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Abstract

In the present paper, we investigate consequence relationsthat are both paraconsistent and plausible (but still
monotonic). More precisely, we lay the focus on pivotal consequence relations, i.e. those relations that can
be defined by a pivot (in the style of e.g. D. Makinson). A pivotis a fixed subset of valuations which are
considered to be the important ones in the absolute sense. Wewill provide characterizations for families of
pivotal consequence relations, in a general framework thatcovers e.g. the ones of the well-known paraconsistent
logicsJ3 andFOUR. In addition, we will provide, again in a general framework,characterizations for families
of pivotal-discriminative consequence relations. The latter are defined exactly as the plain versions, except that
among the conclusions, a formula is rejected if its negationis also present. We will also answer negatively a
representation problem that was left open by Makinson. And,finally, we will put in evidence a connexion with
X-logics from Forget, Risch, and Siegel. Note that the motivations and the framework of the present paper are
very similar to the ones of another paper of the same author which is about preferential consequence relations.

Remark 1 A previous version of this paper has been published:The Journal of Logic and Com-
putation, 15(5):679-700, 2005. The present version contains improvements about the presentation.
Consequently, section ordering, definition labels, proposition labels, etc. are different according to
whether the present or the previous version is considered.
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1 Introduction

In many situations, an agent is confronted with incomplete and/or inconsistent information and then
the classical consequence relation proves to be insufficient. Indeed, in case of inconsistent informa-
tion, it leads to accept every formula as a conclusion, whichamounts to loose the whole informa-
tion. Therefore, the agent needs another relation which leads to rational and non-trivial conclusions
in spite of the presence of contradictions. So, several paraconsistent consequence relations have
been developed. In the present paper, we will pay attention in particular to certain many-valued
ones [Bel77b, Bel77a, DdC70, CMdA00, dACM02, AA94, AA96, AA98]. They are defined in
frameworks where valuations can assign more than two different truth values to formulas. In fact,
they tolerate contradictions within the conclusions, but reject the principle of explosion according to
which a single contradiction entails the deduction of everyformula.

In case of incomplete information, the classical consequence relation also shows its limits. In-
deed, no risk is taken, the conclusions are sure, but too few.Thus, the agent needs another relation,
more daring, leading to accept as conclusions formulas thatare not sure, but still plausible. Eventu-
ally, some “hasty” conclusions will be rejected later, in the presence of additional information. So,
a lot of plausible (generally, non-monotonic) consequencerelations have been developed. Central
tools to define such relations are choice functions [Che54, Arr59, Sen70, AM81, Leh02, Leh01].
Indeed, suppose we have at our disposal a functionµ, called a choice function, which chooses in
any set of valuationsV , those elements that are preferred, not necessarily in the absolute sense, but
when the valuations inV are the only ones under consideration. Then, it is natural toconcludeα
(a formula) fromΓ (a set of formulas) iff every model forΓ chosen byµ is a model forα. This
constitutes a plausible (generally, non-monotonic) consequence relation.

In the present paper, we will lay the focus on a particular family of choice functions. Let us
present it. Suppose some valuations are considered to be negligible in the absolute sense and col-
lect the others in a setI, called a pivot. This defines naturally a choice function. Indeed, simply
choose in any set of valuations, those elements that belong to I. Those choice functions which can
be defined in this manner constitute the aforementioned family. The consequence relations defined
by this family are called pivotal consequence relations. Their importance has been put in evidence
by D. Makinson in [Mak03, Mak05] where it is shown that they constitute an easy conceptual pas-
sage between classical and plausible non-monotonic relations. Indeed, they are perfectly monotonic
but already display some of the distinctive features (i.e. the choice functions) of plausible non-
monotonic relations.

For a long time, research efforts on paraconsistent relations and plausible relations were sep-
arated. However, in many applications, the information is both incomplete and inconsistent. For
instance, the semantic web or big databases inevitably contain inconsistencies. This can be due to
human or material imperfections as well as contradictory sources of information. On the other hand,
neither the web nor big databases can contain “all” information. Indeed, there are rules of which
the exceptions cannot be enumerated. Also, some information might be left voluntarily vague or in
concise form. Consequently, consequence relations that are both paraconsistent and plausible are
useful to reason automatically in such applications.

Such relations first appear in e.g. [Pri91, Bat98, KL92, AA00, KM02]. The idea begins by taking
a many-valued framework to get paraconsistency. Then, onlythose models that are most preferred
according to some particular binary preference relation onvaluations (in the style of [Sho88, Sho87])
are relevant for making inference, which provides plausibility (and in fact also non-monotonicity).
In [AL01b, AL01a], A. Avron and I. Lev generalized the study to families of binary preference
relations which compare two valuations using, for each of them, this part of a certain set of formulas
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it satisfies. The present paper follows this line of researchby combining many-valued frameworks
and choice functions.

More explicitly, we will investigate pivotal consequence relations in a general framework. Ac-
cording to the different assumptions which will be made about the latter, it will cover various kinds
of frameworks, including e.g. the classical propositionalone as well as some many-valued ones.
Moreover, in the many-valued frameworks, pivotal relations lead to rational and non-trivial con-
clusions is spite of the presence of contradictions and are thus useful to deal with both incomplete
and inconsistent information. However, they will not satisfy the Disjunctive Syllogism (fromα and
¬α ∨ β we can concludeβ), whilst they satisfy it in classical frameworks.

In addition, it is in the many-valued frameworks that new relations, which we will investigate in
detail, are really interesting: pivotal-discriminative consequence relations. They are defined exactly
as the plain versions, except that among the conclusions, a formula is rejected if its negation is also
present. In classical frameworks, they do not bring something really new. Indeed, instead of con-
cluding everything in the face of inconsistent information, we will simply conclude nothing. On the
other hand, in many-valued frameworks, where the conclusions are rational even from inconsistent
information, the discriminative versions will reject the contradictions among them, rendering them
all the more rational.

As a first contribution, we will characterize, in a general framework, several families of pivotal(-
discriminative) consequence relations. To do so, we will use techniques very similar to those of a
previous paper of the same author: [BN05]. The latter is about another family of choice functions.
Let us present it. Suppose we are given a binary preference relation≺ on states labelled by valuations
(in the style of e.g. [KLM90, Sch04]). This defines naturallya choice function. Indeed, choose in
any set of valuationsV , each element which labels a state which is≺-preferred among all the states
labelled by the elements ofV . Those choice functions which can be defined in this manner constitute
the aforementioned family. The consequence relations defined by this family of choice functions are
called preferential(-discriminative) consequence relations. In fact, the present paper provides an
example of how the techniques developed in [BN05] (especially, in the discriminative case) can be
adapted to new families of choice functions. Note that, in the non-discriminative case, the techniques
of [BN05] are themselves inspired by the work of K. Schlechta[Sch04].

Half of time, our characterizations will be purely syntactic. This has a lot of advantages, let us
quote some important ones. Take a set of syntactic conditions that characterizes a family of pivotal
consequence relations. This gives a syntactic point of viewon this family defined semantically,
which enables us to compare it to conditions known on the “market”, and thus to other consequence
relations. This can also give rise to questions like: if we modified the conditions in such and such
a natural-looking way, what would happen on the semantic side? More generally, this can open the
door to questions that would not easily come to mind otherwise or to techniques of proof that could
not have been employed in the semantic approach. Finally, this can help to find or improve proof
systems based on the family, like a Gentzen proof system for instance.

Some characterizations for pivotal consequence relations, valid in classical frameworks, can be
found in the literature, e.g. [Rot01, Mak03, Mak05]. But, tothe author knowledge, the present
paper contains the first systematic work of characterization for them in non-classical frameworks.
Similarly, it seems that we are the first to investigate pivotal-discriminative consequence relations.

As a second contribution, we will answer negatively a representation problem that was left open
by Makinson, namely, in an infinite classical framework, there does not exist a “normal” character-
ization for the family of all pivotal consequence relations. Approximatively, a characterization is
called normal iff it is made of conditions which are universally quantified and of limited size. This
constitutes the more innovative part of the paper. A last contribution is that a certain family of piv-
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otal consequence relations will be shown to be precisely a certain family of X-logics, which were
introduced by Forget, Risch, and Siegel [FRS01].

The rest of the paper is organized as follows. In Section 2.1,we introduce our general framework
and the different assumptions which will sometimes be made about it. We will see that it covers in
particular the many-valued frameworks of the well-known paraconsistent logicsFOUR andJ3. In
Section 2.2, we present choice functions and some of their well-known properties. We will see which
properties characterize those choice functions that can bedefined by a pivot. In Section 2.3, we
define pivotal(-discriminative) consequence relations and give examples of them in both the classical
and the many-valued frameworks. In Section 3, we provide ourcharacterizations. In Section 4, we
answer negatively the problem that was left open by Makinson. In Section 5, we put in evidence a
connexion withX-logics. Finally, we conclude in Section 6.

2 Background

2.1 Semantic structures

2.1.1 Definitions and properties

The framework is exactly the one presented in [BN05]. We willwork with general formulas, valua-
tions, and satisfaction. A similar approach has been taken in two well-known papers [Mak05, Leh01]
without anticipating any of the substantive work in the present paper.

Definition 2 We say thatS is asemantic structureiff S = 〈F ,V , |=〉 whereF is a set,V is a set,
and|= is a relation onV × F .

Intuitively, F is a set of formulas,V a set of valuations for these formulas, and|= a satisfaction
relation for these objects (i.e.v |= α means the formulaα is satisfied in the valuationv, i.e. v is a
model forα).

Notation 3 Let 〈F ,V , |=〉 be a semantic structure,Γ ⊆ F , andV ⊆ V . Then,

MΓ
def
= {v ∈ V : ∀ α ∈ Γ, v |= α},

T (V )
def
= {α ∈ F : V ⊆Mα},

D
def
= {V ⊆ V : ∃ Γ ⊆ F , MΓ = V }.

