Non homogeneous Heat Equation: Identification and Regularization for the Inhomogeneous Term

by
Dang Duc Trong, Nguyen Thanh Long
Mathematics Department, VietNam National University 227 Nguyen Van Cu, HoChiMinh City, District 5
\&
Pham Ngoc Dinh Alain
Mathematics Department, Mapmo UMR 6628, BP 67-59
45067 , Orleans cedex

Keywords: Identification, Regularization, error estimations.
AMS Classifications: $35 \mathrm{~K} 05,45 \mathrm{D} 05,65 \mathrm{~J} 20$
Abstract: We study the nonhogeneous heat equation under the form: $u_{t}-u_{x x}=\varphi(t) f(x)$, where the unknown is the pair of functions (u, f). Under various assumptions about the the function φ and the final value in $t=1$ i.e. $g(x)$, we propose different regularizations on this ill-posed problem based on the Fourier transform associated with a Lebesgue measure. For $\varphi \not \equiv 0$ the solution is unique.

Address for correspondence: Alain Pham Ngoc Dinh (alain.pham@univorleans.fr)

I. Introduction

Consider the problem: Find a pair of functions (u, f) satisfying the following equation and boundary and initial values:

$$
\begin{gather*}
-\frac{\partial u}{\partial t}+\Delta u=\varphi(t) f(x),(t, x) \in(0,1) \times(0,1) \\
u(1, t)=0, \quad u_{x}(0, t)=u_{x}(1, t)=0 \tag{1}\\
u(x, 0)=0, \quad u(x, 1)=g(x)
\end{gather*}
$$

Where φ and g are two given functions.
The previous problem is equivalent to find a function f satisfying an integral equation of the 1st. kind of Volterra type:

$$
\begin{equation*}
g(x)=-\int_{0}^{1} \int_{0}^{1} N(x, 1 ; \xi, \tau) \varphi(\tau) f(\xi) d \xi d \tau \tag{2}
\end{equation*}
$$

where $N(x, t ; \xi, \tau)[1]$ is defined by

$$
N(x, t ; \xi, \tau)=\frac{1}{2 \sqrt{\pi(t-\tau)}}\left(\exp \left(-\frac{(x-\xi)^{2}}{4(t-\tau)}\right)+\exp \left(-\frac{(x+\xi)^{2}}{4(t-\tau)}\right)\right)
$$

As is well-known the problem (2) (or (1)) is an ill-posed problem and its numerical solution have been discussed by various authors ([2], [3], [4], [5]). The purpose of this paper is to produce regularized solutions of this problem treated in its form (1) with an error estimates under various hypotheses on the function $\varphi(t)$ and $g(x)$.

For $\varphi \not \equiv 0$ there is uniqueness of the pair (u, f) solution of (1) (paragraph 2). In paragraph 3 we give two sorts of regularization. In fact it will be shown that if the discrepancy between $\varphi(t)$ (respectively $g(x)$) and its exact solution $\varphi_{0}(t)$ (respectively $\left.g_{0}(x)\right)$ is of the order ε for the $\|\cdot\|_{L^{2}(0,1)}$, then the discrepancy between the regularized solution $f_{\varepsilon}(x)$ and the exact solution $f_{0}(x)$ is, depending on the degree of smoothness of the exact solution $f_{0}(x)$, of the order $\left(\ln \frac{1}{\varepsilon}\right)^{-1}$ or $\varepsilon^{1 / 8}, 0<\varepsilon<1$. The techniques used here is rhe Fourier transform associated with the variational form of (1) and a Lebesgue measure generated by the function $\varphi_{0}(t)$. So the proposed regularization can be applied for an integral Volterra equation of the 1st. kind of the form (0.2) where the kernel $N(x, t ; \xi, \tau)$ is a solution of the heat equation.

II. Uniqueness

Let g, φ be known functions in $L^{2}(0,1)$. We consider the problem of identifying a pair (u, f) satisfying

$$
\left.\begin{array}{l}
-\frac{d}{d t}<u, \psi>-<u_{x}, \psi_{x}>=\varphi<f, \psi>\quad \forall \psi \in H^{1}(0,1), \tag{3}\\
u(1, t)=0 ; u(x, 0)=0 ; u(x, 1)=g(x)
\end{array}\right\}
$$

where $u=u(x, t), f=f(x),(x, t) \in[0,1] \times[0,1],\langle.$,$\rangle is the inner$ product in $L^{2}(0,1)$.

