Non homogeneous Heat Equation: Identification and Regularization for the Inhomogeneous Term

by

Dang Duc Trong, Nguyen Thanh Long Mathematics Department, VietNam National University 227 Nguyen Van Cu, HoChiMinh City, District 5

&

Pham Ngoc Dinh Alain Mathematics Department, Mapmo UMR 6628, BP 67-59 45067, Orleans cedex

Keywords: Identification, Regularization, error estimations.

AMS Classifications: 35K05, 45D05, 65J20

Abstract: We study the nonhogeneous heat equation under the form: $u_t - u_{xx} = \varphi(t)f(x)$, where the unknown is the pair of functions (u, f). Under various assumptions about the function φ and the final value in t = 1 i.e. g(x), we propose different regularizations on this ill-posed problem based on the Fourier transform associated with a Lebesgue measure. For $\varphi \not\equiv 0$ the solution is unique.

Address for correspondence: Alain Pham Ngoc Dinh (alain.pham@univorleans.fr)

I. Introduction

Consider the problem: Find a pair of functions (u, f) satisfying the following equation and boundary and initial values:

$$-\frac{\partial u}{\partial t} + \Delta u = \varphi(t)f(x), \ (t,x) \in (0,1) \times (0,1)$$
$$u(1,t) = 0, \quad u_x(0,t) = u_x(1,t) = 0$$
$$u(x,0) = 0, \quad u(x,1) = g(x)$$
(1)

Where φ and g are two given functions.

The previous problem is equivalent to find a function f satisfying an integral equation of the 1st. kind of Volterra type:

$$g(x) = -\int_0^1 \int_0^1 N(x, 1; \xi, \tau) \varphi(\tau) f(\xi) d\xi d\tau \tag{2}$$

where $N(x, t; \xi, \tau)$ [1] is defined by

$$N(x,t;\xi,\tau) = \frac{1}{2\sqrt{\pi(t-\tau)}} \left(\exp(-\frac{(x-\xi)^2}{4(t-\tau)}) + \exp(-\frac{(x+\xi)^2}{4(t-\tau)}) \right)$$

As is well-known the problem (2) (or (1)) is an ill-posed problem and its numerical solution have been discussed by various authors ([2], [3], [4], [5]). The purpose of this paper is to produce regularized solutions of this problem treated in its form (1) with an error estimates under various hypotheses on the function $\varphi(t)$ and g(x).

For $\varphi \not\equiv 0$ there is uniqueness of the pair (u,f) solution of (1) (paragraph 2). In paragraph 3 we give two sorts of regularization. In fact it will be shown that if the discrepancy between $\varphi(t)$ (respectively g(x)) and its exact solution $\varphi_0(t)$ (respectively $g_0(x)$) is of the order ε for the $\|.\|_{L^2(0,1)}$, then the discrepancy between the regularized solution $f_{\varepsilon}(x)$ and the exact solution $f_0(x)$ is, depending on the degree of smoothness of the exact solution $f_0(x)$, of the order $\left(\ln\frac{1}{\varepsilon}\right)^{-1}$ or $\varepsilon^{1/8}$, $0<\varepsilon<1$. The techniques used here is rhe Fourier transform associated with the variational form of (1) and a Lebesgue measure generated by the function $\varphi_0(t)$. So the proposed regularization can be applied for an integral Volterra equation of the 1st. kind of the form (0.2) where the kernel $N(x,t;\xi,\tau)$ is a solution of the heat equation.

II. Uniqueness

Let g, φ be known functions in $L^2(0,1)$. We consider the problem of identifying a pair (u, f) satisfying

$$\frac{-\frac{d}{dt} < u, \psi > - < u_x, \psi_x > = \varphi < f, \psi > \qquad \forall \psi \in H^1(0, 1), u(1, t) = 0; \ u(x, 0) = 0; \ u(x, 1) = g(x)$$
(3)

where $u = u(x,t), f = f(x), (x,t) \in [0,1] \times [0,1], < .,. >$ is the inner product in $L^2(0,1)$.

