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Standing Waves On An Infinitely Deep
Perfect Fluid Under Gravity

G. Iooss* P. I. Plotnikov! J. F. Toland ¥

Abstract

The existence of two-dimensional standing waves on the surface of an
infinitely deep perfect fluid under gravity is established. When formulated
as a second order equation for a real-valued function w on the 2-torus and
a positive parameter p, the problem is fully nonlinear (the highest order
z-derivative appears in the nonlinear term but not in the linearization at
0) and completely resonant (there are infinitely many linearly independent
eigenmodes of the linearization at 0 for all rational values of the param-
eter p). Moreover, for any prescribed order of accuracy there exists an
explicit approximate solution of the nonlinear problem in the form of a
trigonometric polynomial. Using a Nash-Moser method to seek solutions
of the nonlinear problem as perturbations of the approximate solutions,
the existence question can be reduced to one of estimating the inverses
of linearized operators at non-zero points. After changing coordinates
these operators become first order and non-local in space and second or-
der in time. After further changes of variables the main parts become
diagonal with constant coefficients and the remainder is regularizing, or
quasi-one-dimensional in the sense of [22]. The operator can then be in-
verted for two reasons. First, the explicit formula for the approximate
solution means that, restricted to the infinite-dimensional kernel of the
linearization at zero, the inverse exists and can be estimated. Second, the
small-divisor problems that arise on the complement of this kernel can be
overcome by considering only particular parameter values selected accord-
ing to their Diophantine properties. A parameter-dependent version of the
Nash-Moser implicit function theorem now yields the existence of a set
of unimodal standing waves on flows of infinite depth, corresponding to a
set of values of the parameter > 1 which is dense at 1. Unimodal means
that the term of smallest order in the amplitude is cos x cost, which is one
of many eigenfunctions of the completely resonant linearized problem.
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1 Introduction

This paper concerns the existence of non-trivial two-dimensional periodic stand-
ing waves on water of infinite depth. By a periodic standing wave we mean the
two-dimensional motion under gravity of a perfect fluid of infinite depth with
a free surface that is periodic in both space and time. The motion beneath
the surface is required to be irrotational and, with the position of the free sur-
face determined by the motion of its particles, the pressure there must be a
constant, independent of spatial location at all instances of time. We consider
only waves with a fixed line of spatial symmetry and motions that are even
in time. Such waves are truely time-dependent in the sense that they are not
stationary with respect to a moving reference frame. The particles on the sur-
face can be thought of as a continuum of nonlinear oscillators coupled through
the motion under gravity of the inviscid fluid below. At time ¢ they form the
graph {(z,n(z,t) : x € R} of a function which has period A in « and period T
in t. A fluid at rest filling a half-space beneath any horizontal line is a trivial
solution of this classical problem. The conditions of symmetry in space and
time adopted here simplify the mathematical formulation by removing degen-
eracies due to translational invariance in z and ¢; they are not an intrinsic part
of the standing-wave problem and one could imagine more general solutions,
for example, ‘travelling-standing-wave’ solutions, of the free boundary problem.
The standing-wave problem may also be formulated for flows with finite depth,
where the water is contained above an impermeable horizontal bottom and, as
we will see, the technical issues involved there are somewhat different.

1.1 Linear Theory

When the standing water-wave problem is linearized about a trivial solution,
we find a linear boundary-value problem, first derived satisfactorily by Poisson
in 1818, although Laplace in 1776 came very close (see [10]):

L)
R 1.1
81'2 + — ay =0, z, teR, y <O, ( a’)
oz + Ny, t) = pla,y,t) = d(z,y,t +T), z, teR, y<O0, (1.1b)
QZS(*ZL',y, ) (1' Y, ) = 7¢(1‘ Y, t)v Zz, te Ra y < 05 (11C)
2%¢ 5¢
=0. 1.1
o2 95, =0 y=0 (1.1e)

The acceleration due to gravity is denoted by g, ¢ is the velocity potential of
a ‘linear standing wave’ and 7, the linear wave elevation, is given by gn(x,t) =
—(0¢/0t)(x,0,t) . When u = gT?/27) is irrational there are no solutions except
for constants. But, when p is rational, this problem is highly degenerate because
every function of the form

2

It 2 9
¢(x,y,t) = sin ( 7;? )cos( ﬂi\ﬁz)exp( 7717@) with % .y
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is a solution of (1.1). Thus the set of ‘eigenvalues’ p of the linearized problem is
QT, which is dense in [0, 00), and each eigenvalue has an infinite set of linearly
independent eigenfunctions. We refer to this latter property as complete reso-
nance, by analogy with the theory of nonlinear oscillators. In the case of finite
depth the boundary condition (1.1d) must be replaced by

o¢

—(z,—h,t) =0, ,teR. 1.1f

AT . (111)
Then linear eigenvalues can have unique normalized eigenfunctions. In both
cases the linearized problem can be re-formulated as an equation of the form

ug + pAu =0, (1.2)

where A is non-negative, constant-coefficients, self-adjoint non-local pseudo-
differential operator acting on functions defined on S, u maps the torus T? into
R and p is a positive parameter. For both finite and infinite depth, the nonlinear
existence theory is made difficult because of small-divisor problems that arise
when linear operators of hyperbolic type, similar to (1.2) but with non-constant
coefficients, are to be inverted at each step of the iteration. (Small divisor
problems occur naturally in questions about periodic solutions of hyperbolic
equations.) The infinite depth case which we deal with here has the combined
problem of complete resonance and small divisors.

1.2 Nonlinear theories

In 1847 Stokes gave a nonlinear theory of travelling waves [29]. It was, we
believe, Boussinesq in 1877 who was the first to deal with nonlinear standing-
waves. On pages 332-335 and 348-353 of [7] he refers to ‘le clapotis’, meaning
standing waves, and his treatment, which includes the cases of finite and infinite
depth, is a nonlinear theory taken to second order in the amplitude. Seemingly
unaware of this work, Lord Rayleigh [26] developed a third order theory that
included travelling and standing waves on infinite depth as special cases. (Much
later Tadjbaksh & Keller [31] used a different expansion to obtain a third-order
theory in the case of finite depth.) These theories deal with Eulerian descriptions
of the flow. In 1947 Sekerkh-Zenkovich took the theory to fourth order using
Lagrangian coordinates. (This paper cites works by E. Guyou and by M. Larras,
but says that they are not rigorous. It is our view also that they are flawed.) In
1952 Penney & Price took up the question of a highest standing wave (in 1880
Stokes had conjectured the existence of a highest travelling wave [30]) using a
fiftth-order nonlinear theory. Although he was motivated by suspicions about
the basis of their theory, Taylor [32] reported on experiments which served to
confirm the conclusions of Penney & Price [21], and Okamura [20] has recently
extended numerically these investigations. See Wehausen [35, page 587 and the
references therein] for a literature survey up to 1965. Like Boussinesq, he refers
to standing waves as ‘clapotis’. In 1981, Schwartz & Whitney considered the
full nonlinear problem in Eulerian coordinates and, using conformal mappings,



developed an algorithm for calculating the coefficients in a formal power-series
expansion of a standing wave to any order, provided that a resonance problem did
not occur in executing the n? step in the algorithm, for any integer n. Extensive
numerical investigations in which they successfully calculated standing waves to
order twenty-five convinced them of the validity of their approach. A proof [1]
that problems with resonances never arise confirmed that the algorithm always
gives a formal power series solution of the standing-wave problem on infinite
depth. The question of convergence of this power series remained open, but
the observation, (subsequently generalized in [13, 14]) plays a significant réle in
our existence theory. Here our treatment of the nonlinear problem on infinite
depth is based on a formulation derived from a general Hamiltonian descrip-
tion of two-dimensional wave motion due to Dyachenko, Kuznetsov, Spector &
Zakharov [11] (see also [36] and [4, Appendix]). The standing-wave form of
the theory is discussed in detail in [16] and recalled here in Section 2. This
formulation is neither Eulerian nor Lagrangian, since the dependent variables
are the y-coordinate (the wave height) and the velocity potential at the surface.
A complete description of the underlying flow, in Eulerian or Lagrangian vari-
ables, can be inferred once a solution of the Hamiltonian system has been found.
One obvious advantage of this formulation is that operators in the equation ap-
pear explicitly. In Lagrangian variables the nonlinear operator which gives A
in (1.2) as its linearization is a non-local Dirichlet-Neumann operator defined
implicitly by an unknown domain and it is painful to contemplate the intricate
calculations that must be taken to high order because of complete resonance
in the infinite-depth problem. However a Lagrangian description was used in a
successful proof [22] of the existence of standing waves, for certain values of the
physical parameters in the problem of finite depth, when complete resonance is
absent.

1.3 Method

We do not yet know how to exploit the Hamiltonian structure of (K) and (D) in
Section 2 directly. So we adopt a ‘partial-differential-equations’ methods and,
by eliminating the velocity-potential variable, reduce the system to a nonlinear
integro-differential equation equation (4.1) for a periodic, real-valued function of
two real variables, with a view to applying a fixed-point argument for existence.
(In doing so we lose the variational structure.) To explain the proof of existence,
suppose that the equation for standing waves is

F(w, ) =0, w not a constant, (1.3)

where w is in a neighbourhood of 0 in some Banach space (X, - |), p > 1
is a real parameter and F(-,pu) : (X,||-]|) — (Y,]-|). The actual expression
for F is necessarily rather complicated and we will not identify X and Y at
this stage. We expect to need the Nash-Moser method, an abstract version of
a rapid-convergence iteration method proposed in [2, 19] for existence, because
small-divisor problems are known to arise in a study of linear problems of the



form (1.2). It has been realised for some time [1, 13, 14, 27] that there exists
a formal power series solution of the standing problem (see Section 4.2) which

gives approximate solutions (w, 1) = (wéN), 1+¢€?) of (1.3):

|F(w™ 1+ £?)| < const ||V, lw™|| < conste.
By seeking solutions of (1.3) for ¢ > 0 as perturbations u of ng), for any
prescribed order of accuracy, we obtain (see Section 4.3) an equation

D (u,e) =0, (1.4)

with an explicit closed-form approximate solution. More precisely, for N € N
with N > 2, equation (1.4) has an approximate solution u = ugN), which can
be expressed explicitly in terms of trigonometric functions and, for a constant

in suitable Banach spaces,
™| < conste, |®(e,ul™)| < const |e|NFL. (1.5)

It is known from [13, 14] that the complete resonance of the linear problem
leads, for any fixed order N > 2, to an infinite set of possible approximate
solutions of the nonlinear problem. So we specialize our study by focusing on
‘one-mode’ solutions, by which we mean solutions that have only one mode,
namely cosz cost, in their leading term of order . Then choosing N > 2
appears to be sufficient to solve the degeneracy of the linearized problem (and
de facto eliminates the other possible solutions). The first step in a proof of
existence is in Section 5, where the linearization @/ (u,e) of ® at an arbitrary
point (u,¢) is calculated and simplified. In Section 6 we show that @ (u,e) can
be decomposed as a sum of linear operators

®! (u,e) = A(u,e) + I'(u, €) where ®(u,e) = 0 implies that I'(u,e) = 0.

To apply the version of the Mash-Moser Theorem in Appendix N it is sufficient
to prove that A(u,e) is invertible and to estimate its inverse. At this stage
we encounter two difficulties. The first is that A is a rather complicated linear
operator of hyperbolic type with non-constant coefficients (see equations (6.3)
and (6.8)) and it is impossible to say straight away whether it is invertible, with
suitable estimates, or not. In the remainder of Section 6, a change of coordinates
is introduced to eliminate the partial derivatives §%/9x0t and 9?/dz? in the
expression for A. Then, in Section 7, a further change of coordinates is used
to show that inverting A is equivalent to inverting an operator (for now also
called A) which is the sum of a ‘main part’ and a ‘remainder’, where the main
part is of the type (1.2) with constant coefficients and the remainder is from
the class of Q1D operators introduced in [22] for a similar purpose when dealing
with the finite-depth problem. The constant coefficients in the main part are
functions of the point of linearization. If the main part can be inverted, then a
method of descent [22, Section 9] can be adapted to show that similar estimates
hold when inverting the full operator A(u,e) (see Section 8). To calculate an



inverse of the main part we first need to invert its restriction to the kernel of
the linearization about zero, which is infinite-dimensional because of complete
resonance. This needs precise and very explicit calculations, which here are
humanly possible thanks to the choice of formulation (see the remark in the last
paragraph of Section 1.2). Then inverting the main part on the complement of
the kernel leads to small-divisor problems and produces estimates of the inverse
which depend on Diophantine properties of the coefficients. The outcome is
that our estimates of inverses depend on the point of linearization in a highly
unstable way. Appendix N is devoted to a version of the Nash-Moser method in
an abstract setting which was developed with these difficulties in mind. It deals
the convergence of sequences of parametrized families of approximate solutions
to a parametrized family of solutions of (1.4), rather than with the more usual
convergence to solutions of sequences of approximate solutions. The domains of
the parametrizations shrinks with each iteration, but their intersection is shown
to be a non-trivial set upon which convergence to solutions occurs. Starting
with parametrized family vy(e), € € [0,ep], of approximate solutions of (1.4) in
the sense of (1.5), the first step is to create a new parametrized family 14 (¢),
e € & of approximate solutions, where & is the subset of [0, 0] at which the
Diophantine properties of coefficients lead to useful estimates on the inverses
of the operators A(vg(g),e). The next step is to do this again, creating a new
family of approximate solutions v1(g), € € &5 C &1, and so on. For this method
to have any hope of yielding the existence of a solution of (1.4), it is obviously
necessary that the set Ngen&r should have 0 as a limit point. This property is
one of the abstract hypothesis of the Nash-Moser theorem (Theorem N.2) which
leads to an iteration that converges to a solution of (1.4). Having adopted this
strategy, the main part of the paper is devoted to the long calculations needed
to verify the hypotheses of Theorem N.2 which yields the existence of standing
waves for a set of parameter values p with 1 < p = gT?/27\ (T is the temporal
period, A is the spatial period and g is the acceleration due to gravity) which
contains 1 in its closure. Note that we do not establish the existence of standing
waves for all u > 1 close to 1, and the significance of the formal power series
found by Schwartz & Whitney remains uncertain. All that we know for sure is
that for all values of 4 > 1 in a set E which is dense at 1, there are solutions
of the infinite-depth standing-wave problem close to the approximate solutions
given by the Schwartz & Whitney algorithm. (Here E is dense at 1 means that
lim,~ o 7! meas(EN[1,1+r]) = 1.) Our main result on the existence of standing
waves on deep water is stated precisely in Theorem 9.1, and a consequence due
to scaling is explained in Remark 9.2.

1.4 Nonlinear wave equations

Rabinowitz’s classical paper [25] led to a huge explosion of interest in the global
variational theory of semilinear wave equations, and much of the early work is
nicely surveyed by Brezis [8], who simplifies many proofs and gives extensive
references to the original literature. But the standing-wave problem (K) and
(D) of Section 2 does not fit into such abstract theory for a variety of reasons



and there is currently no global theory of standing waves. First it is not a partial
differential equation. Even when linearised it has the form

W — pHw' =0,

where H is the Hilbert transform on 27-periodic functions and w — —Huw’ is
non-negative and self-adjoint. Second and more important, it is quasi-linear, the
nonlinear term is non-local, and when reduced to a single equation in Section 4
the nonlinear term involves w”, the highest x derivative, which does not appear
in the linear term. If, as in this paper, attention is restricted to the question
of bifurcation from the trivial solution we find that the preceding observations
make it difficult to see how to apply recent local variational methods, such as
those developed by Berti & Bolle [5, 6] for problems with complete resonance.
Also the local theory of Bambusi & Paleari [3], which is closer in spirit to our
approach, is for semi-linear problems. Close also to the spirit of the present
work is that of Craig & Wayne [9] and Wayne [33], which are nicely explained
in [34].

1.5 Summary

Since the analysis which follows involves some delicate changes of variables with
consequent elaborate calculations and many estimates, it is worth bearing in
mind the robust features of this approach to the standing-wave problem that
lead to a satisfactory outcome.

1. An approximate solution is known in closed form to any required order of
accuracy.

2. The Nash-Moser theorem used

(a) requires that only a part of the linearization of the operator equa-
tion needs to be inverted at each step, provided the remaining part
vanishes at solutions of the equation;

(b) seeks convergence of parametrized families of approximate solutions
to parametrized families of solutions.

3. The problem linearized at an arbitrary point can be reduced, by change of
variables, to one which is a sum of a main part and a quasi-one-dimensional
(Q1D) operator.

4. The method of descent and Q1D theory [22] means that inverting the main
part is what matters.

5. The main part can be inverted in two steps:

(a) first, the restriction to the kernel of the linearization at zero can be
inverted because we have a good grasp of the form of the operators
involved;



(b) second, the small divisors problem on the complementary space can
be dealt with by analysing the size of the parameter set where ele-
mentary Diophantine analysis leads to estimates that ensure that the
Nash-Moser theory applies.

Acknowledgements. The results of this paper were announced in [15]. John
Toland acknowledges the warm hospitality of INLN, Université de Nice, where
this work was begun and all three authors acknowledge the warm hospitality
of Professor Mariolina Padula during a visit to Dipartimento di Matematica,
University of Ferrara, where the work continued with many very fruitful discus-
sions.

2 Basic Formulation

Following [11], the standing-wave problem is formulated in [16] as a system of
two equations for functions w and ¢, and a positive parameter pu:

He' +w'Huw — w(l+ Hw') =0, (K)
H(w'¢ — iy — pww') + (¢ — pw)(1 + Hw') — ¢"Hw = 0, (D)

where dot means the partial time (¢) derivative and prime means a partial
space (z) derivative. Both w and ¢ are functions of (x,t) which are even and
2m-periodic in x, and w and ¢ are even and 2m-periodic in ¢ as well. Here H is
the 27-periodic Hilbert transform, with respect to x, which is defined for locally
square integrable functions by

H(cosnz) = —sin|n|z, H(1) =0,
H(sinnz) = sgn(n)cosnz (n #0),

A solution of these equations leads to the free surface of a standing wave given
parametrically in physical coordinates (£,7) by

(Eﬂ?) = (x +Hw('r’t)a _w(xat))’ ('T’t) € RQ;

where p(z,t) is the value of the velocity potential on the free surface and p, the
bifurcation parameter, is

9T
27
where T is the time period, A is the spatial period, and g is the acceleration due
to gravity. It is shown in [16] that the formulation (K) and (D) is equivalent to
the classical standing-wave formulation, see, for example, [1].

"

3 Notation and Identities

We begin with the two basic function spaces

L = L*(R/2nZ) and Lf, = L*{(R/27Z)*},

10



with scalar products (-,-), and ((-,-)), respectively. Let H; and Hy denote,
respectively, the spaces of functions which, with the components of their gra-
dients, are in Lﬁ or in Lih. Note that H is a bounded linear operator on L7
with

H" = —H,

where H* denotes the adjoint of H. In fact, for v € L2, H is given by the Cauchy
principle value integral

_pve [T w(s)ds

Ho(z) = (3.1)

2 J_,tani(z —s)’

which exists almost everywhere if v is merely integrable. (However, while it is
defined almost everywhere, Hv is not necessarily integrable in this case.) This
formula leads to Privalov’s Theorem [37] which implies that H is continuous
from the space C*< of 2r-periodic functions which, with their first k& derivatives,
are Holder continuous with exponent «, into itself. In particular, the Hilbert
transform of a smooth function is smooth. For f and g € L§ or L, let

[fi9] = fHg—gHf and J(f,g) = fHg+H(fg).

1 T
mof = 2—/ f(x)dz and IIf = f — mof.
™ —T
We then have immediately for any f, g in L7

and
H(fHg) + H(gHf) — (Hf)(Hg) + fg = (m0.f)(mog)- (32)
Now suppose that w € Lj, is sufficiently smooth and, for any f € L, let

Lw/f - f + [fa w’],
My f = f+J(f.w),
L f f+ fHW +w'HS,

My f = f+[Hw' —H(w'f).
Lemma 3.1. Suppose that w € L?h is smooth and |[Hw'| <1 on R x R. Let

D (14 Hu')> + ' # 0 on [0,27] x [0, 27].

Then the t-dependent bounded linear operators L., My, Ew/, Mw/ on Lg are
smooth functions of t. Moreover we have the following.
i) For any fized t,

* Mw/, Z*

w! T w

) =M, in L(L2) (3.3)

11



and for sufficiently smooth functions f, g, u

<[fag]au> = (f,J(u,g))=—<g,J(u,f)),
HLuwf = LuwHf—w'nof,
HMy f = MyHf —mo(w'f).

it) Ly has a bounded inverse in Lﬁ which is given by

- =

Lo f=Ly(%
= Lul3)

and, for f € L?,
~ 1
Lifl = —Ly )
w ol f
1 1 w'’
H(BLw/f) = BLw/Hf + Bﬂ'of.

i11) My, has a bounded inverse on Lg and

1 — —
M f = =My f, My f=My(

w D )’

Sl

Mw/(%Hf) = HMw/(%) — To <£f

In addition, for any (f,g) € Lf x H] or H} x L§

N——

~)

1 1
M} = —H(f Ly — Ly
SH9U0.9) = R Lwa) + 1 (L)
and, f in Li,

(Lo — M) f = w'H(

£
D
Proof. See Appendix A.

Lemma 3.2. For any f, g € Hhk k>2,

Lw’f
D

9, ] = (L g)H( ) + (L fYH(

in other words,
[gvf] _ [Lw/g Luﬂf}
D D’ DV

12

1
)+ 5H(fw’) = MW, L)

(3.10)



Proof. From (3.8) we know that

Lo 1 '
Ly = Srwnr+ Ymos

=5

and hence

(L g M) ¢ (Lt
Lw’f

_ ’ ’y Loyrg
) {1+ Hw)YHg +w'g} D
1

(L +Hw')? +w)[f, 9] = ~[g f],

w' g
D )

{1 +HWYHf +w'f}

and the lemma is proved. o

4 Main Equation

In this notation the system (K) and (D) can be re-written

W+ [, w'] —Hy = 0,
O —pw+ J(p — pw,w') — J(¢'w) = 0,
and then as
Ly — Hy' =0, (k)
My (¢ — pw) — J (1) = 0. (d)

As a consequence of Lemma 3.1 and (k), ¢ can be eliminated from (d) to yield
a single second order nonlocal PDE for the function w:

Ot (Luprtb) — pHW' + HOp M, T (H Ly, ) = 0. (4.1)

To see that nothing has been lost in this manoeuvre, suppose w satisfies (4.1).
Then
Wo(at(Lw/’Li})) == 0,

and, since (L) is odd in t and has zero derivative, we have
™0 (Lw/’lb) =0

and there exists ¢(x,t) (periodic in z, and defined up to an arbitrary function
of t) such that
Lw/’lb = HQDI.

Substituting this into (4.1) yields

8t(Hga’) - /LHU}/ - HazMJ}J(@/v U}) = 07

13



and hence
Orp — pw — MM I () =: c(t).

Define d(t) such that d = —c, then
Qe+ d) = pw — M I (¢ + d)f 1) = 0,
which shows that 9;(¢ + d) is periodic in ¢ and z. Finally

My (9(¢ + d) — pw) — J((¢ +d),w) = 0,
Lyw—H(p+ d)/ 0,

which shows that (k) and (d) are satisfied by (w, ¢ 4+ d). Hence nothing is lost
in considering equation (4.1).

Remark 4.1. Care must be exercised because any constant can be added to
a solution of (4.1) to obtain another solution. In particular, any constant is a
solution. To find non-constant solutions we work in a subspace, to be deter-
mined later, and in a neighbourhood of the non-constant approximate solution
introduced in Section 4.2.

4.1 Linearization at the origin
When (4.1) is written as

F(w, p) = 0 where F(w, p) = Ly (w) + N (w), (4.2)
the linearization of F(-, 1) at the origin is given by

Lyu = Dy F(0, p)u = ii — pHu'.

For j > 2 let \V; be given by

T

'A/'J(uaau):.7| Guj

Then the quadratic and cubic terms in the Taylor expansion of F(-,u) at 0
follow easily from (3.10) (see Appendix (B.1) for the terms of order four):

NQ(U, u)

Oy [it, u'] + %Ha%«{?,(ﬁm)2 —u?}
= Ohfu, '] + 0z (H(4?) — 3uH),
Ns(u,u,u) = HO{ — (Hu')(Hi)* — @ + (moi)®) — 2(Ha)H (dHu')
+3(Ha)H[i, u'] — afu, '] }
= —HO {4(Hu)(H(uWH)} + v (moi)?,

14



The following are suitable spaces in which to study our nonlinear system. For
any s € Ny we denote by Hg, the Hilbert space of 27-periodic functions u :
R2 — R with norm

e ={ 3 @t ) Sulm, w2}

(m,n)€ez?

where the Fourier transform of u is

Su(m,n) = 4—71r2 /j /j exp(—i(m,n) - (z,t))u(x,t)dedt, (m,n) € Z*. (4.3)

For m > 0 let
Hp* = {we Hy; wis evenin z and in ¢},
Hun;’eo = {p € Hy; ¢iseven in r and odd in t},

and so on, depending on evenness or oddness with respect to z and to ¢. Then,
for m > 4, F is an analytic map from Hh"h“ee xR to Hh?_Q’ee, the linear operator

L,, is bounded from Hh?’ee to Hh"hl_Q’ee, for m > 2, and the nonlinear operator

N is analytic from H" to Hy ~2¢ for m > 3. This last property comes from
the fact that Hy} is an algebra for m > 2 (we are working in two dimensions).
However, this choice of spaces is not optimal for the linear operator, since w”
appears in the nonlinear, but not in the linear term. Hence we cannot expect
that an inverse of £, applied to the nonlinear term, regains this loss of differen-
tiability. In fact the situation is even worse because of a small divisor problem;
see Remark 4.4. Consider (4.2) linearized at the origin:

Lyu=f for feH" m2>0. (4.4)

Let u,, n > 0, denote the Fourier cosine coefficients with respect to x of wu.
Then (4.4) implies that

Uy + pnuy = fn7 (45)
where
1 s
un(t) = —/ u(x,t) cosnzdx, n > 1,
™ —T
1 ™
up(t) = (mou)(t) = o ﬂru(:c,t) dx.
Let L
ul® = —/ un(t)cosqtdt, ¢ > 1, (4.6)
™ —T

the Fourier cosine coefficients of u,, with respect to t. Then, after taking the
Fourier coefficients in ¢, we have

(np — ¢*)ul® = fL9, (4.7)

n

This leads to the following observation on the spectrum of the linearized prob-
lem.