We first have
Lemma 1. If $u \in C^{1}\left([0,1] ; L^{2}(0,1)\right) \cap C\left([0,1] ; H^{1}(0,1)\right), f \in L^{2}(0,1)$ satisfy (3) then we have

$$
\begin{equation*}
e^{\lambda^{2}} \int_{0}^{1} g(x) \cos \lambda x d x=-\int_{0}^{1} e^{\lambda^{2} t} \varphi(t) d t \int_{0}^{1} f(x) \cos \lambda x d x \quad \forall \lambda \in \mathbf{C} . \tag{4}
\end{equation*}
$$

Proof

In $(3)_{1}$, by choosing $\psi(x)=\cos \lambda x$, we get

$$
\begin{equation*}
-\frac{d}{d t} \int_{0}^{1} u(x, t) \cos \lambda x d x+\lambda \int_{0}^{1} u_{x}(x, t) \sin \lambda x d x=\varphi(t) \int_{0}^{1} f(x) \cos \lambda x d x \tag{5}
\end{equation*}
$$

In view of the condition $u(1, t)=0$, we have

$$
\begin{aligned}
\int_{0}^{1} u_{x}(x, t) \sin \lambda x d x & =\left.u(x, t) \sin \lambda x\right|_{x=0} ^{x=1}-\lambda \int_{0}^{1} u(x, t) \cos \lambda x d x \\
& =-\lambda \int_{0}^{1} u(x, t) \cos \lambda x d x
\end{aligned}
$$

Hence, (5) follows that

$$
-\frac{d}{d t} \int_{0}^{1} u(x, t) \cos \lambda x d x-\lambda^{2} \int_{0}^{1} u(x, t) \cos \lambda x d x=\varphi(t) \int_{0}^{1} f(x) \cos \lambda x d x
$$

Integrating this equality from $t=0$ to $t=1$ and using the conditions $u(x, 0)=0 ; u(x, 1)=g(x)$, we get (4). This completes the proof of Lemma 1.

Now, we consider the uniqueness of the solution of (3). We have
Theorem 1. Let $u_{i} \in C^{1}\left([0,1] ; L^{2}(0,1)\right) \cap C\left([0,1] ; H^{1}(0,1)\right), f_{i} \in L^{2}(0,1)$ $(i=1,2)$ satisfy (3). If $\varphi \not \equiv 0$ then $\left(u_{1}, f_{1}\right)=\left(u_{2}, f_{2}\right)$.

Proof

Put $v=u_{1}-u_{2}, f=f_{1}-f_{2}$ then v satisfy (3) $)_{1}$ subject to conditions $v(1, t)=0 ; v(x, 0)=v(x, 1)=0$. Hence, from (4) one has

$$
\begin{equation*}
\int_{0}^{1} e^{\lambda^{2} t} \varphi(t) d t \int_{0}^{1} f(x) \cos \lambda x d x=0 \tag{6}
\end{equation*}
$$

Put

$$
\Phi(\lambda)=\sum_{n=0}^{\infty} \frac{\lambda^{2 n}}{n!} \int_{0}^{1} \varphi(t) t^{n} d t, \quad F(\lambda)=\int_{0}^{1} f(x) \cos \lambda x d x
$$

We claim that $\Phi \not \equiv 0$. In fact, if $\Phi \equiv 0$ then $\int_{0}^{1} \varphi(t) t^{n} d t=0$ for every $n=0,1,2, \ldots$ Using Weierstrass theorem, we have $\varphi \equiv 0$, a contradiction. Hence, $\Phi \not \equiv 0$. It follows that there is a $\lambda_{0} \in \mathbf{C}$ and an $r>0$ such that $|\Phi(\lambda)|>0$ for every $\left|\lambda-\lambda_{0}\right|<r$. From (6) and the latter result, one has

$$
\begin{equation*}
F(\lambda)=\int_{0}^{1} f(x) \cos \lambda x d x=0 \quad \forall \lambda,\left|\lambda-\lambda_{0}\right|<r \tag{7}
\end{equation*}
$$

Since $F(\lambda)$ is an entire functions, we get in view of (7) that $F(\lambda)=0$ for all $\lambda \in$ C. Putting

$$
\tilde{f}= \begin{cases}\frac{1}{2} f(x) & x \in(0,1) \\ \frac{1}{2} f(-x) & x \in(-1,0) \\ 0 & x \notin(-1,1)\end{cases}
$$

we get that $F(\lambda)$ is the Fourier transform of \tilde{f}

$$
\begin{equation*}
F(\lambda)=\int_{-\infty}^{\infty} \tilde{f}(x) e^{-i \lambda x} d x \tag{8}
\end{equation*}
$$

From (7), (8), we get $\tilde{f}=0$ a.e. on \mathbf{R}. It follows that $f=0$ a.e. on $(0,1)$. This completes the proof of Theorem 1.