We first have

Lemma 1. If $u \in C^1([0,1]; L^2(0,1)) \cap C([0,1]; H^1(0,1))$, $f \in L^2(0,1)$ satisfy (3) then we have

$$e^{\lambda^2} \int_0^1 g(x) \cos \lambda x dx = -\int_0^1 e^{\lambda^2 t} \varphi(t) dt \int_0^1 f(x) \cos \lambda x dx \qquad \forall \lambda \in \mathbf{C}.$$
 (4)

Proof

In $(3)_1$, by choosing $\psi(x) = \cos \lambda x$, we get

$$-\frac{d}{dt}\int_0^1 u(x,t)\cos\lambda x dx + \lambda \int_0^1 u_x(x,t)\sin\lambda x dx = \varphi(t)\int_0^1 f(x)\cos\lambda x dx.$$
(5)

In view of the condition u(1,t) = 0, we have

$$\int_0^1 u_x(x,t) \sin \lambda x dx = u(x,t) \sin \lambda x \Big|_{x=0}^{x=1} - \lambda \int_0^1 u(x,t) \cos \lambda x dx$$
$$= -\lambda \int_0^1 u(x,t) \cos \lambda x dx.$$

Hence, (5) follows that

$$-\frac{d}{dt} \int_0^1 u(x,t) \cos \lambda x dx - \lambda^2 \int_0^1 u(x,t) \cos \lambda x dx = \varphi(t) \int_0^1 f(x) \cos \lambda x dx.$$

Integrating this equality from t = 0 to t = 1 and using the conditions u(x,0) = 0; u(x,1) = g(x), we get (4). This completes the proof of Lemma 1.

Now, we consider the uniqueness of the solution of (3). We have

Theorem 1. Let $u_i \in C^1([0,1]; L^2(0,1)) \cap C([0,1]; H^1(0,1)), f_i \in L^2(0,1)$ (i = 1,2) satisfy (3). If $\varphi \not\equiv 0$ then $(u_1, f_1) = (u_2, f_2)$.

Proof

Put $v=u_1-u_2$, $f=f_1-f_2$ then v satisfy $(3)_1$ subject to conditions v(1,t)=0; v(x,0)=v(x,1)=0. Hence, from (4) one has

$$\int_0^1 e^{\lambda^2 t} \varphi(t) dt \int_0^1 f(x) \cos \lambda x dx = 0$$
 (6)

Put

$$\Phi(\lambda) = \sum_{n=0}^{\infty} \frac{\lambda^{2n}}{n!} \int_0^1 \varphi(t) t^n dt, \quad F(\lambda) = \int_0^1 f(x) \cos \lambda x dx.$$

We claim that $\Phi \not\equiv 0$. In fact, if $\Phi \equiv 0$ then $\int_0^1 \varphi(t)t^n dt = 0$ for every $n = 0, 1, 2, \dots$ Using Weierstrass theorem, we have $\varphi \equiv 0$, a contradiction. Hence, $\Phi \not\equiv 0$. It follows that there is a $\lambda_0 \in \mathbf{C}$ and an r > 0 such that $|\Phi(\lambda)| > 0$ for every $|\lambda - \lambda_0| < r$. From (6) and the latter result, one has

$$F(\lambda) = \int_0^1 f(x) \cos \lambda x dx = 0 \quad \forall \lambda, |\lambda - \lambda_0| < r.$$
 (7)

Since $F(\lambda)$ is an entire functions, we get in view of (7) that $F(\lambda) = 0$ for all $\lambda \in \mathbb{C}$. Putting

$$\tilde{f} = \begin{cases} & \frac{1}{2}f(x) & x \in (0,1) \\ & \frac{1}{2}f(-x) & x \in (-1,0) \\ & 0 & x \notin (-1,1) \end{cases},$$

we get that $F(\lambda)$ is the Fourier transform of \tilde{f}

$$F(\lambda) = \int_{-\infty}^{\infty} \tilde{f}(x)e^{-i\lambda x}dx. \tag{8}$$

From (7), (8), we get $\tilde{f} = 0$ a.e. on **R**. It follows that f = 0 a.e. on (0,1). This completes the proof of Theorem 1.