15



Lemma 4.2. In Hgg’ee, the kernel of L,, consists of constants when p ¢ Q. On
the other hand, in th;’ee the kernel of L1 is Fp N Hhrg’ee, where

Eo = span{A,cosq®rcosqt : A, €R, qe NU{0}}.

For all other p € Q, the kernel of L, is infinite dimensional (and is easily
deduced from Ey).

Proof. Note that any element of Q can be written as ¢?/n. From (4.7) we find
that if 4 # ¢?/n, the kernel is trivial For u = 1, the kernel is obtained by
considering all n, ¢ with n = ¢2. (For rational values of p of the form ¢*/n, the
calculation of the kernel is left to the reader.) O

Now we focus on values of p where the kernel is non-trivial. In fact we
concentrate on the case p = 1, which is not a restriction since for general
p = q?/n it suffices to rescale space and time to modify u and replace ¢?/n by
1. Note that n =0 and u = 1 in (4.5), leads to the compatibility condition

27

fo(t)dt =0
0

27
and wug(t) with / uo(t) dt = 0 is then given by
0

wo(t) :/Ot /O fO(T)des—%/O% (/Ot /0 fo(r)drds) dt.

For other values of n # ¢%, ¢ € NU{0} and p = 1,

up(t) = s)cos v/n(m +t — s)ds +

ﬁ/ ol
v | f(s)sin Vit - 8)ds.

For n = ¢ # 0, the compatibility condition f;g) = 0 must be satisfied and we
have

1t
ugpe(t) = - / fq2(s)sing(t — s)ds.
qa.Jo
In Lih the orthogonal projection P, onto the kernel of £; is defined by

Pou = Z u((;g) cos g*x cosqt for u(x,t) = Z uglq) CoS NI cos gt.
qeNU{0} n, geNU{0}

Lemma 4.3. For any f € H," with Pyf = 0 there is a unique u which
satisfies

Liu=f, ﬁou =0 (ue€ ker(£1)L in Ly), u€ Hbvg,ee_

16



Proof. We use the fact [13, Remark 4.2] that for any n € NU {0} with n # ¢?
for all ¢,

Valsinmy/n| > 71/2 — e, 0< e, =0(m"Y?) as n — .
It then follows from the above formulae that, for n # ¢2,

[lunz2 Cllfallz>,

. ™
||un( + m) + \/EUnHL2 > C||fn||L2’

VANV

and, for n = ¢2,

lalllugz[z2 + [[ugzllh - < Cllfgellre, g #0,
lluollz < Cllfollz2, q¢=0,
and the result of the lemma follows. O

Remark 4.4. Observe that in this lemma we do not gain enough regularity to
compensate for the loss of regularity due to the nonlinear terms (second order
derivatives in z and in xt). As a consequence, we resort to the Nash-Moser
implicit function theorem in dealing with the bifurcation problem.

4.2 Approximate solutions

Solutions of the standing-wave problem as a formal power series in €, where
p = 1+ e%/4, are known to exist and all the coefficients can be calculated
in closed form by an explicit algorithm [1, 14]. Although the convergence of
the resulting power series is unknown, this observation leads to approximate
solutions of the standing-wave problem, formally accurate up to arbitrary power
of € > 0 sufficiently small. Here we recall the details of this calculation in the
context of equation (4.1).

Lemma 4.5. An approzimate solution w of (4.1) is given by

ng): Z g™, p—1=¢e?/4,
1<n<N

where all the w™ can be calculated explicitly,
wM = cosz cos t,

1 1
w® = 708 2t — 5 cos 2x(1 + cos 2t)
37 11 3
w® = ~33 cosz cost — 35 COS T €08 3t + g c08 3x(3 cost + cos 3t)

and, if equation (4.1) is re-written as (4.2), then
Fw) 14e2/4) = N HQ,,

where Q. s bounded in Hb?’ee, for all m, as ¢ — 0.

17



Proof. Equation (4.1) may be written as
Liw — vHW' + Na(w, w) + N3(w, w, w) + ... = 0, (4.8)

where 4 = 1 4+ v. We know from [1] that there exists, for any N € N, an
approximate solution of the form

w™) = Z e"w™, v=¢?/4 with w = coszcost.
0<n<N

The results is that there exists a formal expansion of a solution of (4.8) in the
form

w= Y™, p=1+e%4,

n>1
where
w®m = Z wz(f;”) cos 2qt cos 2pz, w((f(;") =0,
0<p,g<m
wm D = Z wl(f;"H) cos(2q + 1)t cos(2p + 1)z,
0<p,g<m

which gives the structure of approximate solutions up to any fixed order &'V.

The calculation of w®, w®), and a sketch calculation for w® and w®), are
given in Appendix B. O

Remark. The existence of an exact formal power series for a standing wave
was originally given for an equivalent formulation of the problem in [1], and for
a more general type of standing waves in [14]. It is worth noting that, for the
proofs in this paper, we need only the coefficients of the approximate solution
w of F(w, u) =0 with N = 2 and that the coefficient of cosz cost in w§3> only
influences F at orders €* and above. Computations made in Appendix B are
sufficient for our purpose.

4.3 An equation for standing waves

Fixed Ny € N. Then define ® on Hh?’ee x R by

52

1
D(u,e) = ETO}'(ngO) +eNoy, 1+ 1

), €#0,  @(u,0)=0 (4.9)

and seek solutions of

27 2m
O (u,e) =0, /0 /0 u(z,t) dedt = 0. (4.10)

To do so we use the Nash-Moser theorem in Appendix N restricted to functions
with zero mean in th’ee, for some 7. Note that w™ has zero mean and, for
N e N,
No+N
wNotN) = gy (No) 4 -No (E 3 En—No—lw(n)) = o) 4 £No (V)Y

n=Np+1

18



(this is the definition of ugN)),
4™ || < const |e| and [|B(uN),€)|lm < const N,

where the constants depend on m and N. This shows that ® satisfies hypothesis
(N.3) and (N.4) and (see Remark 4.1) solutions u # 0, £ # 0 sufficiently small,
give solutions of the standing-wave problem. It is straightforward to see that
when g and ||w||s are bounded, by Ms say, then, for all | € Ny (where Ny denotes
the set of integers > 0), there is a constant ¢;(Ms3) such that

[F(w, @)1 < er(Ms)||wl|r43. (4.11)

This is enough to ensure that ® satisfies (N.1a) with p = » — 3 > 1. In the
notation of Appendix N the derivative of ® in the direction u at an arbitrary
point (u, ) is given by

2

O (u, ) = By F (wN) 4 eNou, 1 4 %)g (4.12)

and to apply the Nash-Moser implicit function theorem to (4.10) we need to
invert an operator A(u,¢) that approximates the operator (4.12) at an arbitrary
point (u, ) in the sense of (N.1d) and (N.1le). In particular A(u,e) and @ (u, )
coincide when (u, ) satisfies (4.10). For more detail of how this is achieved, see
Sections 6.1 and 8.1.

5 Linearization at a Non-zero Point

The analysis of this section leads to an operator A, given explicitly by (6.3)
below, which coincides with @/, at solutions of (4.10) and which we eventually
show has all the properties required in Appendix N. To find estimates on the
inverse of A(u,e) at arbitrary points we will see it is equivalent to estimate the
inverse of L(w,1 + €2/4), given by (6.2), at any point w # 0. So consider the
linear problem for a function dw,

where F is defined when (4.1) is written as (4.2). Note that F maps C};" to
ng_zee and Hh";’ee to Hb?_Q’ee, m > 3.

Lemma 5.1. In (5.1) suppose that w € Hy"™ \ {0}, m > 4, and [Hw'| < 1.
Let v = Ly (6w). Then

b — pwHY' + HO,(Q0 + R + T,v) = f. (5.2)

Here Q, R, 1, are the bounded linear operators from Hhkh to itself, k < m — 2,
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which depend smoothly on t, given by

Qg = J(a,g) + (W()gg) — Wo(%)) ﬂo(Lw/w)

= aHg + H(ag) + (Wol()g) - Wo(%)) /0 o (F(w, p)) (s)ds,

Rg = —aH(ag) + (aﬂo(%) — ﬂ'oglg)) (/Ot o (F(w, 1)) (s)ds)

2

FHE) ([ . m)s)
0, HT,q = am{ — aH(d'g) + H(ag) — HF(w, 5) H(g/D) + bg

Frola's) [ moFw. ) s)ds

-5 5) ([ o))

m—2,0e
where H(F(w, pn)) € Hy ,

1 1 1 _
a=J(3, L) = M Ha = H( 5 Luwrth) + S H(Loth) € Hy Lo,
b= D Ya?Lyw”" — 2aLyi 4 Lyt + p(D — 1 — Huw')}
Lw/w” . m—2,ee
+ T(W()Lw/’w)2 S Hhh 2 ,

and

Q'=-9Q , R"=-R.
If |p| + ||wlls < Ms, there exist constants ¢;(Msz), | € Ng, such that

lallire < a(Ms)wllirs, (bl < c(Ms)[|wlira. (5.3)

Moreover, if w is an approximate solution of (4.1) (or equivalently (4.2)), at
order €2, and p = 1+ €2/4, then for any integer m, || F(w, u)||m = O(e?) as
e — 0 and

= 2esinzsint — % sin 22 sin 2t + O(e?), (5.4)
b = —2ecoswcost+e*(—1+ cos2x(1 + cos2t)) + O(e). (5.5)

Remark. Note that the linear operator Qv + Rv' — aH(a'v) + H(av) + bv is
symmetric in Lf,. In the expression for Qv, the term mo(3/D) fot mo(F) ds is
independent of x and so is in the kernel of Hd,. Similarly in Rv’, the term
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amo(v'/D) fot 7o(F) ds is zero since v’/ D is odd in z. Thus

0, H{ Qv+ RV + T} = &ﬂ-{{a?—({z’) — 9y (av)} + HOy(av) + bv

+ 5 (mo) / 7o (F(w, 1))ds — H(F(w, 1)) H(v/ D)
%H&I(U/D){/O mo(F (w, w)ds)” (5.6)

Therefore when w is a solution of (4.1), the linearised problem is simply
o — pHY + Oy H{aH{0 — 0x(av)} + HOy(av) + bv} = f.
Proof. To simplify notation we introduce an intermediate variable ¢ defined by
¢ = —HLyw, ¢(0,t) =0,
and, denote by 1 the increment in ¢ due to an increment dw in w. Then
W = —H(Lydw + [, 0u']). (5.7)
In (5.7) we make a change of variables
v = Ly (0w), 6 =1+ Hw,ow)
which yields
Ho+0 =0, ¢ =0+HL, v,w] and o' = —Ho + HO[L, v, ).
Note, from the first identity, that
0 =HO' + Oymo (6w (1 4 2Hw')) (5.8)

and that L, = 7o (Lw/u'}) + H¢' where

] 1 27 ) ] ) d 1 27
o (L) = %/0 (w +wHw' — w’Hw) dr = % (% /0 w(1l + Huw') d:z:).

In this notation (4.1) can be written as
HOLG(w, p) + 0o (w(l 4+ Hw')) =0
where the operator G is given by
Glw, 1) = & — o — M1 (). (59)
The linearization of &y (w(l + Hw’)) at w in the direction dw is

Ao (dw (1 + 2HwW")). (5.10)
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The linearization, 9,,G(w, p) dw of G in the direction dw, is given by
= pow — Myt (@) — M J(, 5w) + M T (M I (8 i), sw'),
where 0w and dw’ denote derivatives of dw and we have used that
(Ow My [0w])g = J(g,0u"),
(Ou(Mhowl)g = =My J(My'g,ouw').

Thus in terms of the new variables (v, 6),

OwG(w, p)ow = 6 — pL o + OH[L v, ] — M I (¢, 0: (L, v))

+ M T (Hob) + M T (M (@), 0 (L tv))
— M I (HO, L v, i), ). (5.11)

Now we identify the operators in the linearization that act on ¥, v’ and v. Define
bounded operators @, R, 7, acting on a function g by

Qg = HIL, g,w]+ M, J(Hg,w)— M, 'J(¢ L, g), (5.12)
Rg = M }I(MMI(d ), Lytg) — M I (HIL, g,d],), (5.13)
T.9 = Tog+pTWy, (5.14)
Tog = —Q[L, g, '] —R[L, g, w"] +H[L, g, ],
TWg = (9-Ly'g).

Then (5.11) becomes
DG (w, p)ow = 6 — pv + Qi + R’ + T,v, (5.15)
where we have used that
Lu (0:L,l)g = =Lyt g,0) and Ly (9. Ly!)g = —[Ly) g, w”].

In the light of (5.8), (5.9), (5.10) and (5.15), the linearization of (4.1) leads to
a linear non-local second order PDE (5.2) for v :

b — pHY + HOp(Q0 + R + T,v) = f.
Observe from the symmetry property in Lemma 3.1 (i) that
Q*=—-0Q and R*=-R.
The following two propositions complete the description of @ and R.

Proposition 5.2. For any w in H;;"* and g € L,

Qg = J(a,g) + (ﬂ'ojég) — Wo(%)) 70 (L)

— atg + Hlag) + (P2 —no(£)) [ mo(Fw ) (rar
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where

1 ; - . m— 0o
a = J(B,Lw,w) = 2M,'Hi € Hy, 1,00
1 1
= H(BLw'w) + BH(Lw/u'}) is odd in x and t.

Proof. The proof of this proposition is given in Appendix C. O
Proposition 5.3. For any w in H;;"* and g € L,

R = ~an(ag) + (amo(%) - 290 ("o (#0.10) r1ir)

2

_ %H(%) (/Ot o (f(w,u))(T)dT) ,

where a € Hhrgfl’oo is defined in the previous proposition.

Proof. The proof is in Appendix D. O

Proof of Lemma 5.1 concluded. Next we give an explicit formula for
0. H7T,,(v). We have, from (5.14) and the above expressions for Q and R,

0. HT,(v) = amH{ — aH[L v, ']+ aH(a[L, v, w"]) + H[L, v, 0]
— H(a[Lytv,d']) + p(v — Ly, lv)

1
+ B{WO(a[L;}v, w"]) — mo[ Lyt v, '] o (Loprt)

4 0w (= (L v, w

(WOLZ;/U'}) ; -1 //]) }7

since

M (mo(D~ Ly, fo])mo (L)) = 0 and mo(D ™~ [Ly v, w”])(mo L)) = 0.

w
The second observation follows because v and w are even in x, which implies

that D™Y[L v, w"] is odd in z. From (C.1) with u = 1/, w"” we observe, after
integrations by parts, that

molalLy v, w"]) — mo[Ly v, '] = mo(arv)
where a7 is defined in (5.17). Again from (C.1) with v = w” and (3.2)

7ﬂ%ﬂghﬂwp:—H%(%Y}+§(%YH§Q 3%§i

where, as noted at the beginning of Appendix E,

Lw’ wl/

D)

(5) = —pH

5 (5.16)
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and, from (A.1), mo((Lyw”)/D) = mo(w”) = 0. From Lemma 3.2, it follows
that

Lw/u

D

)~ 1) L

(Lo v,u] = vH(

= —H(% HLw/u) + H(%)H(Lw/u) — %Lw/u + Wo(%)ﬂ'g(l/w/u).

Hence, from (3.7 ) and these observations with u = &', w”, w0, we finally obtain

O.HT, v = 3937'{{&7'(((111)) + H(azv) + asH(v/D) + bv
(ﬂoLw/w)Q ( 1 /)}
D H ’U(D)
where, since mo(Ly ') = mo(aLyww”) = 0 because Ly’ and aL, w” are odd,
and since

1
+B (o Loy ) o (a1v) —

duH{mo(aLuyi’ — Lyi)mo(v/D)} =0,

ar = aH(Lyw"/D)—H(Lyi'/D)— D™ "H(Lyw' — aLyw'"),
as = H(Ly1i/D) — aH(Lyw' /D) — D™ YH(aLyt' — L),
az = aH(Lyt' —aLlyw"”) +H(aLytw' — Lyw) — pw' + (5.17)
1 I
Ly))? | =—=
+m(Lo)? (5)
b = D Ya’Lyw” —2aLyi + Lyt + p(D —1—Huw')} +
Lw/w”

T (ﬂ'o (Lw/’U:)))Q.

The estimates (5.3) follow easily from the formulae for @ and b and from the
general inequality, which is valid for any f and g in thh’ 1>2

Ifglle < ci(llfllllglle + £ 1ellgl2)- (5.18)

It remains to calculate a1, as and as.

m,ee

Proposition 5.4. For any w € Hhh . m > 4, we have a € th;—l,oo’ F e
Hm—2,ee d
hh an

ap = 70/; a2 = da as = 7H(f('(U,M>)

Proof. The proof is in Appendix E. O
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This completes the first part of the proof of Lemma 5.1. Now assuming
that w is an approximate solution at order 2 of (4.1), where u = 1+ £2/4 (see
Section 4.2), we can then compute these coefficients up to order £2. This is done
in Appendix F, and Lemma 5.1 is proven. o

Lemma 5.5. The linear operator defined in (5.2) has the function
vo =14 Huw' € Hg;‘lv“
in its kernel and its range is orthogonal (in Lgh) to constants.
Proof. As was observed in Remark 4.1,
Fw+a,p) = F(w, p)

for any real constant a and sufficiently smooth function w, where F is defined
by (4.1) written as (4.2). Therefore

OwF(w, w)a =0

for a sufficiently smooth w and any constant a. This means that 1 + Hw' =
L, (1) belongs to the kernel of the linear operator defined in (5.2). The orthog-
onality of the range to constant functions is trivial, since the operator is a sum
of derivatives 0, and d;. This orthogonality holds when w € H;h’ee. O

6 Reduction of Linearized Operator

6.1 Strategy
Observe that (5.2) with v = L, (dw) may be written, using (5.6), as

Ot (0 — Oy (av)) + HOL{aH (0 — Oz (av))}
= HOx{(p — b)v} + D(F(w, p),v) = f (6.1)

where, with F, v even in z,

I(F,v) = —H@m{H(}')H(U/D)}+H8z(1/D)7TO(1})/O mo(F)ds

—Ha, (%H@w(v/D)) ( /0 t wo(}")ds)

Note that the range of the linear operator I'(F,-) is orthogonal in Lgh to con-
stants. Now define a new operator L£(w, u) by

L(w, p) = 0w F (w, p) = T(F(w, ), Lur (), (6.2)

2

and let A(u,e) be given by
2

Afu,e) = L(w™) 4 eNow, 1 + %). (6.3)
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The ranges of A(u,e) and L(u,e) are orthogonal to constants and, from (4.12),

52

P (u,e) — A(u, ) = D(F(wN0) 4+ eNow, 14 T

); L{wiNO)-i-ENUu}/( : ))ﬂ (64)

which is zero when (4.10) is satisfied, and estimating the inverse of A(u,¢) is
equivalent to estimating inverses of £(w, ). This is a good place to record the
obvious estimates that lead to the verification of (N.le) when r — p = 3 for
p > 1. Suppose that |u| + ||w||x < My, k = 3, 4. Then there exist constants
ci(My), I € N, such that

[ L (Gw)lls < er(M3){w]|isallwll2 + 0wl }

and hence

IT(F (w, 1), )41 < eo(Ma){IF (w, w)ll2lv]li+s
17w, ) lli2llvlls + llwllival Fw, pllzllvlls}- (6.5)

Therefore

T (F (w, ), Lo (00)) 141 < eo(Ma){IF (w, )2 0wll143
HIIF(w, m)lli2llowlls + lwllivall F(w, ml2]l0wlis}. (6.6)

To verify the hypotheses of the Nash-Moser theory we need to show that for
carefully chosen positive € which can be arbitrarily small, and for u sufficiently
close to 0, the equation

A(u’ﬂ €>Q = i

has a unique solution u orthogonal to 1 in LZ, when f is orthogonal to 1 in L,
and to establish bounds on u relative to f in Sobolev norms. It will suffice to
prove that for carefully chosen p > 1 with p close to 1, and w in a set determined
by the proposed asymptotic form of w close to zero, the equation

L(w, p)u= f

has a unique solution u orthogonal to 1 when [ is orthogonal to 1, with suitable
bounds on u in terms of f. Note from (6.1) that

L(w, ) = A(w, ) o Ly where (6.7)
A(w, p)v = 04 (0 — 9z (av)) + HOz{aH (0 — Oy (av))} — HO{(n — b)v}. (6.8)

The aim is to prove Theorem 8.5. In what follows we show that the operator
A(w, 1) has one-dimensional kernel, spanned by v*, say, where v* is close to 1,
that its range is the space orthogonal to 1, and establish good estimates on its
inverse restricted to these codimension-1 spaces. To see that this is sufficient,
suppose that f is orthogonal to 1 and that A(w, u)v = f where v is orthogonal
to v*. Let u = L;,l(y + av*). Then

L(w, pu= f
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and u is orthogonal to 1 if and only if

2w p2m
/ / L (v + aw*)dzdt = 0,
o Jo

which uniquely determines «, because v* is close to 1 and L, is close to the
identity. This solution is clearly unique in the class of functions orthogonal to
1, and estimates on u in terms of f follow once similar estimates of v in terms
of f have been established. B

6.2 Change of coordinates and smoothing operators

Thus we have reduced the problem to one of estimate the inverse of A(w, p).
To do so we seek a change of coordinates to remove terms which contain second
order derivatives in zz and in zt in A(w, r). Such a change of coordinates is

defined by
def

y=x+d(z,t) = Ulx), (6.9)
where d satisfies the linear PDE
od = a(l+ 0.d) (6.10)

dli—o = 0.

It follows from the method of characteristics, because of the periodicity and
oddness of a(x,t), that there exists a solution d in C* when a € C*. In particular
if we Hy ™ then a € Hh?_l’oo C ng_s’oo and the existence of a solution

de C;;_&Oe - th;—&oe follows. Moreover, equating of powers of € yields that

in ng_s’oe, as € — 0,
d(x,t) = 2¢(1 — cost) sinz + &2 sin 2z(1 — 2cost + cos2t) + O(e*).  (6.11)
For the method of characteristics and estimates of d and d, see Appendix G.

Remark 6.1. In principle, the initial value d|;—¢ might be chosen as an arbi-
trary odd periodic function of . We choose zero initial data for the moment,

but a further change of variables will amount to re-introducing a non-zero initial
value for d(x,t) (see dq(z,t) in ( 7.12)).

From now on a tilde (7) will indicate a function of (z,t) expressed as a
function of (y,t) via the formula

iy, t) = ult; (), 1),

and a hat (7) will indicate a function of (y,t) expressed as a function of (z,t)
via the formula

v(x,t) = v(Us(2), 1),
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Note that d € ngfg’oe and

Up(z) =z +d(z,t) = 2 + dUs(z), 1), (6.12)
U (y) =y —dly.1), (6.13)

-1 B 1
L ud Uy (), 6) = 5T (6.14)

. 1 o at (pa) (y7 t)
{00 — 0(av) } (U (), 1) = oD (6.15)
where .

p(y,t) = exp{ — /0 Oza(U; " (y),s) ds}. (6.16)

Proposition 6.2. For any w € H"™ andm >4, p € th;f&ee, de C’;’;*B’OS
and

3

p(y7 t) =1- ayd(yv t)-

Proof. By construction,

atp(:% t) _ —(’)ma(utfl(y), t) _ _aya(yv t)

p(y, t) 1 9,dy.t)

Also, from the definition of d and (6.9),

(Opd) (Ui (), t) + (0yd) (U (), t)0rd(x, t) = Od(z, t).
Therefore we obtain from (6.10) and (6.14) that d;d = @, and so that

0(1—08,d)  —d,a O

1-0,d 1-08,d

Since pli=o = (1 — 8ycj)|t:0 = 1, the result of the proposition follows from the
uniqueness theory of initial-value problems. o

To continue the study of the linear operator (5.2), or equivalently of (6.1)
we examine the smoothing properties of two families of operators S, and S.

Lemma 6.3. For a smooth 2m-periodic function w, define the linear operator
Sy on Lg by
Suf = Hwf) —wHf, feL.

Then, for w € Hy, S, s bounded from Lg into Hhm_2 with, for any m > 2,
||Sw||L(L§,H;"*2) < Cm||w||H§"'-

Proof. The proof is in Appendix H. O
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Q1D Operators. In what follows the notion of a Q1D (quasi-1-dimensional)
operator is from [22, Definition 7.6]. Recall the notation of the Fourier transform
from (4.3). For any real a, # denote by G, s the operator on H*® defined by

§(Gapu)(m,n) = F(m,n) (1 + [n))~*(1 + |m|)®, (m,n) € Z*.

Definition 6.4. For any non-negative exponents «, 3, a linear operator R is
quasi-one-dimensional (Q1D) of order («, 3) on H* if

|||R|||aﬂys ‘= Sup HGaﬁ Ruls < oo.

flulls=1

It follows from this definition that if R is a Q1D operator of order (a, 3)
in H?® then, for any o/ > « and ' < 3, the operator R has order (¢, ') and
1Rl 0 < l1Rlllays.e. Note that [1DY DR|cspi—gs < 1Elllays.0: for any
p, ¢ > 0. Roughly speaking, a Q1D operator of order (a,3) can lose up to «
derivatives in ¢ while gaining 3 derivatives in . Examples of Q1D operators are
the identity I and the Hilbert transform H, which are Q1D of order («,0) for
any a > 0. Also [22, Proposition 7.8] gives examples of Q1D integral operators.

Lemma 6.5. Ifw € C’gg, m > 0, then the linear operator S, defined by
Suf = H(wf) —wH/,
is a Q1D operator of order (0,08) on Hj, when 0 < B+s<m-—1, and
1Go,58uflls < cas(l|wllesratrllfllo + llwllcor|lflls)-
Corollary 6.6. With w € Ch"hl’ m>1,
Su(0ef) = 0e(Suf) = Sof and 8,(0xf) = 02(Suf) — Sur f,
where
1Go,550 flls + 11Go,580 (02 )]s < cps[|wllemssrz]|fllo + [lwllco+alf]]5)-
Corollary 6.7. Let w € Hii', m >4, |Jw|[l4 < My and w € Céh be such that
lwller < el(Ma)|[w]fi4r, 120, 7= 3.
Then
1G0,5(Sw )™ Nls < cg,s(Ma)([[wllgrssrsallfllo + [[wllp4rsallf]ls)
for0<B+s<m-r—1and for0<f+s<m—r—2,

1Go,s(Saf)Mls < eps(Ma)([[wllprstrrallfllo + [wllgrsall Fls),
1Go,5(8u02f)~ls < cas(Ma)([[wllgrstrallfllo + [lwllsrriallflls)-

Note that r = 3 when w = a and r = 4 when w = q or w = a.
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Proof. The proof is in Appendix H. O

Lemma 6.8. Suppose that w € H;’;’ee\{O}, m > 5 and ||w|la < My sufficiently

small. Thend and d are in C;;_&Oe and the linear operator S defined for u € L?h
by

satisfies the estimate

1Go,8ulls < c,s(Ms) ([wll 4545 llullo + [[wl g+5llulls)-
Hence S is a Q1D operator of order (0,3) on Hg if0<fB+s<m-5.
Remark. Observe that these operators are smoothing in x.
Proof. The proof is in Appendix I. O

Remark. When w € Hh’?’ee, then d € C™~3 and, by [18, Theorem 3.1.5], the
change of coordinate z — y = U;(x) defined by (6.9), is such that if f € Hhkh’ee,
k < m—3, then f € Hhkh’ee and the linear map f — f is bounded. Similarly,
g — ¢ is bounded in the same setting. Therefore both are Q1D operators on
Hg, of order («,0) for all @ > 0 and all 0 < s < m — 3. When ¢ € ng%
the multiplication operator ¢ — gy is a Q1D operator of order («,0) for all
a>0on H°if 0 < s <m —4. See also Appendix G for estimates of changing
variables.