SupposeL is a language,¬ a unary connective ofL, andF the set of all wffs ofL. Then,

Td(V )
def
= {α ∈ F : V ⊆Mα andV 6⊆M¬α},

C
def
= {V ⊆ V : ∀ α ∈ F , V 6⊆Mα or V 6⊆M¬α}.

Intuitively, MΓ contains all the models forΓ andT (V ) all the formulas satisfied inV . Roughly
speaking,Td(V ) is this part ofT (V ) that is not contradictory.D contains all those sets of valuations
that are definable by a set of formulas andC all those sets of valuations that do not satisfy both a
formula and its negation. As usual,MΓ,α, T (V, v) stand for respectivelyMΓ∪{α}, T (V ∪ {v}), etc.

Remark 4 The notationsMΓ, T (V ), etc. should contain the semantic structure on which they are
based. To increase readability, we will omit it. There will never be any ambiguity. We will omit
similar things with other notations in the sequel, for the same reason.

A semantic structure defines a basic consequence relation:
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Notation 5 We denote byP the power set operator.
Let 〈F ,V , |=〉 be a semantic structure.
We denote by⊢ the relation onP(F)×F such that∀ Γ ⊆ F , ∀ α ∈ F ,

Γ ⊢ α iff MΓ ⊆Mα.

Let |∼ be a relation onP(F)×F . Then,

|∼(Γ)
def
= {α ∈ F : Γ |∼ α}.

SupposeL is a language,¬ a unary connective ofL, F the set of all wffs ofL, andΓ ⊆ F .
Then, we say thatΓ is consistentiff ∀ α ∈ F , Γ 6⊢ α or Γ 6⊢ ¬α.

The following facts hold, we will use them implicitly in the sequel:

Remark 6 Let 〈F ,V , |=〉 be a semantic structure andΓ, ∆ ⊆ F . Then:
MΓ,∆ = MΓ ∩M∆;
⊢(Γ) = T (MΓ);
MΓ = M⊢(Γ);
Γ ⊆ ⊢(∆) iff ⊢(Γ) ⊆ ⊢(∆) iff M∆ ⊆MΓ.

Sometimes, we will need to make some of the following assumptions about a semantic structure:

Definition 7 Let 〈F ,V , |=〉 be a semantic structure.
The define the following assumptions:

(A0) MF = ∅;

(A1) V is finite.

SupposeL is a language,¬ a unary connective ofL, andF the set of all wffs ofL. Then, define:

(A2) ∀ Γ ⊆ F , ∀ α ∈ F , if α 6∈ T (MΓ) and¬α 6∈ T (MΓ), thenMΓ ∩Mα 6⊆M¬α.

Suppose∨ and∧ are binary connectives ofL. Then, define:

(A3) ∀ α, β ∈ F , we have:
Mα∨β = Mα ∪Mβ ;
Mα∧β = Mα ∩Mβ ;
M¬¬α = Mα;
M¬(α∨β) = M¬α∧¬β;
M¬(α∧β) = M¬α∨¬β.

Clearly, those assumptions are satisfied by classical semantic structures, i.e. structures whereF , V ,
and|= are classical. In addition, we will see, in Sections 2.1.2 and 2.1.3, that they are also satisfied
by certain many-valued semantic structures.

2.1.2 The semantic structure defined byFOUR

The logicFOUR was introduced by N. Belnap in [Bel77a, Bel77b]. It is usefulto deal with in-
consistent information. Several presentations are possible, depending on the language under con-
sideration. For the needs of the present paper, a classical propositional language will be sufficient.
The logic has been investigated intensively in e.g. [AA94, AA96, AA98], where richer languages,
containing an implication connective⊃ (first introduced by A. Avron [Avr91]), were considered.
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Notation 8 We denote byA a set of propositional symbols (or atoms).
We denote byLc the classical propositional language containingA, the usual constantsfalse and
true, and the usual connectives¬, ∨, and∧.
We denote byFc the set of all wffs ofLc.

We briefly recall a meaning for the logicFOUR (more details can be found in [CLM99, Bel77a,
Bel77b]). Consider a system in which there are, on the one hand, sources of information and, on the
other hand, a processor that listens to them. The sources provide information about the atoms only,
not about the compound formulas. For each atomp, there are exactly four possibilities: either the
processor is informed (by the sources, taken as a whole) thatp is true; or he is informed thatp is
false; or he is informed of both; or he has no information about p.

Notation 9 Denote by0 and1 the classical truth values and define:

f
def
= {0}; t

def
= {1}; ⊤

def
= {0, 1}; ⊥

def
= ∅.

The global information given by the sources to the processorcan be modelled by a functions fromA
to {f , t,⊤,⊥}. Intuitively, 1 ∈ s(p) means the processor is informed thatp is true, whilst0 ∈ s(p)
means he is informed thatp is false.

Then, the processor naturally builds information about thecompound formulas froms. Before
he starts to do so, the situation can be be modelled by a function v from Fc to {f , t,⊤,⊥} which
agrees withs about the atoms and which assigns⊥ to all compound formulas. Now, takep andq in
A and suppose1 ∈ v(p) or 1 ∈ v(q). Then, the processor naturally adds1 to v(p ∨ q). Similarly, if
0 ∈ v(p) and0 ∈ v(q), then he adds0 in v(p ∨ q). Of course, such rules hold for¬ and∧ too.

Suppose all those rules are applied recursively to all compound formulas. Then,v represents the
“full” (or developed) information given by the sources to the processor. Now, the valuations of the
logicFOUR can be defined as exactly those functions that can be built in this manner (i.e. likev)
from some of these sources-processor systems. More formally,

Definition 10 We say thatv is a four-valued valuationiff v is a function fromFc to {f , t,⊤,⊥}
such thatv(true) = t, v(false) = f and∀ α, β ∈ Fc,
1 ∈ v(¬α) iff 0 ∈ v(α);
0 ∈ v(¬α) iff 1 ∈ v(α);
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β);
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and0 ∈ v(β);
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and1 ∈ v(β);
0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β).
We denote byV4 the set of all four-valued valuations.

The definition may become more accessible if we see the four-valued valuations as those functions
that satisfy Tables 1, 2, and 3 below:

v(α) v(¬α)
f t

t f

⊤ ⊤
⊥ ⊥

Table 1.

v(β)
f t ⊤ ⊥

v(α)

f f t ⊤ ⊥
t t t t t

⊤ ⊤ t ⊤ t

⊥ ⊥ t t ⊥
v(α ∨ β)

Table 2.

v(β)
f t ⊤ ⊥

v(α)

f f f f f

t f t ⊤ ⊥
⊤ f ⊤ ⊤ f

⊥ f ⊥ f ⊥
v(α ∧ β)

Table 3.
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In the logicFOUR, a formulaα is considered to be satisfied iff the processor is informed that it is
true (it does not matter whether he is also informed thatα is false).

Notation 11 We denote by|=4 the relation onV4 ×Fc such that∀ v ∈ V4, ∀ α ∈ Fc, we have
v |=4 α iff 1 ∈ v(α).

When theFOUR semantic structure〈Fc,V4, |=4〉 is under consideration, proof systems for⊢ are
available. For instance, A. Avron and O. Arieli provided several ones [AA94, AA96, AA98].

Note that theFOUR semantic structure satisfies(A0) and(A3). In addition, ifA is finite, then
(A1) is also satisfied. However,(A2) is not satisfied by this structure. In Section 2.1.3, we turn to a
many-valued semantic structure which satisfies(A2).

2.1.3 The semantic structure defined byJ3

The logicJ3 was introduced in [DdC70] to answer a question posed in 1948 by S. Jaśkowski, who
was interested in systematizing theories capable of containing contradictions, especially if they occur
in dialectical reasoning. The step from informal reasoningunder contradictions and formal reasoning
with databases and information was done in [CMdA00] (also specialized for real database models in
[dACM02]), where another formulation ofJ3 calledLFI1 was introduced, and its first-order version,
semantics and proof theory were studied in detail. Investigations ofJ3 have also been made in e.g.
[Avr91], where richer languages than ourLc were considered.

The valuations of the logicJ3 can be given the same meaning as those of the logicFOUR,
except that the consideration is restricted to those systems where the sources, taken as a whole,
always give some information about an atom. More formally,

Definition 12 We say thatv is a three-valued valuationiff v is a function fromFc to {f , t,⊤} such
thatv(true) = t, v(false) = f and∀ α, β ∈ Fc,
1 ∈ v(¬α) iff 0 ∈ v(α);
0 ∈ v(¬α) iff 1 ∈ v(α);
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β);
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and0 ∈ v(β);
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and1 ∈ v(β);
0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β).
We denote byV3 the set of all three-valued valuations.

As previously, the definition may become more accessible if we see the three-valued valuations as
those functions that satisfy Tables 4, 5, and 6 below:

v(α) v(¬α)
f t

t f

⊤ ⊤
Table 4.

v(β)
f t ⊤

v(α)
f f t ⊤
t t t t

⊤ ⊤ t ⊤
v(α ∨ β)

Table 5.

v(β)
f t ⊤

v(α)
f f f f

t f t ⊤
⊤ f ⊤ ⊤

v(α ∧ β)
Table 6.

We turn to the satisfaction relation.

Notation 13 We denote by|=3 the relation onV3 ×Fc such that∀ v ∈ V3, ∀ α ∈ Fc, we have
v |=3 α iff 1 ∈ v(α).

7



When theJ3 semantic structure〈Fc,V3, |=3〉 is considered, proof systems for⊢ are available. Some
have been provided in e.g. [Avr91, DdC70] and in chapter IX of[Eps90].
TheJ3 structure satisfies(A0), (A3) and(A2). In addition, ifA is finite, then it satisfies(A1) too.

2.2 Choice functions

2.2.1 Definitions and properties

In many situations, an agent has some way to choose in any set of valuationsV , those elements that
are preferred (the bests, the more normal, etc.), not necessarily in the absolute sense, but when the
valuations inV are the only ones under consideration. In Social Choice, this is modelled by choice
functions [Che54, Arr59, Sen70, AM81, Leh02, Leh01].