III. Regularization

We give two regularization results

Theorem 2. Let φ_0 , g_0 be in $L^2(0,1)$ and let (u_0, f_0) be the exact solution of (3) with φ , g replaced by φ_0 , g_0 . Letting C_0 , $\varepsilon > 0$, we assume that φ , g satisfy

$$\|\varphi - \varphi_0\| < \varepsilon, \|g - g_0\| < \varepsilon$$

and

$$\varphi(x) > C_0, \ \varphi_0(x) > C_0 \ a.e. on \ (0,1),$$

where $\| \cdot \|$ is the norm of $L^2(0,1)$. Putting

$$f_{\varepsilon}(x) = -\frac{1}{2\pi} \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} e^{\lambda^2} \int_{0}^{1} g(s) \cos \lambda s ds \left(\int_{0}^{1} e^{\lambda^2 t} \varphi(t) dt \right)^{-1} e^{i\lambda x} d\lambda$$

where $\lambda(\varepsilon) = \sqrt[7]{\pi} \varepsilon^{\frac{2}{7}(\gamma-1)}$, $0 < \gamma < 1$, then there exists a positive function $\eta(\varepsilon)$ independent of C_0 , $||g_0||$ with $\lim_{\varepsilon \downarrow 0} \eta(\varepsilon) = 0$ and such that

$$||2f_{\varepsilon} - f_0|| \le 2C_1 \varepsilon^{\gamma} + 2\eta(\varepsilon).$$

where $C_1 = \frac{4}{C_0^2} (1 + C_0 + ||g_0||)$ is a positive constant defined in terms of C_0 and $||g_0||$.

If we assume, in addition, that $f_0 \in H^1(0,1)$ then the function $\eta(\varepsilon)$ can be estimated and can be taken equal to

$$\eta(\varepsilon) = \frac{(1+\sqrt{2})}{\sqrt{\pi \lambda(\varepsilon)}} \|f_0\|_{H^1(0,1)}$$

Proof

From Lemma 1, one has

$$e^{\lambda^2} \int_0^1 g_0(x) \cos \lambda x dx = -\int_0^1 e^{\lambda^2 t} \varphi_0(t) dt \int_0^1 f_0(x) \cos \lambda x dx.$$

It follows that

$$\int_0^1 f_0(x) \cos \lambda x dx = e^{\lambda^2} \int_0^1 g_0(x) \cos \lambda x dx \left(\int_0^1 e^{\lambda^2 s} \varphi_0(s) ds \right)^{-1}.$$

Put

$$\tilde{f}_0 = \begin{cases} \frac{1}{2} f_0(x) & x \in (0,1) \\ \frac{1}{2} f_0(-x) & x \in (-1,0) \\ 0 & x \notin (-1,1) \end{cases},$$

We have

$$\mathcal{F}(\tilde{f}_0)(\lambda) = \int_{-\infty}^{\infty} \tilde{f}_0(x) e^{-i\lambda x} dx = e^{\lambda^2} \int_0^1 g_0(x) \cos \lambda x dx \left(\int_0^1 e^{\lambda^2 s} \varphi_0(s) ds \right)^{-1}.$$

where $\mathcal{F}(f)$ is the Fourier transform of f:

$$\mathcal{F}(f)(\lambda) = \int_{-\infty}^{\infty} f(x)e^{-i\lambda x}dx.$$

From Plancherel theorem, we have

$$||f_{\varepsilon} - \tilde{f}_{0}||_{L^{2}(\mathbf{R})} = \frac{1}{\sqrt{2\pi}} ||\mathcal{F}(\tilde{f}_{0}) - \mathcal{F}(f_{\varepsilon})||_{L^{2}(\mathbf{R})}$$
(9)

On the other hand, one has,

$$\mathcal{F}(\tilde{f}_{0})(\lambda) - \mathcal{F}(f_{\varepsilon})(\lambda) = \int_{-\infty}^{\infty} \tilde{f}_{0}(x)e^{-i\lambda x}dx - e^{\lambda^{2}} \int_{0}^{1} g(x)\cos\lambda x dx \left(\int_{0}^{1} e^{\lambda^{2}s}\varphi(s)ds\right)^{-1} - e^{\lambda^{2}} \int_{0}^{1} g(x)\cos\lambda x dx \left(\int_{0}^{1} e^{\lambda^{2}s}\varphi_{0}(s)ds\right)^{-1} - e^{\lambda^{2}} \int_{0}^{1} g(x)\cos\lambda x dx \left(\int_{0}^{1} e^{\lambda^{2}s}\varphi(s)ds\right)^{-1} .$$

$$= e^{\lambda^{2}} \left(\int_{0}^{1} e^{\lambda^{2}s}\varphi_{0}(s)ds\right)^{-1} \int_{0}^{1} (g_{0}(x) - g(x))\cos\lambda x dx + e^{\lambda^{2}} \int_{0}^{1} g(x)\cos\lambda x dx \int_{0}^{1} e^{\lambda^{2}s}(\varphi(s) - \varphi_{0}(s))ds \times \left(\int_{0}^{1} e^{\lambda^{2}s}\varphi_{0}(s)ds\right)^{-1} \left(\int_{0}^{1} e^{\lambda^{2}s}\varphi(s)ds\right)^{-1} .$$

