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Abstract: We study the nonhogeneous heat equation under the form:
U — Uz = ©(t)f(x), where the unknown is the pair of functions (u, f).
Under various assumptions about the the function ¢ and the final value in

t =1 1. g(x), we propose different reqularizations on this ill-posed problem
based on the Fourier transform associated with a Lebesque measure. For
© # 0 the solution is unique.

Address for correspondence: Alain Pham Ngoc Dinh (alain.pham@univ-
orleans.fr)

I. Introduction

Consider the problem: Find a pair of functions (u, f) satisfying the
following equation and boundary and initial values:

—5t+ Au=p()f(), (
u(l,1) =0, wuy(0,1) = uy(l,
u(x,0) =0, u(z,1)=g(x)
Where ¢ and ¢ are two given functions.
The previous problem is equivalent to find a function f satisfying an
integral equation of the 1st. kind of Volterra type:



sty == [ [ Mg 2)
where N(x,t;£,7) [1] is defined by
N(z,t;¢,7) = B (exp( —

9 T(t—7)

(z —¢)? (z+¢)?
=) el o T))>

As is well-known the problem (2) (or (1)) is an ill-posed problem and its
numerical solution have been discussed by various authors ([2], [3], [4], [3])-
The purpose of this paper is to produce regularized solutions of this problem
treated in its form (1) with an error estimates under various hypotheses on
the function ¢(t) and g(x).

For ¢ # 0 there is uniqueness of the pair (u, f) solution of (1) (para-
graph 2). In paragraph 3 we give two sorts of regularization. In fact it will
be shown that if the discrepancy between () (respectively g(x)) and its
exact solution ¢o(t) (respectively go(z)) is of the order ¢ for the ||.||12(0,1),
then the discrepancy between the regularized solution f.(x) and the exact
solution fo(x) is, depending on the degree of smoothness of the exact solu-

1N -1
tion fo(x), of the order <ln —> or e'/® 0 < ¢ < 1. The techniques used
5

here is rhe Fourier transform associated with the variational form of (1)
and a Lebesgue measure generated by the function ¢o(?). So the proposed
regularization can be applied for an integral Volterra equation of the 1st.
kind of the form (0.2) where the kernel N(x,¢; &, 7) is a solution of the heat

equation.
II. Uniqueness

Let g, be known functions in L?*(0,1). We consider the problem of
identifying a pair (u, f) satisfying

—E<u > — <ughe >=@ < f,0 > Vo e HY(0,1), )
u(l, 1) = 0; w(z,0) = 0; u(z,1) = g(x) (3)

where v = u(x,t), f = f(x), (x,t) € [0,1] x [0,1], < .,. > is the inner
product in L?*(0,1).



We first have
Lemma 1. If v € CY([0,1]; L*(0,1)) N C([0,1]; H'(0,1)), f € L*(0,1)
satisfy (3) then we have

1 1 1
e / g(x)cos Aedr = —/ 6/\2t99(t)dt / f(x) cos Axdx Yie C. (4)
0 0 0

Proof
In (3)1, by choosing ¢ (x) = cos Az, we get

d 1

1 1
n u(x,t) cos \edx + )\/ uz(x,t)sin Aede = ¢(t) / f(x) cos Aadx.
0 0 0

(5)

In view of the condition u(1,?) = 0, we have

1 1
/ uy(z,t)sin \ede = u(x,t)sin Ae[7Z) — A / u(x, 1) cos Aadx
0 0

1
= —)\/ u(x,t) cos Aadx.
0

Hence, (5) follows that

1

d 1 1
% u(z,t) cos \vdr — \* / u(x,t) cos \ede = c,o(t)/ f(x) cos Aadx.
0 0 0

Integrating this equality from ¢ = 0 to ¢ = 1 and using the conditions
u(x,0) =0; u(x,1) = g(x), we get (4). This completes the proof of Lemma
1.

Now, we consider the uniqueness of the solution of (3). We have

Theorem 1. Let u; € C([0,1]; L*(0,1)) N C([0,1]; H'(0,1)), f; € L*(0,1)
(t =1,2) satisfy (3). If ¢ £0 then (uy, f1) = (uz, f2).

