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Abstract

In the present paper, we investigate consequence reldatiahare both paraconsistent and plausible (but still
monotonic). More precisely, we lay the focus on pivotal @mgence relations, i.e. those relations that can
be defined by a pivot (in the style of e.g. D. Makinson). A pii®t fixed subset of valuations which are
considered to be the important ones in the absolute sensewil\@ovide characterizations for families of
pivotal consequence relations, in a general frameworkcihagrs e.g. the ones of the well-known paraconsistent
logics J3 andFOUR. In addition, we will provide, again in a general framewarkaracterizations for families

of pivotal-discriminative consequence relations. Theeladre defined exactly as the plain versions, except that
among the conclusions, a formula is rejected if its negasamso present. We will also answer negatively a
representation problem that was left open by Makinson. Aindlly, we will put in evidence a connexion with
X-logics from Forget, Risch, and Siegel. Note that the m&tives and the framework of the present paper are
very similar to the ones of another paper of the same authmhvighabout preferential consequence relations.

Remark 1 A previous version of this paper has been publishBde Journal of Logic and Com-
putation 15(5):679-700, 2005. The present version contains inmgrr@nts about the presentation.
Consequently, section ordering, definition labels, prafmoslabels, etc. are different according to
whether the present or the previous version is considered.



1 Introduction

In many situations, an agent is confronted with incomple@r inconsistent information and then
the classical consequence relation proves to be insuffidietieed, in case of inconsistent informa-
tion, it leads to accept every formula as a conclusion, whittounts to loose the whole informa-
tion. Therefore, the agent needs another relation whiafsléarational and non-trivial conclusions
in spite of the presence of contradictions. So, severalcpasistent consequence relations have
been developed. In the present paper, we will pay attentiguarticular to certain many-valued
ones [Bel77p[ Bel7Yd, DACl7p, CMdAop, dACNIA2, AAd4, AAd6, 8. They are defined in
frameworks where valuations can assign more than two diffietruth values to formulas. In fact,
they tolerate contradictions within the conclusions, lejegct the principle of explosion according to
which a single contradiction entails the deduction of e¥erynula.

In case of incomplete information, the classical conseqeeelation also shows its limits. In-
deed, no risk is taken, the conclusions are sure, but tooTaws, the agent needs another relation,
more daring, leading to accept as conclusions formulasattgatot sure, but still plausible. Eventu-
ally, some “hasty” conclusions will be rejected later, ie firesence of additional information. So,
a lot of plausible (generally, non-monotonic) consequartaions have been developed. Central
tools to define such relations are choice functigns [Che5%$\|Sen70] AM81| Leh(2, Leh01].
Indeed, suppose we have at our disposal a fungtiocalled a choice function, which chooses in
any set of valuation¥’, those elements that are preferred, not necessarily inotbaute sense, but
when the valuations i are the only ones under consideration. Then, it is naturebtludea
(a formula) fromI" (a set of formulas) iff every model fdr chosen byu is a model fora. This
constitutes a plausible (generally, non-monotonic) cqueace relation.

In the present paper, we will lay the focus on a particularifipwf choice functions. Let us
present it. Suppose some valuations are considered to Htigibkygin the absolute sense and col-
lect the others in a séf, called a pivot. This defines naturally a choice functiondded, simply
choose in any set of valuations, those elements that betohgThose choice functions which can
be defined in this manner constitute the aforementionedyaifine consequence relations defined
by this family are called pivotal consequence relationseifimportance has been put in evidence
by D. Makinson in [Mak0B[ Mak@5] where it is shown that theystitute an easy conceptual pas-
sage between classical and plausible non-monotonicaatatindeed, they are perfectly monotonic
but already display some of the distinctive features (ilge ¢hoice functions) of plausible non-
monotonic relations.

For a long time, research efforts on paraconsistent relatémd plausible relations were sep-
arated. However, in many applications, the informationathtincomplete and inconsistent. For
instance, the semantic web or big databases inevitabhairoimconsistencies. This can be due to
human or material imperfections as well as contradictotyaes of information. On the other hand,
neither the web nor big databases can contain “all” inforomatIndeed, there are rules of which
the exceptions cannot be enumerated. Also, some informatight be left voluntarily vague or in
concise form. Consequently, consequence relations thab@th paraconsistent and plausible are
useful to reason automatically in such applications.

Such relations first appear in e.g. [P[i91, Ba{98, K192, AMBIOZ]. The idea begins by taking
a many-valued framework to get paraconsistency. Then, tholse models that are most preferred
according to some particular binary preference relatiovaduations (in the style of [Shog8, Sh¢87])
are relevant for making inference, which provides pladisibfand in fact also non-monotonicity).

In [ALO1H, [ALO14], A. Avron and I. Lev generalized the study families of binary preference
relations which compare two valuations using, for each effrththis part of a certain set of formulas




it satisfies. The present paper follows this line of resedschombining many-valued frameworks
and choice functions.

More explicitly, we will investigate pivotal consequenedations in a general framework. Ac-
cording to the different assumptions which will be made dlbbe latter, it will cover various kinds
of frameworks, including e.g. the classical propositiooa¢ as well as some many-valued ones.
Moreover, in the many-valued frameworks, pivotal relasidead to rational and non-trivial con-
clusions is spite of the presence of contradictions andrarg wiseful to deal with both incomplete
and inconsistent information. However, they will not sigtihe Disjunctive Syllogism (fromax and
—a V 3 we can concludg), whilst they satisfy it in classical frameworks.

In addition, it is in the many-valued frameworks that nevatieins, which we will investigate in
detail, are really interesting: pivotal-discriminativensequence relations. They are defined exactly
as the plain versions, except that among the conclusiomsnaufa is rejected if its negation is also
present. In classical frameworks, they do not bring somgthéally new. Indeed, instead of con-
cluding everything in the face of inconsistent informatias will simply conclude nothing. On the
other hand, in many-valued frameworks, where the conahsséwe rational even from inconsistent
information, the discriminative versions will reject thertradictions among them, rendering them
all the more rational.

As a first contribution, we will characterize, in a generahfrework, several families of pivotal(-
discriminative) consequence relations. To do so, we wil ieshniques very similar to those of a
previous paper of the same auth05]. The latter is aboather family of choice functions.
Letus presentit. Suppose we are given a binary preferetat®re< on states labelled by valuations
(in the style of e.g. [KLM9IP[ Sch4]). This defines naturallghoice function. Indeed, choose in
any set of valuation¥’, each element which labels a state whickipreferred among all the states
labelled by the elements ®f. Those choice functions which can be defined in this mannestitate
the aforementioned family. The consequence relationsetby this family of choice functions are
called preferential(-discriminative) consequence iefest In fact, the present paper provides an
example of how the techniques developeNOS] (esplgcialthe discriminative case) can be
adapted to new families of choice functions. Note that, értbn-discriminative case, the techniques
of [BNO§] are themselves inspired by the work of K. Schledfzh04].

Half of time, our characterizations will be purely syntactThis has a lot of advantages, let us
quote some important ones. Take a set of syntactic conditltat characterizes a family of pivotal
consequence relations. This gives a syntactic point of aavthis family defined semantically,
which enables us to compare it to conditions known on the ketérand thus to other consequence
relations. This can also give rise to questions like: if wedified the conditions in such and such
a natural-looking way, what would happen on the semante?sidore generally, this can open the
door to questions that would not easily come to mind othexwisto techniques of proof that could
not have been employed in the semantic approach. Finailé/ctm help to find or improve proof
systems based on the family, like a Gentzen proof systenmépamce.

Some characterizations for pivotal consequence relgtiaiisl in classical frameworks, can be
found in the literature, e.g.| [Rotp1, Mak03, Mak05]. But,the author knowledge, the present
paper contains the first systematic work of characterindto them in non-classical frameworks.
Similarly, it seems that we are the first to investigate @lsliscriminative consequence relations.

As a second contribution, we will answer negatively a repméstion problem that was left open
by Makinson, namely, in an infinite classical framework réhdoes not exist a “normal” character-
ization for the family of all pivotal consequence relatiospproximatively, a characterization is
called normal iff it is made of conditions which are univéisguantified and of limited size. This
constitutes the more innovative part of the paper. A lastrdaution is that a certain family of piv-




otal consequence relations will be shown to be preciselytaicefamily of X -logics, which were
introduced by Forget, Risch, and Siedel [FRS01].

The rest of the paper is organized as follows. In Seane]introduce our general framework
and the different assumptions which will sometimes be mambaiait. We will see that it covers in
particular the many-valued frameworks of the well-knowrggansistent logic§ OUR andJs. In
Sectio, we present choice functions and some of thdlikiwewn properties. We will see which
properties characterize those choice functions that casefined by a pivot. In Sectio@.& we
define pivotal(-discriminative) consequence relatiordsgiue examples of them in both the classical
and the many-valued frameworks. In Sect[pn 3, we providecharacterizations. In Sectigh 4, we
answer negatively the problem that was left open by MakinsoiSectior, we put in evidence a
connexion withX -logics. Finally, we conclude in Sectitﬁh 6.