Definition 14 LetV be a set,V ⊆ P(V), W ⊆ P(V), andµ a function fromV to W.
We say thatµ is achoice functioniff ∀ V ∈ V, µ(V ) ⊆ V .

Several properties for choice functions have been put in evidence by researchers in Social Choice.
For the sake of completeness, we present two important ones though we will not investigate them in
the present paper (a better presentation can be found in [Leh01]).

SupposeW is a set of valuations,V is a subset ofW , andv ∈ V is a preferred valuation ofW .
Then, a natural requirement is thatv is a preferred valuation ofV . Indeed, in many situations, the
larger a set is, the harder it is to be a preferred element of it, and he who can do the most can do the
least. This property appears in [Che54] and has been given the name Coherence in [Mou85].

We turn to the second property. SupposeW is a set of valuations,V is a subset ofW , and suppose
all the preferred valuations ofW belong toV . Then, they are expected to include all the preferred
valuations ofV . The importance of this property has been put in evidence by [Aiz85, AM81] and
has been given the name Local Monotonicity in e.g. [Leh01].

In [Sch00], Schlechta showed that Coherence and Local Monotonicity characterize those choice
functions that can be defined by a binary preference relationon states labelled by valuations (in the
style of e.g. Kraus, Lehmann, and Magidor [KLM90]).

Now, we turn to properties relevant for the paper, i.e. properties which characterize those choice
functions that can be defined by a pivot (in the style of e.g. D.Makinson [Mak03, Mak05]). A pivot
is a fixed subset of valuations which are considered to be the important ones in the absolute sense.
Details will be given in Section 2.2.2.

Definition 15 LetV be a set,V ⊆ P(V), W ⊆ P(V), andµ a choice function fromV to W.
We say thatµ is strongly coherent(SC) iff ∀ V, W ∈ V,

µ(W ) ∩ V ⊆ µ(V ).

Suppose〈F ,V , |=〉 is a semantic structure.
We say thatµ is definability preserving(DP) iff

∀ V ∈ V ∩D, µ(V ) ∈ D.

In addition, supposeV ∈ V.
We say thatµ is universe-codefinable(UC) iff

V \ µ(V) ∈ D.
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Definability Preservation has been put in evidence first in [Sch92]. One of its advantages is that when
the choice functions under consideration satisfy it, we will provide characterizations with purely
syntactic conditions. To the author knowledge, Strong Coherence and Universe-codefinability are
first introduced in the present paper. An advantage of Universe-codefinability is that it provides a
link with X-logics [FRS01]. We will see it in Section 5.

Now, we turn to a last property:

Definition 16 SupposeL is a language,¬ a unary connective ofL, F the set of all wffs ofL,
〈F ,V , |=〉 a semantic structure,V ⊆ P(V), W ⊆ P(V), andµ be a choice function fromV to W.
We say thatµ is coherency preserving(CP) iff

∀ V ∈ V ∩C, µ(V ) ∈ C.

To the author knowledge, Coherency Preservation has been first introduced in [BN05]. An advantage
of it is that when the choice functions under consideration satisfy it, we will not need to assume(A2)
to show our characterizations (in the discriminative case).

2.2.2 Pivots

Suppose some valuations are considered to be negligible in the absolute sense and collect the others
in a setI, called a pivot. Then,I defines naturally a choice functionµI which chooses in any set of
valuations, simply those elements which belong toI. More formally,

Definition 17 LetV be a set.
We say thatI is a pivot onV iff I ⊆ V .
Let I be a pivot onV .
We denote byµI the function fromP(V) toP(V) such that∀ V ⊆ V ,

µI(V ) = V ∩ I.

Pivots have been investigated extensively by D. Makinson in[Mak03, Mak05]. In the present sec-
tion, we show that the properties of Strong Coherence, Definability Preservation, and Universe-
codefinability characterize those choice functions that can be defined by a pivot. More precisely:

Proposition 18 LetV be a set,V,W ⊆ P(V), andµ a choice function fromV to W. Then:

(0) µ is SC iff there exists a pivotI onV such that∀ V ∈ V, µ(V ) = µI(V ).

Suppose〈F ,V , |=〉 is a semantic structure andV ∈ V. Then:

(1) µ is SC and DP iff there exists a pivotI onV such thatI ∈ D and∀ V ∈ V, µ(V ) = µI(V );

(2) µ is SC and UC iff there exists a pivotI onV such thatV\I ∈ D and∀V ∈ V, µ(V ) = µI(V ).

Proof Proof of(0). Direction: “→”.
Let I = {v ∈ V : ∃ V ∈ V, v ∈ µ(V )} and supposeV ∈ V.
If v ∈ µ(V ), thenv ∈ V and, by definition ofI, v ∈ I. Consequently,µ(V ) ⊆ V ∩ I.
If v ∈ V ∩ I, then∃W ∈ V, v ∈ µ(W ), thus, by SC,v ∈ µ(W ) ∩ V ⊆ µ(V ).
Consequently,V ∩ I ⊆ µ(V ).

Direction: “←”.
There existsI ⊆ V such that∀ V ∈ V, µ(V ) = V ∩ I.

9



We show thatµ satisfies SC.
Let V, W ∈ V. Then,µ(W ) ∩ V = W ∩ I ∩ V ⊆ I ∩ V = µ(V ).

Proof of(1). Direction: “→”.
Take the sameI as for(0). Then, by verbatim the same proof,∀ V ∈ V, µ(V ) = V ∩ I.
It remains to show thatI ∈ D.
As M∅ = V , V ∈ D. Thus, asµ is DP,µ(V) ∈ D. But,µ(V) = V ∩ I = I.

Direction: “←”.
Verbatim the proof of(0), except that in additionI ∈ D.
We show thatµ is DP. LetV ∈ V ∩D.
Then,∃ Γ ⊆ F , MΓ = V . Similarly, asI ∈ D, ∃∆ ⊆ F , M∆ = I.
Therefore,µ(V ) = V ∩ I = MΓ ∩M∆ = MΓ∪∆ ∈ D.

Proof of(2). Direction: “→”.
Take the sameI as for(0). Then, by verbatim the same proof,∀ V ∈ V, µ(V ) = V ∩ I.
It remains to showV \ I ∈ D. As µ is UC,V \ µ(V) ∈ D. But,V \ µ(V) = V \ (V ∩ I) = V \ I.

Direction: “←”.
Verbatim the proof of(0), except that in additionV \ I ∈ D.
We show thatµ is UC:V \ µ(V) = V \ (V ∩ I) = V \ I ∈ D.

2.3 Pivotal(-discriminative) consequence relations

2.3.1 Definitions

Suppose we are given a semantic structure and a choice function µ on the valuations. Then, it is
natural to conclude a formulaα from a set of formulasΓ iff every model forΓ chosen byµ is a
model forα. More formally:

Definition 19 Let 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F .
We say that|∼ is apivotal consequence relationiff there exists a SC choice functionµ from D to
P(V) such that∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆Mα

In addition, ifµ is DP, CP, etc., then so is|∼.

We called these relations “pivotal” because, in the light ofProposition 18, they can be defined equiv-
alently with pivots, instead of SC choice functions. Their importance has been put in evidence
by D. Makinson in e.g. [Mak03, Mak05], where he showed that they constitute easy conceptual
passage from basic to plausible non-monotonic consequencerelations. Indeed, they are perfectly
monotonic but already display some of the distinctive features (i.e. the choice functions) of plausi-
ble non-monotonic relations. Note that pivotal (resp. DP pivotal) consequence relations correspond
to Makinson’s pivotal-valuation (resp. pivotal-assumption) relations. We will give an example of
how they can be used to draw plausible conclusions from incomplete information in Section 2.3.2.

Moreover, if a many-valued semantic structure is considered, they lead to rational and non-trivial
conclusions is spite of the presence of contradictions and are thus useful to treat both incomplete and
inconsistent information. However, they will not satisfy the Disjunctive Syllogism. We will give an
example with theFOUR semantic structure in Section 2.3.3.

10



Characterizations of pivotal consequence relations, valid in classical frameworks, can be found
in the literature. For instance, the following result appears to be part of folklore for decades: the DP
pivotal consequence relations correspond precisely to those supraclassical closure operations that are
compact and satisfy Disjunction in the premisses. For more details see e.g. [Rot01, Mak03, Mak05].

Now, we turn to a qualified version of pivotal consequence. Itcaptures the idea that the contra-
dictions in the conclusions should be rejected.

Definition 20 LetL be a language,¬ a unary connective ofL, F the set of all wffs ofL, 〈F ,V , |=〉
a semantic structure, and|∼ a relation onP(F)×F .
We say that|∼ is apivotal-discriminative consequence relationiff there exists a SC choice function
µ from D toP(V) such that∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆Mα andµ(MΓ) 6⊆M¬α

In addition, ifµ is DP, CP, etc., then so is|∼.

If a classical semantic structure is considered, the discriminative version does not bring something
really new. Indeed, the only difference will be to conclude nothing instead of everything in the
face of inconsistent information. On the other hand, with a many-valued structure, the conclusions
are rational even from inconsistent information. The discriminative version will then reject the
contradictions in the conclusions, rendering the latter all the more rational.

2.3.2 Example in the classical framework

LetL be a classical propositional language of which the atoms arer, q, andp. Intuitively, r means
Nixon is a republican,q means Nixon is a quaker, andp means Nixon is a pacifist. LetF be the set
of all wffs of L, V the set of all classical two-valued valuations ofL, and|= the classical satisfaction
relation for these objects. Then,V is the set of the 8 following valuations:v0, v1, v2, v3, v4, v5, v6,
andv7, which are defined in the obvious way by the following table:

r q p

v0 0 0 0
v1 0 0 1
v2 0 1 0
v3 0 1 1
v4 1 0 0
v5 1 0 1
v6 1 1 0
v7 1 1 1

Now, consider the class of all republicans and the class of all quakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normal iffhe is a pacifist. And, consider that a
valuation is negligible iff (in it) Nixon is a non-normal individual of some class. Then, collect the
non-negligible valuations in a pivotI. More formally:

I = {v ∈ V : if v |= r, thenv |= ¬p; and if v |= q, thenv |= p}.