Proof
Put v = uy — ug, f = f1 — f2 then v satisfy (3); subject to conditions
v(1,t) =0; v(x,0) =v(x,1) =0. Hence, from (4) one has

/01 No(t)dt /01 f(x) cos Azdz = 0 (6)
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Put

& 2n 1

@(A):ZF 0 ()" dt, F()\):/O f(x) cos Ada.

We claim that ® # 0. In fact, if ® = 0 then fol e(t)t"dt = 0 for every
n =0,1,2,... Using Weierstrass theorem, we have ¢ = 0, a contradiction.
Hence, ® # 0. It follows that there is a Ay € C and an r > 0 such that
|®(A)] > 0 for every |A — Ag| < r. From (6) and the latter result, one has

F()\):/Olf(x)cos)\xdx:() YA A= Xo| < 7. (7)

Since F'()) is an entire functions, we get in view of (7) that F(\) = 0 for
all A € C. Putting

we get that F()\) is the Fourier transform of f
F(X) = / f(:z;)e_i“dx. (8)

From (7), (8), we get f =0 a.e. on R. It follows that f =0 a.c. on (0,1).
This completes the proof of Theorem 1.

IT1. Regularization

We give two regularization results
Theorem 2. Let g, go be in L*(0,1) and let (uq, fo) be the exact solution
of (3) with ¢, ¢ replaced by o, go. Letting Co, ¢ > 0, we assume that
©, g satisfy
le — ol < e, lg—goll <<

and
o(x) > Co, po(z) > Cy a.e.on (0,1),



where || . || is the norm of L*(0,1). Putting

1 Ae) , [T T -1
felz) = —g/ e’ / g(s) cos Asds (/ e’ tc,o(t)dt) e d\
—A(e) 0 0

where A\(e) = \7/56%(7_1), 0 <~ < 1, then there exists a positive function
n(e) independent of Co,||go|| with lim.jon(e) =0 and such that

12fz — fol| <2017 + 2p(e).

where Cy = Z5(1 4 Co+[|go]|) is a positive constant defined in terms of Co
0

and {|go||-
If we assume, in addition, that fo € H'(0,1) then the function n(e) can
be estimated and can be taken equal to

16 = S22 ol

Proof

From Lemma 1, one has

1 1 1
e / go(x) cos Aedx = — / evtc,oo(t)dt / fo(x) cos Aadx.
0 0 0

It follows that

1 1 1 -1
/ fo(x) cos Aadx = e / go(x) cos Aadx (/ eA25<po(5)d$> )
0 0 0

Put
) %fo(x) xz € (0,1)
fo= %fo(—x) r € (—1,0) ,
r g (—1,1)
We have

-1

Flfo)(N) = /_Z fol@)e ™ de = /Olgo(:z;) cos \edz (/01 6A25<po(3)d$>



where F(f) is the Fourier transform of f:
AN = [ sl da,
From Plancherel theorem, we have
1. — Follecay

On the other hand, one has,

= =7 ) = F( ) emy )

-1

FUR)N) = F(L)() = /_ T )N de — o /0 () cos Aeds ( /0 1 eA%c,o(s)ds)

-1

= &V /Olgo(:z;)cos)\xdx (/01 6A25<,90(3)d3> -
eV’ /0 1 g(z) cos Ardx ( /0 1 eA25<p(3)dS> h

= ¥ (/01 e/\254,90(3)d8>_1 /Ol(go(x)—g(x))cos)\xdx
+e /Olg(:l;)cos)\xdx /016A25(<,9(5)—4,90(3))d3 x

x (/01 6A25<,90(5)d3> h (/01 6A25<,9(5)d3>

We get after arrangements
Ve eV
Co(1 — =) C2(1 — e )22

-1

IF(fo)(N) = F(f) (V)] <

9 3
o Ve dellgln
- Co Cg
4)A|Pe
< Bt 14 ol = Pe 1< o)
0

for 0 < e < 1. In (8) we have put C; = %(1 + Co + ||g0]|)-
Similarly, for |A| < 1, one has

2 4e
2 delll
Co OF:

[F(J)(X) = F(f)(A)] < < Che,



the constant Cy having the meaning as before in the case [A| > 1.