We get after arrangements

$$|\mathcal{F}(\tilde{f}_{0})(\lambda) - \mathcal{F}(f_{\varepsilon})(\lambda)| \leq \frac{\lambda^{2} \varepsilon}{C_{0}(1 - e^{-\lambda^{2}})} + \frac{\varepsilon \|g\|\lambda^{3} \sqrt{1 - e^{-2\lambda^{2}}}}{C_{0}^{2}(1 - e^{-\lambda^{2}})^{2} \sqrt{2}}$$

$$\leq 2\frac{\lambda^{2} \varepsilon}{C_{0}} + \frac{4\varepsilon \|g\|\lambda^{3}}{C_{0}^{2}}$$

$$\leq \frac{4|\lambda|^{3} \varepsilon}{C_{0}^{2}} (C_{0} + 1 + \|g_{0}\|) = C_{1}|\lambda|^{3} \varepsilon, \quad \forall 1 \leq |\lambda|(10)$$

for $0 < \varepsilon < 1$. In (8) we have put $C_1 = \frac{4}{C_0^2} (1 + C_0 + ||g_0||)$. Similarly, for $|\lambda| \le 1$, one has

$$|\mathcal{F}(\tilde{f}_0)(\lambda) - \mathcal{F}(f_{\varepsilon})(\lambda)| \le \frac{2\varepsilon}{C_0} + \frac{4\varepsilon ||g||}{C_0^2} \le C_1 \varepsilon,$$

the constant C_1 having the meaning as before in the case $|\lambda| \geq 1$. In either cases, one has

$$|\mathcal{F}(\tilde{f}_0)(\lambda) - \mathcal{F}(f_{\varepsilon})(\lambda)| \le C_1 |\lambda|^3 \varepsilon \quad \forall \lambda \in \mathbf{R}$$
(11)

Noting that $\mathcal{F}(f_{\varepsilon})(\lambda) = 0$ for $|\lambda| > \lambda(\varepsilon)$, we get in view of (9), (10), (11) that

$$||f_{\varepsilon} - \tilde{f}_{0}||_{L^{2}(R)}^{2}| = \frac{1}{2\pi} \int_{|\lambda| \geq \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda + \frac{1}{2\pi} \int_{|\lambda| < \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda) - \mathcal{F}(f_{\varepsilon})(\lambda)|^{2} d\lambda$$

$$\leq \frac{1}{2\pi} \int_{|\lambda| \geq \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda + \frac{1}{2\pi} \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} C_{1}^{2} \varepsilon^{2} \lambda^{6}(\varepsilon) d\lambda$$

$$\leq \frac{1}{2\pi} \int_{|\lambda| \geq \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda + \frac{1}{\pi} C_{1}^{2} |\lambda(\varepsilon)|^{7} \varepsilon^{2}$$

$$\leq \frac{1}{2\pi} \int_{|\lambda| > \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda + C_{1}^{2} \varepsilon^{2\gamma}, \qquad (12)$$

with $\lambda(\varepsilon)$ taken such that $\lambda(\varepsilon) = \sqrt[7]{\pi} \varepsilon^{\frac{2}{7}(\gamma-1)} \to \infty$ as $\varepsilon \to 0_+$ (0 < γ < 1). Putting

$$\eta^{2}(\varepsilon) = \frac{1}{2\pi} \int_{|\lambda| > \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda$$

we get the first estimate of Theorem 2.

Now, if $f_0 \in H^1(0,1)$, one has

$$\mathcal{F}(\tilde{f}_0)(\lambda) = \int_0^1 f_0(x) \cos \lambda x dx$$
$$= f_0(1) \frac{\sin \lambda}{\lambda} - \frac{1}{\lambda} \int_0^1 f_0'(x) \sin \lambda x dx \qquad \forall \lambda \neq 0.$$

So, for $\lambda \in \mathbf{R}$, we have

$$|\mathcal{F}(\tilde{f}_0)(\lambda)| \le \frac{\|f_0'\|}{|\lambda|} + \frac{|f_0(1)|}{|\lambda|}.$$