III. Regularization

We give two regularization results
Theorem 2. Let φ_{0}, g_{0} be in $L^{2}(0,1)$ and let $\left(u_{0}, f_{0}\right)$ be the exact solution of (3) with φ, g replaced by φ_{0}, g_{0}. Letting $C_{0}, \varepsilon>0$, we assume that φ, g satisfy

$$
\left\|\varphi-\varphi_{0}\right\|<\varepsilon,\left\|g-g_{0}\right\|<\varepsilon
$$

and

$$
\varphi(x)>C_{0}, \varphi_{0}(x)>C_{0} \text { a.e.on }(0,1)
$$

where $\|$.$\| is the norm of L^{2}(0,1)$. Putting

$$
f_{\varepsilon}(x)=-\frac{1}{2 \pi} \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} e^{\lambda^{2}} \int_{0}^{1} g(s) \cos \lambda s d s\left(\int_{0}^{1} e^{\lambda^{2} t} \varphi(t) d t\right)^{-1} e^{i \lambda x} d \lambda
$$

where $\lambda(\varepsilon)=\sqrt[7]{\pi} \varepsilon^{\frac{2}{7}(\gamma-1)}, 0<\gamma<1$, then there exists a positive function $\eta(\varepsilon)$ independent of $C_{0},\left\|g_{0}\right\|$ with $\lim _{\varepsilon \downarrow 0} \eta(\varepsilon)=0$ and such that

$$
\mid 2 f_{\varepsilon}-f_{0} \| \leq 2 C_{1} \varepsilon^{\gamma}+2 \eta(\varepsilon)
$$

where $C_{1}=\frac{4}{C_{0}^{2}}\left(1+C_{0}+\left\|g_{0}\right\|\right)$ is a positive constant defined in terms of C_{0} and $\left\|g_{0}\right\|$.

If we assume, in addition, that $f_{0} \in H^{1}(0,1)$ then the function $\eta(\varepsilon)$ can be estimated and can be taken equal to

$$
\eta(\varepsilon)=\frac{(1+\sqrt{2})}{\sqrt{\pi \lambda(\varepsilon)}}\left\|f_{0}\right\|_{H^{1}(0,1)}
$$

Proof

From Lemma 1, one has

$$
e^{\lambda^{2}} \int_{0}^{1} g_{0}(x) \cos \lambda x d x=-\int_{0}^{1} e^{\lambda^{2} t} \varphi_{0}(t) d t \int_{0}^{1} f_{0}(x) \cos \lambda x d x
$$

It follows that

$$
\int_{0}^{1} f_{0}(x) \cos \lambda x d x=e^{\lambda^{2}} \int_{0}^{1} g_{0}(x) \cos \lambda x d x\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi_{0}(s) d s\right)^{-1}
$$

Put

$$
\tilde{f}_{0}= \begin{cases}\frac{1}{2} f_{0}(x) & x \in(0,1) \\ \frac{1}{2} f_{0}(-x) & x \in(-1,0) \\ 0 & x \notin(-1,1)\end{cases}
$$

We have
$\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)=\int_{-\infty}^{\infty} \tilde{f}_{0}(x) e^{-i \lambda x} d x=e^{\lambda^{2}} \int_{0}^{1} g_{0}(x) \cos \lambda x d x\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi_{0}(s) d s\right)^{-1}$.
where $\mathcal{F}(f)$ is the Fourier transform of f :

$$
\mathcal{F}(f)(\lambda)=\int_{-\infty}^{\infty} f(x) e^{-i \lambda x} d x
$$

From Plancherel theorem, we have

$$
\begin{equation*}
\left\|f_{\varepsilon}-\tilde{f}_{0}\right\|_{L^{2}(\mathbf{R})}=\frac{1}{\sqrt{2 \pi}}\left\|\mathcal{F}\left(\tilde{f}_{0}\right)-\mathcal{F}\left(f_{\varepsilon}\right)\right\|_{L^{2}(\mathbf{R})} \tag{9}
\end{equation*}
$$

On the other hand, one has,

$$
\begin{aligned}
\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)-\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)= & \int_{-\infty}^{\infty} \tilde{f}_{0}(x) e^{-i \lambda x} d x-e^{\lambda^{2}} \int_{0}^{1} g(x) \cos \lambda x d x\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi(s) d s\right)^{-1} \\
= & e^{\lambda^{2}} \int_{0}^{1} g_{0}(x) \cos \lambda x d x\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi_{0}(s) d s\right)^{-1}- \\
& e^{\lambda^{2}} \int_{0}^{1} g(x) \cos \lambda x d x\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi(s) d s\right)^{-1} \cdot \\
= & e^{\lambda^{2}}\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi_{0}(s) d s\right)^{-1} \int_{0}^{1}\left(g_{0}(x)-g(x)\right) \cos \lambda x d x \\
& +e^{\lambda^{2}} \int_{0}^{1} g(x) \cos \lambda x d x \int_{0}^{1} e^{\lambda^{2} s}\left(\varphi(s)-\varphi_{0}(s)\right) d s \times \\
& \times\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi_{0}(s) d s\right)^{-1}\left(\int_{0}^{1} e^{\lambda^{2} s} \varphi(s) d s\right)^{-1} .
\end{aligned}
$$