2 Background

2.1 Semantic structures
2.1.1 Definitions and properties

The framework is exactly the one presented in [BNO5]. We witk with general formulas, valua-
tions, and satisfaction. A similar approach has been takemd well-known paperg [Mak$, Lenjo1]
without anticipating any of the substantive work in the pregpaper.

Definition 2 We say thatS is asemantic structuréff S = (F,V, =) whereF is a set,) is a set,
and}= is a relation orv x F.

Intuitively, F is a set of formulas) a set of valuations for these formulas, gada satisfaction
relation for these objects (i.@. = o means the formula is satisfied in the valuation, i.e. v is a
model fora).

Notation 3 Let (F,V, =) be a semantic structurB,C F, andV C V. Then,

Mpd;f{UEVZVOéEF,’U):Oé},

TV)Y (ae F: vV C M),

DY (vcv.arcF M=V}

SupposeC is a language; a unary connective of, andF the set of all wifs ofL. Then,

T,(V) Y {ae F:V C M,andV € M.},

cYwevivaeF,VZ MooV g M)

Intuitively, Mt contains all the models fdr and7’(V') all the formulas satisfied if. Roughly
speakingT (V) is this part ofT’ (V') that is not contradictoryD contains all those sets of valuations
that are definable by a set of formulas addall those sets of valuations that do not satisfy both a
formula and its negation. As usudlir ., T'(V, v) stand for respectivel§/r .y, T'(V U {v}), etc.

Remark 4 The notationsVit, T'(V'), etc. should contain the semantic structure on which they ar
based. To increase readability, we will omit it. There wilver be any ambiguity. We will omit
similar things with other notations in the sequel, for theeaeason.

A semantic structure defines a basic consequence relation:



Notation 5 We denote byP the power set operator.
Let (F,V, =) be a semantic structure.
We denote by- the relation orP(F) x F suchthaVT' C F,V«a € F,

T+ «iff Mp C M,.

Let |~ be a relation ofP(F) x F. Then,

M) Y {aeF T Ral

Suppos€C is a language; a unary connective of, F the set of all wffs ofZ, andI’ C F.
Then, we say thdf is consistentff Va € F,I' / a or T If —a.

The following facts hold, we will use them implicitly in theguel:

Remark 6 Let (F,V, ) be a semantic structure abdA C F. Then:

Mr A = Mr N Ma;

HT) = T(Mr);

Mr = My (r;

L' CH(A)Iff HT) C H(A) iff Ma C Mr.

Sometimes, we will need to make some of the following assionptabout a semantic structure:

Definition 7 Let (F,V, =) be a semantic structure.
The define the following assumptions:

(A0) Mr =0;

(A1) Visfinite.

Suppos€C is a language; a unary connective of, andF the set of all wffs ofL. Then, define:
(A2) VI C F,Va e F,if a ¢ T(Mr) and—«a ¢ T(Mr), thenMr N M, € M_,,.

Suppose/ andA are binary connectives @. Then, define:

(A3) Y a, 8 € F, we have:
Mavg =M,U Mg;
Ma/\g =M,N Mg;
Mﬁﬁa = Ma;
M—\(av[}) = Mﬂa/\ﬁﬁ;
M—\(a/\[}) = Mﬁa\/ﬁﬁ-

Clearly, those assumptions are satisfied by classical d&nsanuctures, i.e. structures whefe V),
and= are classical. In addition, we will see, in Secti¢ns 2.1.@[2r1B, that they are also satisfied
by certain many-valued semantic structures.

2.1.2 The semantic structure defined byFOUR

The logic FOUR was introduced by N. Belnap i [Belq7a, Bely7b]. It is usetutleal with in-
consistent information. Several presentations are plessiepending on the language under con-
sideration. For the needs of the present paper, a classmabgitional language will be sufficient.

The logic has been investigated intensively in elg. [AA9A94, |AA94], where richer languages,
ﬁ

containing an implication connective (first introduced by A. Avron 1]), were considered.




Notation 8 We denote by4 a set of propositional symbols (or atoms).

We denote by_. the classical propositional language containigthe usual constantgulse and
true, and the usual connectives v, andA.

We denote byF, the set of all wffs ofZ..

We briefly recall a meaning for the logiEOUR (more details can be found iff [CLMPP, Belf7a,
Bel77B]). Consider a system in which there are, on the ond fsurces of information and, on the
other hand, a processor that listens to them. The sourceglprioformation about the atoms only,
not about the compound formulas. For each atgrthere are exactly four possibilities: either the
processor is informed (by the sources, taken as a wholeptizatrue; or he is informed that is
false; or he is informed of both; or he has no information dkou

Notation 9 Denote by0 and1 the classical truth values and define:
<0y tYay TY01n 1Y

The global information given by the sources to the procesanibe modelled by a functieifrom A
to {f,t, T, L}. Intuitively, 1 € s(p) means the processor is informed thas true, whilst0 € s(p)
means he is informed thatis false.

Then, the processor naturally builds information aboutatvapound formulas from. Before
he starts to do so, the situation can be be modelled by a dmetirom F. to {f,t, T, L} which
agrees withs about the atoms and which assighso all compound formulas. Now, takeandgq in
A and supposé € v(p) or1 € v(g). Then, the processor naturally add® v(p V ¢). Similarly, if
0 € v(p) ando0 € v(q), then he add8 in v(p V q). Of course, such rules hold ferandA too.

Suppose all those rules are applied recursively to all camgdormulas. Then, represents the
“full” (or developed) information given by the sources tethrocessor. Now, the valuations of the
logic FOUR can be defined as exactly those functions that can be buliisSranner (i.e. like)
from some of these sources-processor systems. More fgtmall

Definition 10 We say that is afour-valued valuationff v is a function fromF, to {f,t, T, L}
such that(true) = t, v(false) = f andV o, 8 € Fo,

1 € v(—a)iff 0 € v(w);

0 € v(—a)iff 1 € v(w);

1ev(aVvP)iff 1 ev(a)orl ev(f)

0 €v(aVp)iff 0 € v(a)ando € v(ﬁ)
1ev(anpP)iff 1 €v(a)andl € v(B);
0€v(anp)iff 0 €v(a)ord e v(f).

We denote by, the set of all four-valued valuations.

The definition may become more accessible if we see the falued valuations as those functions
that satisfy Tables 1, 2, and 3 below:

v(p) v(B)

v(a)  v(-a) f t T L f t T 1
f t f | f ¢t T 1 f|f £ £ f
t f t t t t t t|f t T L
T S R I e A S
1 1 1L t t L L(f 1L £ L

Table 1 v(aVF) v(a A p)
Table 2. Table 3



In the logic FOUR, a formulax is considered to be satisfied iff the processor is informeadlithis
true (it does not matter whether he is also informed thistfalse).

Notation 11 We denote by=, the relation orVy x F. such that/ v € V,,V a € F., we have
v g aiff 1 €v(a).

When theFOUR semantic structuréF., V,, =4) is under consideration, proof systems ffoare
available. For instance, A. Avron and O. Arieli provided sl ones|[AA9¥] AA9B| AAIS].

Note that theFOUR semantic structure satisfieéd0) and(A3). In addition, if A is finite, then
(A1) is also satisfied. HowevefA2) is not satisfied by this structure. In Sect[on 4.1.3, we tara t
many-valued semantic structure which satisfid3).

2.1.3 The semantic structure defined by/s

The logic.J; was introduced inO] to answer a question posed in 1948.Waskowski, who
was interested in systematizing theories capable of auingacontradictions, especially if they occur
in dialectical reasoning. The step from informal reasoninder contradictions and formal reasoning
with databases and information was dond in [CMdA00] (alsiggized for real database models in
[BACMO0Z])), where another formulation ok calledLFI1 was introduced, and its first-order version,
semantics and proof theory were studied in detail. Invastgs ofJ; have also been made in e.g.
[Bvro1]], where richer languages than ofy were considered.

The valuations of the logids can be given the same meaning as those of the BYRE/R,
except that the consideration is restricted to those systghere the sources, taken as a whole,
always give some information about an atom. More formally,

Definition 12 We say thav is athree-valued valuatiofff v is a function fromF, to {f, t, T} such
thatv(true) = t, v(false) = fandvV a, 8 € F,

1 € v(—a)iff 0 € v();

0 € v(—a)iff 1 € v(w);

lev(aVp)iff 1 € v(a)orl € v(s);

0 € v(aVp)iff 0 € v(a)and0 € v(F);

1ev(anpP)iff 1 €v(a)andl € v(B);

0€v(aAp)iff 0 €v(a)oroev(f).

We denote by/; the set of all three-valued valuations.

