
HAL Id: hal-00009210
https://hal.science/hal-00009210v1

Submitted on 29 Sep 2005 (v1), last revised 8 Apr 2007 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pivotal and Pivotal-discriminative Consequence
Relations

Jonathan Ben-Naim

To cite this version:
Jonathan Ben-Naim. Pivotal and Pivotal-discriminative Consequence Relations. Journal of Logic and
Computation, 2005, Volume 15, number 5, p. 679-700. �10.1093/logcom/exi030�. �hal-00009210v1�

https://hal.science/hal-00009210v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

09
21

0,
 v

er
si

on
 1

 -
 2

9 
S

ep
 2

00
5

Pivotal and Pivotal-discriminative Consequence
Relations

Jonathan Ben-Naim
LIF, CNRS

CMI 39, rue Joliot-Curie
F-13453 Marseille Cedex 13, France

jbennaim@lif.univ-mrs.fr

September 29, 2005

Abstract

A pivotal consequence relation is defined to hold between a set of formulasΓ and formulaα iff every non-
negligible model forΓ is a model forα. Unlike preferential consequence relations, the set of allnon-negligible
(or preferred) valuations is fixed and thus does not depend onthe premisses under consideration. The first
purpose of the present paper is to investigate pivotal consequence relations. We provide characterizations of
several families in the classical framework, but also in certain three/four-valued frameworks, well-known as the
paraconsistent logicsJ3 andFOUR. We show also that there is no “normal” characterization of the family of
all pivotal consequence relations, in the infinite classical framework. And we show a link withX-logics. Our
second purpose is to investigate a qualified version of pivotal consequence, which we call pivotal-discriminative
consequence. This is defined to hold between a set of formulasΓ and formulaα iff Γ |∼ α butΓ 6|∼ ¬α, where
|∼ is the plain relation. We provide characterizations of several families of such relations for the classical,
three, and four-valued frameworks.

1 Introduction

In [17, 18], David Makinson introducedpivotal consequence relations(pivotal CRs for short) and
gave some of their basic properties. They are defined to hold between a set of formulasΓ and
formulaα iff every non-negligible model forΓ is a model forα. Unlike preferentialCRs, the set
of non-negligible (or preferred) valuations is fixed and thus does not depend on the premisses under
consideration. In the present paper, the author continues Makinson’s investigation, but on a more
general level that covers certain three/four-valued frameworks, well-known as the paraconsistent
logicsJ3 andFOUR. The motivation is that pivotal CRs represent natural ways of reasoning which
are useful to handle incomplete information in the classical framework and both incomplete and
inconsistent information in theJ3 andFOUR frameworks. We will illustrate this, together with the
different advantages and drawbacks of the different frameworks, with examples in Sections 2.11.1
and 2.11.2, once the formal definitions will be made.

The first goal of the paper is to provide characterizations ofseveral families of pivotal CRs for
the classical, three and four-valued frameworks. Most of the time, these characterizations have a
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purely syntactic aspect (i.e. they involve only the language and some proof systems).
Then, we will answer negatively a representation problem that was left open by Makinson,

namely there is no “normal” characterization of the family of all pivotal CRs, in the infinite classical
framework. Roughly speaking, we have a normal characterization iff we have found some conditions
that discriminate any CR|∼ only with a limited number of sets of formulas and their|∼-closures.
And, we will show that a certain family of pivotal CRs corresponds precisely to a certain family of
X-logicswhich were introduced by Forget, Risch, and Siegel [12].

Another goal of the paper is to investigate a qualified version of pivotal CRs, which we call
pivotal-discriminativeCRs. They are defined to hold between a set of formulasΓ and formulaα iff
Γ |∼ α but Γ 6|∼ ¬α, where|∼ is the plain relation. They capture the idea that usually we do not
want to keep contradictory conclusions. We will provide characterizations (often syntactic ones) of
several families of such relations for the classical, three, and four-valued frameworks.

The rest of the paper is organized as follows. In Section 2, wegive the formal definitions,
an overview of the characterizations, and examples in the classical andFOUR frameworks. In
Sections 3, 4, and 5, we give characterizations of several families of pivotal CRs. In Section 6,
we show that pivotal CRs are linked toX-logics. In Section 7, we show that there is no “normal”
characterization of pivotal CRs, in the infinite classical framework. In Sections 8 and 9, we give
characterizations of several families of pivotal-discriminative CRs. And, Section 10 is a conclusion,
summarizing and explaining what has been achieved.