Finally, let |∼ be the pivotal consequence relation defined by the SC choice functionµI .
Then,|∼ leads to “jump” to plausible conclusions from incomplete information. For instance,

r |∼ ¬p andq |∼ p. But, we fall into triviality if we face new information thatcontradict previous
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“hasty” conclusions. For instance,{r, p} |∼ α, ∀ α ∈ L, and{q,¬p} |∼ α, ∀ α ∈ L. This is the
price to pay for being monotonic, whereas conclusions that are only plausible are accepted.

In addition, |∼ is not paraconsistent and some sets of formulas are rendereduseless because
there is no model in the pivot for them, though there are models for them. For instance,{q, r} |∼ α,
∀ α ∈ L.

2.3.3 Example in theFOUR framework

Consider theFOUR semantic structure〈Fc,V4, |=4〉 and supposeA = {r, q, p} (these objects have
been defined in Section 2.1.2). In addition, make the same considerations about Nixon, the classes,
normality, etc., as in Section 2.3.2, except that this time avaluation is considered to be negligible iff
(in it) the processor is informed that Nixon is an individualof some class, but he is not informed that
Nixon is a normal individual of that class. See Section 2.1.2for recalls about the sources-processor
systems. Again, collect the non-negligible valuations in apivot I. More formally:

I = {v ∈ V4 : if v |= r, thenv |= ¬p; and if v |= q, thenv |= p}.

Let |∼ be the pivotal consequence relation defined by the SC choice functionµI .
Then, again|∼ leads to “jump” to plausible conclusions from incomplete information. For in-

stance,r |∼ ¬p andq |∼ p. Moreover, though “hasty” conclusions are never withdrawn, we do not
fall into triviality when we face new information that contradict them. For instance,{r, p} |∼ p and
{r, p} |∼ ¬p and{r, p} |∼ r and{r, p} 6|∼ ¬r.

In addition, |∼ is paraconsistent. For instance,{p,¬p, q} |∼ p and {p,¬p, q} |∼ ¬p and
{p,¬p, q} |∼ q and{p,¬p, q} 6|∼ ¬q. And, less sets of formulas are rendered useless because
there is no model in the pivot for them, though there are models for them. For instance, this time,
{q, r} |∼ p and{q, r} |∼ ¬p and{q, r} |∼ q and{q, r} 6|∼ ¬q and{q, r} |∼ r and{q, r} 6|∼ ¬r.

However,|∼ does not satisfy the Disjunctive Syllogism. Indeed, for instance,{¬r, r ∨ q} 6|∼ q.

3 Characterizations

The first contributions of the paper are characterizations (half of time, with purely syntactic condi-
tions) of several families of pivotal and pivotal-discriminative consequence relations. Sometimes,
we will need to make some assumptions about the semantic structure under consideration. However,
no assumption will be needed for the two following families:

• the pivotal consequence relations (Section 3.2);

• the DP pivotal consequence relations (Section 3.1).

We will assume(A0) for:

• the UC pivotal consequence relations (Section 3.2).

We will need(A3) and(A1) for:

• the CP pivotal-discriminative consequence relations (Section 3.4);

• the CP DP pivotal-discriminative consequence relations (Section 3.3).

We will assume(A3), (A1), and(A2) for:
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• the pivotal-discriminative consequence relations (Section 3.4);

• the DP pivotal-discriminative consequence relations (Section 3.3).

We will assume(A0), (A3), and(A1) for:

• the CP UC pivotal-discriminative consequence relations (Section 3.4).

We will need(A0), (A3), (A1), and(A2) for:

• the UC pivotal-discriminative consequence relations (Section 3.4).

3.1 With Definability Preservation and without Discriminat ion

In the present section, we provide, in a general framework, acharacterization for the family of all
DP pivotal consequence relations. We will use techniques very similar to those of [BN05] (see
the DP and non-discriminative case). The latter are themselves inspired by the work, in a classical
propositional framework, of K. Schlechta (see Proposition3.1 of [Sch00]). The idea is to get to the
remarkable equality:µ(MΓ) = M|∼(Γ). Thanks to it, properties like Strong Coherence can be easily
translated in syntactic terms (i.e. using only the language, ⊢, |∼, etc.).

Definition 21 Let 〈F ,V , |=〉 be a semantic structure and|∼ be a relation onP(F)×F .
Then, consider the following conditions:∀ Γ, ∆ ⊆ F ,

(|∼0) if ⊢(Γ) = ⊢(∆), then|∼(Γ) = |∼(∆);

(|∼1) |∼(Γ) = ⊢(|∼(Γ));

(|∼2) Γ ⊆ |∼(Γ);

(|∼3) |∼(Γ) ⊆ ⊢(|∼(∆), Γ).

Note that those conditions are purely syntactic when there is a proof system available for⊢ (which
is the case with e.g. the classical,FOUR, andJ3 semantic structures).

Proposition 22 Let 〈F ,V , |=〉 be a semantic structure and|∼ be a relation onP(F)×F .
Then,|∼ is an DP pivotal consequence relation iff|∼ satisfies(|∼0), (|∼1), (|∼2), and(|∼3).

Proof Direction: “→”.
There exists an DP SC choice functionµ from D toP(V) such that∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
We will show:
(0) ∀ Γ ⊆ F , µ(MΓ) = M|∼(Γ);
(1) |∼ satisfies(|∼0);
(2) |∼ satisfies(|∼1);
(3) |∼ satisfies(|∼2);
(4) |∼ satisfies(|∼3).

Direction: “←”.
Suppose|∼ satisfies(|∼0), (|∼1), (|∼2), and(|∼3).
Let µ be the function fromD toP(V) such that∀ Γ ⊆ F , µ(MΓ) = M|∼(Γ).
We will show:
(5) µ is well-defined;
(6) µ is a DP choice function;
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(7) µ is SC;
(8) ∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).

Proof of(0). Let Γ ⊆ F . As µ is DP,µ(MΓ) ∈ D. Thus,∃∆ ⊆ F , µ(MΓ) = M∆.
Therefore,µ(MΓ) = M∆ = MT (M∆) = MT (µ(MΓ)) = M|∼(Γ).

Proof of(1). Let Γ, ∆ ⊆ F and suppose⊢(Γ) = ⊢(∆).
Then,MΓ = M∆. Thus,|∼(Γ) = T (µ(MΓ)) = T (µ(M∆)) = |∼(∆).

Proof of(2). Let Γ ⊆ F . Then,|∼(Γ) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (M|∼(Γ)) = ⊢(|∼(Γ)).

Proof of(3). Let Γ ⊆ F . Then,Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = |∼(Γ).

Proof of(4). Let Γ, ∆ ⊆ F . Then, by(0) and SC,
M|∼(∆),Γ = M|∼(∆) ∩MΓ = µ(M∆) ∩MΓ ⊆ µ(MΓ) = M|∼(Γ).
Therefore, by(|∼1), we get|∼(Γ) = ⊢(|∼(Γ)) = T (M|∼(Γ)) ⊆ T (M|∼(∆),Γ) = ⊢(|∼(∆), Γ).

Proof of(5). Let Γ, ∆ ⊆ F and supposeMΓ = M∆.
Then,⊢(Γ) = ⊢(∆). Thus, by(|∼0), M|∼(Γ) = M|∼(∆).

Proof of(6). Let Γ ⊆ F . Then, by(|∼2), µ(MΓ) = M|∼(Γ) ⊆MΓ.
Consequently,µ is a choice function. In addition,µ is obviously DP.

Proof of(7). Let Γ, ∆ ⊆ F .
Then, by(|∼3), we getµ(M∆) ∩MΓ = M|∼(∆) ∩MΓ = M|∼(∆),Γ ⊆M|∼(Γ) = µ(MΓ).

Proof of(8). Let Γ ⊆ F . Then, by(|∼1), |∼(Γ) = ⊢(|∼(Γ)) = T (M|∼(Γ)) = T (µ(MΓ)).

3.2 Without Definability Preservation and without Discrimination

In the present section, we will investigate in particular the family of all pivotal consequence rela-
tions. Unlike in Section 3.1, the choice functions considered here are not necessarily definability
preserving. As a consequence, we will no longer have at our disposal the remarkable equality:
µ(MΓ) = M|∼(Γ). Therefore, we cannot translate properties like Strong Coherence in syntactic
terms. Moreover, we will put in evidence, in Section 4, some limits of what can be done in this
area. Approximatively, we will show, in an infinite classical framework, that there does not exist a
characterization (of the aforementioned family) made of conditions which are universally quantified
and of limited size.

We provide a solution with semi-syntactic conditions. To doso, we will use techniques very
similar to those of [BN05] (see the non-DP and non-discriminative case). The latter are themselves
inspired by the work of K. Schlechta (see Proposition 5.2.5 of [Sch04]). Technically, the idea begins
by building from any functionf , a SC choice functionµf such that wheneverf “covers” some SC
choice function, it necessarily coversµf .

Definition 23 LetV be a set,V ⊆ P(V), W ⊆ P(V) andf a function fromV to W.
We denote byµf the function fromV toP(V) such that∀ V ∈ V,

µf (V ) = {v ∈ V : ∀W ∈ V, if v ∈W, thenv ∈ f(W )}.
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Lemma 24 Let V be a set,V ⊆ P(V), W ⊆ P(V) andf a function fromV to W.
Then,µf is a SC choice function.

Proof µf is obviously a choice function. We show that it satisfies Strong Coherence.
Suppose the contrary, i.e. suppose∃ V, W ∈ V and∃ v ∈ µf (W ) ∩ V such thatv 6∈ µf (V ).
Then, asv ∈ V andv 6∈ µf (V ), we have∃ Z ∈ V, v ∈ Z, andv 6∈ f(Z).
Therefore, simply by definition ofµf , v 6∈ µf (W ), which is impossible.