As previously, the definition may become more accessiblesifee the three-valued valuations as
those functions that satisfy Tables 4, 5, and 6 below:

v(pB) Q)
v(a)  v(-a) f t 7T f t T
f t fl|f t 7T f|f £ f
t f ve) |t |t t t] o) |t |f t T
T T T T t T TIf T 7T
Table 4. v(aVfF) v(a A f)
Table 5. Table 6.

We turn to the satisfaction relation.

Notation 13 We denote by=; the relation orVs x F. such that' v € Vs,V a € F., we have
v s aiff 1 €v(a).



When theJ; semantic structuréf,, Vs, =3) is considered, proof systems ferare available. Some

have been provided in e.d. [Avi9fl, Dd¢70] and in chapter I{Eps9p].
The J; structure satisfiegA0), (A3) and(A2). In addition, if A is finite, then it satisfie§A1) too.

2.2 Choice functions
2.2.1 Definitions and properties

In many situations, an agent has some way to choose in any&guationsl’, those elements that
are preferred (the bests, the more normal, etc.), not nadlysie the absolute sense, but when the
valuations inV are the only ones under consideration. In Social Choics,ishinodelled by choice
functions [Che34} Arr§9, Sen70, AM8L, Leh02, Leh01].

Definition 14 LetV be asetV C P(V), W C P(V), andu a function fromV to W.
We say thaj is achoice functionff vV € V, u(V) C V.

Several properties for choice functions have been put idemge by researchers in Social Choice.
For the sake of completeness, we present two important boagh we will not investigate them in
the present paper (a better presentation can be foupd i®fileh

SupposéV is a set of valuationd; is a subset of/, andv € V is a preferred valuation df/.
Then, a natural requirement is thats a preferred valuation df . Indeed, in many situations, the
larger a set is, the harder it is to be a preferred element afid he who can do the most can do the
least. This property appears fn [Chp54] and has been gieenaime Coherence iff [Moy85].

We turn to the second property. SuppdBes a set of valuationd/ is a subset oft, and suppose
all the preferred valuations 6% belong toV. Then, they are expected to include all the preferred
valuations of/”. The importance of this property has been put in evidenc¢\z8H, [AM8]] and
has been given the name Local Monotonicity in e[g. [LEh01].

In [Bch0d], Schlechta showed that Coherence and Local Moty characterize those choice
functions that can be defined by a binary preference relatiostates labelled by valuations (in the
style of e.g. Kraus, Lehmann, and Magidpr [KLMI90]).

Now, we turn to properties relevant for the paper, i.e. priggewhich characterize those choice
functions that can be defined by a pivot (in the style of e.gMBkinson 5]). A pivot
is a fixed subset of valuations which are considered to bentpeitant ones in the absolute sense.
Details will be given in Sectioh 2.3.2.

Definition 15 LetV be asetV C P(V), W C P(V), andy a choice function fronV to W.
We say thaju is strongly coherenfSC) iff vV V. W € V,

pW)N Vv C (V).

Suppos€F, V, =) is a semantic structure.
We say thay. is definability preservingDP) iff

YV evnD, u(V)eD.

In addition, suppos¥® € V.
We say thaju is universe-codefinabl@JC) iff

Y\ u(V) € D.



Definability Preservation has been putin evidence fir]. One of its advantages is that when
the choice functions under consideration satisfy it, wd pibvide characterizations with purely
syntactic conditions. To the author knowledge, Strong @aiee and Universe-codefinability are
first introduced in the present paper. An advantage of Useseodefinability is that it provides a
link with X -logics [FRSO[L]. We will see it in Sectidi 5.

Now, we turn to a last property:

Definition 16 Supposecl is a language;- a unary connective of, F the set of all wiffs ofZ,
(F,V, =) a semantic structurd] C P(V), W C P(V), andy be a choice function fronv to W.
We say thaju is coherency preservingCP) iff

VYV evVncC, uV)ecC.

To the author knowledge, Coherency Preservation has beeinfioduced in[[BNO5]. An advantage
of itis that when the choice functions under considerataiisgy it, we will not need to assurrel2)
to show our characterizations (in the discriminative case)

2.2.2 Pivots

Suppose some valuations are considered to be negligithe iatisolute sense and collect the others
in a setZ, called a pivot. Theril defines naturally a choice functigry which chooses in any set of
valuations, simply those elements which belong tdJore formally,

Definition 17 LetV be a set.

We say thaf is a pivotonV iff Z C V.

LetZ be a pivot ony.

We denote by:7 the function fromP (V) to P(V) such that’ V. C V,

urzr(V)y=VnZ.

Pivots have been investigated extensively by D. Makinsdiviak03,[Mak0}]. In the present sec-
tion, we show that the properties of Strong Coherence, DfihaPreservation, and Universe-
codefinability characterize those choice functions thatlimdefined by a pivot. More precisely:

Proposition 18 Let V be a setV, W C P(V), andu a choice function fronV to W. Then:

(0) wis SCiff there exists a pivéf onV such that/ V € V, u(V) = pz(V).

SupposeF, V, ) is a semantic structure addle V. Then:

(1) pis SC and DP iff there exists a pivdton ) such thaZ € D andvV € V, u(V) = uz(V);
(2) pis SCand UC iff there exists a pivBtonV such that’\Z € D andvV € V, u(V) = pz(V).

Proof Proof of(0). Direction: “—".

LetZ={veV:3V eV,ve puV)}andsuppos¥ € V.

If v € u(V), thenv € V and, by definition off, v € Z. Consequently(V) C V N Z.
If v e VNZ, then3W € V,v e u(W), thus, by SCp € u(W)NV C u(V).
Consequently/’ NZ C u(V).

Direction: “~".
There exist€ C Vsuchthay V e V, u(V) =V nNZ.



We show thaj: satisfies SC.
LetV,W € V. Thenu(W)NV =WNINVCINV =puV).

Proof of (1). Direction: “—".
Take the sam@& as for(0). Then, by verbatim the same prodf}) € V, u(V) =V nZ.
It remains to show thaf € D.
As My =V,V € D. Thus, ag:is DP,u(V) € D. But,u(V) =V NI =1.
Direction: “~".
Verbatim the proof of0), except that in additiof € D.
We show thaj is DP. LetV € VN D.
Then 3T C F, Mpr = V. Similarly,as7 ¢ D,3A C F, Ma =T.
Thereforeu(V) =V NZ = Mr N Ma = Mrya € D.

Proof of (2). Direction: “—".

Take the sam@& as for(0). Then, by verbatim the same prodf}) € V, u(V) =V nZ.

Itremains to show \ Z € D. AspisUC,V \ (V) € D. But, V\ p(V) =V\ (VNI)=V\ I
Direction: “~".

Verbatim the proof of0), except that in additiow \ Z € D.

We show thap is UC: V\ u(V) =V\ (VNI)=V\ZeD. |

2.3 Pivotal(-discriminative) consequence relations
2.3.1 Definitions

Suppose we are given a semantic structure and a choicedanctin the valuations. Then, it is
natural to conclude a formula from a set of formulag® iff every model forI" chosen byu is a
model fora. More formally:

Definition 19 Let (F,V, =) be a semantic structure apda relation orP(F) x F.
We say that~ is apivotal consequence relatidff there exists a SC choice functignfrom D to
P(V)suchthavVI' C F,Va € F,

T b aiff p(Mr) C M,
In addition, if . is DP, CP, etc., then so |s.

We called these relations “pivotal” because, in the Iigh‘t’mpositio@& they can be defined equiv-
alently with pivots, instead of SC choice functions. Thenpbrtance has been put in evidence
by D. Makinson in e.g. [[Mak0d, Makp5], where he showed thaythonstitute easy conceptual
passage from basic to plausible non-monotonic consequetat®ns. Indeed, they are perfectly
monotonic but already display some of the distinctive feggi(i.e. the choice functions) of plausi-
ble non-monotonic relations. Note that pivotal (resp. DRfEl) consequence relations correspond
to Makinson’s pivotal-valuation (resp. pivotal-assuropjirelations. We will give an example of
how they can be used to draw plausible conclusions from imbei® information in Sectiop 2.3.2.

Moreover, if a many-valued semantic structure is consifléhey lead to rational and non-trivial
conclusions is spite of the presence of contradictions amthas useful to treat both incomplete and
inconsistent information. However, they will not satishetDisjunctive Syllogism. We will give an
example with the"OU/R semantic structure in Sectifn 2]3.3.
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Characterizations of pivotal consequence relationsgvalclassical frameworks, can be found
in the literature. For instance, the following result apgea be part of folklore for decades: the DP
pivotal consequence relations correspond precisely gethopraclassical closure operations that are
compact and satisfy Disjunction in the premisses. For metails see e.g[TRotP[[, MaK03, Mak05].

Now, we turn to a qualified version of pivotal consequenceafitures the idea that the contra-
dictions in the conclusions should be rejected.