6.3 New linearized equation

Now we show how the change of coordinates (z,t) — (y,t) = (U(z),t) leads
to a linear equation in which the zx and xt derivatives are absent but terms
involving first order t-derivative remain. The next theorem develops the result
of Lemma 5.1.

Theorem 6.9. For w € Hy"™ \ {0}, m > 6, let A(w, ) be defined by (6.8).
Suppose that A(w, p)v = f and let

oy, t) = 0(y, t)p(y,t)

where p € 057;74’66 is defined by (6.16). Then ¢ € Hhkh’ee, k < m — 3, satisfies
the linear equation

O — Oy{aHe} + Gy) = pf (6.17)

where
g=(n—"b)/pe Cl, (6.18)
G() = ~0,{S(ap) + Sy + (HS4(Bro /)" }- (6.19)
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When ||w|l4a < My, the coefficients q above and p from Proposition 6.2 satisfy
the estimates

lp = Ller +lla — pller < a(My)|lw]ita, (6.20)
and the operator G is Q1D on H*® of order (1,5), 0 < 8+ s <m — 6 with

1G18G(@)lls < cs.s(Ms){[wllg+s+sllello + lwllsrsliells }-

Moreover, the range of the linear operator defined by (6.17) is orthogonal in L?h
to constants.

Proof. The linear equation A(w,p)v = f can be re-written in terms of the
smoothing operator S, defined in Lemma 6.8 as
= (0 — 0za)*v — HOL{ (1t — b)v} — HOpS4(0pv — Oy (av)). (6.21)

Now using the change of coordinate (6.9) with (6.15) and the identity
_ Ofy,t)  _ 0,Jy.t

= = , (from Proposition 6.2),
1—3,d(y,t)  pyt) ( )

equation (6.21) becomes

~

Now using the smoothing operator S defined in Lemma 6.8, we find

(H({(u - E)w/p}A))N = H(qp) + S(qp) = qHy + S + S(qvp)

which leads to (6.17). Estimate (6.20) holds because Proposition 6.2 and defi-
nition (6.18), with the estimates (5.3) and (G.3), show that

< ai(Ma)]wlisa.

Cl

d,d
iRl
Ct D

b
1-9,d ’

Ip = tor +lla = uller < |

To estimate G note that
laells < es(llallesllello + llallcollells)
< cs(Ma)([Jwl]stallello + [[wllallells)-
Now by Lemma 6.8 if 0 < §+ s < m — 6,
1G1,80,S(a0)lls < |Go,5+15(ap)|ls
< cppr,s(Ma) (Jlwl prstellagllo + [[wl grellaglls)
< eppr,s(My) ([l g1s+6llello
+ lwllsre(lwllsrallello + llwllallells)
< cpr1,s(Ma) ([0l ges+sllello + l[wls+sllells)
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(where the constant changes from line to line), since for
0<an<a<fBa<fi, ar+fi=az+f2

we have
ezl fllg2 < cllflladllf1]s

which results directly from the classical interpolation inequality

1/ 1xat -5 < el ARG
Similarly, by Lemma 6.5,

||G1ﬁay5q90||s < HGOﬁJrl‘SqSﬁ”s
< cpr1,s(lallcorse2llello + llgllcsrallells)
< cpr1,s(Ma) ([wll g+s+sllello + lwll srellells)-

By (6.15) and Lemma 6.5,

(HS4(rp/p))” = (HSa (B — Dy (av)))™
= (0:HSv)™ = (H(Saaw))” —( (s D(av)))™
—(

= 0, (HS.v)™) — @ (0:(HSv)) ™ — (H(Sav)) ™ — (H(Sa av)))
= HOSAT) GO (o) Koo )
+ 0:S((Sav)™) — aS((0:8.v)~) — S((Sav)™) — S((Sa )™)

By Lemma 6.8 we have

1G1,55(Sav)lls < [[Go,sS(Sav)lls
< cg.s(Ma)([[wl|g+s+5]1Savllo + [[wl]g+5]1Sav]]s)
and then, by Corollary 6.7 (with 8 = 0),
1G1,55(Sav)lls < ca,s(Ms){||wll+s+5l[vllo + [[wlls(lwlls+sllvllo + [|v]ls)}
< eg.s(Ms){|[w]|srs+slvllo + llwl[g+s[vlls}

since
|[wllg+5]|wlls+5 < cg,sllwlg+stsl[w]]s5.

Other terms involving the operator S may be treated similarly, using the fact
that ||allcs < cs(My)||w]|s+3 (from Lemma G.1 and (G.3)) and Lemma G.3.
The terms involving H are estimated using the fact that

|GasHulls = [|Ga,pulls

with Corollary 6.7 and Lemma G.3. Next recall that v = ;/?7 and hence, by
Lemma G.3 and (G.3),

[lolls < es(Ma)(llells + [[wl]s+allello)
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which implies that

1G1.8(HSa(@rp/)) " lls < cp.s(Ms){[wllgsstsliello + [wllgrslleolls }-

These estimates yield the required estimate on G. When it has been noted that
the range of our operator is orthogonal to constants, the proof is complete. [

Corollary 6.10. If w € th;"ee in Theorem 6.9 is the approximate solution
wéN) of (4.1) given by Lemma 4.5 with N > 2, then, in the appropriate spaces

(see Theorem 6.9),
g=1+2eccosy+ 52(2 — cos 2t — 2cos 2y) + O(e?),
p=1—2¢(1—cost)cosy + 4e*(1 — cost) cos 2y + O(£?),
Gy =eGWp+2GP 0 + 0 |¢ll),

where
GW o = 2cosy {(sint)mo(drp) + mop},
G = —4(sint cos2y)mo(Drp) — 2(sin 2t cos y)mo (Drp cos y)
— 4 cos2ymop — cosy (3 + cos 2t) mo(p cosy).
Proof. The proof is in Appendix J. O

7 Normal Form of the Linearized Operator

In this section we make a succession of changes of variables which transform
the linear equation (6.17) into a simpler one (Theorem 7.5) in which the main
part has constant coefficients and the remaining term is a Q1D operator [22,
Section 7.2]. When this is done, the linear operator can be inverted provided
certain diophantine conditions are satisfied by two of the coefficients in the new
equation.

7.1 Simplification of (6.17)

The next change of variables is designed to produce a new linear equation with
the same form as (6.17), but with a constant coefficient instead of ¢(y, ). The
idea is to change the independent variables with a diffeomorphism of the torus
T? = (R/27Z)? in the form

E=y+do(y), T=t+eo(y,t), (7.1a)

where dy € C’;’%B’O, ey € ng%’eo have norms of order ¢ when w = w™’ is

given by Lemma 4.5. Denote this change of coordinates by

(&7)=Q(y, 1), (7.1b)
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and introduce a new dependent variable
0(¢,7) = p(Q7H(& 7). (7.2)
We will need a new smoothing operator, S, defined for 0 € L?h by
Sy = (H(00Q)) o Q™" —Ho.

The hypotheses for the next observation are motivated by estimate (7.10) which
follows once eg and dg have been identified.

Lemma 7.1. Suppose ||do||cm-3+]eollgm-2 < em(Mg)||w||m where |w|e < Ms.
Then for a possibly different constant constant c,,(Msg),

1S0)0lls < em(Me){l10lls+1 + llwlls+ellfllo}, s+6 <m, (7.3)
1Gs11,850)0lls < em(Mo){l|lwllpt6ll0lls + [wlsrstellfllo}, B+s+6< 7(71 )
7.4

Hence Sy is a Q1D operator of order (8 +1,[) on Hhsh’ 0<B+s+6<s.
Proof. The proof is in Appendix K. O
The next result concerns a further change of variables in (6.17).

Lemma 7.2. Let A(w,p), v, f and ¢ be as in Theorem 6.9. Then there is a
diffeomorphism Q of the torus T?, determined by (w,p) of the form (7.1) in
which dy € Chm_?”o, ey € C;g_4’eo, such that 0 defined in (7.2) satisfies the
linear equation

0rr0 — (14 BOYHOO + (v + 0H)0,0 + aHO + Gob) = g. (7.5)

Here 89 is a constant, the coefficient functions are given by

atteo -1 m—>5,e0
{(1+at60)2}OQ Echh )

5= —(1+ 59, 50<

v

8y €o

—1 m—>5,00
- J - C )
1+ aydo) LT ECy T

_ —0yq -1 m—>5,0e
Q = <(1 + at€0)2> (¢] Q S Chh B

- pif 00!
gy = <(1+5t60)2> @

and the linear operator Gy on Hhkh’ k<m—17, given by

Go(0) = —-(1+ ﬂ(o)){({?&S(o)@ + 50(97-8(0)9} + 045(0)9
+ (14 dreo) *{G(00Q)}) 0 Q7
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is Q1D of order (6+2,08) on H*, 0 < B+ s<m—7 and for <3
1Gp12,8G0(0)l[s < cp,s(Me)([|wl|g+s+7110ll0 + |w]g+7[10]]),
while for 3>3,0<28+s<m—4,

1Gp+2,690(0)l|s < cp,5(Mo)([wll25+5+4l10ll0 + lwll2p+4]l6]s)-

Moreover,
L6 ~
0=poQ ' = ()o@ = (75 7) 0@
where, following the notation of Section 6.2, @(m, t) = QU (x),t). The function

(1 + Oreo) -1
< 1 +8yd0 ) OQ ’

is orthogonal in Lﬁh to the range of the linear operator defined by (7.5).

Proof. First note that

Oyp = (1+0ydo)(0¢00 Q)+ Oyeo (076 0 Q),
8tt§0 = (1 + at60>2(8‘r7'9 ] Q) + 8tt60(87-9 o Q)

and, in the new variables, d,{qHe} = {9,[gH(0 0 Q)]} o Q~! where
(0y[H(00Q)]) 0 Q™" = ((1 +ydo) 0 Q™) {0 (MO +S(0)0) + 600+ (HO + S()0)}
Finally the linear equation (6.17) can be re-written as (7.5) with

L+ 3% = {q(1+ Bydo) (1 + Byeo) 2} o Q71

We now seek do(y) and eg(y,t) such that 5 is a constant. If this is possible

then
1 (" 1+ 60O >
— OV 2dt = [ —5—
o [l = (o e

since the t-average of O;eq is zero. Since the y-average of d,dg is also zero this
yields a formula for 39 in terms of ¢:

= [ (o) 76

and with this choice of 3(©)

1/2

doly) = /Oy {4772(1 + 5<0>)(/:r [q(s,t)]l/%zt) s 1}ds € T
eo(.t) = /Ot{(q(y,7)1(1:6(801,;50(y)))1/2 N 1}dT e o (7.8)
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satisfy 14 8 = {q(1 +9,do)(1 + dseo) "2} as required. Since q is even in both
variables it is easily checked that do(£7) =0 = eg(y, £7) and it follows that @
is a diffeomorphism of the torus with the required properties. The estimate for
Go(0) is proved in Appendix L. It essentially follows from Theorem 6.9, Lemma
7.1, the remarks following Definition 6.4, results of Appendix G and Lemma
M.2. The last part of the lemma, concerning the range of the linear operator,
is a re-statement of the last part of Theorem 6.9 in the new variables. O

Remark 7.3. When ||w|l4 < My it follows easily, from (5.17), (6.18) and the
definition of p in Proposition 6.2, that

18 = (= 1)| < e(Ma)|wl]s, (7.9)
and hence, from (7.7) and (7.8), that
[dollc+1 + lleollct + [léollcr < ci(Ma)|[wllia, (7.10)

which yields an estimate of the diffeomorphism Q. Also

Oue
H o] < el

1+ ateo

and «a, v and ¢ given by Lemma 7.2 satisfy
IVller + lledlor + [I6ller < ci(Ma)|fwlliss.
Remark. In the notation of (6.9),
(,7) = Qa,t) = (z + di(z,1),t + e1(z, 1)), (7.11)
where d; € Cm dhoe ol € Cm 4eo are given by

di(z,t) = d(z,t) +do(z+d(z,1)),
ei(z,t) = eo(x+d(x,t),t).

Therefore, as was foreseen in Remark 6.1, d; satisfies (6.10) with different initial
conditions:

Ody = a(l +81d1), (7.12)
dl(ZL',O) = do(l‘)

From (7.12) the Jacobian of the diffeomorphism (x,t) — (&, 7) is

S| = 0+ 40 —adee)

= {1+ 8yd + 8ydo} (1 + Breg).
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7.2 The coefficients in (7.5)

Corollary 7.4. When w = ng) from Lemma 4.5, with N > 2, the leading
terms of the diffeomorphism @Q of the torus are given by

do(y) = —2esiny+ 2e?sin2y + O(e?),
2
eo(y,t) = —% sin 2t + O(£?),
and principal parts of coefficients of (7.5) are given by

2

B0 = Z4+0E), =0,
v = &%sin27 + 0(e?),
a = 2esiné —2e%sin2¢ + O(e%).
Go(0) = €Go1(0) + £°Goa(8) + O(*16])), (7.13)

with
Go1(0) = 2(cos ){ (sin 7)mo 0,6 + mo0},

Go2(0) = —2(1 + cos 2&){(sin 7)mp 00 + w0}
+2cos&(2sinT — sin 27)mo (076 cos )
—cos&(1 4 cos 27)m (6 cos§).

Proof. From Corollary 6.10 we have

/ [q(y,t)]l/th =2n{l 4+ ecosy + 52(2 - Z cos2y) + O(3)},

and so
T 2 1
(/ [q(y,t)]1/2dt) = m{l —2€cosy+€2(—1 +4cos2y) + O(*)}.

In (7.6) and (7.7) this gives the required expressions for 3(°) and dy(y) in powers
of e. It follows that

q(y, t)(1 + dy(y))
1+ B0

which in (7.8) leads to the required expression for ey. To calculate «, v, § we
need to invert £ = y + do(y), which gives

=1—e%cos2t + O(e®)

y =&+ 2esiné + O(e?), (7.14)

from which the expression for a follows. From the formula from ey and Lemma
7.2 we obtain

v =0ueo 0 Q7+ O(e®) = e%sin 27 + O(£3).
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Coefficient § is O(e?) because dyeg = O(e?). To obtain the principal part of
Go(#) in terms of e, note from Lemma 7.1 that S0 = 110 + O(e?), since
dyeo = O(g3), where I; is defined in (K.3). Note that in formula (K.3) for Kj,
o denotes the inverse of y — & + do(y). Let o(&) = £ + p(§) where, from (7.14),
p(&) = 2esin€ + O(e?)) as e — 0. Then in the expression (K.3) for K7,

sind (o6 —0(0)) 1 .
Il g ~ O Q) Feotg (€~ O sin £(6(6) — p(0))
1

= 1 2(p() ~ p(O)? + 3(0(6) — Q) cot 5 (6 — ) + OE?),

(016) =l cor 516 =€)~ PGS o)

91
= e(cos & + cos () — 2¢% cos? 5(5 +¢) + O(e%).
After an integration by parts this gives

1,0 = 7% /_: 8<9(5(cos§ + cos () — 22 cos? %(5 + §))d§ + O(e%)

e2sin ¢

= / sin¢ 9:0(¢,7)d¢ + O(®), since 90 is odd in ¢,
™ -7

e2siné [T 3 9 , 3
= 0(¢, 1) cosCdC + O(e?) = 2e* mp(O cos§) siné + O(e?).
Therefore
—(1+ BN{0eS(0)0 + 300-S(0)0} + aS(0y 0 = —22(cos )0 (6 cos &) + O(||0] ).

To calculate the remaining terms in Go(#) from Corollary 6.10 note that

{mo(00Q)}o Q" = mob +2emo(0 cos&) + O(2[|6)])),
{mo[(BoQ)cosyl} o Q™" = mo(Bcos€) + O(el|6]]),
{mo[(00Q)cos2y]} o Q™ = mo(fcos2€) + O(e||d))).
This leads to the form of Gy(6) in (7.13). O

7.3 Third change of variable - normalization

We make one further change of variables in (7.5) in an attempt to eliminate the
term

(7 + 0H)D-0 + o'Ho.
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In fact, we cannot eliminate it entirely, an “average” term remains and in the
process we introduce new regularizing and Q1D operators. The idea is to mimic
the descent method [22, Section 9] and we need some notation. For any f € H, hkh

the time-average is i
mpE =5 [ e

~or r

and a bounded linear operator 9! is defined by

o= f = (1—m) / "= m) (€, )ds,

where I denotes the identity. This is the operator which, in the Fourier expansion
of f, replaces the functions cospr and sinpr respectively by p~!sinpr and
—p_1 cos p7 and suppresses the constant terms in 7. For any f € Hhkh

0,07 f =070, f = —m)f and O-'Hf=HO . (7.15)
Suppose that
ap € Clp™ a1 € O, ay e O
fo € Cp™™™ pLeCy ™™, pely ™™,
and let

v=P o= (1 + (o + BoH) + (a1 + B1H) 07 + (a2 + BQH)8;2)97 (7.16)

where the independent variables (£, 7) are expressed in terms of the original
variables by (7.11). Then P is close to the identity in Hhkh’ee, k<m —7and, in

the notation of (5.1),
L, dw ~
_ p-1 w ~1
= {(357) 0

Remark. From (6.11) and the formulae for dy and eg in Corollary 7.4, it follows

that if w = ng), N > 2, from Lemma 4.5,

di(z,t) = —2ccostsinz +e2(1 + cos2t)sin2x + O(e?),
2
ei(z,t) = —Ez sin 2t + O(e?).

Theorem 7.5. (a) For m > 10, the coefficients in the definition of P can be
chosen so that new function ¢ satisfies the linear equation

Drr® — (14 BOYHOD — 609 — (Ao + MH)OT2PY,9) = V(9) = h, (7.17)

T

where 3 and k) are constants, \g € Cﬁ_s’ee; A € Cﬁ_g’oe;

(e

Moreover, V = V1 + Vs + V3 where
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V1 is a Q1D operator of order (B+2,03) in Hj when 0 < s+23<m—8
for B <3, and when 0 < s+36<m—>5 for 8> 3;

Vs, is a Q1D operator of order (0,5 —1) in Hf when 0 < B +s<m-—38;
V3 has the property that 93Vs is bounded in Hg,, 0 <s<m—10.

All these operators and coefficients A; have small norms in the following sense:
when w = w4+ eNow, Ny > 2,

(120l

os +Illos < e?es(Ms) (1 + e 72ull+);

1Gs42,8V1(9)]]s < ecp,s(Mr) (€™~ |ullsr2p+5]17]lo
+ (1™ Hullzpes)l9]]s) if B <3;
1Gs42,8V1(9)]]s < ecp,s(Mr) (€™ ™ [ullsr3g+5]10]o
+ (1™ Hullsps)l9]]s) if B> 3;
1Go,5-1V2(9)l]s < ecg,s (M) (e Jullsspes][9lo + (1 + e [ullp1s) 19]1s);
102V3(9)||s < €%es,s (M) (™72 |[ul[s10l9]]o + (1 + €™ full10)[19]])-

b) The range of the linear operator defined by (7.17) is orthogonal in L2 to
(b) g p y g o

* 1 + éo —1
m{(e)e)
where P* denotes the adjoint of P in Lgh. (c) If w = ngO), Ny > 2, from
Lemma 4.5 then, as before, 30 = 2 /4 + O(e®), and

KO = /8 4+ 0(e%),
ao(&,7) = 2e(cosé —1) 44— ic0527—4cos£)+0(53),
a1 (§,7) = —ETjSiDQT-i-O(EB),
az(§, 1) = —%2(1—COSQT)+O(53),
Bo(&,m) = O, A&, 7) = O(e?), Ba(&,7) = O(e?),
M(€,7) = —gcos2t 4+ O(e?), M(ET) = 0(e?),

P =9+ 2¢(1 — cos )9 + O(2]]9])),

V(1) = —2¢&(sin 7 cos €)mo(0,1) + 262 (sin 27 cos €)mo (9,19 cos &)+
+ e%(cos 27)m1 9 + 2 cos (1 + cos 27)mo (9 cos &) + O(?||9]]).  (7.18)
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The coefficients 6(0 O X, A1, o, B;, and operators Q and V, depend ana-
lytically on (e,w). (d) If w = w™No) 4 eNoy, Ny >3, and m0(0-9) = 0, then

Vi) = VW) + VP )W), j=1,2,3,
where, for m = 2, 3,

G426V (D)l < cp,s (M) (™™™ ||l 12548] 9o
+ (1 M7 ul|2p48) [9]]5) if B < 3
1G42.8V™ (D)l < cp.s (M) (™™ ||ull 135451190
+ (1+ ™7™ |ullsgrs)I[9]]s) if B> 3;
1Go,a-1 V5™ ()]s < .o (Mz) (€07 |[u]| o4 5+5][9]]o
+ (14 M7 |l | p18) 19]].);
102V5™ () (9)]]s < 5.4 (Mz) (™™ [[ul[s10][9]]0 + (1 + ¥~ |ful|10)[9]])

Proof. The proofs of parts (a), (¢) and (d) are in Appendix M. Notice that we
have an explicit formula (M.20) for (%):

(1+ 02 (14 6heo) [ /Buueor?
U= - ? .11
" Lo /_ﬂ/_w 1+ 8,do) ( p ) (8yeo)® ¢ dydt.  (7.19)

Now the range of the linear operator defined by (7.17) is orthogonal to
" 1+ 8teo 1
i (CevraAlays

by the result of Lemma 7.2. This ends the proof of the theorem. O

Finally in this section we examine the formulae (7.6) for 4(*) and (7.19) for
%) when, as in Section 4.3,

2

(w, ) = (ng“) + eNoy, 1 4 %) (7.20)
Lemma 7.6. Suppose that Ny > 4 and w, given by (7.20) has ||ulls < Ms.
Then

52

[ — 5 = €%B(e)] < e™e(Ms) ula (7.21)
4
[0 - S = i(e)| < N (M)l (7.22)

where (3 and ¥ are smooth functions of € and 9 and k(O are smooth functions
of € and u.

41



Proof. From (7.9), |3 — (u —1)| < ¢(M)||w||4 and, from (7.19) and Remark
7.3,
|0] < e(M)(Jwll5)® when wlla < M.

The estimate for 5(°) now follows from (7.9) and the formula for 5(*) in Corollary
7.4. The estimate for (%) follows from (M.20), in which the square of a derivative
of eg occurs in each term, and the estimate for ep when u in (7.20) is zero from
the first part of Corollary 7.4. O

8 Inversion of the Linearized Operator
We turn to the invertibility of the operator, denoted now by A©), in (7.17):
ADY =99 — (14 BOYHO — D9 — (Ao + MH)OT2PY — V(9).  (8.1)

8.1 The kernel and a compatibility condition
We know from Theorem 7.5 (b) that

(0) _ p=* 1+ € cO~!
- {(ig)ee)

which is close to 1, is orthogonal to the range of A(®). Let P denote the projection
defined on L?h by

Pf = f — mymf where momif = 4—71_‘_2/ f(&, m)dedr.

Let HY =PHJ, k€ N.

Lemma 8.1. Suppose that PAOP : Hk — Hf/ is a bijection for some k, k' €
N. Then ker A = span {9} for some 9 in H* for any m, and the
range of A is {u € Hhkh, u, )2 = 0}.

Proof. Consider the equation A9 = 0 where ¥ = (I —P)9+P9 = al +w, say.
Then @ = —(PAOP) ' PAD1 and 90 = 1 — (PAOP)'PAOT € H" is
in the kernel of PA© . Hence A9 = 31 for some 3. Since 1 and ¢(?) are not
orthogonal and the range of A(® is orthogonal to ¢(9) it follows that 4 = 0 and
so ker A(®) = span {99}, Now let h be orthogonal to ¢(*) and seek a solution of

the equation A9 = h where (¢9,9(?)) ;> = 0. Then ¥ = w + al where w = P¥
and PA© (@ + al) = Ph. This implies that

w = (PAOP)'P(—aA D1 + Ph) = —a + ad® + (PAOP)~1PA.

Since @ + « is orthogonal to ¥(©) this gives a formula for o in terms of h. With
this choice of « and w,

PAO (@ + al) = PAO (PAOP)~'Ph = Ph,
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which shows that A% (w 4+ 1) — h = B1. Since both h and the range of A
are orthogonal to ¢(9), which is not orthogonal to 1, it follows that § = 0. This
proves the result. O

Thus it is sufficient to prove that the linear operator is invertible in the

subspace orthogonal to constants.

8.2 Principal part of PA®P when w = w™, N > 2
In this section we consider what happens when w = wéN), N > 2, from Lemma
4.5 and compute PAOP explicitly up to order 2. From the proof of Lemma 8.1

90 =1 — (PAOP)~1PAY,

where
PAO1 = —P(\y + M H)IZ2P1 — PV(1),
P(Xo + MH)O-2P1 = O(?) since 9-?P1 = O(e),
PV(1) = g% cos 27 + O(e?).
Hence

PAD1 = —c%cos27 + 0(e?), P AD1=0(?), (I- P)PAY1=0(?),

where Py is defined by (8.3) in the next section. In the light of (8.4a) and (8.4b),
it follows that (for a precise estimate see Lemma 8.6)

9O =1 - (PAOP)TPAOL =1+ O(e).

From Corollary 7.4

1+e 1
( +60) =14 2eccosy + (2 — 50052t—20052y) + O(?)