On the other hand, since $H^1(0,1) \hookrightarrow C[0,1]$, there exist an $x_0 \in [0,1]$ such that $f_0(x_0) = \int_0^1 f_0(x) dx$. We have

$$f_0(1) = f_0(x_0) + \int_{x_0}^1 f_0'(x) dx$$

Hence,

$$|f_0(1)| \leq \int_0^1 (|f_0(x)| + |f_0'(x)|) dx$$

$$\leq \sqrt{2 \int_0^1 (|f_0(x)|^2 + |f_0'(x)|^2) dx}$$

$$\leq \sqrt{2} ||f_0||_{H^1(0,1)}.$$

Hence,

$$|\mathcal{F}(\tilde{f}_0)(\lambda)| \le \frac{1+\sqrt{2}}{|\lambda|} ||f_0||_{H^1(0,1)}.$$
 (13)

Combining (12), (13) we get

$$||f_{\varepsilon} - \tilde{f}_{0}||_{L^{2}(\mathbf{R})}^{2} \leq \frac{(1 + \sqrt{2})^{2}}{\pi} ||f_{0}||_{H^{1}(0,1)}^{2} \int_{|\lambda| \geq \lambda(\varepsilon)} \frac{d\lambda}{\lambda^{2}} + C_{1}^{2} \varepsilon^{2\gamma}$$

$$\leq \frac{(1 + \sqrt{2})^{2}}{\pi} ||f_{0}||_{H^{1}(0,1)}^{2} \lambda^{-1}(\varepsilon) + C_{1}^{2} \varepsilon^{2\gamma}$$

Since $\lambda(\varepsilon) = \sqrt[7]{\pi} \varepsilon^{\frac{2}{7}(\gamma-1)}$ and that

$$||2f_{\varepsilon} - f_0|| \le 2||f_{\varepsilon} - \tilde{f_0}||_{L^2(\mathbf{R})},$$

we can get the second estimate of Theorem 2. This completes the proof of Theorem 2.

Remark 1: Choosing $\gamma = 1/8$, we obtain $\lambda(\varepsilon) = \frac{\sqrt[7]{\pi}}{\sqrt[4]{\varepsilon}}$ and

$$||2f_{\varepsilon} - f_{0}|| \le 2\left(\frac{1+\sqrt{2}}{\sqrt[7]{\pi^{4}}}||f_{0}||_{H^{1}(0,1)} + C_{1}\right)\varepsilon^{1/8}$$

The last formula gives us the best upper bound for $0 < \varepsilon < 1$ given. Now we state and prove the last regularization result. We first put

$$G(\lambda) = -e^{\lambda^2} \int_0^1 g(x) \cos \lambda x dx \quad G_0(\lambda) = -e^{\lambda^2} \int_0^1 g_0(x) \cos \lambda x dx$$

$$\Phi(\lambda) = \int_0^1 e^{\lambda^2 t} \varphi(t) dt \qquad \Phi_0(\lambda) = \int_0^1 e^{\lambda^2 t} \varphi_0(t) dt$$

$$F(\lambda) = \int_0^1 f(x) \cos \lambda x dx \qquad F_0(\lambda) = \int_0^1 f_0(x) \cos \lambda x dx$$

We have

Theorem 3 Suppose that φ_0 has the form

$$\varphi_0(t) = (1-t)^m (a + (1-t)\psi_0(t))$$

where $a \neq 0, m = 0, 1, 2, ..., t \in (0, 1), \psi_0 \in L^2(0, 1)$. Letting $\beta \in (0, 1/2)$, we put

$$F_{\varepsilon}(\lambda) = \begin{cases} G(\lambda)/\Phi(\lambda) & if \ |\Phi(\lambda)| \ge \varepsilon^{\beta}, \ and |\lambda| < \lambda(\varepsilon), \\ 0 & if \ |\Phi(\lambda)| < \varepsilon^{\beta}, \ or \ |\lambda| \ge \lambda(\varepsilon) \end{cases}$$

and

$$f_{\varepsilon}(x) = \frac{1}{2\pi} \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} F_{\varepsilon}(\lambda) e^{i\lambda x} d\lambda.$$

Then, for each $\delta \in (0, \min\{\beta, 1 - 2\beta\})$ there exist a $C_{\delta} > 0, \gamma_{\delta} > 0$ independent of g_0, φ_0 and a function $\eta_{\delta}(\varepsilon)$ such that $\lim_{\varepsilon \downarrow 0} \eta_{\delta}(\varepsilon) = 0$ and that

$$||2f_{\varepsilon} - f_0|| \le C_{\delta} \varepsilon^{\gamma_{\delta}} + \eta_{\delta}(\varepsilon),$$

where $\lambda(\varepsilon) = \sqrt{\delta \ln \frac{1}{\varepsilon}}$.