In either cases, one has

IF(fo)A) = F(f)N)] < Ci[APe YAER (11)

Noting that F(f:)(A) = 0 for |A| > A(¢), we get in view of (9), (10), (11)

that

Ife = Jollf2my =

IA

<

<

1 ~ 1

27 Jn<ae)

. 1 (M)
| F(fo)(N)[PdX + 2—/ C2e2X\5(g)dA
T J=\e)

2 IAIZA(e)
1

27 IAIZA(e)
1

2 IAIZA(e)
1

27 J)pzae)

FU P+ O

F(fo)(NPdh+ O™,

with A(e) taken such that M(e) = /770 — oo as e — 04 (0 <y < 1).

Putting

1

T 27 S

2

n°(e) [F(fo)(A)*dA

we get the first estimate of Theorem 2.
Now, if fo € H*(0,1), one has

F(fo)(N)

= /01 folx) cos Avda

sin A 1

= fo(1) ;) —X/O fo(x) sin Azdx YA # 0.

So, for A € R, we have

F(f)N)] <

On the other hand, since H'(0,1) — €0, 1], there exist an xq € [0,1] such
that fo(zo) = fol fo(z)dx. We have

h@zh@@f/%@ﬂv

7

IF(fo) (M)A + o— [F(Fo)(N) = F(f) (M)A

(12)



Hence,

h()] < / (ole)] + 1 5(2) e

\/2 / (ol )2 + [ f3(2)P)de
< \/§HfoHH1(o,1)-

IA

Hence,

FU| < %r\foum,n- (13)

Combining (12), (13) we get

(1+v2)?

. d
I = Foltm < S ol /|

F —|— 01252'7
[>A(e)

s

1+ v/2) .
Y ol ) + O3

IA

Since A(e) = {/;g%(w—l) and that

12f: = foll < 2I1f= — follz2(my,

we can get the second estimate of Theorem 2. This completes the proof of
Theorem 2.

Remark 1: Choosing v = 1/8, we obtain A(¢) = 1—@ and

142
7/7_‘_4

The last formula gives us the best upper bound for 0 < ¢ < 1 given.
Now we state and prove the last regularization result. We first put

12f: — foll <2 ( | follarr o) + Cl> c1/8

G\ = —eV fol g(x)cos Aadr Go(N) = —eV fol go(x) cos Axdx
O(N) = [ Nip(t)dt Do(A) = [ Nipo(t)dt
Fx) = fol f(x) cos Axdx Fo(N) = fol fo(x) cos Aadx

8



We have
Theorem 3 Suppose that oo has the form

po(t) = (L =1)"(a + (1 —1)o(1))
where a # 0,m = 0,1,2,...;t € (0,1),%0 € L*(0,1). Letting 8 € (0,1/2),

we pul

[ GO/B0) i 8] > <7, and]A] < A(e).
F:(A) = { 0 i B < 28, or |A] > Ae)

and

! A(E)F MNe N d\
fo) =52 [ RO

—A(e)

Then, for each 6 € (0,min{3,1 — 23}) there exist a Cs > 0,75 > 0 in-
dependent of go, w0 and a function ns(e) such that lim.jons(e) = 0 and
that

where A(e) = 1/511(1%.

Remark 2 In the case po € C*[0,1], k > 1, if we put

H2fs - fOH S 06575 + 776(5)7

Pn%‘oo(t) = 7o

(the n-th Taylor polynomial of ¢q at t = 1) then the condition (14) holds
if we have Prpo # 0. So the class of functions satisfying (14) is very broad.

The proof of Theorem 3 relies on Lemma 2 and Lemma 3 followed.

Lemma 2 If
po(t) = (L—=1)"(a+ (1 = 1)¥(1)) (14)
with a # 0 and ¢ € L*(0,1) then

1
1- fO 6/\2t900(t)dt _ !
M S e ey = e

Ne)



Proof
Put

We prove that

I
lim 65”) —m! m=0,1,2,.. (15)

p——+0o0 AT

In fact, we shall prove the latter relation by induction. One has Jo(p) =
BMT_I. So, (15) holds for m = 0. Suppose (15) holds for m = k, we prove

(15) for m = k + 1. In fact, one has

1

pt E+1
Jopr = (1 =) - + + Jk
ply
1 E+1
= —— 4 Ji.
7

It follows that

lim Jk%(ﬂ):(k—kl) lim @:(kﬂ)!.
pu——+0o W p——+0o0 EF1

I

This completes the proof of (15). Using (15), one has C; such that

< /01 L= )" (1)t

< 2o v J2ma2(2A%)

1
/ Moo (t)dt — ad,,(A?)
0

0212
< Ci||¥]|r2 Tamre s A — +oo
Hence L ,
lim M =a lim (V) = mla.
Mmoo €N A2 p—+oo A2(e:l+1)

10



This completes the proof of Lemma 2.
Now we state and prove Lemma 3.