14 dj
whence )
1ie
(112?)) 0oQ ' =142ccosé — %COSQT—}—O(EB)
and, since
P*=1—ap+ai+0- a; — 9 %as + O(e?),
we find that

¢ =142 4 0(?).

is orthogonal to the range of A(®). In the Fourier-series notation (4.6), 9 €
IE"Hhkb’ee has the form

Y= Z 195{1) cos n& cos qT
n+q>1
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and the (n, ¢)-Fourier components of 9,,9 — (1 4+ BO)YHIW — xOPY is
{1+8)n —¢* =00, n+q>1, (82)

where 30 = £2/4 + O(?), k© = £*/8 + O(c%). Note that this operator is
diagonal and an expected small divisor problem appears when we try to invert
it. Now we consider the (n,q)-Fourier components of —P(\g + A\1H)0-2Pd.
From Theorem 7.5 (c), PY = 9 + O(e||9]]), Ao(&,7) = —€? cos 27 + O(e?) and
A1 (&,7) = O(e?). Therefore, up to order g2,

2 (¢—2) (g+2)
7 {(q 2)219 T (q+2)219 } 423,
oo (@) — gy q=2,
(=P(Xo + MH)I*PY) " = 20 @ .
—e {1y 4y } g=1,
2
=y q=0.

It remains to find the (n, g)-Fourier components of —PV(d). Consider first the

term of order ¢ :
2eP{(sin T cos §)mo (9, 9)}.

In this expression the projection IP plays no role and

(2&(sin 7 cos €)mo(0-0)) Elq)
0 n# 1,
e{a =15 — (g + DoV}

Il
—

n
—2519(2 (n,
n

eué” (

QR
=
I

The terms of order €2 in —PV(J) are

— 2e?P{(sin 27 cos &)mo (0,9 cos €)} — e?P{(cos 27) w19} +
— e?P{cos&(1 + cos 27)mo (¥ cos €)Y + O(3|9]])
and

) 0 forn#1, q# 2,
(]P)V( )) { —5219,(,0) forn#1, ¢q=2.

For n =1 and ¢q > 3,

_ 442 (3

3

1 q
f(PV(ﬁ)) iq) _ 52{719511) + (4 5)19Sq+2)}

and, for n =1 and ¢ < 2,

@ _ 52{—219§0) + %1954)} for ¢ = 2,
—(PV(9))}’ (1ot £ 39y for g =1,
(190 1 39y for g =0,
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8.3 Structure of the linear operator

Here we consider the component of the main part of P.A®¢ which lies in the
kernel of £; := 07+ — H0¢. In other words, we examine the Fourier-series coef-

ficients with (n,q) = (¢%, ¢). In this case (8.2) becomes (¢25) — £(©) )ﬂ(q) nd

so, when w = wE N) , this part of the operator is diagonal with, by Lemma 7.6,

coefficients )

q2(€z +0()) as e — 0.
Now observe that when (g%, q) = (1, 1) there is a term —251982) in —PV(9), and
all the other terms in PA®) (¢9) have coefficients which are O(¢2) as ¢ — 0. This

suggests that we should write ¥ = © + eV¥, where

0 =P = Zué‘é) cosq*€cosqr and U = Z y,(ﬂ) cosné cos qT. (8.3)
q>1 n#q?

With this decomposition, the linear equation A9 = h is equivalent to

MO+ AT = 2ph, (8.4a)
(AL 4+ eAYT +eK.0 = e Y(1- Ry)Ph (8.4b)
where
P AP, = £2M,,
Py AOPI - P)) = A,
(I - P)PAOPI—Py) = AD A,
(I—-P)PAYP, = &K,
with
A = 9., — (14 8OYH: — kO
(AQWD = {1+ D) —¢* — kD2,
@ @
(M0} ThY forg#1, (8.5a)
%1951) for ¢ =1,
O gr@ _ 0 for g # 1, b
(A { " iy (5.5b)
-1
g —
Ko0} ) = (g+2) 8.5¢
ok 2(q+2>219(3+2>2 forn=(¢+2)%¢20 (5:5¢)
0 otherwise,
) (= Dy V= @+ forn=1,¢>2,
(A" o) @ = 7%()1) for (n,q) = (1,0) (8.5d)
0 otherwise.
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8.4 Inversion of A

We begin with two lemmas that estimate the operators in (8.4).

Lemma 8.2. There exists €9 > 0 such that, for ||u||10 < Mg and e < &g

¢s(Muo)([ulls+8[[Ollo + [1©]]s-1), (8.6)
¢s (Muo)([[ulls+s[[Wllo + [1®]]5), (8.7)

IMZTells <
IMZT AT, <
which leads to precise estimates of the solution © of equation (8.4a):

0=-M"TAOV 4 2 M By

Proof. The formula for M (©) (which coincides with the coefficient of €2 in the
formula for PA®P in Section 8.2) implies that, for any s > 0,

M5 10lles1 < csllO]]s. (8.8)

Since © = PyO, the hypotheses of Theorem 7.5 (d) hold, and hence, for ¢ > 0,

MD(O) = e~ H M. — My)O =73 (P0A<0>(@) - 52/\40(@))

1
5—3( ~ BOHE - D6

— Py((Mo + MH)I2PO + V(0)) — 62/\/10(@))

1 g2
_ L0 e 0
= ( (80 = TR — £V
— Py((Ao + &% cos2T + \H)O;°PO) — Py (EQV(Q) + €3V(3)(5)) (©)
2
- %H@’ + €2 By(cos 27022P(0)) — 52/\40(@))

_1 (-0 - = e - w00
3 4
— Py((No + €% cos 27 + M H)D-2PO) — 2R VP (£)(0)
+ &2 Py(cos 27072 ((P — H)@)))
From the estimates for Ao, A\, ) and x(© in Theorem 7.5 and Lemma 7.6,
and from the estimate (M.19) of the change of variable P, we obtain

2
1(8© — %)H@’ + kD0 + Py(hg + 2 cos 27 + M H)IZ2PO||s_1
< &%e(Ms)(|[ulls+s]1©llo + [©]]s)-
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Moreover, from Theorem 7.5 (d) with Ny > 3,

1PV (©)][s-1 < ellGaoPoVE (O]

< o(Ms)(|[ulls+s]18l0 + [1©]]s),
1PV O)llae1 < e(Ms)([[ulls1s]1O1]0 + (1 + [[ullo)[|O]]s),
1PV (O)][s=1 < €l[Pod3VS ()]s

< o(Ms)(|[ullsss]18llo + (1 + [[ull10)]1O]5)-

Combining these estimates, we find that
IMED6]]s-1 < o (Mio){llulls+s1Ollo +[©]]s}. (8:9)
which with (8.8) leads to the conclusion that
Mgt MO < es(Mio){][ulls+slOll0 +11O]]s}- (8.10)

A combination of (8.10) with the special case of (8.10) when s = 0 and the
formula

MU= (1 + MMM

leads to the estimate (8.6). We proceed in the same way for A as for MM
except that V(¥) = O(e) while V(0) = O(e?), which explains the respective
orders in ¢ of each term. The estimate for ||M;1A§0)\II||S is then the same as
for ||Mg MO, O

Lemma 8.3. Suppose that ||ulli7 < Mi7 and that B and &) satisfy the

Diophantine condition that, for some ¢ > 0,
(¢* = 1+ 8 =51 > ¢/q® for all (p,q) withp #¢* #0. (8.1
Then
[1(AD) AL — KM AP, < co(Mar)([ullssarl[2]]o + [12]]5)-

Proof. To estimate ||(A§O))_1K8M;1A§O)\I/||S, let © be an arbitrary function
with © = Py©. From (8.1) and the formula following (8.4) we have

£2K.0 = —(1 — Py)P{\o + M H)O-?PO + V(0)}
where, by Theorem 7.5 (d),

|Ge,4(1 = Po)PV1(O)]|s < e?cs(Mar){lulls+17]18]l0 + [|©]]s},
1Go1 (1 — Po)PV2(9)]]s < ecs(Mio){|lulls+10/1€]l0 + [©]1s},
102(1 — Po)P{Xo + MH)O;*PO + Vs(©)}s
< e2es(Mao){[[ulls+10118]]0 + 11©)]]s}-
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From the definition of A'”) and the Diophantine condition (8.11) it is immediate
that, in the subspace (I — Py)H 7",

AL flls < ello2 11l

which, with the estimates on A\g, A\; and V5 from Theorem 7.5 (a), can be used
to establish the required bound on the term

(A1 = Po)P{ro + MH)OPPO + V3(0)}).
To estimate (Ago))_lf, where f = (1 — Py)PV1(9) or (1 — Py)PV:2(9), we write
(A = (AL + (AD)THI -,

where I; is the orthogonal projection onto the space of functions f with Fourier

coefficients f;” such that ¢2 > 2p. For ¢% > 2p

(@ — (1 + B8O)p — £ > ¢ max{¢®, p}

and, for ¢ < 2p, because of (8.11),
c d? c ¢ (¢ 3 q°
(@ =140 -k 2 L 2> 2 (L) — oL,

Therefore

A Ll < emind||07 L £, 110 T f1ls
1AL I~ f]]s < cmin{||07 %9 (I — ) f]s, |0 (L — TT) f1]}-

If now © = M;lAgo)\Il where (8.7) holds,
A THIE M ALY < eo(Mur)(fullssarl o + [12]],).

In the same way (except for an extra order of ¢ in V(IP¥)), we obtain a similar
estimate for ||(A§O))_1A§1)\II||S. This proves the lemma. O

Theorem 8.4. Suppose that ||ul|17 < My7 and that 3 and k) satisfy the
Diophantine condition (8.11). Let h € H;, s > 2, satisfy the compatibility
condition (h,((©)) = 0. Then any solution of the equation A9 = h is given by
9 = 91+ ad©® where (I-P)¥1 =0, and for s > 2 and € < g sufficiently small,

cs(Ma7)
[[91][s—2 < = ([lulls+1sllAllo + [IAl]s)-

Proof. Since, by (8.4),

(AL 4+ eAYT — K MTTALT = e7{(1 — Py)Ph — K. MZPyh},
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and (8.11) holds, Lemma 8.3 gives an estimate for ¥,

+ Cs(Mlo)
e

1952 < ecs(Maz)([|ulls+as][¥]lo + |[P]s-2) (ells+rollAllo + [IAlls)-

Now the case s = 2 gives a bound for ||¥|lop which, when substituted into the
general formula gives, for ¢ sufficiently small,

CS(M17)
1]ls—2 < ——([ulls+1s[[Allo + [IA]]s)-

Combined with the estimates in Lemma 8.2 for © = f./\/l;lAgo)\IlJrs*QM;lPoh,
in the light of Lemma 8.1, we obtain the result of the theorem. O

8.5 Inversion of A(u,¢)

Now we show that the approximate linearized operator A(u,e) defined by (6.3)
satisfies (0.12) in Appendix O. This leads to the conclusion that hypotheses (D)
and (E) in the Nash-Moser theory of Appendix N are satisfied in the standing-
wave problem.

Theorem 8.5. There exists eg > 0 such that if € € (0,e0), |Julli7 < Mi7 and
B0 and k) satisfy the Diophantine condition (8.11), then, for f with

JEHS, s>2, (f,1)=0,

the system
Alu,e)lu=f, (u,1)=0

has a unique solution u and

cs(My7)
luf[s—2 < T{||U||s+15||i||o + [ £]]s}-

Proof. By (6.3), (6.7), Theorem 6.9 and Lemma 7.2, AL;}’U = f implies that
0 = (9p) o Q! satisfies (7.5). Then Theorem 7.5 says that ¥ = P~10 satisfies

(L+d) (141 — aeh)? (PAOD) 0 Q = f = ALjlw = ALZH (W)A}-

This gives
{p7 ' PAD Y} o Q = Alu,e)u, equivalently A®Y = P~ Hp1 (A(u,e)u) o @’1},

where

uw=L H1+d)(PVoQ)},  pi1= <ﬁ) oQ L. (8.12)

From (7.10), (7.11), (G.3) and Lemma G.1, we find that (¢,7) = Q(x,t), and
(Q —I)(z,t) = (di(x,t), e1(x,t)) where

lldillos +lerlles < es(Ma)||wl]s+a-
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Now from (M.19) and Lemma G.3,

P90 Qlls < cs(Mr)([[9]]s + [lwlls+7lI9l]o),
and hence, from (G.3),
llulls < es(M7)([[9]]s + [[ulls+7110]]0)- (8.13)

Lemma 8.6. For ||u||li7 < My, the function 9O which spans the kernel of
AO) satisfies

9O = 1— (PAOP)'PAO]
199 —1]l; < ecs(Mir)(1+ ||ullsz17)-

Proof. The expression for ¥(*) is given in Lemma 8.1. Now, from (M.21), (M.19),
the fact that -1 = 0, and Theorem 7.5 (c) we obtain

IP(Ao + MH)O*P1||s < ees(Mr) (1 + [[ulls+3)-

In the notation of Theorem 7.5 (d), V(?)(1) = cos 27, by (7.18). Tt follows, as in
the proof of (8.9), that

IPV(1) — £ cos 27|, < ey (Mr)(1 + [ul]s10),

and therefore
1P A1 < e3es(M7) (1 + [|ul|s+10),
(T = PYPAO1]|, < 22, (M7) (1 + [[ulos10).

We then need to use a refined version of Theorem 8.4 which distinguishes the
components Pyh and (I — Py)Ph. In the present case Poh = O(g3), while (I —
Py)Ph = O(e?), which gives that the right-hand sides of equations (8.4a) and
(8.4b) are of order O(g). The result of the lemma then follows from the proof
of Theorem 8.4. O

We now show that the zero-mean condition on u in (8.12) leads to an estimate
of a in ¥ = ¥ + o). Indeed, from (8.13),

Lo {1+ d)(PLoQ)} = 1[5 < ees(Mr)(1 + [[ulls47),
and hence, from Lemma 8.6,
1L {1+ d) (PO 0 Q)} = 1|s < eea(Miz)(1+ [fulls417).
Since u has zero mean on [—m, 7| X [—m, 7],

(L {1+ d) (P10 Q)} +aL (1 +d) (P 0 Q)},1) =0,
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and since ¥; is uniquely defined and (¥;,1) = 0,

<L*1¢L+J(Pﬂlo

o] = Q). 1)
(L (14 d) (PO o @)1>

cs(Mi7)|[91]]o-

Finally,
llulls—2 < cs(Maz){[lullst1s][91]lo + [[91]]s—2},
where
[191]]s—2 < ﬁ(”“”sﬂéﬂh”o +1Alls),
and hence
hull—z < 8 (] sl + 11} (8.14)

Now we want to solve
Afu,e)u=f, (u,1)=0

when the given function f is orthogonal to constants. If such a solution exists,

f={'PhoQ,  h=P HmfoQ '},
and, from (6.20), (7.10), (G.3) and Lemma G.1,

lIprllos < es(Ma)(L + ||w]]s+a)-

Finally, using Lemma G.3 and (M.19) this gives

[Alls < es(Mr){[ulls+7ll fllo +[1£]ls}

and (8.14) leads to the result of Theorem 8.5. O

9 Existence of Standing Waves

In this section we use the Nash-Moser theorem from Appendix N to prove that
for every € > 0 in a subset & of the interval (0,¢), where the set £ is dense at 0

(lim,~ o 7~ meas(EN0, r]) = 1), there exists a non-constant solution w € thh7’ee

of equation (4.1). Since functions in th "¢ have 15 continuous derivatives and
are doubly-periodic in « and ¢, this gives a classical solution of the standing-wave
problem on infinite depth (see the last sentence of Section 2).

Theorem 9.1. There exists a measurable set £ C [0,e0] which is dense at
0 such that, for any € € &, there exists a solution w € thb7’ee of (4.1) with
p=1+¢e%/4 and momi(w) = 0. The function ¢ — w is Lipschitz continuous
and w = ng“) + o(e™No) for No > 4, where w,gN) = ecoszcost + O(e?) is given
m Lemma 4.5.
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Remark. In [14] it is shown that there are many alternatives for the approx-
imate solution ngO), and for most of our proof it does not matter which one
is chosen. However at certain points we make use of the particular choice given
by Lemma 4.5 in order

(i) to compute explicitly the coefficients () and x(©);

(ii) to find an explicit expression for the approximate linearized operator A to
order £2;

(iii) to show the surprising fact that the linear operator My in the infinite dimen-
sional bifurcation equation has a regularizing inverse (see (8.6)). It is natural
to ask whether the method applies for other choices of approximate solutions.
It does; in particular 39 and £(©) have the same orders in &, but there is a
complication due to the fact that, for all other choices of approximate solutions,
the operator V is such that (I — Py)VP, is O(e) instead of being O(e?) as it

is here. For the sake of conciseness, only the family wéN) given by Lemma 4.5

will be treated here. The alternatives for ng) given in [14] will be dealt with

elsewhere.

Proof. We use the formulation (4.10) and so we need to show that ® defined in
(4.9) satisfies the hypotheses in Appendix N. To verify (N.1a) and (N.le), we
use estimates (4.11) and (6.6) for F(w, u) and T'(F(w, p), Ly (+)) with

w = wVo) 4 eNoy, p=1+e?/4.

and for (N.1d) recall the definition of A in (6.3). Then conditions (N.1a) and
(N.1d) are satisfied by choosing £, := H'*® = H;;“" N {1}+, F, = HY* and

1<p<r—2.
Because of the term involving ||w||;4+4 in (6.6), condition (N.1e) is satisfied when
1<p<r—-3.
From Theorem 8.5 we see that condition (N.1h) is satisfied when
2<p<r-—15 o =2, 0=2.

Note from Lemma 3.1 that F(-, ) is defined and real-analytic in a ball B of
sufficiently small radius about the origin in H“°, r > 3 (we need that w € B
implies that [Hw'| < 1). To verify hypotheses (N.1b) and (N.1c) on

D(u,v,€) = ®(u,e) = 2(v,€) — P, (v, &)(u— )

we use the analyticity of the mapping ® : B x R — H7“, and the formulae

1 T
D(u,v,e) = / / ¢! (v+n(u—v),e)(u—v,u—v)dndr,
o Jo
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D(Ul, U1, 51) - D(U2702,€2)

1
= / {D;(usavsags)(ul - u2) + D;(’U/S,US,ES)(’Ul - UQ)
0

+ D.(us,vs,€5)(e1 — €2) }ds,

D;(uvaSﬂ gs)(u1 — uz)

1
:/ / O (vs +n(us — vs),€)(us — vs, us — Vs, Uy — uz)dndr
0

/ / 20! (vs + nlus — vs), &) (us — vs, Uy — ug)dndr,

where
Us = ug + s(ur — uz), Vs = v+ s(v; —va), €5 =¢e2+ s(e1 —e2),

It is clear from Sections 3 and 4 that we need estimates of products of (u — v)
and ®;, which may involve the constant operator H, where

1®llp11 < (M) (1 + ||ullry1)

for 1 < p < r —2 (in particular for r = 3, p = 1). By (5.18) and standard
interpolation this gives the required estimates when p = 2, » = 17 (in fact r = 4
is sufficient). Notice that for (N.1c) that we have used the fact that

||Us *USHTH < ||u1 *Ul||r+l + ||u2 *U2||r+l-

Estimates (N.1f) and (N.1g) follow by the same method now using the real-
analyticity of ® and A, the formulae

@(ul,{—:l) — (I)(’(,LQ,EQ) = /0 {@;(US,ES)(UQ — ’LL1> + (I)/E(’LLS,ES)(EQ — €1>}d8,
and
(@ (ur,e1) — Oy (uz,€2))v

/ {®V (us,e5)(ug — ur,v) + (g2 — 1) P! (us,e5)v}ds,

and an analogous formula for A, in place of ®/. Lemma 7.6 implies that we
need Ny > 4 if (0.5) is to hold. Then Corollary O.3 holds for the set £ and,
since (0.12) is satisfied by Theorem 8.5, this means that hypothesis (D) holds.
Moreover Theorem O.8 (which uses (0.5)) implies that (E) is satisfied. In other
words, the subsets £(v;) are dense at 0 with an intersection that is also dense at
0. We can then apply Theorem N.2, since Lemma 4.5 provides an approximate
smooth solution ul™) that satisfies, trivially, (N.3) and (N.4) for any integer N.
The theorem is then proved. o
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Remark 9.2. It is worth pointing out a consequence of the scale invariance
of the standing-wave problem on infinite depth and the fact that all positive
rationals are eigenvalues of the problem linearized at 0 (see Section 1.1). Up to
now we have been looking for solutions of (K) and (D) in Section 2 in which
1+e?/4=p=gT?/2r\ and w, the wave elevation, is of the form e cosz cost +
O(g?). (Asin (1.1), T and X are the spatial and temporal periods.) Suppose
instead we seek solutions with smaller minimal periods 27 /py and 27 /gy and
with asymptotic form

£ cospox cos qot + O(e?),  po, qo € N.

Then a change of scales A = \/py and T = T'/qo changes p into fi = ppo/q?,
and Theorem 9.1 leads to the bifurcation of standing waves with i\, 1. Since
every positive rational number r can be written as g3 /po, the scale invariance
and Theorem 9.1 leads to the observation that standing waves which are ‘uni-
modal’ in this sense bifurcate from u = r, for every r € Q%.
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A Proof of Lemma 3.1

We first observe that (3.4) comes from the fact that H* = —H in £(L}), and
(3.3) is immediate. The identity (3.5) comes from the fact that mo(w’) = 0
and from (3.2). The identity (3.6) is obtained by taking the adjoint of (3.5)
using (3.3). Now we show that L, has a bounded inverse given by (3.7 ). The
equation L,,u = f, where f is given in L?, can be written as

u—+ tHu f
—_—  m m = — R.
Re(lJer’z‘w') D "

Since |Hw'| < 1 on R, the function 1 + Hw' — iw’ can be extended, using the
Poisson integral formula, as a bounded analytic function on the lower half-plane.
This extension is 2m-periodic in z, its real part is nowhere zero, and it converges
uniformly, as y — —oo, to 1. Therefore the function

u+ iHu
14+ Hw —iw’
may be extended as an analytic function in the lower complex half-plane which

is 2m-periodic in x and its average on an interval of length 27 parallel to z axis
(independent of y < 0) is m(u), which is real. Therefore

u+ iHu o f
L RS | S
1+ Hw' —iw’ ( +ZH)D’

and
u= Re{(l + Hw' —iw')(1 + zH)i} = Ew/(i)
D D
It follows that if L,v = g, then v = %Lw/g. The formulae (3.9) for the inverses
of M, and Mw/ are established by considering the adjoints of L;,l and E;}
since, by (3.3),
(L)) =M, and (L1 =M,
Now, from(3.5) and (3.7),
1 1 w'’ 1
e} (e ie () (o),
H(D plw)H (D) \D
where we have used the fact that L, w = w’. To prove (3.8), we use the
remarkable identity

WO(%LUJ,) = mp, (A1)

which comes from the fact that Mw/(l) = 1. Hence, by (3.9), M (1/D) =1
(this is not obvious directly) and, for any f € L2,

(biwt) =

1
%<Lw’fa1/D> = %<faMw/(1/D)>

= (1) =mlf)
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The formula for the commutator of M,,» and H is obtained by taking the adjoint
of (3.8). It remains to establish (3.10) which, because of (3.8) and (3.9), is
equivalent to

My J(f,9) = H(fLurg) + fLuwHg + (0 f)mo(g)-

That this identity holds follows by expanding both sides, using (3.2) with f and
g replaced by fg and w’, and noting that 7o(w’) = 0. This ends the proof of the
lemma.

B Calculation of Approximate Solutions

To find an explicit formula for the approximate solution in Section 4.2 we need
to solve the system for w™®) and w®:

0 = Liw® +Ny(wh,w®),

0 = Liw® — in/(l) + 2o (w™, w®) + Ny (w®, w® | wm),
1

0 = Liw®— ZHw/@) + 2o (w™, w®) + Ny (w®, w?)

3N (D, 0w, w®) £ A D, w®, w® D),

where

Ni(w, w, w, w) = 2HO{3(H(w'Hw))?* — w?(Hw)? — 2(Hw)(Hw' YH(w'Hb)}
+ 0 {H(w"?) — 3w Hw'} 4 2w" (moab)mo [, w'].  (B.1)

The first equation leads to
1 1
0 = @ —Hw? + 8,5(5 sin 2t) + 57{61((1 — 2cos2z)sin?t)
= 0® — Hw®’ + cos 2t + cos 2(1 — cos 2t)

hence we obtain w(?) (with zero average, and involving only even multiples of
and t)

1 1
w? = 758 2t — 5 co8 2x(1 4 cos 2t).
To calculate w® we need
W @) — - L
NG (W' w'?) = 9¢[—sint(1 4 cos2t) — 5 sin 2t cost] cos T +

3
Oy [sin t sin 2¢ sin 3x + sin ¢ sin 2t(§ sin x — 3sin 3z)]

= —3cosxcos 3t — 3cos3z(cost — cos 3t),
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and
1
Ns(w® w® Wy = — 3 sin ¢ sin 2t(cos x — 3 cos 3x)
1
= —7 (cost — cos 3t)(cosx — 3 cos3x)
The equation for w® now gives
50 @ 1 9
0=w" —Hw'" — Icos:z:cosSt— ZcosSx(cost—cosSt).
The compatibility condition is therefore satisfied (there are no term in cosx cost)

and this justifies, a posteriori, the choice i = 1 + €2 /4. Hence we obtain

11 3
w® = A® coszcost — 35 COs T CO8 3t + g c08 3x(3 cost + cos 3t)

where A®) is still unknown, and is determined by a calculation at order €®. To
calculate w®), we obtain a system of the form

0 = ™ — Hw®' + 243 {cos 2t + cos 22:(1 — cos 2t) } + Z Apq COS 2px cos 24t
0<p,q<2

where the coefficients a,, may be computed explicitly. Therefore, to determine

w® we must check that the compatibility condition ff) = 0 is satisfied for
coefficients of the right hand side, i.e. ag; = 0.This is independent of A®).
Indeed, the coefficients involving cos4x on the right-hand side come from

2Na (™, w§?) + No (), wl) + 35 (D, w®, wl) + Ny({w®}D)
where wéQ) and wgg) are the terms involving cos 2z and cos 3z respectively of
w® and w®. It can be checked that these terms have no term in cos 4z cos 2t.
Indeed

2N, (w, wgg)) = 2(1 — cos4t)(4 cosdx — cos 2zx) +
+3 cos 2x(cos 2t + cos 4t),
Ng(w§2) , w§2)) = 2cosdx(1 — cos4t) + 2(cos 2t + cos4t),
3N3(w(1),w(1),w§2)) = (1 — cos4t)(2cos2z — 3cosdx),
Ni({w®D}@) = %(1 — cos4t)(cos 4z — cos 2x),

which shows that the required compatibility condition is satisfied. The result is
that
w® = AW cosdx cos 2t + 2AG) @ 4+ )

where @) is known and orthogonal to ker(£;), and A is still unknown. The
computation of w® leads to a compatibility condition of the form fl(l) =0
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which must be satisfied. This ensures that we can determine A®); in fact
it is straightforward (but not done here) to show that A®) = —37/32. (The
theoretical reason for these compatibility conditions to always hold, and an
algorithm for calculating approximate solutions to all orders, is given in [1].)
Notice that if an approximate solution of order €3 is all that is needed, it is
not necessary to calculate A®) since, in the expression F (w§3),1 +€2/4), the
coefficient A®®) appears at order £*.