Definition 20 Let £ be a language; a unary connective of, F the set of all wifs ofZ, (F,V, E)

a semantic structure, and a relation orP(F) x F.

We say that~ is apivotal-discriminative consequence relatifithere exists a SC choice function
pfromDtoP(V)suchthaT' C F,V o € F,

r |’\‘ a iff M(MF) g Ma andIU/(MF) g Mﬁa
In addition, if .« is DP, CP, etc., then so |s.

If a classical semantic structure is considered, the digngtive version does not bring something
really new. Indeed, the only difference will be to concludghing instead of everything in the
face of inconsistent information. On the other hand, withamyavalued structure, the conclusions
are rational even from inconsistent information. The disgrative version will then reject the
contradictions in the conclusions, rendering the lattethal more rational.

2.3.2 Example in the classical framework

Let £ be a classical propositional language of which the atoms,areandp. Intuitively, » means
Nixon is a republicang means Nixon is a quaker, apdneans Nixon is a pacifist. L&t be the set
of all wffs of £, V the set of all classical two-valued valuationsthfand}= the classical satisfaction
relation for these objects. TheM,is the set of the 8 following valuationsy, vy, va, vs, v4, U5, Vs,
andvz, which are defined in the obvious way by the following table:

riq|p
v {|0]0]0
U1 0101
v2 ||0]1]0
vs |0 1]1
v {|1]0]0
Vs 1101
Ve 1 110
vr 111

Now, consider the class of all republicans and the classl afuakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normaiéffis a pacifist. And, consider that a
valuation is negligible iff (in it) Nixon is a non-normal inddual of some class. Then, collect the
non-negligible valuations in a piv@t. More formally:

I={veV:ifvlEr thenv = —p; andifv = ¢, thenv = p}.

Finally, let|~ be the pivotal consequence relation defined by the SC choitgidn ..
Then, |~ leads to “jump” to plausible conclusions from incompleteoimation. For instance,
r )~ —p andg |~ p. But, we fall into triviality if we face new information thatontradict previous
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“hasty” conclusions. For instancér,p} ~ o, Vo € £, and{q, -p} I o,V a € L. Thisis the
price to pay for being monotonic, whereas conclusions treabaly plausible are accepted.

In addition, |~ is not paraconsistent and some sets of formulas are rendesdelss because
there is no model in the pivot for them, though there are moftelthem. For instancdg, r} |~ «,
VaelLl.

2.3.3 Example in theFOUR framework

Consider theF OUR semantic structuréF.., V,, =4) and supposel = {r, ¢, p} (these objects have
been defined in Sectidn 2.]1.2). In addition, make the samsigerations about Nixon, the classes,
normality, etc., as in Sectidn 2..2, except that this tinvelaation is considered to be negligible iff
(in it) the processor is informed that Nixon is an individodsome class, but he is not informed that
Nixon is a normal individual of that class. See Secfion fdr2ecalls about the sources-processor
systems. Again, collect the non-negligible valuations pivat Z. More formally:

I={veV,:ifvr thenv | —-p; andifv |= ¢, thenv = p}.

Let |~ be the pivotal consequence relation defined by the SC choim®idn 7.

Then, agair~ leads to “jump” to plausible conclusions from incomplet®oimation. For in-
stancey |~ —p andq |~ p. Moreover, though “hasty” conclusions are never withdrawea do not
fall into triviality when we face new information that coatfict them. For instancér, p} |~ p and

{r,p} b —pand{r,p} v rand{r,p} j& .
In addition, |~ is paraconsistent. For instancgy, —p,q} |~ p and{p,—-p,q} I~ —p and

{p,—»,q} I~ q and{p,—p,q} |~ —q. And, less sets of formulas are rendered useless because
there is no model in the pivot for them, though there are nwftelthem. For instance, this time,

{a,7} b pand{g,r} )~ -pand{q,r} r gand{q,r} |~ ~g and{q,r} |~ r and{q, r} j& -r.
However,~ does not satisfy the Disjunctive Syllogism. Indeed, fotanse {—r,r V ¢} [~ q.

3 Characterizations

The first contributions of the paper are characterizatiba$f ©Of time, with purely syntactic condi-
tions) of several families of pivotal and pivotal-discrimtive consequence relations. Sometimes,
we will need to make some assumptions about the semantatistelunder consideration. However,
no assumption will be needed for the two following families:

¢ the pivotal consequence relations (Sec 3.2);

o the DP pivotal consequence relations (Se 3.1).
We will assume A0) for:

¢ the UC pivotal consequence relations (Se 3.2).
We will need(A3) and(A1) for:

¢ the CP pivotal-discriminative consequence relationst(ae@);

¢ the CP DP pivotal-discriminative consequence reIationstQSn).
We will assume A3), (A1), and(A2) for:
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¢ the pivotal-discriminative consequence relations (Se@);

« the DP pivotal-discriminative consequence relations (6e@.3).
We will assume& A0), (A3), and(A1) for:

e the CP UC pivotal-discriminative consequence relatiomﬁﬁn).
We will need(A0), (A3), (A1), and(A2) for:

« the UC pivotal-discriminative consequence relations (8a(8.4).

3.1 With Definability Preservation and without Discrimination

In the present section, we provide, in a general framewodkaaacterization for the family of all
DP pivotal consequence relations. We will use techniqueg sinilar to those of 5] (see
the DP and non-discriminative case). The latter are tharaséhspired by the work, in a classical
propositional framework, of K. Schlechta (see Proposi8dhof ]). The idea is to get to the
remarkable equalityu(Mr) = M ry. Thanksto it, properties like Strong Coherence can beyeasil
translated in syntactic terms (i.e. using only the langulagg-, etc.).

Definition 21 Let (F,V, =) be a semantic structure apdbe a relation oP(F) x F.
Then, consider the following conditiong:I’, A C F,

0) if () = H(A), thenj () = r(A);
r~1) () =F((I));
~2) T C (T);

r3) (@) € H((A),T).

Note that those conditions are purely syntactic when threeegroof system available fer (which
is the case with e.g. the classic&lDU/R, andJ; semantic structures).

(
(
(
(

Proposition 22 Let (F,V, =) be a semantic structure apdbe a relation orP(F) x F.
Then,}|~ is an DP pivotal consequence relationjiffsatisfieq ~-0), (~1), (~2), and(j~3).

Proof Direction: “—".
There exists an DP SC choice functipfirom D to P(V) such that' I" C F, |~(T') = T'(u(Mr)).
We will show:

) VI CF, u(Mr) = My,
1) |~ satisfieq~0);
2) |~ satisfieg|~1);
3) |~ satisfieq~2);
4) |~ satisfieg~3).

Direction: “~".

Supposeé-~ satisfieq |~0), (~1), (~2), and(j~3).
Let i be the function fronD to P(V) such that/' I' C F, u(Mr) = M (r).
We will show:
(5) wis well-defined;
(6) uis aDP choice function;

(0
(
(
(
(
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(7) wis SC;
(8) VI'CF, () = T(u(Mr)).

Proof of (0). LetT' C F. As 1 is DP,u(Mr) € D. Thus,3A C F, u(Mr) = MAa.
Thereforeu(Mp) = Ma = MT(ILIA) = MT(H(MF)) = M|~(F)-

Proof of (1). LetI', A C F and suppose(I") = F(A).
Then,Mr = Ma. Thus,~(T') = T'(u(Mr)) = T'(1w(Ma)) = p(A).

Proof Of(2). Letl' C F. Then,}w(l“) = T(IU,(MF)) = T(MT(;L(MF))) = T(M|~(F)) = l—('N(F))
Proof of (3). LetI" C F. Then,I' C T'(Mt) C T'(u(Mr)) = p~(I).

Proof of (4). LetT', A C F. Then, by(0) and SC,
M|~(A),F = M\N(A) N Mp = /L(MA) N Mr C /L(MF) = M|~(p).
Therefore, by(~1), we get~(T') = H((T)) = T(M|wr)) € T (M (a),r) = FH((A),T).

Proof of (5). LetT', A C F and suppos@/r = Ma.
Then,=(I') = F(A). Thus, by(r0), Moy = M (a).

Proof of (6). LetT" C F. Then, by(~2), u(Mr) = My € Mr.
Consequentlyy is a choice function. In addition, is obviously DP.

Proof of (7). LetI', A C F.
Then, by(|~3), we getu(MA) N Mr = M\N(A) N Mr = M\N(A),F - M|~(p) = /L(MF).

Proof of (8). LetI" C F. Then, by(p~1), (T) = H(~(T)) = T(Mpory) = T(u(Mr)). |

3.2 Without Definability Preservation and without Discrimination

In the present section, we will investigate in particulag family of all pivotal consequence rela-
tions. Unlike in Sectiol, the choice functions considenere are not necessarily definability
preserving. As a consequence, we will no longer have at apodal the remarkable equality:
u(Mr) = M, r). Therefore, we cannot translate properties like Stronge@atce in syntactic
terms. Moreover, we will put in evidence, in Sectidn 4, soingts of what can be done in this
area. Approximatively, we will show, in an infinite clasdi@mework, that there does not exist a
characterization (of the aforementioned family) made ofditions which are universally quantified
and of limited size.

