We shall prove |®q(p)| — +00 as p — too. We have

Bol) = [ ol =

0

By the properties of vg there exist tg and ¢ > 0 such that

b<tg—e1 <thp<topter <1,

and
?Jo(t) <0 Vte [t0—€17t0—|-€1].
We put
Ci1 = min (—wp(t)),Cs = min —wp(t)) > 0.
1 [07150_61]( 0(1)), C2 [to_shtoﬁl]( o())
We have
_t0—61 t0-|—61 1
bl =~ | [+ [+ [ wnera
L O to—e1 tote1
i to—e1 to+e1
> —uo(0) + |y / e dt + / e dt| 1
L 0 t0—61
> —uo(0) + €y (07 1) 4 ¢y (elioke — eloenit )|

vV

—vp(0) + C1e(t°+51)“2 (6_25“‘2 — e_(t°+51)“2) +

026(t0+61)u2 (1 _ 6_261“2) .

Therefore |®o(p)| — +00 as p — +oo. Hence, by the analyticity of ®q(u),
it follow that ®o(x) has only finite zeros p;,j = 1,...,p on the real axis.
We can write

So(p) = @1(p) [ (1 — )™

J=1

Nel



where m; = 1,2,...Vj = 1,p, |®1(p)] — +oc as p — Foo and ®1(u) # 0
for every pn € R. By |®4(p)| — +00 as g — £oo and ®1(p) # 0 for every
i, there exists C's > 0 such that |®1(u)| > Cs5 for every u. Hence,

o/ 77| 2 & ] Va5 7 -,
j=1

mj

where m; =1,2,..;
Without loss of generality, we can assume that 0 < g < po < ... < iy
(if p1; < O then ‘\/042 +52 - Hj‘ > |pil)-
P
Putting d = 1<m<in 1(,us_|_1 —ps), M => msand p=+/a?+52>0.
EEAY s=1

. 1 2m1 R1/2ms
Choose Ro = min{Csd™, ,C5 (&)™ dM=*™1} and 6, = T2 (M —2ms) 2ms
I ) 2ms

1 < s < p we then have

) If ps 4+ 6 < po < prspq — 541,85 = 1, p— 1, we have
L m
[Do(0)] > Cs [ [VaZ 57 = | > Coeresyya™ = ,
=1

where My = M — my; — mgyq.
i) If p, + 6, < p, we have |®o(p)| > C3d™M~"#6,"" = 3 and the choice

1/2m
6, =d (%)( g with R < d™ (5 involves that 3 > R.

If 0 < g < pq — 61 the same proof as before with 6; = d (
implies that |®(p)| > R.

In the case where pq = 0i.e. the roots u; are such that 0 = py < pg <
... < pp the previous proof is still valid with Rg = min{ngM,% .

Which means

R )(1/2m1)
dMC,

P
Br C |J{(a.8)/ps — s < Va2 + 52 < s + 6.}
s=1

Hence

P P P }z1/2mS
m(Br) < 247r,u565 < A1 max pig 265 = 47d max p Z

1,p s=1,p C;/zmde/Qms

s=1 s=1 s=1

Choosing v = 1I<ni£1 {ﬁ}, we complete the proof of Lemma 2.
<s<p :

10



Proof of Theorem 1
Put v = u; —ug and f = f1 — fz, then v and f satisfy (6) and

v(z,y,1)=0. (14)
Put
f(z,y) (w,y) € (0,1) x (0,1)
~ 1 f(=z,—y) (2,y) € (-1,0)x (-1,0)
e y)= 79 J=2y) (29) € (=1,0)x(0,1)
flz,—y) z,y) € (0,1) x (-1,0)
0 (z,9) ¢ (=1, 1) x (=1, 1)
Then
Jp) = o= [ Fpe et iady
R2
= 57 | [ Havctaartamedy (15)
By (7) and (15), we get
{/ 6(“2”2>%o<t>dt] (e, 8) = 0. (16)

Let

n!
n=0

1 0o " 1
h(a, B) = / N p(yd =y (a®+ 57" / o(t)i"dt.
0 0

If h = 0, by Welerstrass theorem, we have ¢ = 0, which is a contra-
diction. Hence h # 0. This implies that there exist (ag,fy) € C x C
and 7 > 0 such that |A(a, 5)| > 0 for every («,3) € B((ao, Bo),r) where
B((ag, Bo),r) is the ball with center at (g, fp) and radius r.

Therefore

Fla,8)=0 ¥(a,B) € B.

11



Since f is an entire function, we get

o~

f(avﬁ):() V(a,ﬁ)E(CX(C

Hence f =0a. e

This follows f = 0 a. e. on ¢ which involves v = 0 a. e. on () since
the variational problem (6) has a unique solution.

This completes the proof of Theorem 1.

Before proving two main regularization results, we state and prove a
necessary Lemma. Note that it is of independent interest.