C Proof of Proposition 5.2

For convenience with notation, from now on we suppress the suffix w’ in the
notation for the operators L., and M,,. First note, from Lemma 3.2, that

L' = gM(Iu)— (LuyH(g/D). (©1)

Now, from (5.12), (3.10), (3.2) and the fact that —H(Lw) = ¢’, we obtain
Qg = H(gH(%Lu})) — H(LwH(g/D)) + %H(Lu’ﬂ-{g) +
HHGH( S L) — 5H(&'9) — &' H(g/D)

= H(ag) — {H(LHLG) + H(LiH(g/ D)) + 'H(g/D)} +

+aHg — %{H(Lw)Hg — H(LiHg) + H(¢'g)}

= H(ag) + aHg + (77'0;9) — FQ(%)) 7T0(Lw/’d})

= a9+ ("L (L)) [ ro(Fw,m)war

since, by (4.1) and the oddness in ¢ of 7y(Ly ),

7o (Lw) :/0 o (F(w, p)) (7)dr. (C.2)

This proves the proposition.

D Proof of Proposition 5.3

From (3.10) and (5.13), the expression for R involves the two terms

MO 0), L) = S HM I, w) + )M ),
MY J(H[L g, w),w) = %H(L@H[L‘lg,w])+H(%)H[L‘1g,u}],
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and since HLw = —¢',

Lw !
H(ﬁ) = a-+ 5
We also have, from (C.1), (3.2) and (3.10),
HIL™g,0] = Hlag) + o'H( ]g)> + P (8 (o),
/2 /
M7 (¢ w) = a¢' + ¢— + H(qb’Hqﬁ') + HD¢ mo(Lb).

First we collect the terms in expression (5.13) for R which involve mo(Lw). After
expansion and simplification using (3.2) these terms reduce to

(am(%) - Wogg)) (o (L)) — %H(%)(WO(L’LD))2.

Now the remaining terms in the expression of R can be written

{ (a0/ + %+ Lr(oma) - (H¢'>(H(ag> rond) + )
1 9y gHY
HHao +—+ SH(GHS)} ~ (0 + {Hag +oH(5) + 55—}
- Ln {gw - LH(o' e’ > - (el o) ~ (6 M)
+% (L) — (0 + 5 {r(ag) + L0
Using again (3.2) and the fact that
mo(¢"H¢') =0
this simplifies to
1 . LY Ho
5 igad’ — (H¢')(H(ag)} — (a + 5)H(ag) — ag—

and, since H acting on (3.2) yields
H{gag' — (H¢')(H(ag)} = agH¢' + ¢"H(ag),
we finally obtain an expression for the terms in R that do not involve o (Lw),
—aH(ag).

Combining these calculations with (C.2) proves the proposition.
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E Proof of Proposition 5.4

This appendix gives the precise form of a;, as, as. We first notice that in addi-
tion to 1 1
. . m—1,00

a= H(BLw) + BH(Lw) € Hy ,

we have, from Lemma 3.1,

1 2 Lv 1 2, Lw"

D,(Lab) = Lib + [a, ], 0, (Lib) = L/ + [ib, '],
Hence
! = ) 5 & )+
2 i Lw” Lw”
— 5 (RLd)H D. - QH{— (T)}’
a = H(LDw)nLH( ])+ H(Lw)+ H[w W' +
—2H{— (Lw (HLw)H(Lg ).

From Lemma 3.2 and the preceding formulae for a’ and a,

aI:H(Lg/)+%H(L {_’H }Jr H{L » Lw”)}
1 o, Lt _ Lw/, Lo
- HH{Lw H(;)}—B(HW)H( - )*H{fH(7)},
and
a = H(%HLH(W 77{{@7{ Lu' }7H{L_WH(@)}+

Lv'
+ H{L w2 =)} - —H{L e )} = = (HLwYH(=5-).
Now applying identity (3.2), since mo(Lw"” / D) = mow” = 0, and mo(Lv’ / D) =
mow’ = 0 (see (A.1)) we obtain

J = H(Lg/)nLlH(Lw’)fH( w,/)H(%)—%H(Lw)H(LgN)
+Lg”%“ + SH{Lw H(L,;UI)} _ %H{Lw"H(%)L
and
a = H(%)+iH(L@U)—H(%)H(LEIH%L;/
+p UL )}*—H{L S >}f—H<Lw>H(L§/>.
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Recall from (5.17) that

)

L 1 L ./ .
ar = aH( g ) — H( Z)U ) — DTYH(LW' — aLw”),
L L'
— N _ D_1 L ./ _ L .
as H( D) aM( D ) H(aLw W),
and hence
I 2 A P | o L
—a1 = H( D )+ 'H(Lw)f D'H{Lw H( D )}
w' 1 Lw"” Lw Lw"
= N — —H(Lai _H(Z2Z
LB iy - Srom 2 B2
and, by (3.2),
, B _l . Lw/l L’U}H%
a+a = DH(Lw)H( 5 )+ D )
1 L 11 L 11
+ = H{LiH (= )+ H{ (L)} = 0.
Also
L 1 L' Lw 1 L'
_ Loy 1o riy gLy Loy 1 L
= ) ) KN )
——H{L 'H( H(Lw)},

hence, again by (3.2),
L L' 1 L/ 1 L'

i = B L My + S i)
1 ., L
+5H{LU)H( D )} =0.
Recall from (5.16) and (5.17) that
)2 "
as = aH(Lw' — aLw") + H(aLw' — L) — pw' — (m)%w)H(Lg )s

and note, from the definition of F(w, u), that
pw’ + HOpLab = H(F (w, 1)) + 0p M~ T (H L, ).
Therefore, by (3.10),

!+ ML = H(F (o, ) — ([ ]) — 2

YH(LaH Lai

l ./ . i . 17 . l . ./
+ D'H(Lw HLw) + DH([w,w |HLw) + D’H(Lw'HLw

1 . A o Lw A Lw
+ BH(LU}H[W w"]) + (HL )H(j) + (H[w, w ])H(f)
+ HLw{H(E )+H([wD ])}72(%@)71(%”71(% ).



In addition to —HF (w, f1), as involves (i) terms which involve w’, and (ii) terms
which involve w”. We will see that both contribute zero. i) Terms with w':

(L (M) + DLy + H(Li R D) + H(Lg/ HLwb) + H ([, )
f%H(Lw'HLu';) - %H(mew') - (HL@’)H(%) - (HLw)H(LgI)
which, by Lemma 3.2,
= (ML) (ML) + H(Lg/HLw) + H{Lu'JH(Lg/)}
—%H(Lu’/HLu’;) _ %H(Lu’;HLw’) _ (HLu';)H(LgI)
S Lg/m + FO(LZ)”/ Ymo(Lub) + %Lu’/Lw - %FO(LW)FO(L@) —0

since

7o(Lw') = 0 (v’ odd) and o(

ii) Terms with w” :
Lwl/
D

2
aH(aLw") + =H(

+2(HLW)H(%H(L;;N ) — (wo(éw)) Lw"

which, with Lemma 3.2 and (3.2), gives

Lw//
D

_ —aH(aLw”—i—[w,w”])—i—%H( V(ML) + (mo L)} +

Lw_ . Lw ) Lw,_  Lw" Lw" | Lw
I L () — (M) (RS HE)) — H( ()}
+2(HL11;)H(%UH(L;U ) — (”O(LDw)) H(Lg )
= )+ Drminy oz P - L™

1. Luw" o L, . L
FHLb) RS (T - T

since mo[w, w”] = 0 because of the oddness, and 7o ((Lw” /D)) = 0 (see (A.1)).
Hence all terms involving w” and v’ contribute zero,

ag = —H(F(w, 1))
and the Proposition 5.4 is proved.
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F  Proof of Lemma 5.1 Concluded

In this appendix we compute, up to order O(¢?), the coefficients a and b of the
Lemma 5.1. We start with

2
w = ecosxcost + EZ{COS 2t — 2 cos 2z(1 + cos 2t)} + O(e?),

which leads to

D = 1-—2ccoszcost+e?(1+ cos2t)(2cos2x + 1/2) + O(e?),
D' = 1+2ecoswcost+e?(1 + cos2t)(1/2 — cos 2x) + O(e?),
HIw = esinasint —e?sin2xsin2t + O(e?),
1
D YHIw = esinzsint— 552 sin 2z sin 2t + O(g%),
Lu 1
H(Fw) = esinzsint — 552 sin 22 sin 2t + O(g%),
a = 2esinzsint —e?sin2xsin2t + O(e?),
1
Lo = —Ecosxcost+€2{§(1 — €08 2t) + 2 cos 2z cos 2t} + O(e?)
L' = esinzsint — 2 sin 2xsin 2t + O(e%)
1
Lw" = —Ecosxcost+€2(§ + 2 cos 2z)(1 + cos 2t) + O(?)
3
L' —aLw” = esinwsint — 552 sin 22 sin 2t + O(e?),
1
alw' — L = ecoszcost — 552 cos 2z(1 + 3 cos 2t) + O(e%),
Therefore

b= —2ecosxzcost +e*(—1 + cos 2x(1 + cos 2t)) + O(?),

and, since a3 = —HF(w,u) = O(e3) when w is an approximate solution at
order €2, the lemma is proved.

G Changes of Variables

There follows two lemmas on composition estimates are central to the analysis.
In [12, Appendix| they are proved for spaces of Holder continuous functions but
their proofs in the C*-spaces of continuous periodic functions are the same.

Lemma G.1. Fork >0 let Dy, = {p € R%: ||p|| < k} and suppose ¢ : Q@ — Dy,
f: Dy — R. Then, for any s € Ny, there exists a constant ¢, depending only
on s and k, such that

[fowllos@ <c (HfHCS(Dk)”‘P”SCl(Q) + 1 flcropllelle: @) + HfHC(Dk)) :
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In particular, for any functions v; € C5(Q), i = 1,2,

lvivallcs @) < cllvilles@llvallo@) + lv2lles @) llville@))-

Lemma G.2. Let I + g : R? — R?, where g is 2m-periodic in © and t, be a
Cl-diffeomorphism with inverse I + f. Suppose also that ||f|ct + ||gllcr < M.
Then if f or g is in C*
1+ fllex < cr(M)[I1+ gllcx-
A similar result to Lemma G.1 holds when f € H® and ¢ € C*.

Lemma G.3. Let f € Hg, for s € N and let ¢ be a 2mw-periodic C*-perturbation
of the identity on R? . Then, for any s € Ny, there exists a constant c, depending
only on s, such that

1ol < e (Il IliEna + 1l llon@) + 1710

Let w € H* so that a € C*. To solve equation (6.10) using characteristics
let u(z,t) be the unique solution of the initial value problem
w(x,t) + a(z + u(z,t),t) =0, wu(z,0)=0. (G.1)

Since |la]lcr < 1 (Ms)||w||4 (see (5.3)) it follows that (I + f)(z,t) := (x,t) +
(u(z,t),0) is a C1-diffeomorphism close to the identity when ||w||4 is sufficiently
small. If its inverse is (I + g)(x,t) =: (z,t) + (d(x,t),0), then d € C! satisfies
(6.10). Moreover,

d(z,t) = 7’(,&(([ +9)(z,1), t),

and hence, from Lemmas G.1 and G.2,
ldlles < es(Ms)([lullesllT + fllen + lulerlL + fllos + llulleo). (G.2)

Since f(z,t) = (u(z,t),0) it remains to find bounds on |Ju||s in terms of ||w]|s.
It follows from (G.1) and Lemma G.1 that

ak-ﬁ-lu

Hmaﬂtﬂco < crst(llall eI T+ FIET + llalloa 1L+ fllorr + llallco)

< curt(Ma) (fallonse + lallon (1 + [ullonrn))-
Therefore

s +es(Ma)(llalles + llaller (1 + JJulle-))
< llulles (es(Mu)llallcr +1) + es(Ma) (llallcs + llall )
< cs(Ma) ([lulles + llwlls+s)
by (5.3). For the pure z-derivatives of u we use (G.1) and the identities

[dllcs < lul

u(z,t) = /0 a(x + u(z, ), 7)dT,

u'(z,t) = —/Oa'(x—i—u(:n,r),r)(l + ' (2, 7))dT.
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Hence, from (5.3),
llullco < e(Ms)||wlls

and then, from (5.3) and Lemmas G.1 and G.3,
C(M4),

es(lla” o (T + Pllles I+ u'llco + [lalcol|1 + llc:),
cs(Ma){l[wllsra + Nwlls (1 + [[ullcs) + [wlll[u’]

[lullen
[l

ININ A

Cs }
Thus, for My small enough (¢s(My)||w||a < 1/2 is enough),

[W/les < es(Ma){l[wls44 + [lwlls (1 + [|ullcs)}-
Combining this with the estimate for @ we obtain, for M, small enough,

ce)}

[ullcer < es(Ma){[Jwl]s+a + [[w]ls (1 + [|u]

and, by induction, for any s > 1 and My small enough,
llulles < cs(Ma)[wl]sts.

Since d = —u, it follows from (G.2) and Lemma G.2 that, for M, sufficiently
small, ~
dllce < co(Ma)wlrs and [dlce < eo(Mi)wlors.  (G3)

H Proofs of Lemmas 6.3, 6.5 and Corollaries

For f € L? and w € H" (periodic functions of one variable), it follows from
(3.1) that for almost all z,

(Suf)(x) = _L/” (W(Z)W(x))fz()z)dz

2 J_ . tan £ (z —
1 (x —2) folw’(z+s(z—z))f(z)dz
L - tan 3 (z — 2) ’

which is no longer a principal-value integral. Since w € C™ 1, S, f € C™ 2
and Lemma 6.3 follows. For f in Hy and w € Cff, the estimate and the Q1D-
property of S, in Lemma 6.5 follow from the above formula and Lemma G.1.
The formulae for S, 0; f and 8,0, f follow from the properties of commutators
of H and 0; and 0,. The corresponding estimates in Corollary 6.6 for the
Q1D operators S;, f and S,,0, f follow immediately from Lemma 6.5. To prove
Corollary 6.7, we first observe from Lemma 6.5, that

1Go,sSuflls < ca.s(Ma)([lwlp+str1llfllo + |wllgrrall f1ls)-

Since 0y ({Sw f}7~) = p{02S. f}~ we obtain, as in the proof of Lemma G.3, that
fors>1

10580 f11s < a5 (105w fIlsl 4 IET + 1S f 112U Hleass + (180110,
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where (see Appendix G)
1t o < el(Ma)l[w]]i4.
It follows that

10280 flls < cp,s(Ma) (10280 fls + [[w]]ps+5]1Sw f111 + 1Sw £10)

hence, for s > 1

[|GogSuflls < ep,s(Ma)(||Go,88w flls + [|wl]p+s+3[Sw fll1 + [|Sw fllo)
< cgs(Ma){l|wllg+s+r+1llfllo + [[wllg+r+1l [ f1]s +
+wlg+s+3(|[wllr42[| fllo + [[w[lr+1 [ fI]1) + [wllr4a][ fllo}-
Since

lwllg+stallwllrie < cpsllwllprstrsa|lw]la
lwllgtstallwllrir < cpsllwllprres|lwlla for r >3, s> 1
lwllgtrsllflh < epsUwllgrssrsallfllo + [lwllprrall]ls)

we obtain the estimates of Corollary 6.7.

I Proof of Lemma 6.8

By definition,

Su(y,t) = (Hv) (U ' (y), t) — (Hu)(y, t) where v(z,t) = u(ly(z),t),

where, from (6.14),

g = B [T vetd
(Ho) Uy~ (y),t) = 21 J_n tan (U (y) — 2)

Ry S YT
2 Jor tan%(ut_l(y) - ut_l(g))

_p-v. /7T u((, 1)y Uy 1) (C) d¢
2 ) tan 3 (U (y) —U7H(O))

™

cv [T 0
- M/_ U(C,t)a_glog\smé(u{l(y)*Ufl(C)>|dC'

Hence

(Su)(y, 1) = %/_” “(Cat)g—clog sing(bslit;l(zlg (O)‘dg
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which, as we will soon see, is no longer a principal-value integral. Since U, Ly) =
Yy — d(yv t)a

sin 5 (U (y) —U71(Q))
sin(y — ()

= cos 5y 0)=d(¢.)=cot 5(5=0) | G (sin g (. )=dlu+s(c0).0)) s

K(y,¢) :==

=1+ (cos %(J(y,t) —d(¢, 1) —1)—
1 1 Lo 1 -~ 8
5 (y=C) cot 5(1/*4)(/0 dyd(y+s(C—y),t) cos §(d(y,t)*d(y+8(éfy),t>)dS)-

Therefore for d € C™ 3,

s s

S0t =+ [ oclog K(Cyu(C a6 =~ [ log K(G.t) dcu(c. 1) d¢

—T —T

where K € C™~%. Tt follows that S(u) € C™~* and, for u € Hhsh’

1Go,58ulls < es,s{l|d||co+es2[ullo + [|d||gosal[ulls}, 0 < B+s <m—5.
An appeal to (G.3) yields the required estimate and the Q1D property of S
follows. This completes the proof of Lemma 6.8. UFor future reference we
now observe that the operator S may be expanded in “powers” of d. Note first
that
1
v(z, t) = ul(x),t) = u(z,t) + d(x, t) Opulx, t) + 5 d(z,t)? Oppu(z, t) + ...

Ho(z,t) = Hu(z,t) + H(d Ogu)(x,t) + %H(d2 Opzut)(x, ) + ..
Since d(z,t) = d(z + d(x,t),t) = d(z,t) + d(x, t)ayg(x, t)+ ..., and, from (6.13),
9 @).1) = g(a.1) = d(a, )09, ) + d(w, 1) Daag (2, 1) /24 ..

we obtain (with ’ denoting differentiation with respect to the first variable) that
if u e C?

- 1 - -
Su =8+ S;(dv) + §{Sd(du”) —dSu"} + O(||d||2,). (1.2)

J Proof of Corollary 6.10

Calculation of ¢ and p

By definition
q(y,t) = {(b— W)+ d") } (U (), )
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and, from the last part of Lemma 5.1,
)
pw—b=1+2ecosxcost — 62(*1 + cos 22(1 + cos 2t)) + O(£?),
and d is given by (6.11). Then

(n—=0)(1+d)

1
=14 2ecosz —52(—1 — 2cost + cos 2t + 2 cost cos 2z) + O(e3).

Now observe that when y = Uy (x) = 1 + d(x, 1)

cosz = cosy+e(l—cost)(l— cos2y)+ O(e?),
sinz = siny —e(1 — cost)sin2y + O(?).
This gives that, as € — 0, in C$_4’ee,
2, 9 3
q(y,t) =14 2ecosy — e (_Z + cos 2t + 2 cos 2y) + O(e”). (J.1)

In the same way (6.11) yields that in ng—?:,oe’
d(y,t) = 2e(1 — cost) siny — 2e2(1 — cost) sin 2y + O(e%). (7.2)

Finally, in Chrg_4’ee,

p(yvt) = 1- (ayd)(y’t) (JS)
= 1+ 2¢(cost — 1) cosy + 4e%(1 — cost) cos 2y + O(3).  (J.4)

Computation of ¢

To calculate —Hsa(af,%), first note from (5.4) and (6.11) that for f € Hhkhfl’ee,

k<m—4,ase— 0,

~

Su(f) QESintSsim(f) — 2802t Sginaw f + OE” || f||k=1)
2e sint Sgin o (f +d f') — €% sin 2t Sgin 2 f + O3] f||r-1)
= 2esintSynof +4e%sint (1 — cost)San o (f sinz)

76’2 sin 2tSsin2zf + O(€3||f||k*1>'

When g¢ is an even functions of z, we have the identities

Ssinzg = mo(gcosx) + (cosx)mog, (J.5)

Ssin 229 mo(g cos 2x) + 2(cos z)mo(g cos x) + (cos 2x)mog, (J.6
which gives

Ssinz (g’ sinz) = —mo(g cos 2z) — (cos z)mo (g cos x).
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Therefore, if f is an even function of y,

~

Su(f) = 2esint{m(f cosy)+ (cosx)mof} +
—4e?sin t{mo(f cos2y) + (cosx)mo(f cosy)} +
+e?sin 2t{mo(f cos 2y) — (cos 22)mo f} + O(3|| f||x-1),
and

o~

—HS.(f) = 2e(sintsinz)myf — 4e?(sintsinz)mo(f cosy) +
—&?(sin 2t sin 22) w0 f + O(3|| f]|r-1)-

Now we need to replace f by d;¢/p, ¢ € Hfh’ee, k <m — 4. From (J.3),

8t<,0/p = Opp(1 + 2e(1 — cost) cosy + 0(52||<p||k)
and so
- HSa(m) = 2e(sint sin x)mo (Orp)

— 262 (sin 2t sin x) 7o (D cos y)
— £%(sin 2t sin 22)mo (D 0) + O(3||0|[1),

which gives

{(~HS8u(Be/p)} ™ (v.1)
= 2¢(sint sin y)mo(Jsp) — 2e%(sin t sin 2y) 7 (0s0)

— 2% (sin 2t siny)m (s p cos y) + O(3||¢l|x), (J.7)
whence
— 0, ({MS.(00/0) ) (:1)

= 2¢(sint cos y)mo(Dsp) — 4e*(sint cos 2y)mo(Drp)
— 2&%(sin 2t cos y) o (Drp cos y) + O(3||¢l).  (J.8)

Now to calculate —9,(S,¢) note from (J.1) that
Sqp = 268cosy P — 26" Scos2yp + O’ 2lI1)
and that, for an even function f,

Scosyf = 7(Siny)7TOf7 (Jg)
Seos 2yf = _2(Sin y)ﬂ-O(f COS y) - (Sin 29)7T0f' (JlO)

Therefore

Sqp = —2e(siny)mop
+ 452(sin y)mo(pcosy) + 252(sin 2y)mop + 0(53||g0| k),
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and

— 0y(Sqp) = 2e(cosy)moyp
— 4e?(cos y)mo(p cosy) — 4e?(cos 2y)mow + O30l |x).  (J.11)

Now we need to compute Su up to order £2. Recall from (I.2) and (J.2) that
§F = 8af + SiA 1) + H{S1(f") — dS31"} + O(d*)

d(y,t) = 2e(1 — cost) siny — 2e2(1 — cost) sin 2y + O(e?)

and note the following identities for even functions f of y:
Ssiny(f') = (Ssinyf) = Seosyf =0,

by (J.5) and (J.9), and hence

Sany(f c05y) = 0 = Sny (f” siny).
Also

Sein 2y(f/) = (Ssin 2yf)/ — 28cos 2yf = 2(Sin y)ﬁo(f Ccos y),

by (J.6) and (J.10) and

Ssiny(f”) = 77T0(f COoS y) by (J5)
This leads to

Sp = —2e%(1 — cost)Ssin 2y’ — 262(1 — cost)? sin ySsin (") + O(3| |||k,
= e?siny(cos 2t — 1)mo(p cosy) + O(?]|¢]|x)-

From (J.1) we conclude that

Slap) = S+ 0% |¢llr)

and

~0,8(qp) = —0ySp+O(|lellr) (J.12)
= —e?cosy(cos2t — 1)mo(pcosy) + O3] |x)-

Collecting (J.8), (J.11), (J.12) gives the leading terms of G, which completes the
proof.
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K Proof of Lemma 7.1

Before establishing the Q1D properties of Sy we give a refinement of [22, Prop
7.8] on Q1D properties of integral operators of the form

T 1
Au(€,7) = / /0 a6, 7.7, Qu(C, 7 + rw(E, 7, ¢))drdC,

in which the kernels a(¢, 7,7, () and the function w(¢, 7, ) are 2m-periodic with
respect to &, 7 and (.

Proposition K.1. For some | € N suppose that a € C' and |w||cr < M, where
1+ Djw > cfl for some ¢; > 0. Then, for 0<s <1,

[Aulls < es(M; ex) (lallco(llulls + lullllwlice) + lalles [ullo), (K1)

and, for 0 < g+ s <1,

IGs.pAulls < cs(M, er){llallca(lulls + Tull1llwllo:) + llal go

ullo}, (K.2)

Proof. Denote u((, 7 + rw(&, 7,()) b v(&,T,7r,¢). For convenience, let D; =
0/0t and Dy = 0/0¢. Then, for i =1, 2,

o =| [ [ 0o (aterr e o) aracf
—]/_/ Z( ) Ya(e, ., ) (D) (ol 7.7, Q) drdc]|
w [ / ;||a||2cj\(D»k‘j(v(@r,r,ofdrdc.

loll? = / /nv Ol 2drdC.

Then, by the interpolation inequalities in the periodic-function spaces C*® and
H? and Holder’s inequality,

/ / E(Au)(E,7) dsd73c<k>(i|a|m|||v|||kj)Q
) 2

k

ky o 1—j/k 1-j/k 1%

B) (3 NallZE Nal & el 1911l /)
j=0

2
< c(k){llallcolllvlllx + lallcxvlllo}"

Let
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Since w € C! and ||w||¢1 < M, it follows from [18, Theorem 3.1.5] that v € HJ
when u € H? for 0 < j <[ and, by Lemmas G.1 and G.2,

Il < e (lully (X + lwliz) + llulli (X + llwlles) + llullo)
< ¢;(M, c)([lullj + lullllwlcs)-

Hence

/ ’ / " (Do) (Au) (e, ) Pdedr
< ex (M, e){llalleo (lulle + ullwlon) + lallen fulo) ¥

Similar analysis for the mixed derivatives leads to (K.1). To prove (K.2) we use
inductionon 8, 0 < 8 < l—s. By (K.1) the result holds with 8 = 0. Assume that
it holds for some 0 < 8 <[—s—1. It easy to check that Do Au = Dy Ayu+ Asu,
where the integral operators A; are given by

T 1
Asuly) = [ /O 0 (6,77, Qu(C, 7+ rew(E,m, O))drdC

with the kernels a; (¢, 7,7,¢) = a(§, 7,7, ()x(&, 7,7, () and
a2(ya SaT) = DQa’(&aTa T, C) - Dlal(f,T, T, C)a

where x = rDow(14+rDiw)~t. Now, from the triangle inequality and the identity
D2A = DlAl + AQ,

1Gp41,8+14ulls < (|G (I + |D1|) " Aulls + |G (I + |D1|) " Do Aulls
< c(|Gp,pAulls + [|Gp,pA1uls + |G g sA2ulls).