Lemma 25 Let V be a set,V, W, andX subsets ofP(V), f a function fromV to W, andµ a SC
choice function fromV to X such that∀ V ∈ V, f(V ) = MT (µ(V )). Then:

(0) ∀ V ∈ V, f(V ) = MT (µf (V )).

Suppose〈F ,V , |=〉 is a semantic structure satisfying(A0), D ⊆ V, andµ is UC. Then:

(1) µf (V) = µ(V).

Proof Proof of(0). SupposeV ∈ V. We showf(V ) = MT (µf (V )).
Case 1:∃ v ∈ µ(V ), v 6∈ µf (V ).
As µ(V ) ⊆ V , we havev ∈ V .
Thus, by definition ofµf , ∃W ∈ V, v ∈W , andv 6∈ f(W ) = MT (µ(W )) ⊇ µ(W ).
On the other hand, asµ is SC,µ(V ) ∩W ⊆ µ(W ). Thus,v ∈ µ(W ), which is impossible.
Case 2:µ(V ) ⊆ µf (V ).
Case 2.1:∃ v ∈ µf (V ), v 6∈ f(V ).
Then,∃W ∈ V, v ∈ W , andv 6∈ f(W ). Indeed, just takeV itself for the choice ofW .
Therefore, by definition ofµf , v 6∈ µf (V ), which is impossible.
Case 2.2:µf (V ) ⊆ f(V ).
Then,f(V ) = MT (µ(V )) ⊆MT (µf (V )) ⊆MT (f(V )) = MT (MT (µ(V ))) = MT (µ(V )) = f(V ).

Proof of(1). Direction: “⊆”.
Suppose the contrary, i.e. suppose∃ v ∈ µf (V), v 6∈ µ(V).
Then,v ∈ V \ µ(V). But, asµ is UC,V \ µ(V) ∈ D ⊆ V.
On the other hand, asv ∈ µf (V), we get∀W ∈ V, if v ∈ W, thenv ∈ f(W ).
Therefore,v ∈ f(V \ µ(V)) = MT (µ(V\µ(V))).
But, we will show:
(1.0) µ(V \ µ(V)) = ∅.
Therefore,MT (µ(V\µ(V))) = MT (∅) = MF .
But, by(A0), MF = ∅. Therefore,v ∈ ∅, which is impossible.

Direction: “⊇”.
Suppose the contrary, i.e. suppose∃ v ∈ µ(V), v 6∈ µf (V).
As v ∈ V andv 6∈ µf (V), we get∃W ∈ V, v ∈ W andv 6∈ f(W ) = MT (µ(W )) ⊇ µ(W ).
But, asµ is SC,µ(V) ∩W ⊆ µ(W ). Therefore,v ∈ µ(W ), which is impossible.

Proof of(1.0). Suppose the contrary, i.e. suppose∃ v ∈ µ(V \ µ(V)).
As µ is SC,µ(V \ µ(V)) ∩ V ⊆ µ(V). Thus,v ∈ µ(V). Therefore,v 6∈ V \ µ(V).
But, µ(V \ µ(V)) ⊆ V \ µ(V). Thus,v 6∈ µ(V \ µ(V)), which is impossible.

Definition 26 Let 〈F ,V , |=〉 be a semantic structure and|∼ be a relation onP(F)×F .
Then, consider the following conditions:∀ Γ ⊆ F ,
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(|∼4) |∼(Γ) = T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆)});

(|∼5) V \ {v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆)} ∈ D.

Proposition 27 Let 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F . Then:

(0) |∼ is a pivotal consequence relation iff|∼ satisfies(|∼4).

Suppose〈F ,V , |=〉 satisfies(A0). Then:

(1) |∼ is a UC pivotal consequence relation iff|∼ satisfies(|∼4) and(|∼5).

Proof Proof of(0). Direction: “→”
There exists a SC choice functionµ from D toP(V) such that∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
Let f be the function fromD to D such that∀ V ∈ D, we havef(V ) = MT (µ(V )).
By Lemma 25,∀ V ∈ D, we havef(V ) = MT (µf (V )).
Note that∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) = M|∼(Γ).
We show that(|∼4) holds. LetΓ ⊆ F .
Then,|∼(Γ) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (f(MΓ)) = T (MT (µf (MΓ))) = T (µf(MΓ)) =
T ({v ∈MΓ : ∀W ∈ D, if v ∈W , thenv ∈ f(W )}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈ f(M∆)}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆)}).

Direction: “←”.
Suppose|∼ satisfies(|∼4).
Let f be the function fromD to D such that∀ Γ ⊆ F , we havef(MΓ) = M|∼(Γ).
Note thatf is well-defined. Indeed, ifΓ, ∆ ⊆ F andMΓ = M∆, then, by(|∼4), |∼(Γ) = |∼(∆).
In addition, by(|∼4), we clearly have∀ Γ ⊆ F , |∼(Γ) = T (µf(MΓ)).
And finally, by Lemma 24,µf is a SC choice function.

Proof of(1). Direction: “→”.
Verbatim the proof of(0), except that in addition(A0) holds andµ is UC.
We show that|∼ satisfies(|∼5). As µ is UC,V \ µ(V) ∈ D. But, by Lemma 25,µ(V) = µf (V) =
{v ∈ V : ∀W ∈ D, if v ∈ W , thenv ∈ f(W )} =
{v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈ f(M∆)} =
{v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆)}.

Direction: “←”.
Verbatim the proof of(0), except that in addition(A0) holds and|∼ satisfies(|∼5).
But, because of(|∼5), V \ µf (V) ∈ D. Thereforeµf is UC.
Note that in this direction(A0) is not used.

3.3 With Definability Preservation and with Discrimination

In the present section, we will characterize certain families of DP pivotal-discriminative consequence
relations. We need an inductive construction introduced in[BN05]:

Notation 28 IN denotes the natural numbers:{0, 1, 2, . . .} and
IN+ the positive natural numbers:{1, 2, . . .}.
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Definition 29 LetL be a language,¬ a unary connective ofL, F the set of all wffs ofL, 〈F ,V , |=〉
a semantic structure,|∼ a relation onP(F)×F , andΓ ⊆ F . Then,

H1(Γ)
def
= {¬β ∈ F : β ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) and¬β 6∈ ⊢(Γ, |∼(Γ))}.

Let i ∈ IN with i ≥ 2. Then,

Hi(Γ)
def
= {¬β ∈ F :

{

β ∈ ⊢(Γ, |∼(Γ), H1(Γ), . . . , Hi−1(Γ)) \ |∼(Γ) and
¬β 6∈ ⊢(Γ, |∼(Γ), H1(Γ), . . . , Hi−1(Γ))

}.

H(Γ)
def
=

⋃

i∈IN+

Hi(Γ).

We turn to the representation result:

Definition 30 SupposeL is a language,¬ a unary connective ofL, ∨ a binary connective ofL, F
the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure, and|∼ a relation onP(F)×F .
Then, consider the following conditions:∀ Γ, ∆ ⊆ F , ∀ α, β ∈ F ,

(|∼6) if β ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) and¬α ∈ ⊢(Γ, |∼(Γ),¬β), thenα 6∈ |∼(Γ);

(|∼7) if α ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) andβ ∈ ⊢(Γ, |∼(Γ),¬α) \ |∼(Γ), thenα ∨ β 6∈ |∼(Γ);

(|∼8) if α ∈ |∼(Γ), then¬α 6∈ ⊢(Γ, |∼(Γ));

(|∼9) |∼(Γ) ∪H(Γ) ⊆ ⊢(∆, |∼(∆), H(∆), Γ);

(|∼10) if Γ is consistent, then|∼(Γ) is consistent,Γ ⊆ |∼(Γ), and⊢(|∼(Γ)) = |∼(Γ).

Note that those conditions are purely syntactic when there is a proof system available for⊢

Proposition 31 SupposeL is a language,¬ a unary connective ofL, ∨ and∧ binary connectives
of L, F the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A3) and(A1), and|∼ a
relation onP(F)×F . Then:

(0) |∼ is a CP DP pivotal-discriminative consequence relation iff|∼ satisfies(|∼0), (|∼6), (|∼7),
(|∼8), (|∼9), and(|∼10).

Suppose〈F ,V , |=〉 satisfies(A2). Then:

(1) |∼ is a DP pivotal-discriminative consequence relation iff|∼ satisfies(|∼0), (|∼6), (|∼7), (|∼8)
and(|∼9).

Before we show Proposition 31, we need to introduce Lemmas 32and 33 below, taken from [BN05]:

Lemma 32 From [BN05].
SupposeL is a language,¬ a unary connective ofL,∨ and∧ binary connectives ofL,F the set of all
wffs of L, 〈F ,V , |=〉 a semantic structure satisfying(A3) and(A1), and|∼ a relation onP(F)×F
satisfying(|∼6), (|∼7), and(|∼8).
Then,∀ Γ ⊆ F , |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)).
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Lemma 33 From [BN05].
SupposeL is a language,¬ a unary connective ofL, ∨ and∧ binary connectives ofL, F the set of
all wffs of L, 〈F ,V , |=〉 a semantic structure satisfying(A3) and(A1), V ⊆ P(V), µ a DP choice
function fromD to V, |∼ the relation onP(F) × F such that∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)), and
Γ ⊆ F . Then:

(0) |∼ satisfies(|∼6), (|∼7), and(|∼8);

(1) if 〈F ,V , |=〉 satisfies(A2) too, thenµ(MΓ) = MΓ,|∼(Γ),H(Γ);

(2) if µ is coherency preserving, thenµ(MΓ) = MΓ,|∼(Γ),H(Γ).

We come to the proof ofProposition 31.

Proof Proof of(0). Direction: “→”.
There exists a CP DP SC choice functionµ from D toP(V) such that
∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
We will show:
(0.0) |∼ satisfies(|∼0).
By Lemma 33(0), |∼ satisfies(|∼6), (|∼7), and(|∼8).
By Lemma 33(2) and Strong Coherence ofµ, |∼ satisfies(|∼9).
We will show:
(0.1) |∼ satisfies satisfies(|∼10).