We get after arrangements

$$
\begin{aligned}
\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)-\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)\right| & \leq \frac{\lambda^{2} \varepsilon}{C_{0}\left(1-e^{-\lambda^{2}}\right)}+\frac{\varepsilon\|g\| \lambda^{3} \sqrt{1-e^{-2 \lambda^{2}}}}{C_{0}^{2}\left(1-e^{-\lambda^{2}}\right)^{2} \sqrt{2}} \\
& \leq 2 \frac{\lambda^{2} \varepsilon}{C_{0}}+\frac{4 \varepsilon \| g| | \lambda^{3}}{C_{0}^{2}} \\
& \leq \frac{4|\lambda|^{3} \varepsilon}{C_{0}^{2}}\left(C_{0}+1+\mid g_{0} \|\right)=C_{1}|\lambda|^{3} \varepsilon, \quad \forall 1 \leq|\lambda|(10)
\end{aligned}
$$

for $0<\varepsilon<1$. In (8) we have put $C_{1}=\frac{4}{C_{0}^{2}}\left(1+C_{0}+\left\|g_{0}\right\|\right)$.
Similarly, for $|\lambda| \leq 1$, one has

$$
\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)-\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)\right| \leq \frac{2 \varepsilon}{C_{0}}+\frac{4 \varepsilon \mid g \|}{C_{0}^{2}} \leq C_{1} \varepsilon
$$

the constant C_{1} having the meaning as before in the case $|\lambda| \geq 1$. In either cases, one has

$$
\begin{equation*}
\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)-\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)\right| \leq C_{1}|\lambda|^{3} \varepsilon \quad \forall \lambda \in \mathbf{R} \tag{11}
\end{equation*}
$$

Noting that $\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)=0$ for $|\lambda|>\lambda(\varepsilon)$, we get in view of (9), (10), (11) that

$$
\begin{align*}
\left\|f_{\varepsilon}-\tilde{f}_{0}\right\|_{L^{2}(R)}^{2} & =\frac{1}{2 \pi} \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda+\frac{1}{2 \pi} \int_{|\lambda|<\lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)-\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)\right|^{2} d \lambda \\
& \leq \frac{1}{2 \pi} \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda+\frac{1}{2 \pi} \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} C_{1}^{2} \varepsilon^{2} \lambda^{6}(\varepsilon) d \lambda \\
& \leq \frac{1}{2 \pi} \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda+\frac{1}{\pi} C_{1}^{2}|\lambda(\varepsilon)|^{7} \varepsilon^{2} \\
& \leq \frac{1}{2 \pi} \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda+C_{1}^{2} \varepsilon^{2 \gamma} \tag{12}
\end{align*}
$$

with $\lambda(\varepsilon)$ taken such that $\lambda(\varepsilon)=\sqrt[7]{\pi} \varepsilon^{\frac{2}{7}(\gamma-1)} \rightarrow \infty$ as $\varepsilon \rightarrow 0_{+}(0<\gamma<1)$.
Putting

$$
\eta^{2}(\varepsilon)=\frac{1}{2 \pi} \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda
$$

we get the first estimate of Theorem 2 .
Now, if $f_{0} \in H^{1}(0,1)$, one has

$$
\begin{aligned}
\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda) & =\int_{0}^{1} f_{0}(x) \cos \lambda x d x \\
& =f_{0}(1) \frac{\sin \lambda}{\lambda}-\frac{1}{\lambda} \int_{0}^{1} f_{0}^{\prime}(x) \sin \lambda x d x \quad \forall \lambda \neq 0
\end{aligned}
$$

So, for $\lambda \in \mathbf{R}$, we have

$$
\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right| \leq \frac{\| f_{0}^{\prime}| |}{|\lambda|}+\frac{\left|f_{0}(1)\right|}{|\lambda|}
$$

On the other hand, since $H^{1}(0,1) \hookrightarrow C[0,1]$, there exist an $x_{0} \in[0,1]$ such that $f_{0}\left(x_{0}\right)=\int_{0}^{1} f_{0}(x) d x$. We have

$$
f_{0}(1)=f_{0}\left(x_{0}\right)+\int_{x_{0}}^{1} f_{0}^{\prime}(x) d x
$$

Hence,

$$
\begin{aligned}
\left|f_{0}(1)\right| & \leq \int_{0}^{1}\left(\left|f_{0}(x)\right|+\left|f_{0}^{\prime}(x)\right|\right) d x \\
& \leq \sqrt{2 \int_{0}^{1}\left(\left|f_{0}(x)\right|^{2}+\left|f_{0}^{\prime}(x)\right|^{2}\right) d x} \\
& \leq \sqrt{2}\left\|f_{0}\right\|_{H^{1}(0,1)}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right| \leq \frac{1+\sqrt{2}}{|\lambda|}\left\|f_{0}\right\|_{H^{1}(0,1)} . \tag{13}
\end{equation*}
$$