Now a € C!, w € C'"limplies a; € C'~1, i = 1, 2 and therefore, by the inductive
hypothesis,

IGs.pAwulls < (s, M, er){llaillcs (ulls + lulllwllcs) + laillcs+allullo}
< c(s, M, cr1){llall cosr (fulls + [full[|w]

cs) + llallgssisslullo}
for 0 < 8+ s <. Result (K.2) follows by induction. O
Now to establish the Q1D properties of S(g) define functions ¢ and ¢ by
Q7M7) = (o), — U6, T))

and observe that

{H(O0Q)}(y.1) = L= / ™ 0(s + dos), t + eo(s, 1))ds.

2r J_, tan 3(y — s)
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Hence, with t = 7 — £(§, 1),

o “1e oy o _PU T 0(s+ do(s),t+ ep(s,t))ds
(00 Q@7 6 m) = -7 [ AT

_po. [T ()OS t+eo(e).t) )dS
21 J_x tan 3 ((€) — 0(C))

=22 706 1+ eale(0).0) ) o 1o sin 5 (0(6) — o) e

Now ¢t = 7 — £(&, 7) implies that £(£,7) = eg(0(€),t) and so
0(C, t+eo(0(O),t) ) =0(¢, T —£(6,7) + eo((¢), T — £(£,7)) )
Lo
=0(¢, 1) +/0 E@(C,T - T(E(E,T) - eO(Q(C),T — E(E,T)))dr
06+ [ g0+ r(calef0)1) - eole©). ) )ar
= 0(¢.7) + (eo(e(0). ) — eo(e(©). 1) ) x
| 01+ r(eoe(0).0) = eole(€).9)
0
where
eo(2(0). 1) — en(0(E),1) = /0 g—p%(g(g (¢ — €)).t) dp
— (¢ / J(E+ (¢ — €)) Dyen(olé + p(C — €)).1) dp.
Therefore
Soy0(E,7) = / " K6 QB(C )

—I—/_:/O K3(&,7,0)0:0(¢, 7+ r(eo(0(¢),t) — eo(0(§),t)) drdC

= NL0(&, 1)+ [,0:0(§,7), say, where

Ki(§,0) = %S—C 0g Sinfn(li(z — gm ‘ (K-3)
K€ 7.0) = ~5-(C — ©)0'(0) cot 3 (o(6) ~ 0(¢))

x /O &€+ p(C =€) Dye0(0(€ + p(C — €)),t) dp
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Since dp, and hence p, is in C™73 it follows, as for K in (I.1), that K is in
C™=5. Similarly, since eg is in C™~% it follows that K is in C™~°. Now note
that

12(67—9) =0, (J19) + Jo0

where

7,0 = / ’ / Ks(6,7.00(C 7+ r(eo(e(). ) — eolo(€). 1)) drd

o0 = - / ' / (0 K3)(6,7,0) (¢, 7+ r(eo(e(C), 1) — eolo(€). 1)) drdC

and, with ¢t = 7 — £(&, 1),

_ Ky (€, 7,¢)
1+ r(dren(0(¢), t) — rea(0(£), 1)) (1 — BL(E, 7))

It follows that K3 € C™ %, 9. K3 € C™ % and

K3(§7 T, C)

[Killgs—s + | Kallgs—s + ([ K3l cs—5 + |07 K3l| o6 < em(Me)||w]ls, 5<s<m.

Note that I, J; and J, are examples from the class of operators A in Proposition
K.1 where w = 0 for I; and, for J; and Jo, w € C™ % is given by

W(E’Ta C) = €0(Q(<), T = f(f, T)) - 60(@(6), T = f(f, T))

Hence ||w||gm-1 < ¢m(My)||w]|m and the kernel a of A is given by K;, K3 or
0-K3. For I1 and Jy let | = m—5, for J5 let | = m—6 and appeal to Proposition
K.1 and interpolation inequalities

cp,slwlls([[wllp+s+6l0llo + llwlls+6]16]]s)
es([[wlls]16]ls+1 + [wlls+6]16]]0)

[lwllg+6]|wlls+al[0]]1

<
lwlls+slloll - <

to complete the proof.

L Estimates of Gy, in Lemma 7.2

In this Appendix we derive the estimates for Gy() defined in Lemma 7.2. First
consider the term

gél)(e) = —(1 + 5(0)){658(0)9 + (5067—8(0)9} + CYS(O)@.
From Lemma 7.1, estimate (6.11) for 39, and (see Remark 7.3) the fact that

lledler + 1ldoller < el(Ma)l[wl]iys,
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we obtain, after interpolation, the inequality

1
1Gp+2,5G5" 0115 < ep,s(Ma){[[w]|5+71161]s + [[w]|545+71101l0}- (L.1)

It remains to estimate {(1 + é9)2G(6 0 Q)} o @71, where, in the notation of
Appendix K,
(y,t) = Q&™) = (a(§), T — L& 7)),
&7) = Qy,t)=(y+do(y),t+eo(y,t))
We assume only that G is a Q1D operator of order (1, /), not necessarily the
one given in Theorem 6.9. Lemmas G.1 and G.3 with (7.10) lead, after standard
interpolation, to
11 +¢é0) 20 Q7 |ex
116 Qlls

Now we need an estimate of G(¢) o Q! using the estimate of Theorem 6.9 for
G. With £, = 0,¢,

0-{07 (G(P) (1 +€0)) 0 Q™) = (1 =€) (I m)(G(p)(1+¢é0)) 0 Q7
G(p) 0o Q7! = (1= Lr)m(G(¢)(1 +éo)) 00

since (1 —£;)(1+¢ép) o Q™! = 1. Since ¢ is odd in 7,

a(Ms)(1 + |[wlfi4a), (L.2)

<
< es(M5)([10]]s + [|w]]s+51101]0)- (L.3)

07 1 —ty) = =07, = 4,

T

and it follows that

071 (G(0) 0 Q™) = (I—m1) ({071 (G(9)(1 +é0))} 0 Q)
—tm(G(p)(1 +¢éo)) o0 (L.4)

A change of variables in the integral gives that

m1(G() 0 Q") = m(G(p)(1 + éo))

°p.
Now we are in a position to estimate G1,0(G(¢) o Q1) in terms of G 0G(y).
First note the obvious inequality (here ¢; and ¢/, are constants)

/

107 ulls + [lmyulls < esl|Groulls < ¢ (1107 ulls + [lmulls),

which follows from the discussion of Q1D operators preceding (7.15). Next

0r H(G(0) (1 + €9)) = (T—m)(1+ é0)0; ' G(w) + eom1(G(y))
R Y ) (L.5)

which follows from Lemma M.2 and the fact that méy = 0, and

m1(G(p)(1 + €0)) = m1(G(9)) — m1(é00;  G(9)), (L.6)
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which follows from integration by parts since G() = m1(G(p)) + 0:0; *(G(y)).
Now it follows that

1G10(G(P) (1 + é0))lls < es(Ms)([[G10G ()]s + [[wlls+5]|G109(#)llo) - (L.7)
and, from Lemma G.3 and standard interpolation, (for s > 1)
1G10(G(0) © Q7NIs < es(M5)(|G1.0G(2)]s + [[wlls+5]1G1,0(G(2)]o)
< s (Ms)([[wlls]lells + [[wl]s+6ll#llo), (L-8)
by Theorem 6.9.
Lemma L.1. If G is a Q1D operator on Hg, of order (1, 8) with

1G1,8G(0)ls < eg,s(Ms)([[wllg+slells + [[w]ls+s+6ll¢llo),
then G(p)oQ ™! is a Q1D operator on Hp, of order (B+1, 3) with, for0 < 8 <2,

1G5+1,6(G(9) © Q7 NIs < e,s(Ms)(||wl|g+sllls + l[wlls+p+6ll#llo),
and, for 2 < (3,

1G541,8(G(9) © Q7)lls < ea.s(Ms)([[wll2p+alllls + [[wlls+25+4ll¢llo)-

Proof. The lemma is already proved for 8 = 0, see (L.8). Let o' = dp/d§. A
differentiation of (L.4) gives

06071 (G(¢) 0 Q) =d' (1= m) ({9,07 ' (G(¢ ><1+éo>>}oc2*1)
—Le(G(p)(1+€0)) 0 Q7" — ¢'tm1 [0y (G () (1 + é0))] 0 0
+ 1 {le (I —71))(G(#) (1 + é0)) 0 Q™'}
and, since m1 {l¢(m1(G(¢)(1 +é0)) 0o Q@~1)} = 0 because £¢ is odd in 7,
9:071(G(p) 0Q7Y) = 2'(I-m) ({0,071 (G(p)(1 +¢0))} 0 Q")
—(I=m){le(G()(1 + €0)) 0 Q')
—0'tm[0y(G()(1 + éo))] © 0.

Also, from (L.5) and (L.6), by induction and standard interpolation,

1G1,8(G () (1 + é0))lls < cp,s(Ms)([[w]|s+5+511G1,0G(#)llo
+ l[wllp+5]|G10G(P)l|s + [[wlls45]1G1s9(P)ll0 + [|G1,59(2)]5),  (L.9)

and, by Theorem 6.9 and further interpolation,

1G1,8(G (@) (1 + é0))lls < eg,s(Ms)([[w]|srslllls + [[w]ls++6llello).  (L.10)

The outcome is that, when G is any Q1D operator of order (1,8) on H, for
0 < B+ s < m — 6, the operator ¢ — 9:971(G(¢) o @) is a sum of the form

ZRJ (Gilp) o Q™)
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where G; is a Q1D operator of order either (0,5 — 1) or (1,5) on Hj for 0 <
8+ s < m — 6, which satisfies

Gi(p) = aya;l(g(@)(l + ég)) of order (0,5 — 1),
Ga(p) = m[0y(G(p)(1+éo))] of order (0,3 — 1),
Gs(p) = G(p)(1+¢éo) of order (1,8),

1Go,5-1G1 ()]s +[1Go,5-1G2(P)ls +11G1,593 ()]s < cp,5l1G1,5(G(0)(1+€0))][s,

and the operators R; are given by

Ry ={ri-}o(l—m), r=d ey,
Ry ={ra2-}, ry =—g'l e G4,
RgZ(H—ﬂ'l)O{Tz;'}, 7‘3:—6560%1_5,

in which {h-} denotes the operator of multiplication by h, and
Irilleies + [Iralleies + [lrsller < el(Ma)[|lwlfits.
The identity
071 (rGo Q™)

=(@=m){r-} =077 }) (M=) {8, " (Gle)1+¢0) o Q'})
+ (07 — (M=m){rl -} + 07 {7l }) m(G(@) (1 + €0)) 0 0,

follows from (L.4) and Lemma M.2, and leads (via Lemmas G.1, G.3 and (L.7))
to the basic estimate

1G10(rG(9) e Q7Hls < es(M5){[|G10G ()]s ([[rllco + Il co)
+ ((lrllce + lHllco)llwllss + llrlles + [l le:)lGroG(@)llo}.  (L11)

Now (L.10) leads immediately to the observation that

|Go,8-1G1(9)|s + [|Go,-1G2(P)[s + [|G1,8G3(0)|]s
< cg,s(Ms)(|[wl|g+6llells + [|w]ls+s+6#llo)-
We then obtain that

[[G1,0G1(0)]|s + [|G1,0G2(9)]]s
[|G1,0G3(#)]]s

cs(Ms)([[wll7llells + [lwlls+7llello),

<
< es(Ms)([[wlle]llls + [lwlls+ellello)-

Since _
1, T2, { e ngiél, T3 € 0575,

standard interpolation shows that

1G10R;Gi () © Q7[5 < es(Ms)(Jwllzllells + [lwllssrllello) for j =1, 2, 3.
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This yields the claim of the lemma for 3 =1 :
1G21G(9) © QI < es(Ms)([[wllzlllls + 1wl s+7llello).
If we now consider (9:9:1)?(G(¢) 0 Q1), we obtain

(0e07)%(G(p) 0 Q) =Y RjulGiulp) 0 Q7Y
J,l

where
Gii(p) = 0,0, 1(Gi(p)(1 + ép)) of order (0, — 2)
Gi2(p) = m[0y(G1(p)(1+€0))] of order (0,5 —2)
Gis(p) = Gi(p)(1 +ép) of order (0,8 —1)
Gua(p) = 97 (Gi(p)(1+¢é)) of order (0,5 —1)
Gis(p) = m(Gi(e)(1+ép)) of order (0,8 —1)
Go1(p) = 9y(G2(9)(1 + €o)) of order (0,5 —2)
Gaa(p) = Ga(p) of order (0,8 —1)
Gai(p) = 0,0, '(Gs(9)(1 +é0)) of order (0,5 — 1)
Gsa(p) = m[0y(Gs()(1+€0))] of order (0,5 —1)
Gss(p) = Gs(p)(1+éo) of order (1,0)
Gaalp) = 0; ' (Gs()(1+¢0)) of order (0,5)
Gss(p) = m(Gs3(p)(1+¢ép)) of order (0,0)
and, in an obvious abbreviated notation, operators R;; are defined by

Ry = RiecCp™

Rz = RirpeCy™

Rz = RirzeCp™®

Ry = RyeCp™®

Ris = —RileCy™

Ry = 007 'me ng%

Ry = 0:0-'ra € Ch”hl_f’

Ry = {RsRy-}—0;'{RsRy -} €Cl™>

Rz = {Rsry-}— 07 {Rary-}+ 007 'Ry € Clp 7

Rss = {R3-}—0;'{RsRs-} € Cl™®

Rsy = {0¢Rs-}—0;'{Ochs-}(I1—m) € Cp°

Rss = 0¢0; 'Ry — (I —m){l0cRs-} — 07 {0 Rs-} € CJ} .

78



From (L.9) for G;, (L.10) and interpolation, we obtain the estimate

[|Go,5-2G11 ()]s + ||Go,5-2G12(9)|[s + ||Go,5-2G21 ()]s
+|Go,5-1G13(0)|[s + ||Go,5-1G14(#)|[s + ||Go,5-1G15() ]
+1Go,5-1G31 (P[5 + [|Go,5-1G32 ()]s + [|G1,8G33 ()]s
+1Go,5G34(0)|s + 11Go,6G35()s

< ep,s{11Go,3-1(G1(9)(1 + €0))l|s
+[|Go,5-1(G2(9) (1 + €0))||s + |G1,5(Fs(0) (1 + €0))|]s }

< cg,s(Ms)([lwl|g+6llells + [Jwlls+s+6ll#llo),

where the coefficients satisfy
[Rarllcre + [[Razlleits + [[Ratllcerr + [|Rasllcr + [[Ruallor + [ Rus |

+ [|Razllcr + [|Raillcr + [| Rszllcr + || Rsslcr + [ Rsallcr-1 + || Rss||cr-
< a(My)||w]lits-
Let us make the following inductive assumption: for k > 2
_ _ k) Ak _
(@:0-V G @)= Y REGI(@) Q™)  (L12)
0<j<k+1

1<ISL(k)

for some finite L(k), and on Hy

g% QIDof order (0,8~ k+j) for 0< j <k
g,(cljr)lﬁl Q1D of order (1,8) for j =k + 1,

RYecp™ 7 foro<j<k, R

i1t €C TP for j =k +1,

i
with estimates

k k
1Go,5-k+5G% (D)ls + |GG 8 ()]s
< cp,6(Ms)([[w]|g+611¢lls + [[wlls+p16ll2]]0), (L.13)
k .
IR |lcx < es(Ma)l[wllssjinse for0<j <k,

IRY), llos < es(Ma)||wl|syonre for j =k +1.

We note that the anticipated smoothness of the coefficients R(-kl) is not as good
as might have been expected from the cases £ = 0, 1. This is because in each
later step we can loose two derivatives. In the step from k to k + 1, the term

(858;1)1%5{? (gj(-ﬁ)(go) 0 Q1) leads to terms of the form r*+1)(G*+D ()0 Q1)
where , for 0 < j < k, either

G+ has order (0,3 —k+ j —1) and R*Y ¢ Cg;hQ_j_k_l
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or
G+ has order (0,8 — k + j) and R*HY e cp277742,

and estimates analogous to (L.13) hold. If in (L.12), with k£ + 1 instead of k we
use 7’ instead of j, then in the first case 7/ = j and in the second j' = j + 1.
Therefore for j = k + 1, we obtain either

G+ of order (0,6 -1), RO+ ¢ ngd*?k*l

or

G*+D of order (1,4), R*+D e o722,

which shows that (L.12) for k implies (L.12) for k + 1, since in the first case
j' < k+1, and in the second case j' = k + 2. From (L.11), the estimates for

Rﬁ-i) and the estimates for Gl,Og](',]z) (),

k
1G10G5 @Olls < e,s(Ms)([wlliro—311¢lls + [[wllssrro—sllello),

k
G100 @)s < eno(Mz)([wllsll¢l]s + wllssollello),

which follows from (L.13) with 8 = k — j, we obtain, for k > 2, after standard
interpolation,

1Gh+18G(#) © Q7 ls < 5.5 (Ms)([[wllzrsallells + l[wlls+2e+4llello)-

By induction on k € {1,---, 3}, when combined with (L.3) and (L.1) this gives
the required result for Gy in Lemma 7.2. O

M Proof of Theorem 7.5

From (7.16),
0 = {1+ ag+ BoH + (a1 + S1H)D; " + (az + B2H)D; 16 (M.1)

where a;, 85, 7 =0, 1, 2 are functions which are doubly periodic in § and 7 to
be determined below. We require that the a; are even in &, the §; are odd in
¢, that ag, By, az, B2 are even in 7, and that a;, f; are odd in 7. Let £ denote
the linear operator

L=08.,—(1+pBO)YHO,.

Then (7.5) is of the form
L+ (v + dH)0-0 + aHO + Gob = g. (M.2)

Note the following commutator relations satisfied by L:

L((co + BoH)0) — (o + BoH)LO = 2(cvo + BoM) D0
+{(do + BoH + (14 B9)(8y — agH)}0 — (1 + ) DeSag,5,0  (M.3)

where the new £-smoothing operator Sy, 3, (recall S, in Lemma 6.3) is defined

by
de
Sp,qf :f Spf+Squ+q7TOf-
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Remark M.1. Note, from Lemma 6.5, that if p, ¢ € H™ then S, , is a Q1D
operator of order (0, 3) on Hg when 0 < 8+ s <m — 3. Moreover we have the
estimate

1Go,58p.aflls < Cﬁ,s{(||P||cﬁ+s+1+||‘J||cﬁ+s+1)||f||0+(||P||Cﬁ+1+||‘J||Cﬁ+1)||(f||s})-
M.4

Since £ commutes with 91,
ﬁ((O&l + 617’()8;19) — (041 + 617‘{)8;1,69 = 2(0&1 + 617‘()(1 - 7T1)9
+{(@1 4+ BiH + (14 89)(8) — ) H)}0710 — (14 B9)0eS0y 5,071 (M.5)
and
L((az + BaH);20) — (a2 + BoaH)O;2LO = 2(dva + oH)O; 0
+{(d2 + FaH + (14 B9)(85 — a4H)}0720 — (1 + B9)0eSas,0,07 20, (M.6)

To calculate the effect of changing variables on the other terms in (M.2) we need
the following simple identity.

Lemma M.2. Forw € CJ', m > 1 and f € Lgh,
7N wf) = wd f+ (07 w)m f — m(wd ' f) — 07 N (wd ' f).
Proof. Since 9; and 97! commute,
O o ) + Oy Hw(l = m) f} = 0:07 (wo 1 f) = (1—m)(wdif),
and the result follows. (]

This then leads to the following identities:

— (1 + ag+ BoH)(y + dH)0-0
={Bod — (1 + )y — (Boy + (1 4+ )d)H}0-0 — B0S,50-0;

—(1+4ag + BoH)aHO = {Bocr — (1 + ag)aH}0 — 5oSo,a0;

(a1 BiH)O; (1 +6H)9,0 = —(aa+BiH){ (y+6H) (1=m1)0— (5+3H)0 10
—2my (v + 6H)(1 — m1)8) + 0 (5 + es'H)a;le)}
={B16 — a1y — (B1y + 1 d)H}(1 — m1)0 — f1 Sy 5(1 — m1)0
+{ardy = B16 + (B + a1 dYH}O 0 + Bi S, 50710

+{B16 — ar¥ — (B1¥ + 10)H}O; %0 — 51 S, 5020
+ (a1 + BiH){3m[(y + OH)(1 — m1)0) + 07 [(V + §H)9-20) )
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and

— (o1 + BiH)O- o HO
= —(a1 + S1H){aHO; 0 + (0] 'a)Hm10 — m[aHO; 0] — 07 [dHOS 6]}
={fia — a1aH — 5180@}8;19 +{-p1&+ anaH + ﬁlso,d}aﬁe
— (o1 + B1H) {07 'aHm 0 — 2m [0 HOS 0] + O ' [(HO-20]}.

Similar repeated applications of the formula in Lemma M.2 yields

— (ag + B2 H)O 2 (y + 6H) 0,0
= —(ag + BeH){(y + 0H)I; 10 — mi[(y + 6H)D; 6]
— 2071 (% + OH)O- 10 + 07 2((5 + dH)O 0]}
= {8326 — aoy — (Bay + a20)H}O; 10 — 32S, 50710
+ 2{az¥ — B2b + (B2 + 20)H}D; 0 + 26,8, ;0720
+ (o +BoH){3m [(v+6H) 0,1 0] — 307 (54 0H) O, 20+ 07 2 [(V + 5 H) 0, 20},

and

— (g + BoH)O2aHO = —(ag + BoH){(1 — 71)[aHO; 20
— 207 &HOZ20) + 07 [aHm 0 + &'HO; 20)}
= {Bac — a2aH}O-20 — 280,007 20
+ (g + BoH){m1 [HOZ20] — O *aHm1 0
+ 207 [aHO-20] — 02 [&HO- 0]}

Now the object is to find coefficients in formula (M.1) and a constant ()
which ensure that, in the resulting expression for £9 — x99, the coefficients of
0.0, 0, 0710 are zero when 0 satisfies (M.2). The commutator relations (M.3),
(M.5), (M.6), followed by a substitution for £6 from (M.2) with the identities
displayed above, now leads to the following system for the unknown functions

a]aﬁ]J:Oa 13 2:

2d0 — (1 4+ ag)y + Bod 0,
260 — Boy — (1 + )0 = 0,

2(5&1 — o1y + 515 + do + (1 —+ 6(0))66 — (1 + Oéo)fi(o) + 500& = 0,
261 — 1y — 016 + o — (1 + BO)af — Bos® — (1+ ap)a = 0,
2(5&2 — Q7Y + 625 + 5&1 + (1 + ﬂ(o))ﬂi — Oélfi(o) + 610[ + Oél’.}/ — 515 = 0,
205 — By — 26 + B — (L + 8 — Bi&® —ara+ fiy+aid = 0.
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Introducing the complex functions Z; defined by
Zo=14+ag+1iby, Z1=a1+if1, Zs=as+ifs,

the above linear system becomes

270 — (Y +1i6)Zy = 0, (M.7)

221 — (Y +10)Z1 + Zo — i(1 + BN Z, — (5O +ia)Z = 0, (M.8)
275 — (v +i0)Zy + Z1 —i(1 4+ BN Z] — (kO +ia)Zy + (§ +i6)Z, = 0.

(M.9)

The solution of (M.7) is
Zo(&,7) = Go(g)e T DTN

where _
Go(€) = po(&)e™o®

is, so far, arbitrary in the space C;EL_E”“ + iC;;_E”OE, because v and § are odd
in 7. It is easy to check that

Zo —i(1+ 825 — (5 +ia)Zy = (b1 + iba) Zo (M.10)

where

1 .1
by + by = (¥ +d) + Z(7+i5)2 — (k9 +ia)

. T ’
- 500 [ e s+ i s —ic1+ 59 (B i),
0 0
To solve (M.8) and (M.9) we use the variation of constants method. Let
7 =ViZo,  Zo=VaZo. (M.11)

When this is substituted in (M.8), (M.10) implies that
’ 1 . m—6,ee . ~ym—6,0€e
Vi = _§(b1 + ’ng) S Chb + ’LChb s (M.12)

and, if there is to be a periodic solution V; (£, 7), then the following compatibility

condition must hold: .

(bl + Zb2>d7’ =0.

—T

This condition implies that

/ 1 - -
% it = _555 </ﬂ/0 (V(E,S)+i5(§,s))d5dr>
) T 71
R EYO) /,ﬂ (N +i6)* = (k@ +m)) dr (M.13)
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and determines pg(£) and 1o (€), respectively in Chmfs’e and C’;’%E”O, up to a
scalar multiplier of pg, provided the average in ¢ of the right hand side is 0. The
oddness in £ of o and §, with the evenness of v leads to a single condition

k() = 47r2/ / (v —52 Ydrd€

which determines £(?). Then (M.13), fixing po(0) = 1, yields

I3 T T T
o 1 527'}/2 ( ) 1
"/’0(5) - mo/ds/( 4 +f{0 )(S,T)dT* E/ dTO/(S(f;S)dS
3 T T T
1 ) 1
po(§) exp{m/ds/(aJr%)(saT)dT E/dT/V(&S)dS}v
0 — - 0

whence Z, € C’m e 4 zC’m %:%¢ and

2(6r) = —3Z(&n) [ ita)(e s € Cp0T icy

To deal with the substitution of (M.11) in (M.9) note first that, since Z; = V4 Z,
(M.10) and (M.12) give

Z1 —i(14 82 — (kO +ia)Zy + (4 +i6)Zy = (bs + ibs) Zo

by +ibs = 0-[Vi(y +i0) — V2 + Vi] —i(1 + BV € I~ +ic .