2 Preliminaries

2.1 A general framework

We fix once and for all a setL, a setV , and a relation|= onV ×L. Intuitively,L is a set of formulas,
V is a set of valuations, and|= is a satisfaction relation (i.e.∀ x ∈ V , ∀ α ∈ L, x |= α means
that the formulaα is satisfied in the valuationx, i.e. x is a model forα). We fix also once and
for all a functionneg : L → L, a functionor : L × L → L, and a functionand : L × L → L.
Intuitively, ∀ α, β ∈ L, neg(α) is the negation ofα, or(α, β) is the disjunction ofα andβ, and
and(α, β) is the conjunction ofα andβ. We use these functions instead of the usual connectives:
¬, ∨, and∧, because we do not want nor need to assume any structure onL. We emphasize that for
the time being,no assumption is made aboutL, V , |=, neg, or, and. The idea is to obtain the most
general possible results (i.e. results under the least possible assumptions onL, neg, . . . ) and then
to use them for instance in the particular case whereL is a classical language,neg is the classical
negation, etc. The framework is the one presented in [7]. A similar framework has been adopted
in two well-known papers, [18, 15], without anticipating any of the substantive work in the present
paper.

Notation 1 For allΓ ⊆ L, we denote byMΓ the set such thatMΓ = {x ∈ V : ∀α ∈ Γ, x |= α}. Let
X ⊆ V . We denote byT (X) the set such thatT (X) = {α ∈ L : X ⊆ Mα}. We denote byTd(X)
the set such thatTd(X) = {α ∈ L : X ⊆ Mα andX 6⊆ Mneg(α)}. We denote byD the set such
thatD = {X ⊆ V : ∃Γ ⊆ L, MΓ = X}. We denote byC the set such thatC = {X ⊆ V : ∀α ∈ L,
X 6⊆Mα or X 6⊆Mneg(α)}.

Intuitively, MΓ is the set of all models forΓ, T (X) is the set of all formulas satisfied inX , Td(X)
is the set of all formulas “discriminatively” satisfied inX , D is the set of every set of valuations
definable by a set of formulas, andC is the set of all “consistent” sets of valuations. Note that
∀ Γ, ∆ ⊆ L, MΓ ∩M∆ = MΓ∪∆.
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2.2 Consequence relations and extended consequence relations

Definition 2 We denote byP the power set operator. We say that|∼ is a consequence relation
(CR for short) iff |∼ is a relation onP(L) × L. For all Γ ⊆ L, we denote bỹΓ the set such that
Γ̃ = {α ∈ L : Γ |∼ α}. We denote by⊢ the CR such that∀ Γ ⊆ L, ∀ α ∈ L, Γ ⊢ α iff MΓ ⊆Mα.
For all Γ ⊆ L, we denote byΓ the set such thatΓ = {α ∈ L : Γ ⊢ α}. We say thatΓ ⊆ L is
consistent iff∀ α ∈ L, Γ 6⊢ α or Γ 6⊢ neg(α). We denote by⊢d the CR such that∀ Γ ⊆ L, ∀ α ∈ L,
Γ ⊢d α iff Γ ⊢ α andΓ 6⊢ neg(α).

Intuitively,⊢ is the basic CR and⊢d is the “discriminative” CR. Note thatΓ is consistent iffMΓ ∈ C.
Note again that∀ Γ, ∆ ⊆ L, Γ = T (MΓ), MΓ = MΓ, andΓ ⊆ ∆ iff Γ ⊆ ∆ iff M∆ ⊆MΓ.

Definition 3 We say that||∼ is anextended consequence relation(ECR for short) iff||∼ is a relation
onP(L)× P(L).

2.3 Pivotal consequence relations

Pivotal CRs were introduced by David Makinson, [17, 18]. They represent natural ways of drawing
conclusions which are useful to handle incomplete and/or inconsistent information. Examples will
be given in Sections 2.11.1 and 2.11.2.

Definition 4 We say thatP is apivot iff P ⊆ V . We say that a pivotP is definableiff P ∈ D. We
say that a pivotP is codefinableiff V \ P ∈ D. Let Y,Z ⊆ P(V) andµ : Y → Z be a function.
We say thatµ is consistency preserving(CP for short) iff∀ X ∈ Y ∩D ∩C, µ(X) ∈ C. We say
that a pivotP is CP iff the functionµ : P(V)→ P(V) such that∀X , µ(X) = X ∩ P , is CP.