Combining (12), (13) we get

$$
\begin{aligned}
\left\|f_{\varepsilon}-\tilde{f}_{0}\right\|_{L^{2}(\mathbf{R})}^{2} & \leq \frac{(1+\sqrt{2})^{2}}{\pi}\left\|f_{0}\right\|_{H^{1}(0,1)}^{2} \int_{|\lambda| \geq \lambda(\varepsilon)} \frac{d \lambda}{\lambda^{2}}+C_{1}^{2} \varepsilon^{2 \gamma} \\
& \leq \frac{(1+\sqrt{2})^{2}}{\pi}\left\|f_{0}\right\|_{H^{1}(0,1)}^{2} \lambda^{-1}(\varepsilon)+C_{1}^{2} \varepsilon^{2 \gamma}
\end{aligned}
$$

Since $\lambda(\varepsilon)=\sqrt[7]{\pi} \varepsilon^{\frac{2}{7}(\gamma-1)}$ and that

$$
\left\|2 f_{\varepsilon}-f_{0}\right\| \leq 2\left\|f_{\varepsilon}-\tilde{f}_{0}\right\|_{L^{2}(\mathbf{R})}
$$

we can get the second estimate of Theorem 2. This completes the proof of Theorem 2.

Remark 1: Choosing $\gamma=1 / 8$, we obtain $\lambda(\varepsilon)=\frac{\sqrt[7]{\pi}}{\sqrt[4]{\varepsilon}}$ and

$$
\left\|2 f_{\varepsilon}-f_{0}\right\| \leq 2\left(\frac{1+\sqrt{2}}{\sqrt[7]{\pi^{4}}}\left\|f_{0}\right\|_{H^{1}(0,1)}+C_{1}\right) \varepsilon^{1 / 8}
$$

The last formula gives us the best upper bound for $0<\varepsilon<1$ given.
Now we state and prove the last regularization result. We first put

$$
\begin{aligned}
& G(\lambda)=-e^{\lambda^{2}} \int_{0}^{1} g(x) \cos \lambda x d x \quad G_{0}(\lambda)=-e^{\lambda^{2}} \int_{0}^{1} g_{0}(x) \cos \lambda x d x \\
& \Phi(\lambda)=\int_{0}^{1} e^{\lambda^{2} t} \varphi(t) d t \quad \Phi_{0}(\lambda)=\int_{0}^{1} e^{\lambda^{2} t} \varphi_{0}(t) d t \\
& F(\lambda)=\int_{0}^{1} f(x) \cos \lambda x d x \quad F_{0}(\lambda)=\int_{0}^{1} f_{0}(x) \cos \lambda x d x
\end{aligned}
$$

We have
Theorem 3 Suppose that φ_{0} has the form

$$
\varphi_{0}(t)=(1-t)^{m}\left(a+(1-t) \psi_{0}(t)\right)
$$

where $a \neq 0, m=0,1,2, \ldots, t \in(0,1), \psi_{0} \in L^{2}(0,1)$. Letting $\beta \in(0,1 / 2)$, we put

$$
F_{\varepsilon}(\lambda)=\left\{\begin{array}{cl}
G(\lambda) / \Phi(\lambda) & \text { if }|\Phi(\lambda)| \geq \varepsilon^{\beta}, \text { and }|\lambda|<\lambda(\varepsilon), \\
0 & \text { if }|\Phi(\lambda)|<\varepsilon^{\beta}, \text { or }|\lambda| \geq \lambda(\varepsilon)
\end{array}\right.
$$

and

$$
f_{\varepsilon}(x)=\frac{1}{2 \pi} \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} F_{\varepsilon}(\lambda) e^{i \lambda x} d \lambda
$$

Then, for each $\delta \in(0, \min \{\beta, 1-2 \beta\})$ there exist a $C_{\delta}>0, \gamma_{\delta}>0$ independent of g_{0}, φ_{0} and a function $\eta_{\delta}(\varepsilon)$ such that $\lim _{\varepsilon \downarrow 0} \eta_{\delta}(\varepsilon)=0$ and that

$$
\left\|2 f_{\varepsilon}-f_{0}\right\| \leq C_{\delta} \varepsilon^{\gamma_{\delta}}+\eta_{\delta}(\varepsilon)
$$

where $\lambda(\varepsilon)=\sqrt{\delta \ln \frac{1}{\varepsilon}}$.
Remark 2 In the case $\varphi_{0} \in C^{k}[0,1], k \geq 1$, if we put

$$
P_{n} \varphi_{0}(t)=\sum_{j=0}^{n-1} \frac{\varphi_{0}^{(j)}(1)}{j!}(t-1)^{n}
$$

(the n-th Taylor polynomial of φ_{0} at $t=1$) then the condition (14) holds if we have $P_{k} \varphi_{0} \not \equiv 0$. So the class of functions satisfying (14) is very broad.