We provide a solution with semi-syntactic conditions. Tosdg we will use techniques very
similar to those of5] (see the non-DP and non-discratiire case). The latter are themselves
inspired by the work of K. Schlechta (see Proposition 5.2[]). Technically, the idea begins
by building from any functiory, a SC choice functiop; such that whenevef “covers” some SC
choice function, it necessarily covers.

Definition 23 LetV be asetV C P(V), W C P(V) andf a function fromV to W.
We denote by:; the function fromV to P(V) such that’ V € 'V,

pr(V)y={veV:¥YW eV, ifveW, thenv e f(W)}.
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Lemma 24 LetV be asetV C P(V), W C P(V) andf a function fromV to W.
Then,uy is a SC choice function.

Proof . is obviously a choice function. We show that it satisfies @grGoherence.
Suppose the contrary, i.e. supp@seg, W € V and3v € ps(W) NV suchthaw & ps (V).
Then,am € Vandv & ps(V),wehaved Z € V,v € Z, andv & f(Z).

Therefore, simply by definition gi s, v ¢ 1y (W), which is impossible. ||

Lemma 25 LetV be a setV, W, andX subsets oP(V), f a function fromV to W, andy a SC
choice function fronV to X such that/ V. € 'V, f(V') = Myp(,(v)). Then:

(0) vV ev, f(V) = MT(uf(V))-
SupposéF,V, =) is a semantic structure satisfyifg0), D C V, andy is UC. Then:

(1) pp(V) = pu).

Proof Proof of(0). Supposé” € V. We showf (V) = Mz, (v))-

Case13v e u(V),v & ps(V).

As (V) C V,we havey € V.

Thus, by definition ofiy, 3W € V,v € W, andv ¢ f(W) = Mpuwy) 2 p(W).

On the other hand, asis SC,u(V) N W C u(W). Thus,v € u(W), which is impossible.
Case 2u(V) C us(V).

Case 2.13v e pus(V), v & f(V).

Then,3W € V,v € W, andv ¢ f(WW). Indeed, just tak& itself for the choice o#V.
Therefore, by definition of.s, v & 1 (V'), which is impossible.

Case 2.2us (V) C f(V).

Then,f(V) = Mrquvy) S Mru, ) S Moy = Mr@ur ) = Mre) = F(V)-

Proof of (1). Direction: “C".
Suppose the contrary, i.e. suppasec u¢(V), v & u(V).
Then,w € V\ u(V). But, aspis UC,V\ u(V) e D C V.
On the other hand, asc pf(V), we getV W € V| if v € W, thenv € f(W).
Thereforep € f(V \ M(V)) = MT(M(V\M(V)))'
But, we will show:
(1.0) p(V\ u(V)) = 0.
Therefore,MT(#(V\#(v))) = MT((D) = Mg.
But, by (40), Mz = 0. Thereforep € 0, which is impossible.
Direction: “2>".
Suppose the contrary, i.e. supp@se € u(V), v & (V).
Asv e Vandv ¢ us(V),wegeBW € V,v € Wandv & f(W) = My, wy) 2 p(W).
But, asy is SC,u(V) N W C u(W). Thereforep € (W), which is impossible.

Proof of (1.0). Suppose the contrary, i.e. suppase € u(V \ u(V)).
As 11is SC,u(V\ u(V)) NV C (V). Thus,w € u(V). Thereforep & V \ p(V).
But, u(V\ u(V)) CV\ u(V). Thus,w & u(V \ u(V)), which is impossible. |

Definition 26 Let (F,V, =) be a semantic structure apdbe a relation ofP(F) x F.
Then, consider the following conditiong.I" C F,
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(4) P =TH{ve Mpr:YACF, if ve Ma, thenv € M a)});

(5) V\{veV:VACF, ifve Ma, thenv € M a)} € D.

Proposition 27 Let (F,V, =) be a semantic structure apda relation oriP(F) x F. Then:
(0) |~ is a pivotal consequence relation |iff satisfie(|~4).

Suppose.F, V, |=) satisfieg A0). Then:

(1) |~ is a UC pivotal consequence relationiff satisfies(|~4) and([~5).

Proof Proof of(0). Direction: “—
There exists a SC choice functiprfrom D to P(V) such that T' C F, (') = T'(u(Mr)).
Let f be the function fronD to D such that/ V' € D, we havef (V) = My, vy)-
By Lemma[2by¥ V € D, we havef (V) = My, (v))-
Note thatv I" C F, f(Mp) = MT(M(MF)) = M|N(F)-
We show that|~4) holds. Letl’ C F.
Then,~(I') = T'(u(Mr)) = T(Mr (o)) = T(f (Mr)) = T (M, (aar))) = T (pp(Mr)) =
T({ve Mr:VW €D, ifveW,thenv e f(W)}) =
T({ve Mpr:VYACF,ifve Ma,thenv € f(Ma)}) =
({U € Mr : VA C F,ifve Ma,thenv € M|N(A)})
Direction: “—".
Supposé~ satisfies(}wl).
Let f be the function fronD to D such that/ I C F, we havef (Mr) = M ().
Note thatf is well-defined. Indeed, I, A C F andMr = Ma, then, by(j4), ~(T') = ~(A).
In addition, by(~4), we clearly have/T' C F, ~(T') = T' (5 (Mr)).
And finally, by Lemmd 244 is a SC choice function.

Proof of (1). Direction: “—".
Verbatim the proof of0), except that in additiofA0) holds andu is UC.
We show that~ satisfies(|~5). As uuis UC,V \ u(V) € D. But, by Lemmd 25u(V) = s (V) =
{veV:VWeD,ifveW,thenv € f(W)} =
{veV:VACF, ifve Ma,thenv e f(Ma)} =
{U eV :VACUF, ifve Ma,thenv € M|~(A)}
Direction: “~".
Verbatim the proof 0f0), except that in additio40) holds and~ satisfies(|~5).
But, because off~5), V \ (V) € D. Thereforeuy is UC.
Note that in this directiotA0) is not used. |

3.3 With Definability Preservation and with Discrimination

Inthe present section, we will characterize certain fagmitif DP pivotal-discriminative consequence
relations. We need an inductive construction introducef@05]:

Notation 28 IN denotes the natural numbefs), 1,2, ...} and
IN* the positive natural number$i, 2, .. .}.
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Definition 29 Let £ be a language; a unary connective of, F the set of all wffs ofZ, (F,V, =)
a semantic structuréy a relation oriP(F) x F, andl’ C F. Then,

def

H\(I') = {=BeF: eI, I)\ ) and-s ¢ =T, (')}
Let: € IN with 4 > 2. Then,

def

mm ™ per{

We turn to the representation result:

Definition 30 SupposeL is a language; a unary connective of, Vv a binary connective of, 7
the set of all wffs ofZ, (F, V, =) a semantic structure, ad a relation orP(F) x F.
Then, consider the following conditiong.', A C F,V «a, 3 € F,

(r6) if 5 € (T, () \ (') and—a € H(T, (), =6), thena: & ~(I);

(7)) if a e (T, () \ () andf € E(I, (1), —a) \ (), thenar v § & ~(T);
(h8) if a € po(T), then-a ¢ H(T, k(I));

(h9) T UH(T) CHA, (A), H(A),T);

(k-10) if T is consistent, thep-(T") is consistent]” C |~(T"), and-(~(T")) = ~(I).
Note that those conditions are purely syntactic when treagproof system available for

Proposition 31 SupposeL is a language; a unary connective of, Vv and A binary connectives
of £, F the set of all wffs ofZ, (F,V, ) a semantic structure satisfyirigl3) and(A1), andj~ a
relation onP(F) x F. Then:

(0) |~ is a CP DP pivotal-discriminative consequence relation~ifsatisfies(j~0), (~6), (~7),
(r8), (r9), and(~10).

SupposéF,V, |=) satisfieg A2). Then:

(1) p~is a DP pivotal-discriminative consequence relatiorifatisfies ~0), (~6), (~7), (~8)
and(j~9).

Before we show Propositidn[31, we need to introduce LenjnjanaBB below, taken fronf [BNDS5]:
Lemma 32 From |[BNO%].

Suppos€ is a language; a unary connective of, vV andA binary connectives of, F the set of all
wifs of £, (F,V, =) a semantic structure satisfyitig3) and(A1), andj~ a relation orP(F) x F

satisfying(p6), (~7), and(p-8).
ThenVTI C F, I’V(F) = Td(MF,|~(F),H(F))-
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Lemma 33 From [BNO%].