In the light of (M.7), (M.9) gives that Vo = —(bs + ibs)/2 and, because of the
form of b3 + ib4, compatibility conditions are not needed to solve for Zs:

1 T m—i{,ee m—i,0€e
Za(em) = ~32067) [ (s +iba)(E s)ds € T i
0
The coefficient of 9726 in the expression for £ — k(99 is Ao + A\;H where

Xo+ i = Zo —i(1+ N Z) — (5 + i) Zs
+2(5 +16)Za — ( +i0) Zy +icZy € Cpp > +iCy 50",
We can show the following

Lemma M.3. The coefficients a;, B;, j = 0,1,2 and Ao, M\ satisfy the following
estimates

cs(Ms ||w||5+5

llaolles + llBolles + lldollc + [15ollc- (Ms)
s(Ms)[|w]|s+6  (M.14)
(Ms)
(Ms)

llailles +[[Billes + [laalles +[|Billes
llaz|lcs + [|Bellcs + [|dal|cs + ||B2]lc
[[Xollcs + [[A1lle

o

s(Ms)||w|]s47

VAN VAR VAN VAN
o

o

s(Ms)|w|]s+s-
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Proof. From Remark 7.3, the estimate (7.9) for (%), and the formula (7.19) for
(0 we deduce that

llpo = 1les + ltolles < es(Ms)l[wl]s+s,

then the formula for Zy and (M.7) for Zg lead to the first estimate in (M.14).
Now the formula for by + ib and (M.12) with (M.11) gives the second line of
(M.14). Then the formulas for bs + ibs and for Z3, and (M.9) lead to the third
line of (M.14). The formula for Ag + iA; then gives the last line of (M.14). O

Finally, to derive the equation satisfied by ¥ we need to invert (M.1). Since
all the coefficients in P~1 are in C™~7, it follows from (7.16) that

P=1+> (—-1)"{ao+ BoH + (a1 + SiH)O; ' + (a2 + B M), °}"

n>1

defines a bounded linear operator on H® for s < m — 7 which is close to the

identity for € small enough when w = ng“) +eNoy, Ny > 2, since the coefficients

are O(e). Let

V(W) = —{1+ao+BoH+ (a1 +BiH); " + (az + B2H)D, >} Go(PV)
—B0{S3.607 + So.0} PV — B2{S.507 " + So,005 % — 28, ;072 } P
—01{Sy6(1 =) = 8, ;071 + 8y 5072 + S0,a07 " = S0,607 2} PV
—(1+ B0 Sug,50PY + Sar,5.07 PO + Sy 5,07 2PV}
—{2(é1 + BiH) + 16 — ary — (Bry + a1d)H}m PO

o + BH){3mi((y + FH)(L = m)] — 07 (MO 2] +
+2m [aHO7 Y] + 07 Y [( + FH)OS2] — a;laHm}W
(o + ﬁgH){Sm[(V +OH)OTY] = 3971 [(5 + SH)O2] +

FO2(H + SH)O2 - +mi[aHO-2) — O 2aHm +
+20;7 [aHO; ] — 8;2[547{3;2.]}7;19,

We have the following

Lemma M.4. The linear operator V can be decomposed as follows

V=V1+W+V;
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where, for B <3 and 0 < s+20<m—8

1Gp42,8V1(9)|]s < ca,s(Mr)([[w]|s125+8]19]lo + l[wll28+8l[]]5),
for >3 and0<s+38<m-—25, (m>14)

1Gp12,8V1 ()]s < ca,s(Mz)(||w]|st3+5] 190 + [lwll3+5]19]ls),
forany 8>0and0<G+s<m-—38

1Go,5-1V2(D)lls < ca.s(M7)(|[wl]s+ 4800 + [[w]|s1s]1915),
and for 0 < s <m —10
102V5(9)]s < eg,s(Mr)(|[w]]s+10]19]0 + [Jwll10]D]l5)-

Proof. First, from (M.14) and the formula for the operator P,

1POls < es(Ma)((1 + [[wl[2)[[9]]s + llwl]s+7l9l]o)-

(M.15)

(M.16)

(M.17)

(M.18)

(M.19)

Consider now the first line V11() of the above expression for V(¢). This is a
“product” of factors C;gq (or their 7-derivatives) and Q1D operators of order
(8 + 2,0). Operating with 07 P transforms this (see Lemma M.2) into a
sum of “products” of factors ng_g_ﬁ and Q1D operators of orders (0, 3). Then

applying 8? leads to a sum of “products” of factors r; € ngfgfﬁ*l and Q1D
operators G; o P of orders (0,1). More precisely we have, recall from (7.16) that

0 =Py,

1Gss2,6V11D)ls < o5 D (Ilrille-1G(O)lo + IIrillcolIGi(O)]]s)

l
cg,s/|Gp-1+2,6-1G0(0)|ls
cs(Ms)(1 + ||wl[s+8+541)s

G (D)5

<
lIrlles <

which, because of Lemma 7.2 and standard interpolation inequalities, gives,

G2,V (D)|ls < cp,s(Mr)([[w]ls+25+8]10llo + [[wll2p+8]10]l5),
1Gs12,6V11(0)lls < cp,s(Mr)([[wlls43p+5]10]l0 + |[wllzp+510]]5),

This, with (M.19) gives

G128V (D)ls < cp,s(Mr)([[wl]s+2p+8(19]lo + [[wll2p+s][V]]5),
G128V (D)ls < cp,s(Mr)([[wls43p+5([9]lo + [[wllzp+5][V]]5),

ﬁ§3)
g = 3.

ﬁ§3)
B = 3.

Consider now the first term Vi2(¥) = —5pS,,50- PV in the second line of the
above expression for V(19), where §y satisfies (M.14), P satisfies (M.19) and

87,687' = a‘rS'y,J - 8775
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satisfies, by Remarks 7.3 and M.1,

[|G1,84,60-0|s < ||Go,884,60|[s + ||Go,sS, 501ls
< eps(Ma)([[wllgts+7[101l0 + [[wl[s+7]10]5)-

N

Similarly

1G1sV12()lls < cp,s(Mr)([[w][g+s+6l[Dllo + [[w]|5+6][9]]5)-

With Vi (9) = Vi1 (9) + V12(9) we obtain estimates (M.15) and (M.16) and V; is
of order (8 +2, B)onHS 0<s+20<m—-8,if <3, or0<s+30<m-—25,
if >3 (m > 14). (Recall that a Q1D operator of order (1, ) is also of order
(B+2,0).) Now, in the above expression for V(¢), let Va1 () denote the second
line except Vi2(9), and the third line. This is a sum of “products” of factors
r; € C’;gq by Q1D operators G; o P of order (0, 3) with, by (M.4), Remark 7.3
and (M.14),

1Go,6G:1(0)]ls cp,s (Ma)([[wl|g+5+8]10]l0 + [[w][p+8101]5),

<
Irilles < eps(Ms)([Jw]]s47-

Then, from (M.19) and standard interpolation,

1Go,6Va1(9)lls < cp,s(Mr)([[w][g+s+8[llo + [[w]|s+s][9]]5)-

The fourth line, denoted by Vaa(9), of the expression for V(¢), is estimated in
the same way and the result is that

1Go,s-1Vaz|ls < c.s(M7)(||wlg4s+8l[9]lo + [[wll1s]|9]]s)-

Therefore Va1 + Vag = Va(9), defines a Q1D operator of order (0,5 — 1) on H,
0 < 8+ s < m — 8 which satisfies the estimate (M.17). The last three lines of
the above expression for V() give an operator V3 with the property that 93)3
is bounded in Hy, 0 < s <m — 10 and, from Remark 7.3, (M.14) and (M.19),
we obtain the estimate (M.18) of the lemma. O

The equation satisfied by ¢ is then of the form
Orr — (14 BOYHOD — 609 = (Ao + MH)ITZPY+ V() + h

with
h = {1 + ag + BoH + (041 + ﬁlH)G;l + (ag + BQH)8;2}Q

Now suppose that w = ng), N > 2, is an approximate solution of F(w,1 +

£2/4) = 0. The coefficient £(?) can be estimated as follows. Since

1 ™ T
KZ(O) = ﬁ / {’}/2 — 52}d7'd£

B 1 _i_ﬁ(o) 2 I2 60 2 1
N 167r2/ / { (1+dp)? ((1+€'0>2) }OQ dedr
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we can use the Jacobian (1 4 dj)(1 + ég) of the map (y,t) — (&, 7) to obtain

0 2,72 -2
L0 / / (14 B2 (1+€0)_€o (1—|Td6) dydt
1672 1+ d’) (1+€p)3
—(14 B2 (1+ €o) o2 €p?
= — — ¢ dydt. M.2
1672 /,r /,ﬁ 1+dp) q? 4 (M.20)

It follows that x(©) = O(e*) and, since e = O(e?), éy = 2sin2t + O(&%),
g =14 O(e), we obtain

RO =2 - OE).
Then successively, we have (the time average of —v2 being O(&?))

1/)0(§> = 0(53)7

po(€) = exp{2e(cosé —1)+e*(3/4 — cos 2€) + O(<)}
bi(&,7) = e%cos2r + O(e?),
ba(€,7) = O(),
ap(&, ) = 25(cos§—1)+52(4—%cos27—4cos§)+0(€3),
Bo(6,7) = O(?),

2

a1 (1) = 7 sin27 + O(e%), Bi(&,7) = O(e?),
b3(&,7) = e%sin27 + 0(e3), by(€,7) = O(e?),
az(§, 1) = —%(1 —0s27) + O(£%), Ba(&,7) = O(%),
M(€,7) = —e?cos2m+0(), M(&7) = O(e%),

PY =9+ 2¢(1 — cos &) + O(?(|9]]).

Then, since

Sorf = OE|IfI), Sanf =OE|If]])

Sonf = (26— 452)86055f + 0(53||f||)
we have

V(@) = —eGo1(V) + 262Go1(cos &) — 26 (cos €)Gor (¥) +
—£%Goa (V) — (26 — 467) e Scos e (PV) — 2cymd) + O(°||0]]).
Hence
V=eVW 4293 1 0(3)

with

VO (9) = —2(sin 7 cos £)mo (9-0)
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V@ (9) = (cos 27)m19 + 2(sin 27 cos £ )mo (8,9 cos £)
+ cos&(1 + cos 27)mp (Y cos &).

From the above asymptotic expansions, we can infer the following estimates for

the coefficients aj, 35, 7 =0, 1, 2 and Ag, A1, when w = wéNO) +eNoy, Ny > 2:

llewollcs + [1Bollos + lldollcs + 1Bollos < cs(Ms)(1 + [[ullors),
lleallos + [1B1lles + lleallos + [1Billos < e%es(Ms)(1 + [[ulls+6),  (M.21)
llasllos + [|Ballcs + llazlos + [1Ballcs < e*es(Ms)(1 + |[ulls4),

Xolles + [[Arlles < eea(Ms)(1 4 [|ul|s+s)-

The estimates for V; follow directly from (M.15), (M.16), (M.17), (M.18) and
the above asymptotic expansions. This ends the proof of the Theorem 7.5.

N A Nash-Moser Theorem with a Parameter

Let (Es,| - ||s) and (Fs, |- |s) denote two scales of Banach spaces parametrized
by s € Ng = NU{0}. Suppose that for ¢ < s there exist ¢(¢, s) such that

@) [ lle <elt o)l s, [ < et s)] s
(ii) For A € [0,1] with A\t + (1 — A\)s € N,

A = b Y
I Iaera—ns e -10 1174 1 Ivramns et )] -7 57

(ili) There exists a family of smoothing operators S, defined over the first scale
such that for p > 0 and t < s,

ISpulle < et 9)ulls,  [Spulls < c(t, s)p"*[|ull,

[Spu —ulle < e(t, )9 lulls,

and, if € — p(e) is a smooth, increasing, convex function on [0, 00) with
©(0) = 0, then, for 0 < g1 < &9,

1(Sper) = Spen)tills < elt, s)ler — eale’ (e2)p(e1) = lulle-

Remark N.1. In the standing-wave problem the Banach spaces E, Fy are
closed subspaces of the Sobolev spaces H,;““ (defined following (4.3)) and consist
of functions of the form

w= Z ﬁmnefimffin'r

m#n?
(m,n)€z?

with norm
2 2 .
lulls® = fuls™ = E (m2+n2)é|“mn|2-
nez?
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A smoothing operator with the required properties is defined by

Seu=>_ <(pn|)imne T,
m#n?

(m,n)€Z?

where ¢ : RT — RT is a smooth function which equals 1 on [0,1] and 0 on
(2, 00).

Consider a family of operators ®(-,¢), depending on a small parameter ¢ €
[0, 0], which map a neighborhood of 0 in E, into F,. Suppose that there exist

USPSTfl, 07p7T€N07

and, for all I € Ny, numbers ¢(I) > 0 and ¢(I) € (0,¢ ] with the following
properties for all u, v, u;, v; € B and €, €; € [0,&¢], i = 1, 2, where B = {u €
E, : ||lu|lr < Ro} for some Ry > 0:

(A) The operator ® : B x [0,e9] — F), is twice continuously differentiable,
@ (u, €)lpr1 < (D)1 + [[ullrs1) (N.1a)
and, for u, v € E, 4, ¢ € [0,e()],
|D(U’U’5)|P+l
< e+l + ol lu = vlIF + c@llw = vlllu = vllgr, (N.1b)

where

D(u,v,e) = ®(u,e) — ®(v,e) — @) (v,e)(u —v).
Moreover,

|D(u1,v1,€1) — D(uz, v2,€2)|,p

<c(ler — el + llur — wally + [lor — vallr) (lur — v1llr + [Jug — v2ll,).
(N.1c)

(B) There exists a family of bounded linear operators A(u,e) : E, — F),
depending on (u,e) € B x [0, 0], with

[A(u, e)vl, < c(O)l[vflr, v € By, (N.1d)

that approximates the Fréchet derivative ®/, as follows. For u € E, ;N B,
e €[0,e(l)] and v € Ey 4y,

[A(u, e)v = @, (u,€)vl o1 < (D)1 + [lullr0) 2w, )] [[0]]
+c(DI®(u, &) lral|vllr + (D)@, )l |v]lr+1- (N.1e)
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(C) When u; € BN E,44, €; €[0,e()],i=1,2,

|®(u1,e1) — P(uz,€2)|pti

51)
<) (1 + [Jur gt + lJuallrr) (Jer — 2] + [Jur — uallr)
+e()llur — ugllpr,  (N.AF)

[(®,(u1,e1) — D), (uz,€2))0|pr1 + [(A(ur,e1) — Alug, €2))v]pt <
C(l)( lur — uallrti + (Je1 — | + lur — wallr)([lua 41 + ||U2||r+l)) [[v]l-
+ (ler — eal + llur — uglly) [[0]lr41,  (N.1g)

A set £ C [0,00) is dense at 0 if lim M =1.

0 T

(D) If a set £ C [0,e(l)] is dense at 0 and a mapping v : € — BN E,y; is
Lipschitz in the sense that for €1, g5 € &,

lv(e1) — v(e2)|lr < Cler — e2] where C'= C(v), constant,

then there is a set £(v) C &, which is also dense at 0, such that, for any
e € &(v) and f € Fj4y, the equation A(v(g),e)v = f has a unique solution
satisfying

[0llp—o41 < 2| f o1 + [V (E)lrr2lf]p)- (N.1h)

(E) Suppose that vy : &g — BNE,4; and mappings vy, : ﬁf;olé'(yi) — BNE,.4;
satisfy, for a constant C independent of k € N sufficiently large,

k(1) — vi(ea)llr < Cler —eal, &1, 20 € NZHE(v)),
ks (@)~ )l < 55, € € MEoE(w;).
Then N32,E(v;) is dense at 0, where the sets £(v;) are defined in (D).
Theorem N.2. Suppose (A)—(E) hold and, for N € N with N > 2, the equation
®(u,e) =0, €€][0,e0], (N.2)
has an approximate solution u = ugN) € NseNg Es, with, for a constant k(N, s),
[ ll, < KN, )2, [9(e, ul)], < h(N, 5|+ (N.3)

and
[ul) = ulD s < k(N 5)|er — e (N.4)
Then there is a set £, which is dense at 0, and a family
{u=v(e):e €} CE,

of solutions to (N.2) with |v(e1) — v(e2)|lr < cler — ea| for some constant c.
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Proof. Let d =1+ 0 — p > 1 and fix integers a > 2(r — p) + 1 and b > d such
that

1 d —
b<§¥>>3d+29, a>3(d+b+20)+4, (N.5)
2y a 30
F-d>6d T>b+3dte b>12d+ 3 (N.6)
where
r_
vzb(l— p)—r—i—p.
Choose N € N, a constant R and g9 € (0,e(a + r)] (g0 smaller than before if
necessary), such that the approximate solution ul) satisfies, for €, ¢; € [0, eq],
[uflsa < R/2, @) €)|pra < PF1H2, (N.7a)
||ugv) - ugiv)HTJra <27 R|e; — &y (N.7b)

Using (D) we now define sequences of E,.-valued functions, {vx}, {vi}, and
real-valued functions {gpy}, each function being defined on a subset of [0, £¢], as

follows. Let po(e) = and vy(e) = uM e = [0, g0, and then, recursively,
orr1(e) =pr(e)¥? = e®/2* k € No, (N.8a)
Avg(e),e)vk(e) = — ®(vi(e), e), €€ ﬂfzog(uj), (N.8b)

Vi1 (g) =vi(e) + S’m+l(€)vk(€), €€ ﬂfzog(uj). (N.8c)

The proof, that {vk(e)} converges in E, to a solution u = v(g) of ®(u,e) = 0 for
all € in a set which is dense at zero, needs estimates on this iteration process.
For simplicity with notation we write ui, vi, A%, ®¢ Si and q)}'cl instead of
vk(ei), vk(ei), Mur(ei), i), P(vr(ei),€i), Spp(e) and @, (vk(ei),e4), for k € N
and i = 1, 2. In this notation, for e; € My, := NA_E(v;) C [0,0] and i = 1, 2,

Wk = =Pl Ujyy = uj, + Sip v (N.9)
The following lemmas deal with €1, g2 € [0, &¢] separately when 1 < €5/2 and
€9 > €1 > €9/2. The latter is the more difficult and we begin with it.

Lemma N.3. The interval (0,e9] can be chosen, smaller if necessary but de-
pending only on R, a, b, r, p and o, such that if £1, €2 € Mjy_1 N (0,e0] and
€1 € [e2/2,e3] satisfy

Hullcfl - Uiq”r < Rle1 — 2], (N.10a)
lup_y — up_qllrsa < Ror—1(e1)"*|e1 — €2, (N.10b)
[uh_s [l < R, (N.10c)

1 llrta < pr—1(e1) ™7, (N.10d)

|4 1o < pro1(e)’eiot <1, (N.10e)
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for some k € N, then
[Cup, = uj—y) = (uf = ug_1)|lr < pr(e2)er — e, (N.11)
(g, = wi—y) = (W = uf_1)llrva < prle2)’ %ler — eal. (N.12)

Proof. In what follows ¢ represents different constants, which depend only on
R, a, b, r, p and 0. We first observe that

(I)llc - ‘I)i :(Allcfl - Aifl)(slg - 1)“1%71 + Allcfl(slg - 1)(7}1&71 - ’Ul%fl)
/ /
+ ((q)llcfl —Aj_y) — (PF_, — Aifl))szvifl
i /
+(Ph_y — Af_1))SE(vh_y — V1) + 4y (Sp — SP)vy
+ D(u}c, ullcfla 51) - D(uia Ui,l, 52)'
Hypotheses (N.10a), (N.10c), and (N.1g) with [ = 0, show that
(A1 = AR_1)(SE = D)vi_alp < cler — 2l [[(SF — Dy ln
and (N.1d) implies that
[Ak—1(SE = (51 = vi—)lp < (5% = D(vie—y = vi—y)llr-
Now (N.1g) with [ =0, and (N.10a) and (N.10c), yield
I I
(@hy = Afy) = (@) = AR0)) SEoaly < clex — eallISEoR
and (N.le) with [ = 0, with (N.10c), gives
/
|(q)11c71 - Allcfl))sli(vlifl - Ul%71)|p <c |‘I)11c71|r||513(1’1371 - 'Ulifl)HT'
By (A), ,
|@h—1 (Sk = Sivi—1lp < cll(Sk = Svia -
and (N.1c) and (N.9) imply that
|D(U11w“11c—1a51) - D(“ia“i—1a52)|p
< eller — eof + llug—y = ui_alle + lug — w@lle) (ISkvi—1 1 + 1SRvR_1 [17)-
Using the identity
up, —up = up_y — ujp_y + Spui_g — Sivi_,
= up_y — Uiy + Sp vy — vi1) + (Sp — SP)vis

and (N.10a), we obtain

|D(ujy u—y,€1) = D(uf, ui_y,€2)lp < cler —e2| Y [[Sivj—s

i=1,2
+ellSRhoy = oi-)lle D I1Skvia
i=1,2
1 @2yl i
+ c|(Sk = Si)vi—1llr Z [ Skvk—1llr-
i=1,2
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Therefore .
|} — BEl, <Y Qi (N.13)
i=1
where
Q1 = le1 — ol [I(SF — Dvi_1]Ir,
Q2 = [1(St = D(vp_y — i)l
Q3 = le1 — &2l S7vi_y I,
Q4= |(I)Ilc—1|7"||‘s’13(v12€—1 - Uii—l)”ra

Qs = ler — e ) IISivkallr,

i=1,2
Qs = [1Si(wh_1 = i)l Y 1Stvi— 1]l
i=1,2
Q7 = I(Sk = S)vk_allr Y (ISEv—1llr +1)-
i=1,2

Now we estimate the ();, one at a time. Recall that d = r 4 o — p. It follows
from (iii), the properties of smoothing operators, that

1652 = Dvi_alle < conle2) N1l p-o+a-

Then, from estimate (N.1h) for solutions of equation A7 v _, = —®? |, (N.la)
with | = a and (N.10d), we find that

||’012€—1||P*0'+a < CEEQ(||ui—1||T+a|(I)i—1|p + |(I)i—1|p+a)

<eey (U [lui o llrva) < 53 %pr-1(e2) 7"

Hence
Q1 < cler — ealey Ypr(ea)pr-1(e2) " (N.14)
Estimation of Q2 is much more delicate. From (N.9),
Ao (Wioy = vig) = (AR = Ao )oioy + (P — @5y), (N.15)

and hence, by estimate (N.1h) from (D),
[ok-1 = Vi1 lp—o+a—d
< 051_9{(|(A11c71 - Aiﬂ)“l%fﬂp-ka—d + |‘I)11c71 - ‘I)i71|p+a—d)
(11 = A2 )0f ol + 104y = @) fub s lla-a -

From (N.10a), (N.10c), and (N.1g) with I = 0, it follows since, by (A), ® is
continuously differentiable, that

@),y — PF_4 [, < cler — e,

|(A11c71 - Ai,l)vi,ﬂp <cler - 52|HUI%71HT-
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This shows that

[og—1 — Uz—1||p—a+a—d
< cer {1y = AF Rl + @Ry = OFlpraa)
+eep®ler — ol (1 + [[vi_illr) -1 llr+a—a-
From (N.1f) with [ = a, (N.10a) and (N.10d),
|41 — Pi1lpra—a < lPhy — Pi_1lpra < cpr—1(e1)"%er — &2l

which, since ||u}_q|lrta—a < Jup_qllrda < cpr—1(e1)™% by (i) and (N.10d),
implies

[vi—1 = Vi—1llp—ota—a < cer *|(Af—y — AR 1)Vi_1lpta—da

+eer Yprm1(e) e — 2 [{1 4 [lvpall-}. (N.16)

Next, from the interpolation inequality in (ii), we obtain

1—d d
02y llr < ellod_y =8 Ry 19

Since A7_jvi_; = —®7_,, (N.1h), (N.10c), (N.10e) and [ = a in (N.1a) yield
loR_yllr < ee5 ®1PR 1l (191 lp+a + luf_ylrra)
e TR P O [ L
Therefore, by (N.10d) and (N.10e),

loR_1 ]l < ey @R _1lp~ " “pr1(e2) 7

< CE§+1fd(2p+1)/apk_1(52)bpk_1(52)—d(1+b/a) <e, (N.17)

because the first inequality in (N.5) implies that b > d(1+ b/a), and the second
implies that a > 2d > d(2p+1)/(p + 1). Now (N.16) and (N.17) imply that

||Ul£71 - ”lil“pﬂﬂrafd < 0517@|(A11c71 - Ai71)vl€71|p+afd
+051_9pk_1(€1)_a’51 —€2|. (N18)
Also (N.1g) with [ = a — d and (N.10a) imply that
|(A11c71 - Aifl)vifﬂ/ﬂrafd

< e (lup—1 = vk llrva—a + o1 — e2f(lurllrsa—a + luzllrraa)) lo5 1 llr

+eler — e2l0F s llrtaa.
Therefore, from (N.17), (N.10b) and (N.10d), it follows that

[(Ajoy — Aiﬂ)“l%fﬂp-ka—d <cler - 52|(@k—1(51)_a + ||'U]%71||7‘+a—d)-
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Sincer+a—d=p—o+aand A7 jvi | =—P? |, we also have
i1 llr+a—a < 23 (1P _1lpta + l[uk—1 llr+al P21 1)
< eey (14 Jlujoyllrta) < ey ®pro1(e2) ™
This, with (N.18) and the fact that €1 < €2, gives
[0k_1 — V3 llp—ota—a < g7 2ler — e2|pr—1(e1)
Since d = r — p + o, the expression for ()5 yields the estimate
Q2 < C@k(€2)a_2d””!§71 - Ul%ﬂ”pﬂﬂrafd
< ce]?e; — eapr(e2)* Ppp_1(e1) "% (N.19)
To estimate Q3, note from (iii), (N.10c) and (N.1h), that
ISEvi—1llr < cprle2) ™ Nvi_1llo—o < co3 prle2) PR 1l (N.20)
and hence, from (N.10e), that
Qs < ce8™ e — ealpr—1(e2) pr(e2) ™" (N.21)
To estimate ()4, note that
||SI%(UI%71 - Uliq)”r < cm(@)_dllviq - UiLal—o-
Therefore an appeal to (N.1h), for solutions of equation (N.15) with { = 0,
(N.10c) and (N.17), followed by an appeal to (N.1g) with [ = 0 and (N.10c),
yields
18k (i1 = vi—1)l+
< cgn(ea) e {131y — ARl + 1@h_y — BF_u )
< ez 2ol {Jen — ealllioally + 18y — @3], ) (N.22)
But (N.17) and (N.1f) with [ = 0 implies that
@4y — D71l < cler — ea] + cllup_y — uf sl < cler — g2,

and hence
ISR (vR 1 = va—1)llr < ce1 *prle2) ler —eal. (N.23)
On the other hand, from the interpolation inequality (iii) and (N.la),

r=p

1_r=p r=p 1_r=p
@4y |r < cl@p_yl, ° |(I)11c—1|p-7-a <@ qlp (T ugqllrra) =

which, because of (N.10d) and (N.10e), gives

_ 1—r=e
|@h—1lr < cpr—1(e) PPl ©

<c €§29+1)(1— T;p)mq (e1)PI= =) —rbe, (N.24)
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Combining this with (N.23) and the fact that 55 e < 1, we arrive

at the estimate

- r—
Q4 < cler — ea|pr—1(1)" pr(e2) ¢ \where v =>b(1—- Tp) —r+p. (N.25)