The proof of Theorem 3 relies on Lemma 2 and Lemma 3 followed.

Lemma 2 If

$$
\begin{equation*}
\varphi_{0}(t)=(1-t)^{m}(a+(1-t) \psi(t)) \tag{14}
\end{equation*}
$$

with $a \neq 0$ and $\psi \in L^{2}(0,1)$ then

$$
\lim _{\lambda \rightarrow+\infty} \frac{\int_{0}^{1} e^{\lambda^{2} t} \varphi_{0}(t) d t}{e^{\lambda^{2}} / \lambda^{2 m+2}}=m!a
$$

Proof

Put

$$
J_{m}(\mu)=\int_{0}^{1}(1-t)^{m} e^{\mu t}
$$

We prove that

$$
\begin{equation*}
\lim _{\mu \rightarrow+\infty} \frac{J_{m}(\mu)}{\frac{\epsilon^{\mu}}{\mu^{m+1}}}=m!\quad m=0,1,2, \ldots \tag{15}
\end{equation*}
$$

In fact, we shall prove the latter relation by induction. One has $J_{0}(\mu)=$ $\frac{\epsilon^{\mu}-1}{\mu}$. So, (15) holds for $m=0$. Suppose (15) holds for $m=k$, we prove (15) for $m=k+1$. In fact, one has

$$
\begin{aligned}
J_{k+1} & =\left.(1-t)^{k+1} \frac{e^{\mu t}}{\mu}\right|_{0} ^{1}+\frac{k+1}{\mu} J_{k} \\
& =-\frac{1}{\mu}+\frac{k+1}{\mu} J_{k} .
\end{aligned}
$$

It follows that

$$
\lim _{\mu \rightarrow+\infty} \frac{J_{k+1}(\mu)}{\frac{e^{\mu}}{\mu^{k+2}}}=(k+1) \lim _{\mu \rightarrow+\infty} \frac{J_{k}(\mu)}{\frac{e^{\mu}}{\mu^{k+1}}}=(k+1)!
$$

This completes the proof of (15). Using (15), one has C_{1} such that

$$
\begin{aligned}
\left|\int_{0}^{1} e^{\lambda^{2} t} \varphi_{0}(t) d t-a J_{m}\left(\lambda^{2}\right)\right| & \leq \int_{0}^{1} e^{\lambda^{2} t}(1-t)^{m+1}|\psi(t)| d t \\
& \leq\|\psi\|_{L^{2}} \sqrt{J_{2 m+2}\left(2 \lambda^{2}\right)} \\
& \leq C_{1}\|\psi\|_{L^{2}} \sqrt{\frac{e^{2 \lambda^{2}}}{\lambda^{4 m+6}}} \text { as } \lambda \rightarrow+\infty
\end{aligned}
$$

Hence

$$
\lim _{\lambda \rightarrow+\infty} \frac{\int_{0}^{1} e^{\lambda^{2} t} \varphi_{0}(t) d t}{e^{\lambda^{2}} / \lambda^{2 m+2}}=a \lim _{\mu \rightarrow+\infty} \frac{J_{m}\left(\lambda^{2}\right)}{\frac{e^{\lambda^{2}}}{\lambda^{2(m+1)}}}=m!a
$$

This completes the proof of Lemma 2.
Now we state and prove Lemma 3.
Lemma 3 If φ_{0} satisfies (14) then there exist $\gamma, \alpha_{0} \in(0,1)$ and $C_{0}>0$ such that

$$
m\left(B_{\alpha}\right) \leq C_{0} \alpha^{\gamma} \quad \forall 0<\alpha<\alpha_{0} .
$$

Here

$$
B_{\alpha}=\left\{\lambda \in \mathbf{R}:\left|\Phi_{0}(\lambda)\right|<\alpha\right\}, \quad \alpha>0
$$

and $m\left(B_{\alpha}\right)$ is the Lebesgue measure of B_{α}.

Proof

From the lemma 2 and from the analyticity of Φ_{0}, the function Φ_{0} has only finite zeros $\lambda_{j}, j=1, \ldots, p$. We can write

$$
\Phi_{0}(\lambda)=\Phi_{1}(\lambda) \prod_{j=1}^{p}\left(\lambda-\lambda_{j}\right)^{m_{j}},
$$

where $\Phi_{1}(\lambda) \neq 0$ for every $\lambda \in \mathbf{R}$. Since

$$
\lim _{\mu \rightarrow+\infty} \frac{J_{m}(\mu)}{\frac{e^{\mu}}{\mu^{m+1}}}=m!
$$

we have

$$
\lim _{\lambda \rightarrow \infty} \Phi_{1}(\lambda)=\infty
$$

It follows that there exists a $C_{1}>0$ such that

$$
\left|\Phi_{1}(\lambda)\right| \geq C_{1} \quad \forall \lambda \in \mathbf{R}
$$