Remark 2 In the case $\varphi_0 \in C^k[0,1], k \geq 1$, if we put

$$P_n\varphi_0(t) = \sum_{j=0}^{n-1} \frac{\varphi_0^{(j)}(1)}{j!} (t-1)^n,$$

(the n-th Taylor polynomial of φ_0 at t=1) then the condition (14) holds if we have $P_k\varphi_0 \not\equiv 0$. So the class of functions satisfying (14) is very broad.

The proof of Theorem 3 relies on Lemma 2 and Lemma 3 followed.

Lemma 2 If

$$\varphi_0(t) = (1 - t)^m (a + (1 - t)\psi(t)) \tag{14}$$

with $a \neq 0$ and $\psi \in L^2(0,1)$ then

$$\lim_{\lambda \to +\infty} \frac{\int_0^1 e^{\lambda^2 t} \varphi_0(t) dt}{e^{\lambda^2 / \lambda^{2m+2}}} = m!a.$$

Proof

Put

$$J_m(\mu) = \int_0^1 (1-t)^m e^{\mu t}$$

We prove that

$$\lim_{\mu \to +\infty} \frac{J_m(\mu)}{\frac{e^{\mu}}{\mu m + 1}} = m! \qquad m = 0, 1, 2, \dots$$
 (15)

In fact, we shall prove the latter relation by induction. One has $J_0(\mu) = \frac{e^{\mu}-1}{\mu}$. So, (15) holds for m=0. Suppose (15) holds for m=k, we prove (15) for m=k+1. In fact, one has

$$J_{k+1} = (1-t)^{k+1} \frac{e^{\mu t}}{\mu} \Big|_{0}^{1} + \frac{k+1}{\mu} J_{k}$$
$$= -\frac{1}{\mu} + \frac{k+1}{\mu} J_{k}.$$

It follows that

$$\lim_{\mu \to +\infty} \frac{J_{k+1}(\mu)}{\frac{e^{\mu}}{\mu^{k+2}}} = (k+1) \lim_{\mu \to +\infty} \frac{J_k(\mu)}{\frac{e^{\mu}}{\mu^{k+1}}} = (k+1)!.$$

This completes the proof of (15). Using (15), one has C_1 such that

$$\left| \int_{0}^{1} e^{\lambda^{2} t} \varphi_{0}(t) dt - a J_{m}(\lambda^{2}) \right| \leq \int_{0}^{1} e^{\lambda^{2} t} (1 - t)^{m+1} |\psi(t)| dt$$

$$\leq \|\psi\|_{L^{2}} \sqrt{J_{2m+2}(2\lambda^{2})}$$

$$\leq C_{1} \|\psi\|_{L^{2}} \sqrt{\frac{e^{2\lambda^{2}}}{\lambda^{4m+6}}} \text{as } \lambda \to +\infty$$

Hence

$$\lim_{\lambda \to +\infty} \frac{\int_0^1 e^{\lambda^2 t} \varphi_0(t) dt}{e^{\lambda^2}/\lambda^{2m+2}} = a \lim_{\mu \to +\infty} \frac{J_m(\lambda^2)}{\frac{e^{\lambda^2}}{\lambda^{2(m+1)}}} = m!a.$$

This completes the proof of Lemma 2.

Now we state and prove Lemma 3.

Lemma 3 If φ_0 satisfies (14) then there exist $\gamma, \alpha_0 \in (0,1)$ and $C_0 > 0$ such that

$$m(B_{\alpha}) \le C_0 \alpha^{\gamma} \quad \forall 0 < \alpha < \alpha_0.$$

Here

$$B_{\alpha} = \{ \lambda \in \mathbf{R} : |\Phi_0(\lambda)| < \alpha \}, \qquad \alpha > 0.$$

and $m(B_{\alpha})$ is the Lebesgue measure of B_{α} .