SupposeC is a language; a unary connective of, vV andA binary connectives of, F the set of
all wifs of £, (F,V, ) a semantic structure satisfyirig3) and(A1), V C P(V), u a DP choice
function fromD to V, |~ the relation orP(F) x F such thavT' C F, |~(T") = Ty(u(Mr)), and
I' C F. Then:

(0) |~ satisfieq|~6), (~7), and(p~8);

(1) if (F,V, =) satisfieg A2) too, thenu(Mr) = Mp (1, z(r);
(2) if pis coherency preserving, thefiMr) = M (), q(r)-
We come to the proof dProposition @.

Proof Proof of(0). Direction: “—".
There exists a CP DP SC choice functjpifrom D to P(V) such that
VI C F, p(T) = Tuu(Mr)).
We will show:
(0.0) |~ satisfieg~0).
By Lemmal3B(0), |~ satisfieq ~6), (~7), and([~8).
By Lemma|3B(2) and Strong Coherence pf |~ satisfies(|~9).
We will show:
(0.1) |~ satisfies satisfie§~10).
Direction: “~".
Supposé~ satisfies(|~0), (;~6), (7), (P8), (+9), and(~10).
Then, letu be the function fronD to P(V) such that/ T' C F, u(Mr) = Mrp (1), 5 (r)-
We will show:
(0.2) wis well-defined.
Clearly,u is a DP choice function.
In addition, ag~ satisfieg|~9), p is strongly coherent.
We will show:
(0.3) pisCP.
And finally, by Lemmd 3Ry T' C F, (I) = Tu(u(Mr)).

Proof of (0.0). LetT", A C F and suppose(I") = F(A). Then, Mt = Ma.
Therefore ~(I') = Tu(u(Mr)) = Ta(u(Ma)) = p(A),

Proof of (0.1). LetT" C F and supposE is consistent.

Then,Mr € DN C. Thus, ag: is CP,u(Mr) € C. ThereforeTy(u(Mr)) = T (pu(Mr)).
Consequentyl' C T'(Mr) C T(u(Mr)) = Ta(u(Mr)) = p(T).

In addition,MMp) = MTd(M(MF)) = MT(H(]\/IF))' BUt,,LL(MF) e C. ThUS,MT(H(]uF)) e C.
Consequently~(T") is consistent.

And finally, ~(I') = Ta(u(Mr)) = T(u(Mr)) = T(Mr(uany) = T(Mpqry) = F(R(D)).
Proof of (0.2). LetT", A C F and suppos&/r = Ma.

Then,H(T') = F(A). Thus, by(|~0), ~(T') = ~(A).

Consequentlyl (T') = H(A). Therefore Mr .0y, m(r) = Ma v(a),H(A)-

Proof of (0.3). Supposd” € DN C. Then3T C F,V = Mr.
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Case 1:H,(T") # 0.

Thus 38 e F, B ¢ ~(T') andMrp .1y C Mg.

By ('NlO), I'c 'N(F) andl—(}w(l“)) = 'N(F) ThUS,MFJN(F) = M|~(p). ThUS,M|~(F) - M@.
Therefore s € T' (M (ry) = F(~(I")) = p~(I'), which is impossible.

Case 2:H,(T") = 0.

Then,H(F) = 0. ThUS,,LL(V) = ,LL(MF) = Mp,‘N(p),H(F) = M|N(p).

But, by ()~10), r~(I') is consistent. Thereforé/,_r € C.

Proof of (1). Direction: “—".
Verbatim the proof of0), except thay: is no longer CP, whilsA2) now holds.
Note that, in(0), CP was used only to sho{#~9) and(|~10).
But, (~10) is no longer required to hold and we are going to@e9) by another mean.
Indeed, by Lemmp $81) and Strong Coherence pf (|~9) holds.

Direction: “~".
Verbatim the proof of0), except that|~10) does no longer hold, whil§t42) now holds.
However, in(0), (~10) was used only to show thatis CP, which is no longer required.
Note that we do not need to ugd?2) in this direction. Jj

3.4 Without Definability Preservation and with Discrimination

Unlike in Sectio, the conditions of the present sectidhnot be purely syntactic. The trans-
lation of properties like Strong Coherence in syntactioneis blocked because we do no longer
have the following useful equalityi(Mr) = Mr (), a(r), which hold when the choice functions
under consideration are definability preserving (but thisat the case here). Thanks to Lem@s 24
and[2} (stated in Sectidn B.2), we will provide a solutiortveiemi-syntactic conditions.

Definition 34 Let £ be alanguage; a unary connective of, F the set of all wifs ofZ, (F,V, E)
a semantic structure, and a relation orfP(F) x F.
Then, consider the following conditiok:T" C F,

(I’Vll) F(F, I’V(F),H(F)) = T({’U € Mp:VACUF, if ve Ma, thenv € M\N(A),H(A)});
(F12) V\{v eV : VA CF, if v e Ma, thenv € M\N(A),H(A)} e D.

Proposition 35 SupposeL is a language; a unary connective of, Vv and A binary connectives
of £, F the set of all wffs ofZ, (F,V, =) a semantic structure satisfyirigl3) and(A1), andj~ a
relation onP(F) x F. Then:

(0) |~ is a CP pivotal-discriminative consequence relatiofpifsatisfies |~0), (~6), (~7), (~8),
(F-10), and(j~11).

If (F,V, =) satisfies A0) too, then:

(1) p~ is a CP UC pivotal-discriminative consequence relatiorhifatisfies(~0), (~6), (7).
(R8), (~10), (jv11), and(p12).

If (F,V, =) satisfies A2) too, then:

(2) |~ is a pivotal-discriminative consequence relatiornfsatisfieg |~0), (~6), (~7), (8), and
(pe11).
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If (F,V, =) satisfies(A40) and(A2) too, then:

(3) p~is aUC pivotal-discriminative consequence relatiorrifsatisfies(|~0), ()~6), (~7), (~8),
(P11), and(}~12).

Proof Proof of(2). Direction: “—".
There exists a SC choice functiprfrom D to P(V) such that' " C F, (T') = Ty((Mr)).
Then, |~ satisfies obviously~0).
Let f be the function fronD to D such that/ V' € D, f(V') = My, v)-
Then, by LemmﬂBﬂ/ eD, f(V)= Mg, vy)-
Moreoverv T C F, f(MF) = MT(M(MF)) - MT(MF) = Mr.
Therefore,f is a choice function.
Obviously, f is DP.
In addition,VF C F, |~(F) = Td(,u(Mp)) = Td(MT(;L(IWF))) = Td(f(Mp))
Consequently, by Lemnfa]38), |~ satisfies(r6), (r7), and(|~8).
In addition, by Lemma 331), VI C F, f(Mr) = Mr j(r),#(r)-
We show that~ satisfieg|~11). LetI’ C F.
Then,b(I', ((I), H(I')) = T(Mr,jo(ry,m(ry) = T'(f(Mr)) = T(Mr(u (aryy) = T(pg(Mr)) =
T{ve Mr:YVW eD,ifvelW,thenv e f(W)}) =
T({ve Mpr:VYACF,ifve Ma,thenv € f(Ma)}) =
T({’U e Mr:VACUF,ifve Ma,thenv € MA,\N(A),H(A)}) =
T({’U EMr:VACUEF, ifve Ma, thenv € M|~(A),H(A)})-
Direction: “—".
Supposé-0), (~6), (7), (~8), and(p~11) hold.
Let f be the function fronD to D such that/ T C F, f(Mr) = Mr . (r),a(r)-
By (I~0), f is well-defined.
By Lemma[3Ry I C F, ~(I) = Tu(Mr oy, m(ry) = Ta(f(Mr)).
By (}'\/11), VI CF, f(MF) = MT(uf(]WF))'
Thereforey I' C F, |’\/(F) = Td(f(MF)) = Td(MT(uf(]Mp))) = Td(uf(Mp)).
But, by Lemmd 2l is a SC choice function.

Proof of (3). Direction: “—".
Verbatim the proof of2), except that in additioQA0) holds andu is UC.
We show that|~12) holds. Asp is UC,V \ u(V) € D. But, by Lemma 251), u(V) = (V) =
{veV: VW eD,ifveW,thenv e f(W)} =
{vEV:VACF, ifve Ma,thenv € f(Ma)} =
{U eV:VACUF, ifve Ma, thenv € MA,\N(A),H(A)} =
{’U EV:VACUF, ifve Ma, thenv € M|~(A),H(A)}-
Direction: “~".
Verbatim the proof of2), except that in additioA0) holds and~ satisfies(|~12).
But, because off~12), V \ (V) € D. Thereforeu s is UC.
Note that(A0) is not used in this direction.

Proof of (0). Direction: “—".

Verbatim the proof of2), except that{ A2) does no longer hold, whilgt is now CP.