Direction: “←”.
Suppose|∼ satisfies(|∼0), (|∼6), (|∼7), (|∼8), (|∼9), and(|∼10).
Then, letµ be the function fromD toP(V) such that∀ Γ ⊆ F , µ(MΓ) = MΓ,|∼(Γ),H(Γ).
We will show:
(0.2) µ is well-defined.
Clearly,µ is a DP choice function.
In addition, as|∼ satisfies(|∼9), µ is strongly coherent.
We will show:
(0.3) µ is CP.
And finally, by Lemma 32,∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).

Proof of(0.0). Let Γ, ∆ ⊆ F and suppose⊢(Γ) = ⊢(∆). Then,MΓ = M∆.
Therefore,|∼(Γ) = Td(µ(MΓ)) = Td(µ(M∆)) = |∼(∆).

Proof of(0.1). Let Γ ⊆ F and supposeΓ is consistent.
Then,MΓ ∈ D ∩C. Thus, asµ is CP,µ(MΓ) ∈ C. Therefore,Td(µ(MΓ)) = T (µ(MΓ)).
Consequently,Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = Td(µ(MΓ)) = |∼(Γ).
In addition,M|∼(Γ) = MTd(µ(MΓ)) = MT (µ(MΓ)). But,µ(MΓ) ∈ C. Thus,MT (µ(MΓ)) ∈ C.
Consequently,|∼(Γ) is consistent.
And finally, |∼(Γ) = Td(µ(MΓ)) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (M|∼(Γ)) = ⊢(|∼(Γ)).

Proof of(0.2). Let Γ, ∆ ⊆ F and supposeMΓ = M∆.
Then,⊢(Γ) = ⊢(∆). Thus, by(|∼0), |∼(Γ) = |∼(∆).
Consequently,H(Γ) = H(∆). Therefore,MΓ,|∼(Γ),H(Γ) = M∆,|∼(∆),H(∆).

Proof of(0.3). SupposeV ∈ D ∩C. Then,∃ Γ ⊆ F , V = MΓ.
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Case 1:H1(Γ) 6= ∅.
Thus,∃ β ∈ F , β 6∈ |∼(Γ) andMΓ,|∼(Γ) ⊆Mβ.
By (|∼10), Γ ⊆ |∼(Γ) and⊢(|∼(Γ)) = |∼(Γ). Thus,MΓ,|∼(Γ) = M|∼(Γ). Thus,M|∼(Γ) ⊆Mβ.
Therefore,β ∈ T (M|∼(Γ)) = ⊢(|∼(Γ)) = |∼(Γ), which is impossible.
Case 2:H1(Γ) = ∅.
Then,H(Γ) = ∅. Thus,µ(V ) = µ(MΓ) = MΓ,|∼(Γ),H(Γ) = M|∼(Γ).
But, by(|∼10), |∼(Γ) is consistent. Therefore,M|∼(Γ) ∈ C.

Proof of(1). Direction: “→”.
Verbatim the proof of(0), except thatµ is no longer CP, whilst(A2) now holds.
Note that, in(0), CP was used only to show(|∼9) and(|∼10).
But, (|∼10) is no longer required to hold and we are going to get(|∼9) by another mean.
Indeed, by Lemma 33(1) and Strong Coherence ofµ, (|∼9) holds.

Direction: “←”.
Verbatim the proof of(0), except that(|∼10) does no longer hold, whilst(A2) now holds.
However, in(0), (|∼10) was used only to show thatµ is CP, which is no longer required.
Note that we do not need to use(A2) in this direction.

3.4 Without Definability Preservation and with Discriminat ion

Unlike in Section 3.3, the conditions of the present sectionwill not be purely syntactic. The trans-
lation of properties like Strong Coherence in syntactic terms is blocked because we do no longer
have the following useful equality:µ(MΓ) = MΓ,|∼(Γ),H(Γ), which hold when the choice functions
under consideration are definability preserving (but this is not the case here). Thanks to Lemmas 24
and 25 (stated in Section 3.2), we will provide a solution with semi-syntactic conditions.

Definition 34 LetL be a language,¬ a unary connective ofL, F the set of all wffs ofL, 〈F ,V , |=〉
a semantic structure, and|∼ a relation onP(F)×F .
Then, consider the following condition:∀ Γ ⊆ F ,

(|∼11) ⊢(Γ, |∼(Γ), H(Γ)) = T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆),H(∆)});

(|∼12) V \ {v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆),H(∆)} ∈ D.

Proposition 35 SupposeL is a language,¬ a unary connective ofL, ∨ and∧ binary connectives
of L, F the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A3) and(A1), and|∼ a
relation onP(F)×F . Then:

(0) |∼ is a CP pivotal-discriminative consequence relation iff|∼ satisfies(|∼0), (|∼6), (|∼7), (|∼8),
(|∼10), and(|∼11).

If 〈F ,V , |=〉 satisfies(A0) too, then:

(1) |∼ is a CP UC pivotal-discriminative consequence relation iff|∼ satisfies(|∼0), (|∼6), (|∼7),
(|∼8), (|∼10), (|∼11), and(|∼12).

If 〈F ,V , |=〉 satisfies(A2) too, then:

(2) |∼ is a pivotal-discriminative consequence relation iff|∼ satisfies(|∼0), (|∼6), (|∼7), (|∼8), and
(|∼11).
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If 〈F ,V , |=〉 satisfies(A0) and(A2) too, then:

(3) |∼ is a UC pivotal-discriminative consequence relation iff|∼ satisfies(|∼0), (|∼6), (|∼7), (|∼8),
(|∼11), and(|∼12).

Proof Proof of(2). Direction: “→”.
There exists a SC choice functionµ from D toP(V) such that∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
Then,|∼ satisfies obviously(|∼0).
Let f be the function fromD to D such that∀ V ∈ D, f(V ) = MT (µ(V )).
Then, by Lemma 25,∀ V ∈ D, f(V ) = MT (µf (V )).
Moreover,∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) ⊆MT (MΓ) = MΓ.
Therefore,f is a choice function.
Obviously,f is DP.
In addition,∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)) = Td(MT (µ(MΓ))) = Td(f(MΓ)).
Consequently, by Lemma 33(0), |∼ satisfies(|∼6), (|∼7), and(|∼8).
In addition, by Lemma 33(1), ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
We show that|∼ satisfies(|∼11). Let Γ ⊆ F .
Then,⊢(Γ, |∼(Γ), H(Γ)) = T (MΓ,|∼(Γ),H(Γ)) = T (f(MΓ)) = T (MT (µf(MΓ))) = T (µf (MΓ)) =
T ({v ∈MΓ : ∀W ∈ D, if v ∈W , thenv ∈ f(W )}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈ f(M∆)}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M∆,|∼(∆),H(∆)}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆),H(∆)}).

Direction: “←”.
Suppose(|∼0), (|∼6), (|∼7), (|∼8), and(|∼11) hold.
Let f be the function fromD to D such that∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
By (|∼0), f is well-defined.
By Lemma 32,∀ Γ ⊆ F , |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)) = Td(f(MΓ)).
By (|∼11), ∀ Γ ⊆ F , f(MΓ) = MT (µf (MΓ)).
Therefore,∀ Γ ⊆ F , |∼(Γ) = Td(f(MΓ)) = Td(MT (µf (MΓ))) = Td(µf (MΓ)).
But, by Lemma 24,µf is a SC choice function.

Proof of(3). Direction: “→”.
Verbatim the proof of(2), except that in addition(A0) holds andµ is UC.
We show that(|∼12) holds. Asµ is UC,V \ µ(V) ∈ D. But, by Lemma 25(1), µ(V) = µf (V) =
{v ∈ V : ∀W ∈ D, if v ∈ W , thenv ∈ f(W )} =
{v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈ f(M∆)} =
{v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M∆,|∼(∆),H(∆)} =
{v ∈ V : ∀∆ ⊆ F , if v ∈M∆, thenv ∈M|∼(∆),H(∆)}.

Direction: “←”.
Verbatim the proof of(2), except that in addition(A0) holds and|∼ satisfies(|∼12).
But, because of(|∼12), V \ µf (V) ∈ D. Thereforeµf is UC.
Note that(A0) is not used in this direction.

Proof of(0). Direction: “→”.
Verbatim the proof of(2), except that(A2) does no longer hold, whilstµ is now CP.
Note that(A2) was used, in(2), only to apply Lemma 33(1) to get∀Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
But, we will get this equality by another mean.
Indeed, ifV ∈ D ∩C, then, asµ is CP,µ(V ) ∈ C, thusMT (µ(V )) ∈ C, thusf(V ) ∈ C.
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Thereforef is CP.
Consequently, by Lemma 33(2), we get∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
In addition, by verbatim the proof of(0.1) of Proposition 31,|∼ satisfies(|∼10).

Direction: “←”.
Verbatim the proof of(2), except that(A2) does no longer hold, whilst|∼ satisfies now(|∼10).
But, in this direction,(A2) was not used in(2).
It remains to show thatµf is CP.
By verbatim the proof of(0.3) of Proposition 31, we get thatf is CP.
Let V ∈ D ∩C. Then,f(V ) ∈ C. Thus,MT (µf (V )) ∈ C. Thus,µf (V ) ∈ C and we are done.

Proof of(1). Direction: “→”.
Verbatim the proof of(2), except that(A2) does no longer hold, whilst(A0) now holds andµ is
now UC and CP.
Note that(A2) was used, in(2), only to apply Lemma 33(1) to get∀Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
But, by verbatim the proof of(0), we get anyway∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
In addition, by verbatim the proof of(0.1) of Proposition 31,|∼ satisfies(|∼10).
And, by verbatim the proof of(3), |∼ satisfies(|∼12).

Direction: “←”.
Verbatim the proof of(2), except that(A2) does no longer hold, whilst(A0) now holds and|∼
satisfies now(|∼10) and(|∼12).
But, in this direction,(A2) was not used in(2).
In addition, by verbatim the proof of(0), µf is CP.
And, because of(|∼12), V \ µf (V) ∈ D. Thereforeµf is UC.
Note that(A0) is not used in this direction.