Proof

From the lemma 2 and from the analyticity of Φ_0 , the function Φ_0 has only finite zeros λ_j , j = 1, ..., p. We can write

$$\Phi_0(\lambda) = \Phi_1(\lambda) \prod_{j=1}^p (\lambda - \lambda_j)^{m_j},$$

where $\Phi_1(\lambda) \neq 0$ for every $\lambda \in \mathbf{R}$. Since

$$\lim_{\mu \to +\infty} \frac{J_m(\mu)}{\frac{e^{\mu}}{\mu^{m+1}}} = m!,$$

we have

$$\lim_{\lambda \to \infty} \Phi_1(\lambda) = \infty.$$

It follows that there exists a $C_1 > 0$ such that

$$|\Phi_1(\lambda)| \ge C_1 \quad \forall \lambda \in \mathbf{R}.$$

Hence,

$$|\Phi_0(\lambda)| \ge C_1 \prod_{j=1}^p |\lambda - \lambda_j|^{m_j} \quad \forall \lambda \in \mathbf{R}.$$

Without loss of generality, we assume that

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n$$
.

Put $d = \min_{1 \le s \le p-1} \{\lambda_{s+1} - \lambda_s\}$ and $\delta_j^2 = \frac{\alpha^{1/m_j}}{C_1^{1/m_j} d^{M/m_j}}$. For $\lambda_s + \delta_s \le \lambda \le \lambda_{s+1} - \delta_{s+1}$, s = 1, ..., p, one has

$$|\Phi_0(\lambda)| \geq C_1 \prod_{j=1}^p |\lambda - \lambda_j|^{m_j}$$
$$\geq C_1 \delta_s^{m_s} \delta_{s+1}^{m_{s+1}} d^{M_s} = \alpha.$$

where $M_s = M - m_s - m_{s+1}$, with $M = \sum_{j=1}^{p-1} m_j$. It follows that

$$B_{\alpha} = \{\lambda \in \mathbf{R} : |\Phi_{0}(\lambda)| < \alpha\}$$

$$\subset \bigcup_{s=1}^{p-1} (\lambda_{s} - \delta_{s}, \lambda_{s} + \delta_{s})$$

Hence

$$m(B_{\alpha}) \le \sum_{s=1}^{p-1} 2\delta_s = 2d \sum_{j=1}^{p-1} \frac{\alpha^{1/2m_j}}{C_1^{1/2m_j} d^{M/2m_j}}.$$

Choosing $\gamma = \min_{1 \le j \le p} \{\frac{1}{2m_j}\}$ we complete the proof of Lemma 3.

Now, we turn to the

Proof of Theorem 3

We have

$$||f_{\varepsilon} - \tilde{f}_{0}||_{L^{2}} = \frac{1}{\sqrt{2\pi}} ||\mathcal{F}(f_{\varepsilon}) - \mathcal{F}(\tilde{f}_{0})||_{L^{2}}.$$

On the other hand,

$$\|\mathcal{F}(f_{\varepsilon}) - \mathcal{F}(\tilde{f}_{0})\|_{L^{2}}^{2} = \int_{|\lambda| \geq \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda$$

$$+ \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} \chi_{\{|\Phi(\lambda)| < \varepsilon^{\beta}\}} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda$$

$$+ \int_{-\lambda(\varepsilon)}^{\lambda(\varepsilon)} \chi_{\{|\Phi(\lambda)| \geq \varepsilon^{\beta}\}} |\mathcal{F}(f_{\varepsilon}) - \mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda$$

$$\equiv I_{1} + I_{2} + I_{3}$$

We estimate I_2 , I_3 . We first have

$$|\Phi(\lambda) - \Phi_0(\lambda)| \leq \int_0^1 e^{\lambda^2 t} |\varphi(t) - \varphi_0(t)| dt$$

$$\leq \|\varphi - \varphi_0\|_{L^2} \sqrt{\int_0^1 e^{2\lambda^2 t} dt}$$

$$\leq \varepsilon \sqrt{\frac{e^{2\lambda^2} - 1}{2\lambda^2}}.$$

So, if $|\Phi(\lambda)| < \varepsilon^{\beta}$ then

$$|\Phi_0(\lambda)| < \varepsilon \sqrt{\frac{e^{2\lambda^2} - 1}{2\lambda^2}} + \varepsilon^{\beta} \equiv \alpha(\varepsilon).$$
 (16)