Note that( A2) was used, if2), only to apply Lemm§ 38L) to getvl’ C F, f(Mr) = Mr jo(r), i (r)-
But, we will get this equality by another mean.

Indeed, ift” € DN C, then, ag.is CP,u(V') € C, thusMy(,(vy) € C, thusf(V) € C.
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Thereforef is CP.
Consequently, by Lemnfa]33), we getv I' C F, f(Mr) = Mr o(ry,m(T)-
In addition, by verbatim the proof @f).1) of Propositior] JLj~ satisfies(~10).
Direction: “~".
Verbatim the proof of2), except that A2) does no longer hold, whilgt- satisfies now(|~10).
But, in this direction( A2) was not used iti2).
It remains to show that is CP.
By verbatim the proof 0f0.3) of Propositior@l, we get thgtis CP.
LetV € DNC. Then,f(V) € C. Thus,Mr(,,(v)) € C. Thus,u;(V) € C and we are done.

Proof of (1). Direction: “—".
Verbatim the proof of2), except tha{ A2) does no longer hold, whilt40) now holds andu is
now UC and CP.
Note that A2) was used, irf2), only to apply Lemmf 38L) to getvl’ C F, f(Mr) = Mr vy, 1 (r)-
But, by verbatim the proof of0), we get anyway' I C F, f(Mr) = Mr (), a(r)-
In addition, by verbatim the proof @f).1) of Propositior] J1j~ satisfies(10).
And, by verbatim the proof of3), |~ satisfieg|~12).
Direction: “~".
Verbatim the proof of(2), except that A2) does no longer hold, whilgt40) now holds and~
satisfies now~10) and(~12).
But, in this direction{A2) was not used iti2).
In addition, by verbatim the proof @b), . is CP.
And, because off~12), V' \ ps(V) € D. Thereforeuy is UC.
Note that(A0) is not used in this direction. ||

4 Nonexistence of normal characterizations

Let 7 be a setR a set of relations o (F) x F, andj~ arelation oriP(F) x F.
Approximatively, a characterization & will be called “normal” iff it is made of conditions which
are universally quantified and “apply® at most|.F| times. More formally,

Definition 36 LetF be a set an® a set of relations o (F) x F.
We say that thaf is anormal characterizatiof R iff C = (A, @), wherex < |F]| is a (finite or
infinite) cardinal andp is a relation orP(F)2* such that for every relatiop onP(F) x F,

"‘JER iff VIq,...,I'x CF, (I‘l,...,I‘,\,jr\J(I‘l),...,|~(1",\))E<I>.

Now, suppose there is no normal characterizatioR oHere are examples that will give the reader
(we hope) a good idea of which conditions cannot then charizetk (and thus a good idea of the
range of our impossibility result: Propositi@ 38 below).3egin, consider the following condition:

(C1) YT,A € F CP(F), (I U (A)) = 0.

Then,(C1) cannot characterizR. Indeed, suppose the contrary, i.e.

supposé~ € Riff VI, A € F, (T U ~(A)) = 0.

Then, take\ = 3 and the relatio® such tha{T';,T'2,T'5, T4, 5, ) € @ iff

(I'1,Ty € Fandl's = I'; UT;) entailslg = 0.

Then,(3, ®) is a normal characterization &. We give the easy proof of this, so that the reader can
check that a convenient relatidncan be found quickly for all simple conditions liKE'1).

21



Proof Direction: “—".
Supposé~ € R.
ThenVI,A €F, T UR(A)) =0.
We showv 'y, 9, I's CF, (Fl, I's, s, |f\‘(1—‘1), |f\‘(1—‘2), |f\‘(1—‘3)) c P,
Letl';,I'5,I'3 C F.
We ShOW(Fl,FQ,Fg, I’V(Fl), I’V(Fg), I’V(Fg)) € .
Supposd’y,T's € Fandl's =T'; U ~(T'2).
Then, ad';,T's € F, we get~(I'; U ~(T2)) = 0.
But, ~(I'y U ~(T'2)) = ~(T'3). Therefore~(I's) = 0.
Direction: “~".
SUppOSG]/ Fl,rg,rg - f, (Fl,rg,rg, }'\/(Fl), }'V(F2)7 |’\/(F3)) € .
We showj~ € R. It suffices to show/ T', A € F, ~(T'U ~(A)) = 0.
LetT';A € F.
Then, takd—‘l =I'Ts=A, I's=I1U |~(I‘2)
We haVE(Fl, I's, s, |f\‘(1—‘1), |f\‘(1—‘2), |~(1"3)) € o.
In addition, we havé'; € F,T'; € F, andl's =T'; U |~(T2).
Therefore, by definition ob, |~(I'3) = 0.
But, (Ts) = (T U (T)) = T U R(A)).

But actually, we are not limited to simple operations (likg.eJ, N, \). More complex conditions
than(C'1) are also excluded. For instance, febe any function fronP (F) to P(F) and consider
the following condition:

(C2) VILA € F, M (f(I) U (A)) =0.

Then,(C2) cannot characterizR. Indeed, suppose it characterizes

Then, take the relatio® such tha{Tl'y, 2, '3, T4, T'5,T's) € @ iff

(I',T2 € Fandl's = f(T'1) UT;) entailsT'g = 0.

It can be checked th&s, ®) is a normal characterization &. We leave the easy proof to the reader.
We can even go further combining universal (not existentjahntifiers and functions lik¢.

For instance, lef" be a set of functions fror?(F) to P(F) and consider the following condition:

(C3) ¥VI,A € F,V f € F, h(f(T) U R(A)) = 0.

Then,(C3) cannot characterizR. Indeed, suppose it characterizes

Then, take the relatio® such tha{Tl'y, 2, '3, T4, T'5,T's) € @ iff

Vf cF,if (Fl, I's eF andF3 = f(l"l) U F5), thenFG = 0.

It can be checked thd8, ®) is a normal characterization &. The easy proof is left to the reader.

In the present section, we will show, in an infinite classitamework, that there is no normal
characterization for the family of all pivotal consequemnekations. In the same vein, in Proposi-
tion 5.2.15 of [Sch@4], K. Schlechta showed that there da¢xist a normal characterization for
the family of all preferential consequence relations.

Note that he used the word “normal” in a smaller sense (setofel.6.2.1 of 4]). Ap-
proximatively, a characterization & is called normal by him iff it is made of conditions liK€'1),
i.e. conditions which are universally quantified, “apply”at most|F| times, and use only elemen-
tary operations like e.gJ, N, \ (complex structures, functions, etc are not allowed). Weelmeen
inspired by the techniques of Schlechta. We will need Lemr2al8 of [SchOl]:
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Lemma 37 From [SchOy4].

Supposea is infinite and({F,., V, =) is a classical propositional semantic structure.
LetV C {V CV:|V]| < |A|} satisfying the two following conditions:

first,if V € VandW C V, thenlV € V;

and secondy V,W € V, if [VUW| < |A|, thenV UW € V.

ThenvVI' C F.,3Vr €V,

0) T(Nyev Mrue\vy) = T(Mr \ Vr);
(1) VV eV, T(Mp\V)CT(Mp\ V).

Recall that4 and F, have been introduced in Sectipn 2]1.2. Note that the syttsorit is written
just to keep in mind thatT depends o'

Proposition 38 SupposeA is infinite and(F., V, ) is a classical propositional semantic structure.
Then, there doesn’t exist a normal characterization fofethely of all pivotal consequence relations.

Proof Suppose the contrary, i.e. suppose there exist a cardliral|.F.| and a relation® over
P(F.)** such that for every relatiop- on P(F.) x F., |~ is a pivotal consequence relation iff
VIy,..., Ty CF., (T1,..., T, (1), ..., ~(T2)) € ®. Then, define:

VAV cv v < A}

In addition, let~ be the relation oP(F.) x F. suchthav T" C F,

() = T(Nyey Mr(amv))-

We will show:

(0) VV CV,Iif V| <|A|, thenT(V)=T(V\ V),

(1) 3Ty,...,T\ C Fesuchtha(ly, ..., Ty, (T1),...,(TA)) € ©.

Now, by lemm4 37, we get:

(2) VI CF,3Vr eV, ) =TMpr\Vr)andvV € V,T(Mpr\ V) CT(Mr\ V7).
Then, define:

x = UFe{Fl,...,FA} Vr.

Then, we will show:

(3) VI e{ly,....,I\}, ) =T (Mrp\ X).

Let i be the function fronD to P(V) suchthat’ V € D, u(V) = V' \ X.

We will show:

(4) pis a SC choice function.

Let |~ be the pivotal consequence relation definegiby

We will show the following, which entails a contradiction:

(5) ' is nota pivotal consequence relation.

Proof of (0). LetV C V and supposg/| < |A|.
Obviously,T'(V) C T(V\ V).

We showI'(V\ V) CT(V).

Suppose the contrary, i.e. suppase € T(V\ V), a & T(V).
Then,3v eV, v & M,.