Lemma 3

Let D, = {(a,ﬁ)/a2+ﬁ2 < 7‘2} and r > /2. If fo € H*Q) then
2

i [ffo<x,y>c<aw>c<ﬂy>dwdy dadB < 1536 ]| fol[2(g) 7"
R*\p, @

Proof of Lemma 3
From the denseness of C*(Q) in H?(Q), we only consider the case

fo € C(Q).
We have

v

(az)

co(By)dady +

&
)
)

o2 oy

s(a)

Ty (@ y) = —c(By)dady + [ fo(1,y)=—=c(8y)dy
0? fo s(By) s(ax) r dfo s(By) Y= s(ax)
8$8y( 73/) ﬁ d$dy—/ |:8—( ’ ) ﬁ :|y:0 o dx

s(fy) s()
y VT8 a

S(ﬁy)]y:1 s(a)

dy+ |:f0(17y) ﬁ

12



11 1
_ 9% fo s(By) s(az) 0fo, . 8(8)s(ax)
_//axay(x,y) 3 " dwdy—/—x(ac 1) ” dx
00 0
1
dfo s(fy) s(@) s(8) ()
‘O/_y“’y)T dy+ fo(1. ) 2P
We have
11
9 fo s(By) s(ax) 9 fo
0/ / Fepgte 0 S sy < i |
where
1, |6 <1
kw){ Lo >1
We have
1 182( i
_ LYJo
Jo(1,1) = // D2y dzdy
00
11
0 0?
= //(fo(w Z/)-I-yafo( Y) foggy)—l- g(;(;;/y)xy) dxdy,
00
hence
8fO afo 82f0
1,1) < 2 .
2001 < 1ol + o] -
We have
1)1
0 0 0
/ P P00 < ) [ 5 (s i)
0 o lo
9 fo 9* fo
< kla)k — .




Simultaneously

1
IR |22 ‘szo
6)y(l,@/) 7 o [ el P Pl O
Therefore
1 1
/ / Jola. y)elaw)e( By)dady| < 46(a)(B) | foll g2 0)
0 0

It implies that

/ /f (z,y)claz)e(fy)dudy| dads <

R*\p, L9
< 128/ follF2 o) + (k())*(k(B))*dads
ol 25 1812 25 Jod> 25 1813 2
1
< 18 follnoy g, [ 540

181> 25

1536
< - 1 follir2(g) -

We complete the proof of Lemma 3.

Proof of Theorem 2
By choosing r = \/_>1andD {(a, 8)/a* 4+ B* < r?}.
By (7), we have

11 1
A [ gola.y)e(az)e(By)dedy = 2 [ e(“2+ﬁ2)t¢o(t)dt] o, 3).17)
/] /
Therefore

. gjgo az)e(By)dzdy

1
21 [ el@®+8%) oo (t)dt
0



Hence,

. 1 o~ .
Jol6.) = o | Jole. ).+ Vdadp (18)
R2
11
. J | oz, y)e(aw)e(By)dedy
— __— | po?+p200 ei(a£+ﬁC)dadﬁ'
A2 1
R’ [ et g0()d
0

Let

We denote |[|.||,, norm in L*(R?).
We have

o~ o~

A A (20)

~ 2 ~ 2
_ /fs(a,ﬂ)—fo(a,ﬂ)‘ dad3 + / ‘fo(a,ﬁ)‘ dads.
D R*\p

With (a, 8) € D, we get

27 | ol )~ Jola, )] =
11 11
[ Ja(e,y)e(ax)e(By)dedy [ [ go(x,y)e(ax)e(fy)dady
— |8 001 _001
J el 458 (1) dt [ ele? )ty (1)dt
0 0
11
[ [ lgo(e,y) — g(a, y) e(az)e(By)dedy
= 6a2+ﬁ2 00 1 ‘|‘
[ ele?+5)t 0 (1)dt
0

15



1
/g Je(By)dzdy x
0

1 1
1 1
[ el 80t pq()dt [ el +B)tp(t)dt
0 0

o242 Hg 90HL2
+p2 14 7 I0NL2(@Q) 9 2
- Co(ea2+ﬁ2 )(a —I_ﬁ )
1
J eV (1) — (1))t
+ et l9llz2(@) |7 0
[ ele?+52)t dtf (2 +02)to( 1) dt
0
(a2 + 4% (a2 + B7)3 c—2(a2+5)
< Gt et e a0~ ey

For r > 1, using the inequalities,

{ T <2u<eu<er?: Nu>1
U

u=a’ 4§ <o

i <e<er? Yu €10,1)
we have
e(a® + %) cer? < cerr’
Co(1— e~ 467y = Cy = (o’
and
TPV 1 @) -
9122 () e < 9l <€T2>QE
C3VE (1 - e(24))? ;
91112 €2 7%
< DIAQ) T -
Therefore
9 > = 2 82637‘6
5t [ |fo.9) = foto )| dads < SE[Cot lollagg] [ doas
D D
£203,8 9
< g [Cot lollzco)

16



If we put
-~ 2
n(e) = dr? / ‘fo(a,ﬁ)‘ dad
R*\p

then n(e) — 0 as ¢ — 0.
By (20), (21), (22), we get

-l < [co+uguL2 e nce),

it means that

|47 - 5|

2
12Q) = \/04 [CO‘|‘HQHL2 } £+ n(e).