Now, we have

$$\mathcal{F}(\tilde{f}_0) = \int_0^1 f_0(x) \cos \lambda x dx.$$

Hence, one has

$$|\mathcal{F}(\tilde{f}_0)(\lambda)| \le ||f_0||_{L^2}.$$

It follows that

$$I_2 \leq ||f_0||_{L^2} m(B_{\alpha(\varepsilon)}),$$

where m(A) is the Lebesgue measure of A. Now, we estimate I_3 . If

$$|\Phi(\lambda)| \ge \varepsilon^{\beta},\tag{17}$$

then by (17), one has

$$|\Phi_0(\lambda)| \ge \varepsilon^{\beta} - \varepsilon \sqrt{\frac{e^{2\lambda^2} - 1}{2\lambda^2}}.$$
 (18)

In this case, we have

$$\mathcal{F}(f_{\varepsilon})(\lambda) - \mathcal{F}(\tilde{f}_{0})(\lambda) = \frac{G(\lambda)}{\Phi(\lambda)} - \frac{G_{0}(\lambda)}{\Phi_{0}(\lambda)}$$

$$= \frac{G_{0}(\lambda)(\Phi_{0}(\lambda) - \Phi(\lambda)) + \Phi_{0}(\lambda)(G(\lambda) - G_{0}(\lambda))}{\Phi(\lambda)\Phi_{0}(\lambda)}.$$

Using (17), (18), one has

$$|\mathcal{F}(f_{\varepsilon})(\lambda) - \mathcal{F}(\tilde{f}_{0})(\lambda)| \leq \frac{\|g_{0}\|e^{\lambda^{2}}\varepsilon\sqrt{\frac{e^{2\lambda^{2}}-1}{2\lambda^{2}}} + \|\varphi_{0}\|\sqrt{\frac{e^{2\lambda^{2}}-1}{2\lambda^{2}}}e^{\lambda^{2}}\varepsilon}{\varepsilon^{\beta}(\varepsilon^{\beta} - \varepsilon\sqrt{\frac{e^{2\lambda^{2}}-1}{2\lambda^{2}}})}$$

$$\leq \frac{\varepsilon^{1-2\beta}e^{\lambda^{2}}\sqrt{\frac{e^{2\lambda^{2}}-1}{2\lambda^{2}}}(\|g_{0}\| + \|\varphi_{0}\|)}{1 - \varepsilon^{1-\beta}\sqrt{\frac{e^{2\lambda^{2}}-1}{2\lambda^{2}}}}.$$

It follows that

$$I_3 \leq \frac{\varepsilon^{2-4\beta} e^{2\lambda(\varepsilon)^2} (e^{2\lambda(\varepsilon)^2} - 1) (\|g_0\| + \|\varphi_0\|)^2}{\lambda(\varepsilon) \left(1 - \varepsilon^{1-\beta} \sqrt{\frac{e^{2\lambda(\varepsilon)^2} - 1}{2\lambda(\varepsilon)^2}}\right)^2}.$$

So, we have

$$\|\mathcal{F}(f_{\varepsilon}) - \mathcal{F}(\tilde{f}_{0})\|_{L^{2}}^{2} \leq \int_{|\lambda| \geq \lambda(\varepsilon)} |\mathcal{F}(\tilde{f}_{0})(\lambda)|^{2} d\lambda + \|f_{0}\|_{L^{2}}^{2} m(B_{\alpha(\varepsilon)})$$

$$+ \frac{\varepsilon^{2-4\beta} e^{2\lambda(\varepsilon)^{2}} (e^{2\lambda(\varepsilon)^{2}} - 1)(\|g_{0}\| + \|\varphi_{0}\|)^{2}}{\lambda(\varepsilon) \left(1 - \varepsilon^{1-\beta} \sqrt{\frac{e^{2\lambda(\varepsilon)^{2}} - 1}{2\lambda(\varepsilon)^{2}}}\right)^{2}}.$$

By choosing $\lambda(\varepsilon) = \sqrt{\delta \ln \frac{1}{\varepsilon}}$ and using Lemma 3, we shall complete the proof of Theorem 3.

Bibliography

- [1] A. Friedman, "Partial differential equations of parabolic type", Englewood Cliffer N.J. Prentice Hall Inc, 1964.
- [2] A.N. Tikhonov and V.Y. Arsenin, "Solutions of ill-posed problems" V.H. Winston and Sons, Washington, D.C., 1977.
- [3] L.E. Payne, "Improperly posed problems in PDE" SIAM Publications, Philadelphia, 1971.
- [4] D. Colton and R. Kress "Integral equation methods in scattering theory", John Wiley, N.Y., 1983.
- [5] P. Linz "Analytical and numerical methods for Volterra equations", SIAM Publications, Philadelphia, 1985.