Hence,

$$
\left|\Phi_{0}(\lambda)\right| \geq C_{1} \prod_{j=1}^{p}\left|\lambda-\lambda_{j}\right|^{m_{j}} \quad \forall \lambda \in \mathbf{R}
$$

Without loss of generality, we assume that

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{p}
$$

Put $d=\min _{1 \leq s \leq p-1}\left\{\lambda_{s+1}-\lambda_{s}\right\}$ and $\delta_{j}^{2}=\frac{\alpha^{1 / m_{j}}}{C_{1}^{1 / m_{j}} d^{M / m_{j}}}$. For $\lambda_{s}+\delta_{s} \leq \lambda \leq$ $\lambda_{s+1}-\delta_{s+1}, \quad s=1, \ldots, p$, one has

$$
\begin{aligned}
\left|\Phi_{0}(\lambda)\right| & \geq C_{1} \prod_{j=1}^{p}\left|\lambda-\lambda_{j}\right|^{m_{j}} \\
& \geq C_{1} \delta_{s}^{m_{s}} \delta_{s+1}^{m_{s+1}} d^{M_{s}}=\alpha
\end{aligned}
$$

where $M_{s}=M-m_{s}-m_{s+1}$, with $M=\sum_{j=1}^{p-1} m_{j}$. It follows that

$$
\begin{aligned}
B_{\alpha} & =\left\{\lambda \in \mathbf{R}:\left|\Phi_{0}(\lambda)\right|<\alpha\right\} \\
& \subset \bigcup_{s=1}^{p-1}\left(\lambda_{s}-\delta_{s}, \lambda_{s}+\delta_{s}\right)
\end{aligned}
$$

Hence

$$
m\left(B_{\alpha}\right) \leq \sum_{s=1}^{p-1} 2 \delta_{s}=2 d \sum_{j=1}^{p-1} \frac{\alpha^{1 / 2 m_{j}}}{C_{1}^{1 / 2 m_{j}} d^{M / 2 m_{j}}} .
$$

Choosing $\gamma=\min _{1 \leq j \leq p}\left\{\frac{1}{2 m_{j}}\right\}$ we complete the proof of Lemma 3 .
Now, we turn to the
Proof of Theorem 3
We have

$$
\left\|f_{\varepsilon}-\tilde{f}_{0}\right\|_{L^{2}}=\frac{1}{\sqrt{2 \pi}}\left\|\mathcal{F}\left(f_{\varepsilon}\right)-\mathcal{F}\left(\tilde{f}_{0}\right)\right\|_{L^{2}}
$$

On the other hand,

$$
\begin{aligned}
\left\|\mathcal{F}\left(f_{\varepsilon}\right)-\mathcal{F}\left(\tilde{f}_{0}\right)\right\|_{L^{2}}^{2}= & \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda \\
& +\int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} \chi_{\left\{|\Phi(\lambda)|<\varepsilon^{\beta}\right\}}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda \\
& +\int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} \chi_{\left\{|\Phi(\lambda)| \geq \varepsilon^{\beta}\right\}}\left|\mathcal{F}\left(f_{\varepsilon}\right)-\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda \\
\equiv & I_{1}+I_{2}+I_{3}
\end{aligned}
$$

We estimate I_{2}, I_{3}. We first have

$$
\begin{aligned}
\left|\Phi(\lambda)-\Phi_{0}(\lambda)\right| & \leq \int_{0}^{1} e^{\lambda^{2} t}\left|\varphi(t)-\varphi_{0}(t)\right| d t \\
& \leq\left\|\varphi-\varphi_{0}\right\|_{L^{2}} \sqrt{\int_{0}^{1} e^{2 \lambda^{2} t} d t} \\
& \leq \varepsilon \sqrt{\frac{e^{2 \lambda^{2}}-1}{2 \lambda^{2}}}
\end{aligned}
$$

So, if $|\Phi(\lambda)|<\varepsilon^{\beta}$ then

$$
\begin{equation*}
\left|\Phi_{0}(\lambda)\right|<\varepsilon \sqrt{\frac{e^{2 \lambda^{2}}-1}{2 \lambda^{2}}}+\varepsilon^{\beta} \equiv \alpha(\varepsilon) \tag{16}
\end{equation*}
$$

Now, we have

$$
\mathcal{F}\left(\tilde{f}_{0}\right)=\int_{0}^{1} f_{0}(x) \cos \lambda x d x
$$

Hence, one has

$$
\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right| \leq\left\|f_{0}\right\|_{L^{2}} .
$$