Now, define:

w {w € V : for all atomgq occurring ina, w(q) = v(q)}.

Then,Y w € W, we havew(a) = v(«) and thusw ¢ M,,.
As the number of atoms occurring dnis finite andA is infinite, we getiw| = 24!,
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Therefore|V| < |A| < |[W]. Thus,3w e W\ V CV\ V.
Thus,V\'V € M,. Thereforeo ¢ T(V \ V), which is impossible.

Proof of (1). It suffices to show that- is not a pivotal consequence relation.

Suppose the contrary, i.e. suppose there exists a SC cluwicédn. from D to P(V) such that
YT C Fo, () = T(u(Mr)).

As Ais infinite,3 p € A. We show that all cases are impossible.

Case 13 v € p(V), v & M.

LetI' = T'(v). Then,Mr = {v}.

By SC ofu, we haveu(Mr) = p(Mr) NV C w(V). Thus,u(Mr) C u(V) N Mr.

On the other hand, again by S@V) N Mr C u(Mr). Consequently,(V) N My = u(Mr).
Therefore(I') = T'(u(Mr)) = T(u(V) N Mr) = T(u(V) N {v}) = T(v).

But,p € T'(v). Thus,p & p(T).

However,Mr € V. ThereforeﬂvEV MT(ILIF\V) - MT(MF\MF) = MT((D) = ]\4]:C = 0.
Therefore, by definition of-, we have~(T") = T'(0) = F..

Thus,p € |~(T'), which is impossible.

Case 2u(V) C M,,.

Then, by(0), ~(0) = T(Nyev Mronv)) = T(Nyev Mr(v)) = T(Mrv)) =T(V).
But,V € M,. Thus,p & T(V) = |~(0).

On the other handy-(0) = T'(u(My)) = T((V)).

But, (V) € M,,. Thus,p € T(u(V)) = p~(0), which is impossible.

Proof of (3). LetT" € {I'y,...,T"y}. Direction: “C".
We havelr C X. Thus,Mtr \ X C Mr \ Vr.
Therefore, by(2), (') = T'(Mr \ Vi) C T(Mr \ X).
Direction: “D”".
As A is infinite, | A| = | F.|. Therefore\ < |A|. Thus,|X| < |A]? = | A].
Thus,X € V. Thus, by(2), T(Mr \ X) C T(Mr \ Vr) = p~(T).

Proof of (4). p is clearly a choice function. We show thasatisfies SC. LeV, W C V.
Thenu(W)NV =WA\X)NV =WNV)\X CV\X =puV).

Proof of (5). By (3), VT € {T'1,...,Ta}, M(T) = T(u(Mr)) = T(Mr \ X) = po(T).
But, (T'1,...,Tx, (T1), ..., (Ty)) € @. Therefore(T'y, ..., Ty, ' (T1),..., M (T))) € .
Consequently, aé\, @) is a normal characterizatiop’ is not a pivotal consequence relation.Jj

5 Alink with X-logics

In this section, we investigate a link between pivotal copsace relations and pertinence conse-
quence relations (alia%-logics) which were first introduced by Forget, Risch, anegsi [FRSOIL].
Suppose some formulas are considered to be the pertinesitioniee absolute sense and collect
them in a se€. Then, it is natural to conclude a formulafrom a set of formulag$' iff every per-
tinent basic consequence bfU {«} is a basic consequence Bf(i.e. the addition ofx to " does

not yield more pertinent formulas than withalone). This constitutes a pertinence consequence
relation. More formally,

Definition 39 Let (F,V, =) be a semantic structure apda relation orP(F) x F.
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We say that~ is apertinence consequence relati(alias X -logic) iff there exists€ C F such that
VI CF,VaeF,
' aiff HT,a)NE CH(T).

In addition, if-(£) = &, we say that~ is closed
We introduce a new assumption about semantic structuréaafinsimply a weak version gf43)):

Definition 40 SupposeC is a languagey a binary connective of, F the set of all wiffs ofZ, and
(F,V, =) a semantic structure. Then, define the following condition:

(A4) Va,ﬁgf, Mavﬁ:MauMﬁ

We will show that wherf A4) is assumed, then UC pivotal consequence relations aresphgciosed
pertinence consequence relations. We need before No@i(zmd the very easy Propositi@ 42
(which we will use implicitly in the sequel).

Notation 41 Suppose is a languagey a binary connective of, F the set of all wifs ofC, I' C F

andA C F. Then:

rvA (avp:aelandse A).

Proposition 42 SupposeL is a languagey a binary connective of, F the set of all wffs ofZ,
(F,V, E) a semantic structure satisfyirig4), I' C F, andA C F.
Then,Mr U Ma = Mrya.

Proof Direction: “C”.

Suppose the contrary, i.e. suppa@se € Mr U Ma, v & Mprya.

Then3dael, 3B €A v¢E Myyg.

But, by (44), v € Mpr U Ma C M, U Mg = M,yg, Which is impossible.
Direction: “2>".

Suppose the contrary, i.e. suppase € Mrya, v & Mr U MAa.

Then3dael,vg Myand3 8 € A, v & Mg.

Therefore, by(A44), v & M, U Mg = Myvg.

Howevera vV 3 € 'V A. Thus,v € Mrya Which is impossible. ]

Proposition 43 SupposeC is a languagey a binary connective of, F the set of all wffs ofZ, and
(F,V, E) a semantic structure satisfyiig4).
Then, UC pivotal consequence relations are precisely dlpséinence consequence relations.

Proof Direction: “C”.

Let |~ be an UC pivotal consequence relation.

Then, there is an UC SC choice function frdnto P (V) such that' I C F, (') = T'(uu(Mr)).
Thus, by Propositioh 18, there exigts— V such that’\ Z € D andvT C F, ((I') = T(MpNI).
Define:& < T(v\ 7).

Then=(&) = T(Mg) = T(Mrong)) =T(V\I) =E.

In addition, asV \ 7 € D, we haveMg = Mpron7) = V\ T.

We show:

(0) VI CF,VaeF, T alff HT,a)NE CH(T).

Consequently,~ is a closed pertinence consequence relation.
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Direction: “2".
Let |~ be a closed pertinence consequence relation.

Then, there i€ C Fsuchthat =F(&)andvl C F,Va e F,T | «iff H(T,a) N

Define:7 “ v\ M.

Then,V\Z = M¢ € D.

We will show:

(1) VI CF, ) =TMrNI).

Let i1 be the choice functlon froM toP(V) suchthay V e D, u(V) =V NZ.
ThenVT C F, ~(T) = T(u(Mr)).

In addition, by Propositiom& is a UC SC choice function.

Consequently,~ is an UC pivotal consequence relation.

Proof of (0). LetI" C F anda € F. Then:

I aiff

MrnNZC M, iff

Mp C M, U (V\T) iff

My C M, U Mg iff

Mr C MFU{&} U Mg iff

Mr € M(ryugay)ve iff

T(Mru{ayve) € T(Mr) iff

T(MFU{a} U Mg) C T(My) iff
(MFU{a}) N T(Mg) - T(MF) iff
H(T, ) NH(E) € H(T) iff
FT,a)NE C I—( ).

Proof of (1). LetT’ C F anda € F. Then:
I «iff

H(T, a)ﬂECI—( ) iff
HT,a) NH(E) C H(T) iff
T(Myoqay) N T(Me) € T(Mr) iff
T(Mrugay U Me) C T(Mr )
T(Mruayyve)) € T(Mr) iff
Mr C Mrugayyve) iff
Mr C MFU{&} U Mg iff
Mr C M, U Mg iff
Mpn(V\ Mg) C M, iff
MrNZC M, |

6 Conclusion

We provided, in a general framework, characterizationgdunilies of pivotal(-discriminative) con-
sequence relations. We showed, in an infinite classicaldveark, that there is no normal char-
acterization for the family of all pivotal consequence tielas. And, we showed that UC pivotal
consequence relations are precisely thiskgics such thak is closed under the basic entailment.
Beyond the contributions, an interest of the present pagergive an example of how the techniques
developed in5] (in particular in the discriminativesed can be adapted to new properties (here
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Strong Coherence in the place of Coherence). So naturadlyum now to conclusions similar to
those of ]. Half of time, our conditions are purely syetic. In fact, when the choice func-
tions under consideration are not necessarily definahligserving, we provided solutions with
semi-syntactic conditions. We managed to do so thanks tanasi2} anfl 35. An interesting thing
is that we used them both in the plain and the discriminatemsions. This suggests that they can
be used in yet other versions. In addition, Lemr@s 32@1d 88 haen applied both here and
previously in ] to characterize families of conseqerrelations defined in the discriminative
manner by DP choice functions. Buf, [BNO5] is about cohectwice functions, whilst the present
paper is about strongly coherent choice functions. Thigesty that these lemmas can be applied
with yet other properties.
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