For Qs and Qg, note, from (iii), (N.9) and (N.1h), (N.10e) and (N.6), that

1S5k llr < con(ea) ™ lvi1llp—o < cei Cpr(e) @1 o,

< cpr_1(e1) 2 2 pp_1 ()7 < e (N.26)
Therefore
Qs < cler — &2 Z pk(Ei)fd@kfl(Ei)b- (N.27)
1=1,2
Similarly (N.23) and (N.26) imply that
Qo < ce1 e — e2lprle2) ™ Y orle) Mpor-1(e:)". (N.28)
1=1,2

Finally, from (N.26), the last paragraph of (iii) and (N.10e),
Q7 < cll(Sk = SR)vk—1llr
< cler — ealpi(e2)pr(en) ™ Hlvioillp—o
< ey ler — ealphlea)pr(en) T @ha

< et er — el (e2)or(en) 4

Since g} (e2) = €5 (3/2)Fpr(e2) and &1 < €9, We obtain

Q7 < cefler — ealpr(e1)? 471 (3/2)  pr(e2). (N.29)

We now collect the estimates (N.14), (N.19), (N.21), (N.25), (N.27), (N.28) and
(N.29) for the quantities @;. Recall that &1 € [e2/2,e2] C [0,0]. Then 9 > 0
can be chosen sufficiently small that

Qi S C|51 — 52|Qia 1= 1, ...,7,

where, since g1 1(g:) = pr(e)?/? = (.3/2)k and 2b > 3d,

a=d=on 1(e9)77,

@1 = €5 %pr(2)" “pr-1(22) " < cpr(ea)
42 = EIQQ@k(f?z)a_Qdm—l(El)_a < cpr(e2)* k1 (e2) 77,
g5 = 5 pr1(2) pr(e2) ™ < cpr1(e2) prle2) "%
41 = pr—1(c1)"pr(e2) " < pr_1(e2) pr(e2) "4,

6= or(e) or-1(e:)" < conle2) Por-1(2)",

b

i=1,2
g6 = ce1 “pr(ea)” Z (i) or—1(8:)" < cprle2) 2o 1(e2)",
i=1,2
g7 = 3 or(e1)" 1 (3/2) pr(e2) < epnlea)’™U(3/2)" < cpr—i(ea)’ "
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Therefore, from (N.13) and the definition of ~,
7
@ = DR, < 30 Q: < cler — 2 (prlea) T 2ppor (e2)
1=1
o (22) " Ypp-1(22)7 + m(sz)*zd*%kq(sg)b)

= cle1 — 2| (pr(e2)*
a_ a9 2b_o9g_
< cler — eo| (prle2) E7307¢ 4 g () 5 2470,

Since, by (N.6),
2 20
D _d>6d L-3d—p>b>6d, = —2d>6d+
3 3 3
we conclude that g > 0 can be chosen such that
B}, — D7, < crler — ealpr(ea)®, (N.30)
where ¢; depends ounly on R, a, b, v, o, p and o. Recall, from (N.9), that

(ullc - ullcfl) - (U% - U%A) = Slivlifl - Sl%”l%ﬂ
= Si(vp_1 — vi_q) + (Sk — SH)vi_1.- (N.31)

Let ¢ € {0,1}. Then property (iii) of smoothing operators, with (N.17), (N.22)
and (N.30), yields

||S£(UI%71 - Uliﬂ)”rﬂa < C@k(52)_d_m||vl%71 - Uliﬂ”p—a
< C@k(52)_d_ba5;g{|(/\z71 - Allcfl)vlzfﬂp + |(I)11c71 - @%71|p}
< cpnlea) e ler — eallvioy e + 124y — BF_4l, |
< cley - ealpn(ea) e { uf_allr + crpn(e2)®}

< C|€1 o 52|pk(52)_La_d€fg{€§+1_d(2g+1)/a@k71(52)b_d(1+b)/a + @k(EQ)Gd}-

Since o +1 —d(20 + 1)/a > 0, taking ¢ € {0, 1} gives, when €9 > 0 has been
chosen sufficiently small,

1S3 (WF_1 = vi-1)llr < cler — el (pr(e2) 721 + or(e2)™), (N.32)
1S3 (W7 —1 = vk 1)llrva < cler — ealgr(ea) " (pr(e2) ¥ 72 + pr(e2)"). (N.33)
Also, from the last part of (iii), (N.1h), (N.10c) and (N.10e), we have

1Sk = S)vkllrtia < clex — ealph(e2)pr(e) ™™ vk llp—o

< cet ?ler — ealph(e2)pr(e) T @y |,

< ceft et — 2|l (2)pr-1(c1) prl(er) T4
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Since g} (e2) = €5 (3/2)Fpr(e2) we obtain, for ¢ € {0, 1},
1(SE = SP)vk_1llrtia < cefler — eapn(e1) 30771 (3/2)  pr () pr(e1)
< cler —ealpi(e2)"(3/2) or(e1) .
Next note that for sufficiently small ¢ < 27%/?_ independent of k,
k
(3/2)Fpk(e1) ™" < (3/2)"2°9)" oy (e2) ™' < cpr(e) 7.
Therefore

10k = R0kt llr+1a < cler — exlpn(e2) "> px(e2) ™
< cler - 52|pk(€2)4dm(€2)ﬂa (N.34)
Substituting (N.32), (N.33), (N.34) into (N.31) leads to (N.11), (N.12), and the
lemma follows from a smaller choice of €9 > 0 if necessary. O

Lemma N.4. The interval (0,g9] can be chosen, smaller if necessary but de-
pending only on R, a, b, r, p and o, such that if €1, ea € My_1 N (0,20] with
€1 € (0,62/2],

by llr < R and |®_,|, < pp_1(e)’e2e™ < 1.

K2

Then
[ (ur, = wj—y) = (uf = ui_1)llr < pr(e)er — ea-
Proof. By (N.9), (iii) and (N.1h)
H(uk = up—1) = (ug = ug_1)|lr
= ||Slivl£71 - Siviflllr
< [1Sgvi—1llr + 1SFOR_ 1)l
< c(pr(e1) ™ er *|Pi1lo + por(e2) a5 |74l )

— 26 _
ey e o) Yor-1(e)’ < ceaprlen) 3T
i=1,2
It remains to note that
2

)4d

g2 < 2le1 — 2|,  prle2)® % < cpp(er

)

and the lemma follows. O

Lemma N.5. Let R be chosen as in (N.7). In (N.8) suppose that vi_1(g),
vi(e) and @y (e) = ®(vi(e),e) are well defined for e € My, 0 < k < m, with
|@o(e)], < ePF2etL and, for the constant R in (N.7),

[ve@llr < R, vk-1(6)llrtra < pp-1()™%,  [Pr-a(e)]p, < 1.
Then €9 > 0 can be chosen, independently of m, such that

1®1.()], < pr(e)’e2e™ <1 forall 0<k<m and € € My,—1. (N.35)
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Proof. In what follows ¢ denotes various constants which are independent of
k and e but depend on R, a, b, d, p, 0 and r. Let ®k, Ak, pr, uk, vxp denote
D (e), Ap(vi(e),e), pr(e), vk(e), vg(e). Then by (D), vi_1 exists for all € €
(0,e0) N My_1 and

D) = Ap—1(Se, — Dvg—1 + (P41 — Ap—1)(up — ug—1) + D(ug, uk—1,€).

It follows from (iii), and (A) and (B) with [ = 0, that |®y|, < c(f1 + I2 + I3)
where
I = @Zidnkal”;ﬂrafav I = @ 1| lug — uk—1llr, I3 = [Juk — up—1])2.

Estimating vy from (D), |®y_1|,+q from (A) and [®;_1|, from the hypotheses
of the Lemma, yields, for ¢ € (0,e(a)] N Mg_1,

I < ee 20 (o ra + [ @rolpra) < 208 007,

It follows from the interpolation inequalities (ii) that

|luge — wuk—1]lr < c|lux — uk,1||2‘_a||u;c - uk,1||(1l;z‘_a where « = 1 —d/a.

Also from (iii), (D) and (N.8c) it follows that
lue = uk-1llp—o < cllvr-1llp—o < ™| Pp-1]p, € € (0,(0)] N M1,
and similarly for € € (0,e(a)] N Mg_1,
ur = ur—1llp—ota < cllvr-1llp-o+a

< e (||ur—1llr4a + [Pr-1lpra) < ce %07

Moreover, the interpolation inequality (iii) gives

1_r=p r=p
|Po—1lr <e[@r1lp * |Pr-1],%q-

Therefore, for ¢ € (0,e(a)] N Mg_1,

Iy = |®p_1|r||ur — uk—1]~

A

< o P fpllue — ur—1 15— o llur — ur—1llaro—s

C —a(l—
gL T AL Mo

IN

c —(d/a) —
= [ Pral | [TV 0

c 2-4—p ;_og
P, N
59| k=1l Pr—1

IN

where we have used (A) and the present hypothesis. Now (D) and (iii) imply
that

- c
[, = werllr < o llok-1llp-o < wlqmllp, e € (0,e(0)] N My—1.
k
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Hence, for all k£ < m and for € € (0,¢'] " My_1, ¢’ = min{e(0),e(a)},

¢ —d, - 2-H=L 594 1 2
L+1I+1I3< E—Q{pz Prq + | Pr_1lp orih +W|@k71|p

_ o ot - podtze Mool 1 )
= -0 {pk pk—l + |q)k71|p pk + pid59|¢kil|p
—2d
C —d — pk o d+27p
= (@Z it |Pr—1p ) (N.36)

where ¢ and ¢’ do not depend on k. Let 64 = |®4|,05 " Then, by (N.36),
Ok = 0 1@kl < i (I + L2 + 1)
—2d—b
¢ a—b—d _—a £ 2— d+27p
< p {@k Pr—1 1 kEQ |Pr—1p }

L B L e
co | Vr-1 co k-1 Pr—1 :

Now the choice of a and b means that

a 3 d+r—p 5 1 d+r—p
———=(b+d) >3 2, 2— —— > —, b(——i)—i&d 20.
5 b+ d)>3e+ a3 °\3 a > 48
and the fact that pr_1 < € then gives that
c 30+2 5/3
6k§€—g{pk€1 —l—a%kél}, 0<k<m. (N.37)

For k = 0 the inequality (N.35) is true by hypothesis, since po(e) = . Now
suppose (N.35) holds for 0 < k =j —1 <m — 1. From (N.37) it follows that

Cc
6 < — {E3g+2 +5(109+5)/3} < 20t
€

for all non-zero e € M,,_1 sufficiently small (independent of j). The lemma
follows by induction. O

Proof of Theorem N.2 concluded. We now show that g > 0 can be chosen,
smaller if necessary, such that, for all K € N and ¢;, ¢ € (0,20] N Mj_1,

i@l < Ry (o6& lr+a < o1(e) ™ [@1(2)], < pr(e)"eF < 1, (N.38)

||l/k(€1)*l/k(€2)||r§R|€1*€2|, 62/2§€1 SEQ. (N39)

Here R is the constant in (N.7) where it was observed that for k¥ = 0 these
inequalities (in fact with R/2 instead of R) follow from hypotheses (N.3) and
(N.4) of Theorem N.2. Suppose inequalities (N.38) hold for every k, 0 < k < m.
Then, by (N.7) and Lemma N.5, &9 > 0 can be chosen so that for all £ € (0, &¢],

1Dy (e)], <20 or(e)? <1, 0<k<m, €€ Mp_1. (N.40)
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To estimate ||tm+1]|r4.as ¢ € {0, 1}, note, from (iii) and (N.1h) with [ = 0 that,
for 0<m/ <mandeec M, C M, _1,

||Vm+1(5) - Vm’(E)HT-i-La < Z ||Vk+1(5) - Vk(&')”r-',-m
k=m'
= Z ||Spk+1(8)vk(€)||7“+ba
k=m'
<3 e @ o)l
k=m'
C - La
< ;kz/@kﬂ(f) =00 (e)],
¢ —d—ta
< ;kz prr1(e) 1 pr(e)’e®t!, by (N.40),
_ C€g+1pm+1(5)7m Z pm(s)%mpk(e)fg(dﬂa)%
k=m'
<) 3 e
k=m'

Hence ¢ = 0 gives
[Vms1(E)llr < llvo()llr +c™ < R,
for all non-zero € € M,, sufficiently small. Similarly, : = 1 gives
[Vms1(8)lr+a < collvollrta + e omi1(e) ™" < pmia(e)™®

for all non zero ¢ € M,, sufficiently small. Therefore, by Lemma N.5, for € €
M,, sufficiently small independent of k, |®x(¢)|<pr(c)’e2et! < 1for k <m+1.
Hence (N.38) holds for all k, and € € Mj_1 with € < g, for some ¢ sufficiently
small, independent of k. Next we show that 9 > 0 can be chosen so that (N.39)
holds. First suppose that this is true for &1, e2 € Mj_1 when e3/2 < g1 < &
for k with 0 < k < m. Then by Lemma N.3,

I (ui = ui 1) = (uip = ui )l < oxle2)?ler — eaf.
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for all k <m +1 and ¢; € (0,e9] N M,,,. Thus

m
tmr = il < D Wk = wkyr) = (g = w@)lr + ler — e2|R/2

k=0
<ler — €2|{01 Z pk+1(€2)d + R/Q}
k=0
<ler — ez (cpr(e2) + R/2)
S R|51 - €2|)

which implies (N.39) for all £ when €9 > 0 is sufficiently small and &1, g2 €
M—1 with e2/2 < g1 < e3. Now suppose that £1 € (0,62/2]. A repeat of the
preceding argument, using Lemma N.5, yields (N.39) for all & when 1, e5 €
NMy—1 in this case also. Therefore (N.39) holds for all €1, €0 € NMp_1. Tt
remains to note that

lve(e) = vi-1(e)llr < crpu(e) < 1/2",

and, hence the set N My is dense at 0, by (E). Moreover, for € € N My, the
sequence {v(e)} C B is Cauchy in E,. Since ®(-,¢) is continuous on B C E,
and ®(v;(e),e) — 0 in F,, the result follows since E, is complete. O

O Small Divisors and Hypothesis (E)

In this section we examine hypotheses (D) and (E) of the Nash-Moser theorem
in the context of the standing-wave problem. As in Remark N.1, suppose that
the spaces Fs and F are closed subspaces of the Sobolev space Hg,. Suppose
also that in hypotheses (B) of Appendix N, the linear operator A(u,e) is a
perturbation of the operator L(u,e) which acts on elements of E as a Fourier
multiplication operator of the form

(L(u,s)v);\m = (= 2%+ 1+ 8O (u,e)|m| — k™ (u, €) ) mn

equivalent to the pseudo-differential operator, with constant coefficients depend-
ing on (u,¢),
Orr — (14 O (u,e)yHI: — e*x D (u, €).

Here (with £(©) = e*,x(!) in Lemma 7.6 ) and Ny > 4,

2

BO(u,e) = T + B + ' Blus ), (0.1a)
kW (u,e) = é + ke + ek(u, ), (0.1b)

where B and kK are real-valued functions of €, and B and K are smooth functions
on B x [0,e9] C E, X R. In hypothesis (D), u = v(¢), ¢ € £, and the coeflicients
(0.1) depend only on € € £. In (E), a sequence of functions {v} is defined
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recursively and the coefficients in (O.1) at each step depend on € € E(vi—1). To
understand the invertibility of A(v(e),e) in (D) or (E) we first study the invert-
ibility of L(v(g), &), which means estimating solutions {{,,} of the equation

(= n®+ 1+ B8O E)Im| — .M (€)) tmn = Gn,

where {Gmn} is given and |3 ()| < 1 for &y sufficiently small. Tt suffices, after
dividing by 1 + 5 (¢), to estimate solutions of the equation

(1= A(e)*)n® — |m| + e*k(e))Umn = gmn, m # 0,

where now
BO)(g) M ()
1503 ™ 1+ 50(e)

Our first objective is to estimate the measure of the set of € € [0, ¢] for which

Ae) = d k(e) = (0.2)
(1= Xe)*)n? —m +e*k(e)| > (2n?) ™! for all m, n € N with m # n? (0.3)

Note that this set depends on the function v.

0.1 Small divisors

Suppose that v : [0,e9] — E, is Lipschitz continuous. Then, with u = v(g) in
(0.1), the function A defined on [0,e0] by (O.2) can be written in the form

1
Ae) = 5(5 +e(e) + 5277(5)), (0.4)
for some fixed function ¢ € C*(R) where

)
n(e)] + [r(e)
)

| <K
[n(e1) — n(e2)| + |k(e1) — k(ea)] < K|€1 — &3], &, e1,e2€[0,60], (0.5Db)

g0 < (1/2K)"* and K € R is such that 1|+ || < K. To estimate the measure
of the set of ¢ € [0, 0] for which (0.3) holds note that if m > n?,

(1= Xe)Hn? —m+e*rle)| > 1 —e*r(e) > 1/(2n?)

since £ < g9 < (1/2K)'/4. Therefore it suffices to replace m by n? —m and to
study instead the set

{e€[0,e0]: |d(m,n,e)] > (2n)"* for all m, n € N}
where

etk (e)
2 )

d(m,n,s):)\(e)Q—%— m,neN, eeé&.
n

n
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Lemma O.1. If (0.5) is satisfied, eg € (0,1) can be chosen (independent of 1),
k and 1) such that

3(51 - 52) S )\(61) — )\(62) S &1 — &2, (06)

1
e1(er —e2) > d(m,n,e1) — d(m,n,ez) > 5(51 — €9)€a, (0.7)

for allm, n € N, and for all €1, €3 € [0,&q] with &1 > e3.
Proof. That €¢ can be chosen in this way is immediate from (O.5). O

Since d(m,n,0) = —m/n? < 0, Lemma O.1 shows that, for (m,n) fixed,

{e 1 |d(m,n,e)| < 2—7114, 0<e<eo}=(e"(m,n),e"(m,n))N(0,e0),
where e¥(m,n) are the roots of the equations
d(m,n,e*) = :I:L. (0.8)
2nt
Let I(m,n) = (=~ (1, n),=* (m, n)).
Lemma O.2. If [~ (m,n),eT(m,n)|N[0,r] # 0 and r < eq, then
@ <e (m,n) <et(m,n) < 3@, (0.9)
11 <et(m,n) —e (m,n) < 5 ) (0.10)
3niy/m niy/m
m < r2n? which implies that n > % > 1. (0.11)

Proof. From Lemma O.1, the graph {(g,d(m,n,e)) : € € [0,e0]} lies between
two parabolae, {(¢,&2/6—m/n?) : € € [0,e0]} and {(g,e2/2—m/n?) : € € [0,0]}.
Now [e7,eT]N[0,7] # @ implies that » > €~ > y/m/n and that (0.11) holds. Tt
also implies (0.9), and (0.7), (0.8) and (0.9) lead to (0.10). O

Corollary 0.3. The set E(v) of € for which (0.3) holds is dense at 0 because

meas {e € [0,7] : (0.3) is false } < 6r*(1 +7).
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Proof. Simply note from (0.10) and (0O.11) that

meas {e € [0,r] : (0.3) is false }
< Z meas I(m, n)

m#n?
I(m,n)N[0,r]#0

In the abstract setting of Theorem N.2 suppose that

(N.1h) in hypothesis (D) is satisfied when } (0.12)

E(v) = {e € £ : € satistfies (0.3)}

Remark. Corollary 0.3 shows that if (O.12) holds then hypothesis (D) holds.
That (0.12) holds in the context of the standing-wave equation (4.10) with A
given by (6.3) is proved in Theorem 8.5.

With the definition of £(v) in (0.12), hypothesis (E) in Appendix N can be
verified using similar ideas to those in the proofs of Lemmas O.1, O.2 and Corol-
lary O.3. But to do so we need a technical result on how Lipschitz continuous
functions on closed subsets of [0,e] can be extended to [0, o).

0.2 An extension

Consider a collection of functions x; : & — R, j € {0,---,k}, where &; is
compact, such that & = [0,e0], &;+1 C &;, and suppose that

Ixj(z) — xj—1(x)] <6; for ze&, je{l,--- k}

Lemma O.4. Under the above assumptions there are functions X; : & — R,
such that

Klx —y| for z,ye&, je{0,---,k},

YJ(CE): j(x) for z €&, je{0,-- k},
|
| <65 for ze€&, jed{l,---,k}
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Proof. The proof depends on the following simple construction. For any interval
[cr, 8] and for any function x : [, 5] — R which satisfies

IX(x) = x()| < K|z —y| for each x € [o, ],
let g, gg € R be such that

90 = x(a)] <6, 19 = X(B)| <6, |ga —gpl < K(B—a).
Let
h(z) = go + (gg%ia) (x — a) and k(x) = min{h(z), x(z) + 6}.
It is now easy to see that the function
9(x) = max{k(z), x(z) - 0}
has the following properties:

lg(z) —g(y)| < K|z —y| for each z,y € [a, ],
lg(x) (x)] < 4§ for each z € [a, f],

- X
(@) = ga,  9(B) = gp-

Now suppose that we have defined the functions X, for i < j < k. Set X; (x) =
Xj+1(z) for x € £;41. Next note that the set & \ £;4+1 is a union of a countable
family of disjoint open intervals (a, 3) and, possibly, one or both of the half-
open intervals [0, 5) and (o, €] where o, 8 € £j41. In the above construction
let (a,3) be one of these open intervals. Set x(z) = X;(x) for z € [, ],
go = Xj+1(a) and gg = X;41(6). Then we can define X;(z) = g(z) for
x € [ay, f], where g is given above with 6 = §,41. To extend x,+1 to an interval
of the form [0, 3) where 3 € €11 but 0 ¢ £;41 let

Xj+1(2) = X;(2) + x541(8) = X;(B), = €[0,).

Since |x;+1(8) —X;(8)| < dj41, this extension has the required properties. The
extension to intervals of the form (a, o] is similar. O

0.3 Hypothesis (E)

Suppose that (0.12) holds, vy : & — BN E,4; and mappings vy, : ﬂf;olé'(z/i) —
BN E,4; satisfy, for a constant C' independent of k € N sufficiently large,

lvk(er) — vi(e2)llr < Cler —eal, €1, 22 € NZ0E(w)),

i1 (e) = vl < 570 & € NELE(W).

2_k’

Thanks to Corollary 0.3, for each k, £(v) is dense at zero and so also is the
intersection of a finite collection of sets £(vg). Our goal is to show that the
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intersection of all the sets £(vy) is also dense at 0. For k € N the coefficients
Bi(e) := Blur(e),e) and ix(e) := &(vi(e),e) are defined by (0.1) on the set
E(vk—1) , and the corresponding A = \g, n = n and k = Ky, (defined in terms
of B and ki) satisty, for e, e1, g2 € E(v—1), for k sufficiently large,

Ik (e)| + |k (e)] < K, (0.13a)
(1) — mi(e2)] + [kr(e1) — mi(e2)| < Kler — e, (0.13Db)
() = moa ]+ (o) — et ()] < 5 (0.13¢)

with K independent of k. Our analysis of hypothesis (E) is based on the char-
acterisation of £(v) in (0.12). We will show that the set of & > 0 for which
(0.3), with A = A\ (defined in terms of ¢ and n; by (0.4)) and k = ki holds
for all £ > 0 is dense at 0. We do so by estimating from above the size of the
set where (0.3) fails for at least one k, for some ¢ € ﬁ?;&é‘ (v;). It therefore
suffices to find such an upper estimate when kj, and 7y are replaced by their
extensions (see Lemma O.5) as functions which satisfy (0.13) on &. Suppose
therefore that (0.13) hold on & for all k. By (0O.13c) there exists oo and 7
which satisfy (0.13a) and (O.13b), and

1

ok’ € €&. (Ol-?)d)

Mk (€) = 1oo ()] + K1 (€) = Koo(e)| <

For k € {00} UNp let

dr.(m,n,e) = \e(e)* — — — , m,neN, eeé&.

With subscripts k denoting k-dependence, let I,(m,n) = (g} (m,n), e} (m,n)).
Lemma O.5. If I;(m,n) N[0,7] # 0 and r € (0,&¢), then

3A m3/?
27+l p3

|€;E+1(m, n) — Ejt(m, n)| < where A =2 x 3%, (0.14)

Proof. To begin we estimate |€Ji+1 — sjt| Since djy1(m,n, sﬁl) =d;(m,n, sji),

|dj1(m,nyeyy) = diga(myn,e)| = |dj (myney) = dj(m,n,e7)].
Hence, by (0.7) and (0.9),
Jm

3n

On the other hand,

|€;E+1 - €]i| < |dj+1(ma TL,E;E) - dj(ma TL,E;E>|. (015)

|dj+1(m’na E]i) - dj(m’na Egi)l

e (maref) —me)) (V) + 2(0))
2t

- (k) - )]
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Now (0.6) and (0.9) imply that |)\j+1(€j[)| + |)\j(sji)| < 25? < 64/m/n and so

|dj+1(m’na E;t) - dj(m’na E;t)|

2

m
< @x 39 (s (65) = mi D) + ki (65) = ()]
Am?
< W’ by (013C) where A = 2 x 34.

After a substitution into (0O.15), this observation and (O.11) shows (0.14). O

It follows from the triangle inequality that for all k,

leZ (m,n) — & (m,n)| < S0 —5 (0.16)

Lemma 0.6. If Am?/2F < 1, then, I;;(m,n) C Joo(m,n), where Joo(m,n) is
an interval with the same centre as I (m,n) and three times the length. Hence

meas( U Ij(m,n)) < 187%(1 4 7). (0.17)

keN
m§n27"2

Am?<2F

Proof. That I(m,n) C Js(m,n) when Am? < 2% is immediate from (0.10),
with subscripts k added, and (0.16). The result follows from Corollary O.3. O

Lemma O.7. For an absolute constant,

meas I(m,n)) < const. r2. 0.18
(U wtmm) (0.18)
keN

m<r?n?
Am?2>2F
Proof. Note from (0.10) and (O.11) that

OIRACEOEND DIF-L TEID DIE

keN keN keN

m<n?r? m<r2n? {n:An4T422k}
Am?2>2k Am?2>2F
1
< 12442 E oh/E const. r

O

Theorem O.8. The set Nien, &k i dense at zero. In other words (E) is satis-

fied.

Proof. This is immediate from the preceding two lemmas. o
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