4 Nonexistence of normal characterizations

LetF be a set,R a set of relations onP(F)×F , and|∼ a relation onP(F)×F .
Approximatively, a characterization ofR will be called “normal” iff it is made of conditions which
are universally quantified and “apply”|∼ at most|F| times. More formally,

Definition 36 LetF be a set andR a set of relations onP(F)×F .
We say that thatC is anormal characterizationof R iff C = 〈λ, Φ〉, whereλ ≤ |F| is a (finite or
infinite) cardinal andΦ is a relation onP(F)2λ such that for every relation|∼ onP(F)×F ,

|∼ ∈ R iff ∀ Γ1, . . . , Γλ ⊆ F , (Γ1, . . . , Γλ, |∼(Γ1), . . . , |∼(Γλ)) ∈ Φ.

Now, suppose there is no normal characterization ofR. Here are examples that will give the reader
(we hope) a good idea of which conditions cannot then characterizeR (and thus a good idea of the
range of our impossibility result: Proposition 38 below). To begin, consider the following condition:

(C1) ∀ Γ, ∆ ∈ F ⊆ P(F), |∼(Γ ∪ |∼(∆)) = ∅.

Then,(C1) cannot characterizeR. Indeed, suppose the contrary, i.e.
suppose|∼ ∈ R iff ∀ Γ, ∆ ∈ F, |∼(Γ ∪ |∼(∆)) = ∅.
Then, takeλ = 3 and the relationΦ such that(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) ∈ Φ iff
(Γ1, Γ2 ∈ F andΓ3 = Γ1 ∪ Γ5) entailsΓ6 = ∅.
Then,〈3, Φ〉 is a normal characterization ofR. We give the easy proof of this, so that the reader can
check that a convenient relationΦ can be found quickly for all simple conditions like(C1).
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Proof Direction: “→”.
Suppose|∼ ∈ R.
Then,∀ Γ, ∆ ∈ F, |∼(Γ ∪ |∼(∆)) = ∅.
We show∀ Γ1, Γ2, Γ3 ⊆ F , (Γ1, Γ2, Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
Let Γ1, Γ2, Γ3 ⊆ F .
We show(Γ1, Γ2, Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
SupposeΓ1, Γ2 ∈ F andΓ3 = Γ1 ∪ |∼(Γ2).
Then, asΓ1, Γ2 ∈ F, we get|∼(Γ1 ∪ |∼(Γ2)) = ∅.
But, |∼(Γ1 ∪ |∼(Γ2)) = |∼(Γ3). Therefore,|∼(Γ3) = ∅.

Direction: “←”.
Suppose∀ Γ1, Γ2, Γ3 ⊆ F , (Γ1, Γ2, Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
We show|∼ ∈ R. It suffices to show∀ Γ, ∆ ∈ F, |∼(Γ ∪ |∼(∆)) = ∅.
Let Γ, ∆ ∈ F.
Then, takeΓ1 = Γ, Γ2 = ∆, Γ3 = Γ1 ∪ |∼(Γ2).
We have(Γ1, Γ2, Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
In addition, we haveΓ1 ∈ F, Γ2 ∈ F, andΓ3 = Γ1 ∪ |∼(Γ2).
Therefore, by definition ofΦ, |∼(Γ3) = ∅.
But, |∼(Γ3) = |∼(Γ1 ∪ |∼(Γ2)) = |∼(Γ ∪ |∼(∆)).

But actually, we are not limited to simple operations (like e.g. ∪, ∩, \). More complex conditions
than(C1) are also excluded. For instance, letf be any function fromP(F) to P(F) and consider
the following condition:

(C2) ∀ Γ, ∆ ∈ F, |∼(f(Γ) ∪ |∼(∆)) = ∅.

Then,(C2) cannot characterizeR. Indeed, suppose it characterizesR.
Then, take the relationΦ such that(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) ∈ Φ iff
(Γ1, Γ2 ∈ F andΓ3 = f(Γ1) ∪ Γ5) entailsΓ6 = ∅.
It can be checked that〈3, Φ〉 is a normal characterization ofR. We leave the easy proof to the reader.

We can even go further combining universal (not existential) quantifiers and functions likef .
For instance, letF be a set of functions fromP(F) toP(F) and consider the following condition:

(C3) ∀ Γ, ∆ ∈ F, ∀ f ∈ F , |∼(f(Γ) ∪ |∼(∆)) = ∅.

Then,(C3) cannot characterizeR. Indeed, suppose it characterizesR.
Then, take the relationΦ such that(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) ∈ Φ iff
∀ f ∈ F , if (Γ1, Γ2 ∈ F andΓ3 = f(Γ1) ∪ Γ5), thenΓ6 = ∅.
It can be checked that〈3, Φ〉 is a normal characterization ofR. The easy proof is left to the reader.

In the present section, we will show, in an infinite classicalframework, that there is no normal
characterization for the family of all pivotal consequencerelations. In the same vein, in Proposi-
tion 5.2.15 of [Sch04], K. Schlechta showed that there does not exist a normal characterization for
the family of all preferential consequence relations.

Note that he used the word “normal” in a smaller sense (see Section 1.6.2.1 of [Sch04]). Ap-
proximatively, a characterization ofR is called normal by him iff it is made of conditions like(C1),
i.e. conditions which are universally quantified, “apply”|∼ at most|F| times, and use only elemen-
tary operations like e.g.∪, ∩, \ (complex structures, functions, etc are not allowed). We have been
inspired by the techniques of Schlechta. We will need Lemma 5.2.14 of [Sch04]:
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Lemma 37 From [Sch04].
SupposeA is infinite and〈Fc,V , |=〉 is a classical propositional semantic structure.
Let V ⊆ {V ⊆ V : |V | ≤ |A|} satisfying the two following conditions:
first, if V ∈ V andW ⊆ V , thenW ∈ V;
and second,∀ V, W ∈ V, if |V ∪W | ≤ |A|, thenV ∪W ∈ V.
Then,∀ Γ ⊆ Fc, ∃ VΓ ∈ V,

(0) T (
⋂

V ∈V
MT (MΓ\V )) = T (MΓ \ VΓ);

(1) ∀ V ∈ V, T (MΓ \ V ) ⊆ T (MΓ \ VΓ).

Recall thatA andFc have been introduced in Section 2.1.2. Note that the subscript in VΓ is written
just to keep in mind thatVΓ depends onΓ.

Proposition 38 SupposeA is infinite and〈Fc,V , |=〉 is a classical propositional semantic structure.
Then, there doesn’t exist a normal characterization for thefamily of all pivotal consequence relations.

Proof Suppose the contrary, i.e. suppose there exist a cardinalλ ≤ |Fc| and a relationΦ over
P(Fc)

2λ such that for every relation|∼ on P(Fc) × Fc, |∼ is a pivotal consequence relation iff
∀ Γ1, . . . , Γλ ⊆ Fc, (Γ1, . . . , Γλ, |∼(Γ1), . . . , |∼(Γλ)) ∈ Φ. Then, define:

V
def
= {V ⊆ V : |V | ≤ |A|}.

In addition, let|∼ be the relation onP(Fc)×Fc such that∀ Γ ⊆ Fc,
|∼(Γ) = T (

⋂

V ∈V
MT (MΓ\V )).

We will show:
(0) ∀ V ⊆ V , if |V | ≤ |A|, thenT (V) = T (V \ V );
(1) ∃ Γ1, . . . , Γλ ⊆ Fc such that(Γ1, . . . , Γλ, |∼(Γ1), . . . , |∼(Γλ)) 6∈ Φ.
Now, by lemma 37, we get:
(2) ∀ Γ ⊆ Fc, ∃ VΓ ∈ V, |∼(Γ) = T (MΓ \ VΓ) and∀ V ∈ V, T (MΓ \ V ) ⊆ T (MΓ \ VΓ).
Then, define:

X
def
=

⋃

Γ∈{Γ1,...,Γλ}
VΓ.

Then, we will show:
(3) ∀ Γ ∈ {Γ1, . . . , Γλ}, |∼(Γ) = T (MΓ \ X ).
Let µ be the function fromD toP(V) such that∀ V ∈ D, µ(V ) = V \ X .
We will show:
(4) µ is a SC choice function.
Let |∼′ be the pivotal consequence relation defined byµ.
We will show the following, which entails a contradiction:
(5) |∼′ is not a pivotal consequence relation.

Proof of(0). Let V ⊆ V and suppose|V | ≤ |A|.
Obviously,T (V) ⊆ T (V \ V ).
We showT (V \ V ) ⊆ T (V).
Suppose the contrary, i.e. suppose∃ α ∈ T (V \ V ), α 6∈ T (V).
Then,∃ v ∈ V , v 6∈Mα.
Now, define:

W
def
= {w ∈ V : for all atomq occurring inα, w(q) = v(q)}.

Then,∀ w ∈ W , we havew(α) = v(α) and thusw 6∈Mα.
As the number of atoms occurring inα is finite andA is infinite, we get|W | = 2|A|.
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Therefore,|V | ≤ |A| < |W |. Thus,∃ w ∈W \ V ⊆ V \ V .
Thus,V \ V 6⊆Mα. Therefore,α 6∈ T (V \ V ), which is impossible.