It follows that

$$
I_{2} \leq\left\|f_{0}\right\|_{L^{2}} m\left(B_{\alpha(\varepsilon)}\right),
$$

where $m(A)$ is the Lebesgue measure of A . Now, we estimate I_{3}. If

$$
\begin{equation*}
|\Phi(\lambda)| \geq \varepsilon^{\beta} \tag{17}
\end{equation*}
$$

then by (17), one has

$$
\begin{equation*}
\left|\Phi_{0}(\lambda)\right| \geq \varepsilon^{\beta}-\varepsilon \sqrt{\frac{e^{2 \lambda^{2}}-1}{2 \lambda^{2}}} \tag{18}
\end{equation*}
$$

In this case, we have

$$
\begin{aligned}
\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)-\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda) & =\frac{G(\lambda)}{\Phi(\lambda)}-\frac{G_{0}(\lambda)}{\Phi_{0}(\lambda)} \\
& =\frac{G_{0}(\lambda)\left(\Phi_{0}(\lambda)-\Phi(\lambda)\right)+\Phi_{0}(\lambda)\left(G(\lambda)-G_{0}(\lambda)\right)}{\Phi(\lambda) \Phi_{0}(\lambda)}
\end{aligned}
$$

Using (17), (18), one has

$$
\begin{aligned}
\left|\mathcal{F}\left(f_{\varepsilon}\right)(\lambda)-\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right| & \leq \frac{\left\|g_{0}\right\| e^{\lambda^{2}} \varepsilon \sqrt{\frac{e^{2 \lambda^{2}-1}}{2 \lambda^{2}}}+\left\|\varphi_{0}\right\| \sqrt{\frac{e^{2 \lambda^{2}-1}}{2 \lambda^{2}}} e^{\lambda^{2}} \varepsilon}{\varepsilon^{\beta}\left(\varepsilon^{\beta}-\varepsilon \sqrt{\frac{e^{2 \lambda^{2}-1}}{2 \lambda^{2}}}\right)} \\
& \leq \frac{\varepsilon^{1-2 \beta} e^{\lambda^{2}} \sqrt{\frac{e^{2 \lambda^{2}-1}}{2 \lambda^{2}}}\left(\mid g_{0}\|+\| \varphi_{0} \|\right)}{1-\varepsilon^{1-\beta} \sqrt{\frac{e^{2 \lambda^{2}-1}}{2 \lambda^{2}}}}
\end{aligned}
$$

It follows that

$$
I_{3} \leq \frac{\varepsilon^{2-4 \beta} e^{2 \lambda(\varepsilon)^{2}}\left(e^{2 \lambda(\varepsilon)^{2}}-1\right)\left(\left\|g_{0}\right\|+\left\|\varphi_{0}\right\|\right)^{2}}{\lambda(\varepsilon)\left(1-\varepsilon^{1-\beta} \sqrt{\frac{e^{2 \lambda(\varepsilon)^{2}-1}}{2 \lambda(\varepsilon)^{2}}}\right)^{2}}
$$

So, we have

$$
\begin{aligned}
\| \mathcal{F}\left(f_{\varepsilon}\right)- & \mathcal{F}\left(\tilde{f}_{0}\right)\left\|_{L^{2}}^{2} \leq \int_{|\lambda| \geq \lambda(\varepsilon)}\left|\mathcal{F}\left(\tilde{f}_{0}\right)(\lambda)\right|^{2} d \lambda+\right\| f_{0} \|_{L^{2}}^{2} m\left(B_{\alpha(\varepsilon)}\right) \\
& +\frac{\varepsilon^{2-4 \beta} e^{2 \lambda(\varepsilon)^{2}}\left(e^{2 \lambda(\varepsilon)^{2}}-1\right)\left(\left\|g_{0}\right\|+\left\|\varphi_{0}\right\|\right)^{2}}{\lambda(\varepsilon)\left(1-\varepsilon^{1-\beta} \sqrt{\frac{e^{2 \lambda(\varepsilon)}}{\frac{2 \lambda(\varepsilon)^{2}}{2}}}\right)^{2}}
\end{aligned}
$$

By choosing $\lambda(\varepsilon)=\sqrt{\delta \ln \frac{1}{\varepsilon}}$ and using Lemma 3, we shall complete the proof of Theorem 3.

Bibliography

[1] A. Friedman, "Partial differential equations of parabolic type", Englewood Cliffer N.J. Prentice Hall Inc, 1964.
[2] A.N. Tikhonov and V.Y. Arsenin, "Solutions of ill-posed problems" V.H. Winston and Sons, Washington, D.C., 1977.
[3] L.E. Payne, "Improperly posed problems in PDE" SIAM Publications, Philadelphia, 1971.
[4] D. Colton and R. Kress "Integral equation methods in scattering theory", John Wiley, N.Y., 1983.
[5] P. Linz "Analytical and numerical methods for Volterra equations", SIAM Publications, Philadelphia, 1985.