Lemma 3 If @ satisfies (14) then there exist v, a0 € (0,1) and Cy > 0
such that
m(B,) < Coa? Y0 < a < ay.

Here
B,={XeR: |§(N)| < a}, a > 0.

and m(B,) is the Lebesgue measure of B,.

Proof
From the lemma 2 and from the analyticity of ®q, the function ®q has
only finite zeros A;, y =1,...,p. We can write

Bo(N) = @1 (A) J[T(A =A™

7=1
where ®1(\) # 0 for every A € R. Since

lim Inlpt) _ m!

R — 9y
p—t00 Miﬁ

we have

lim ®4(\) = oc.

A—00
It follows that there exists a C'; > 0 such that
| (A)] > C; VAeR.
Hence,

p
[Do(M)] = C [TIA =A™ YAER.

i=1

Without loss of generality, we assume that

AL < A < <A

11



Put d = minycyep 1 {1 — Ao} and 62 = 2 For A, 46, < A <

- Oll/m] dM/mJ

Ast1 — 0511, S =1,...,p, one has
p
[Do(M)] = O[NNI
7=1
> Cﬁ;”%gffldMs = a.
where My = M — m; — mgyq, with M = Ef;i m;. It follows that

B, = {AeR: |9(N)] < a}

p—1
C U()\s _557)\5+55)
s=1

Hence
Oél/2mj

p—1 p—1
m(B,) < 20, =2d Y —————
2= e
Choosing v = minj<j<,{5—} we complete the proof of Lemma 3.
- - J

Now, we turn to the
Proof of Theorem 3
We have

£ = follrz = (o) = F(fo)llzz-

On the other hand,

1
o
\F () — FE = /W>A()|f<fo><x>|2dx

Ae) .
-l-/A( )X{|<1>(A)|<sﬁ}|7:(f0)()\)|2d)\

Ae) N
-l-/_ ()X{|@(A)|Zsﬁ}|}_(fs) — F(fo)(N)[?dA

€

= Lh+L+1s

12



We estimate [, [5. We first have

B(\) — Bo(N)| < / Vo (1) — o)t

1
<l ol [ e
0
e — 1
= Vo
So, if |®(\)| < &” then
22?2 _ 5
|Do(A)] < & e TE = a(e). (16)

Now, we have
1
F(fo) :/ fo(x) cos Azdx.
0
Hence, one has N
[F(fo)(M)| < | follr2-

It follows that
I <[ follr2m(Bags),

where m(A) is the Lebesgue measure of A. Now, we estimate [5. If

[D(N)] > <7, (17)
then by (17), one has
|Do(N)] > & —¢ 62;% (18)
In this case, we have
FUIN = FUN) = G -~ g

Go(AM)(@o(A) = @A) + Po(M(G(A) — Go(N))
B(A)Po(N) '

13



Using (17), (18), one has

A2 62)\2_1 62>‘2—1 A2
" gol|le” € — + o ——¢" €
FUO) - Fo < el . Hﬂ -
(e — 2/ 20

_ 2 A2 _
et =20eM =52 (lgoll + lloll)

IA

2
e2A 1

1_
1 —el-f o

It follows that
29D (NP 1) ((gol] + ol

2
_ e2 (5)2—
)\(5) (1 —el-p ;/\(6)2 1)

I3 <

So, we have

() = FUE < [ FOEN + olfm(Bugo)

IAIZA(e)

SR 1) (o] +gol)?
eoll”
o) (11— 10 [ )

By choosing A(e) = 1/511(1% and using Lemma 3, we shall complete the
proof of Theorem 3.

_|_
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