Proof of(1). It suffices to show that|∼ is not a pivotal consequence relation.
Suppose the contrary, i.e. suppose there exists a SC choice functionµ from D toP(V) such that
∀ Γ ⊆ Fc, |∼(Γ) = T (µ(MΓ)).
AsA is infinite,∃ p ∈ A. We show that all cases are impossible.
Case 1:∃ v ∈ µ(V), v 6∈Mp.
Let Γ = T (v). Then,MΓ = {v}.
By SC ofµ, we haveµ(MΓ) = µ(MΓ) ∩ V ⊆ µ(V). Thus,µ(MΓ) ⊆ µ(V) ∩MΓ.
On the other hand, again by SC,µ(V) ∩MΓ ⊆ µ(MΓ). Consequently,µ(V) ∩MΓ = µ(MΓ).
Therefore,|∼(Γ) = T (µ(MΓ)) = T (µ(V) ∩MΓ) = T (µ(V) ∩ {v}) = T (v).
But, p 6∈ T (v). Thus,p 6∈ |∼(Γ).
However,MΓ ∈ V. Therefore,

⋂

V ∈V
MT (MΓ\V ) ⊆MT (MΓ\MΓ) = MT (∅) = MFc

= ∅.
Therefore, by definition of|∼, we have|∼(Γ) = T (∅) = Fc.
Thus,p ∈ |∼(Γ), which is impossible.
Case 2:µ(V) ⊆Mp.
Then, by(0), |∼(∅) = T (

⋂

V ∈V
MT (V\V )) = T (

⋂

V ∈V
MT (V)) = T (MT (V)) = T (V).

But,V 6⊆Mp. Thus,p 6∈ T (V) = |∼(∅).
On the other hand,|∼(∅) = T (µ(M∅)) = T (µ(V)).
But, µ(V) ⊆Mp. Thus,p ∈ T (µ(V)) = |∼(∅), which is impossible.

Proof of(3). Let Γ ∈ {Γ1, . . . , Γλ}. Direction: “⊆”.
We haveVΓ ⊆ X . Thus,MΓ \ X ⊆MΓ \ VΓ.
Therefore, by(2), |∼(Γ) = T (MΓ \ VΓ) ⊆ T (MΓ \ X ).

Direction: “⊇”.
AsA is infinite, |A| = |Fc|. Therefore,λ ≤ |A|. Thus,|X | ≤ |A|2 = |A|.
Thus,X ∈ V. Thus, by(2), T (MΓ \ X ) ⊆ T (MΓ \ VΓ) = |∼(Γ).

Proof of(4). µ is clearly a choice function. We show thatµ satisfies SC. LetV, W ⊆ V .
Then,µ(W ) ∩ V = (W \ X ) ∩ V = (W ∩ V ) \ X ⊆ V \ X = µ(V ).

Proof of(5). By (3), ∀ Γ ∈ {Γ1, . . . , Γλ}, |∼′(Γ) = T (µ(MΓ)) = T (MΓ \ X ) = |∼(Γ).
But, (Γ1, . . . , Γλ, |∼(Γ1), . . . , |∼(Γλ)) 6∈ Φ. Therefore,(Γ1, . . . , Γλ, |∼′(Γ1), . . . , |∼′(Γλ)) 6∈ Φ.
Consequently, as〈λ, Φ〉 is a normal characterization,|∼′ is not a pivotal consequence relation.

5 A link with X-logics

In this section, we investigate a link between pivotal consequence relations and pertinence conse-
quence relations (aliasX-logics) which were first introduced by Forget, Risch, and Siegel [FRS01].
Suppose some formulas are considered to be the pertinent ones in the absolute sense and collect
them in a setE . Then, it is natural to conclude a formulaα from a set of formulasΓ iff every per-
tinent basic consequence ofΓ ∪ {α} is a basic consequence ofΓ (i.e. the addition ofα to Γ does
not yield more pertinent formulas than withΓ alone). This constitutes a pertinence consequence
relation. More formally,

Definition 39 Let 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F .
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We say that|∼ is apertinence consequence relation(aliasX-logic) iff there existsE ⊆ F such that
∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff ⊢(Γ, α) ∩ E ⊆ ⊢(Γ).

In addition, if⊢(E) = E , we say that|∼ is closed.

We introduce a new assumption about semantic structures (infact, simply a weak version of(A3)):

Definition 40 SupposeL is a language,∨ a binary connective ofL, F the set of all wffs ofL, and
〈F ,V , |=〉 a semantic structure. Then, define the following condition:

(A4) ∀ α, β ∈ F , Mα∨β = Mα ∪Mβ.

We will show that when(A4) is assumed, then UC pivotal consequence relations are precisely closed
pertinence consequence relations. We need before Notation41 and the very easy Proposition 42
(which we will use implicitly in the sequel).

Notation 41 SupposeL is a language,∨ a binary connective ofL,F the set of all wffs ofL, Γ ⊆ F
and∆ ⊆ F . Then:

Γ ∨∆
def
= {α ∨ β : α ∈ Γ andβ ∈ ∆}.

Proposition 42 SupposeL is a language,∨ a binary connective ofL, F the set of all wffs ofL,
〈F ,V , |=〉 a semantic structure satisfying(A4), Γ ⊆ F , and∆ ⊆ F .
Then,MΓ ∪M∆ = MΓ∨∆.

Proof Direction: “⊆”.
Suppose the contrary, i.e. suppose∃ v ∈MΓ ∪M∆, v 6∈MΓ∨∆.
Then,∃ α ∈ Γ, ∃ β ∈ ∆, v 6∈Mα∨β .
But, by(A4), v ∈MΓ ∪M∆ ⊆Mα ∪Mβ = Mα∨β, which is impossible.

Direction: “⊇”.
Suppose the contrary, i.e. suppose∃ v ∈MΓ∨∆, v 6∈MΓ ∪M∆.
Then,∃ α ∈ Γ, v 6∈Mα and∃ β ∈ ∆, v 6∈Mβ .
Therefore, by(A4), v 6∈Mα ∪Mβ = Mα∨β.
Howeverα ∨ β ∈ Γ ∨∆. Thus,v 6∈MΓ∨∆ which is impossible.

Proposition 43 SupposeL is a language,∨ a binary connective ofL, F the set of all wffs ofL, and
〈F ,V , |=〉 a semantic structure satisfying(A4).
Then, UC pivotal consequence relations are precisely closed pertinence consequence relations.

Proof Direction: “⊆”.
Let |∼ be an UC pivotal consequence relation.
Then, there is an UC SC choice function fromD toP(V) such that∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
Thus, by Proposition 18, there existsI ⊆ V such thatV \I ∈ D and∀Γ ⊆ F , |∼(Γ) = T (MΓ∩I).

Define:E
def
= T (V \ I).

Then,⊢(E) = T (ME) = T (MT (V\I)) = T (V \ I) = E .
In addition, asV \ I ∈ D, we haveME = MT (V\I) = V \ I.
We show:
(0) ∀ Γ ⊆ F , ∀ α ∈ F , Γ |∼ α iff ⊢(Γ, α) ∩ E ⊆ ⊢(Γ).
Consequently,|∼ is a closed pertinence consequence relation.
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Direction: “⊇”.
Let |∼ be a closed pertinence consequence relation.
Then, there isE ⊆ F such thatE = ⊢(E) and∀ Γ ⊆ F , ∀ α ∈ F , Γ |∼ α iff ⊢(Γ, α) ∩ E ⊆ ⊢(Γ).

Define:I
def
= V \ME .

Then,V \ I = ME ∈ D.
We will show:
(1) ∀ Γ ⊆ F , |∼(Γ) = T (MΓ ∩ I).
Let µ be the choice function fromD toP(V) such that∀ V ∈ D, µ(V ) = V ∩ I.
Then,∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
In addition, by Proposition 18,µ is a UC SC choice function.
Consequently,|∼ is an UC pivotal consequence relation.

Proof of(0). Let Γ ⊆ F andα ∈ F . Then:
Γ |∼ α iff
MΓ ∩ I ⊆Mα iff
MΓ ⊆Mα ∪ (V \ I) iff
MΓ ⊆Mα ∪ME iff
MΓ ⊆MΓ∪{α} ∪ME iff
MΓ ⊆M(Γ∪{α})∨E iff
T (M(Γ∪{α})∨E) ⊆ T (MΓ) iff
T (MΓ∪{α} ∪ME) ⊆ T (MΓ) iff
T (MΓ∪{α}) ∩ T (ME) ⊆ T (MΓ) iff
⊢(Γ, α) ∩ ⊢(E) ⊆ ⊢(Γ) iff
⊢(Γ, α) ∩ E ⊆ ⊢(Γ).

Proof of(1). Let Γ ⊆ F andα ∈ F . Then:
Γ |∼ α iff
⊢(Γ, α) ∩ E ⊆ ⊢(Γ) iff
⊢(Γ, α) ∩ ⊢(E) ⊆ ⊢(Γ) iff
T (MΓ∪{α}) ∩ T (ME) ⊆ T (MΓ) iff
T (MΓ∪{α} ∪ME) ⊆ T (MΓ) iff
T (M(Γ∪{α})∨E)) ⊆ T (MΓ) iff
MΓ ⊆M(Γ∪{α})∨E) iff
MΓ ⊆MΓ∪{α} ∪ME iff
MΓ ⊆Mα ∪ME iff
MΓ ∩ (V \ME) ⊆Mα iff
MΓ ∩ I ⊆Mα.

6 Conclusion

We provided, in a general framework, characterizations forfamilies of pivotal(-discriminative) con-
sequence relations. We showed, in an infinite classical framework, that there is no normal char-
acterization for the family of all pivotal consequence relations. And, we showed that UC pivotal
consequence relations are precisely thoseX-logics such thatX is closed under the basic entailment.
Beyond the contributions, an interest of the present paper is to give an example of how the techniques
developed in [BN05] (in particular in the discriminative case) can be adapted to new properties (here
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Strong Coherence in the place of Coherence). So naturally, we turn now to conclusions similar to
those of [BN05]. Half of time, our conditions are purely syntactic. In fact, when the choice func-
tions under consideration are not necessarily definabilitypreserving, we provided solutions with
semi-syntactic conditions. We managed to do so thanks to Lemmas 24 and 25. An interesting thing
is that we used them both in the plain and the discriminative versions. This suggests that they can
be used in yet other versions. In addition, Lemmas 32 and 33 have been applied both here and
previously in [BN05] to characterize families of consequence relations defined in the discriminative
manner by DP choice functions. But, [BN05] is about coherentchoice functions, whilst the present
paper is about strongly coherent choice functions. This suggests that these lemmas can be applied
with yet other properties.
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