Put f. = 4f., we get (9).
Noting that
1
_ 1 /
s
0

By using Lemma 3, if fo € H*(Q) then we get

Jo(= az)e(By)dzdy.

o

1 2 384
1Sz = foll 2oy < ¢OJ%+MM2}5+—wmy 18

H2<Q>

This completes the proof.

Proof of Theorem 3
Let

d(p) = / e p(t)dt.

Putting
. =ty o (v )|
Dy = {(a,8)/® +5° <r¥(e)},
b = {eoyfo(vaTi )| < )

e and o® + 3% < r?(e)}

17



and

Fs(avﬁ)E% <D(\/m) ,(Oz,ﬁ)EDE
0 (a,p) ¢ D.
Jo(a, )= %/Fs(a,ﬁ)e'wwwdadﬁ.
Dy
We get
= ~ 112 -~ =12
E-ql|, = |-
2 ~ 2
= / F.a,B) - fo(a,ﬁ)‘z dadf + / ‘fo(a,ﬁ)‘ dodB +
D. DinD;
> 2
+ / ‘fg(a,ﬂ)‘ dadp = I + Iy + 1.
R*\D,

Firstly, estimating /5, we have

@ (VaTH ) — 00 (VaTE )| < [l ot ol

IN

e = 990HL2(0,1)

1
/ e2Aat+)idy
0
< e2(e?+6%) _ 1
= TV ey
If (o, B) € Dy N Dy then

e2(e?+6%) —

‘<I>0 (\/m)‘ <e'+e ECEYa) <t el (24)

18



since r(¢) = 4/blnl, 0 <b< 1. We have

11
| [ otepietaretydzdy
00

By (24), (25), we get

‘ B 1

- < o holegy (25)

1 , 1
I < 5 follzaigy m(Beatei—0) < 3 1 foll72(g) Cole® +'7")7. (26)

Now, estimating [, we have in view of (a, ) € D.

o (Vo) 2
hence,

2(a2+32)

e —1
‘ o(\/a —I—ﬁ) >t —¢ St ) >t -7 >0,

for0<b<1—a.
From (o, 3) € D., we have

11
[ J9(z.y)e(ax)e(By)dady 1 1
_ b a0
= 5o e (I)( a2_|_ﬁ2 O/O/fo z,y)c(ax)e(fy)dedy
11 11
[ J9(z.y)e(az)e(By)dady [ [ go(x,y)e(ax)c(By)dudy
_ L |pe+s? |00 00
27 @ (Var+ ) @0 (ol + )

looll 2y [#0 (Va2 72) — @ (Va2 72) |

< ieaz’-l-ﬁ? N
o ® (\/m)‘ ‘<I>0 (\/m)‘
1 a2+52H§90HL2(0,1)\/Kj_32)21 jofl —go(z,y)] c(aw)c(ﬂy)dwdy‘
to5pe ‘Q(\/ﬁ)”% (\/m)‘
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2(a?452)
Lea2+ﬁ2€ 6(2721(\’90\&2 ‘|‘H@90HL2(0,1))

<
27 - (ga /e 2(a2;-,62)2 1)
+6%)

e2(a246%) _ 1 HgoHLz )+ ol 20,1

< e —I—ﬁ2 1-2a

= 2( _I_ﬁQ 2(a2+52) 1
ECON

- 212 - 1 lgoll12(q) + HS‘QOHL2 0,1)

= | _ eloa, [SUC >>2

( (s ))2
It follows that

2
202 (l190ll2g) + lpollzzo.1))

I < %62(7“( )? 240 €

2 (1 _ gl—ae(r(s))2)2
2
< 1626ln(l/s)€2—4a€21)ln(1/s) (HgOHL2(Q) + H@OHLQ(OJ))
- 4 (1 _ gl—aebln(l/s))z
2

11 5,1 (HgOHL2(Q) + H%Hp(m))
< g=mE ' m 3

4¢e € (1 _ g1—a61_b)

2

1o (190l 20y + 0l 20y

= 4 (1-— gl—a—b)Q
Therefore

2
., (lgollz(gy + 2ol z2(0.1))
(1- 81—a—b)2

,
follfaiq) Co (" +7°) 4 mie)

. 2 1
H4fs - fOH < —g?riem
2 4

|
472
where I3 = my(¢) — 0 as ¢ — 0.
Putting f. = 4f., we have

2
o Ulgollz2g) + ol 2o
(1- 81—a—b)2

folliegyCo (= +17) 4+ mle). (27)

1
2 da—
1 = follzgy < 47"

+47r2 |
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Choose b € (maX {0, 1_44“}, 1_22“) , a >1 0; that implies 0 < 2 —4a — 4b <

I, a+b<1, 1-b>0, 0<a< 5 and therefore from (27) we can

deduce that there exist C3 > 0, 7, > 0 independent of g¢g, fo,vo and a
function () such that li{g n(e) = 0 and that

Iz = foll ooy < VT + mile):

By using Lemma 3, if fo € H%(Q) then we have

384 1\ ~'/?
/e = f0HL2(Q) < \/Cbg% + — Hf0H12112(Q) (bhl g) .

s

We complete the proof of Theorem 3.
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