Intuitively, a pivotP is a way to choose a fixed set of valuations which are considered to be the
non-negligible ones. Reciprocally, every such way is represented by a pivot.

Definition 5 Let |∼ be a CR. We say that|∼ is a pivotal CR iff there exists a pivotP such that
∀ Γ ⊆ L, Γ̃ = T (MΓ ∩ P ). We say that|∼ is definable, codefinable, etc. iff|∼ can be defined by a
definable, codefinable, etc. pivot.

Intuitively |∼ is a pivotal CR iff there exists a pivot such thatΓ |∼ α iff the non-negligible models
for Γ are models forα. Note that with preferential CRs, a valuationx belonging to two sets of
valuationsX andY can be non-negligible (or preferred) inX and negligible inY . In other words,
this depends on the set of valuations that is considered, i.e. on the “context”. This is not true with
pivotal CRs: a valuation is non-negligible iff it is in the fixed pivot, independently of the “context”.

We now give alternative definitions and intuitions for definable pivotal CRs. We say thatΣ is an
assumption choice iffΣ ⊆ L. Intuitively,Σ is a way to choose a fixed set of formulas that is consid-
ered to hold. Reciprocally, every such way is represented byan assumption choice. Now, a CR|∼ is
a definable pivotal CR iff there exists an assumption choiceΣ such that∀ Γ ⊆ L, ∀ α ∈ L, Γ |∼ α

iff Γ ∪ Σ ⊢ α.

We do the same job with codefinable pivotal CRs. We say thatΣ is a negative-assumption choice
iff Σ ⊆ L. Intuitively, Σ is a way to choose a fixed set of formulas that is considerednot to hold.
Reciprocally, every such way is represented by a negative-assumption choice. Now, under the as-
sumption that∀α, β ∈ L, Mor(α,β) = Mα∪Mβ, a CR|∼ is a codefinable pivotal CR iff there exists
a negative-assumption choiceΣ such that∀ Γ ⊆ L, ∀ α ∈ L, Γ |∼ α iff ∀ β ∈ Σ, Γ ⊢ or(α, β).
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2.4 Pivotal-discriminative consequence relations

We now introduce pivotal-discriminative CRs. They capturethe idea that usually we do not want to
keep contradictory conclusions.

Definition 6 Let |∼ be a CR. We say that|∼ is a pivotal-discriminative CR iff there exists a pivotP

such that∀ Γ ⊆ L, Γ̃ = Td(MΓ ∩ P ). We say that|∼ is definable, codefinable, CP, etc. iff|∼ can
be defined by a definable, codefinable, CP, etc. pivot.

Intuitively, |∼ is a pivotal-discriminative CR iff there exists a pivot suchthatΓ |∼ α iff α is satisfied
in all non-negligible models forΓ, but not its negation.

2.5 Pertinence extended consequence relations (aliasX-logics)

Pertinence ECRs (aliasX-logics) were introduced by Forget, Risch, and Siegel, see [12].

Definition 7 We say thatΣ is apertinence choiceiff Σ ⊆ L. In addition, we say thatΣ is closed iff
Σ = Σ.

Intuitively, a pertinence choiceΣ is a way to choose a fixed set of formulas which are considered to
be the pertinent ones. Reciprocally, every such way is represented by a pertinence choice.

Definition 8 Let ||∼ be an ECR. We say that||∼ is apertinenceECR (aliasX-logic) iff there exists
a pertinence choiceΣ such that∀ Γ, ∆ ⊆ L, Γ ||∼ ∆ iff Γ ∪∆ ∩ Σ ⊆ Γ. We say that||∼ is closed
iff ||∼ can be defined by a closed pertinence choice.

Intuitively, ||∼ is a pertinence ECR iff there exists a pertinence choice suchthatΓ ||∼ ∆ iff every
pertinent basic consequence ofΓ ∪ ∆ is a basic consequence ofΓ (i.e. iff the addition of∆ to Γ
does not yield more pertinent formulas than withΓ alone).

2.6 Normal Characterizations

Some of our characterizations are said to benormal, whilst some others are not. Let us make
this explicit. For every setA, we denote by|A| the cardinality ofA. Let nowC be a family of
CRs. Intuitively, we have a normal characterization ofC iff we have found some conditions that
determine whether a CR|∼ is in C or not, only withλ ≤ |L| many sets of formulas:Γ1, . . .Γλ and
their |∼-closures:̃Γ1, . . . Γ̃λ. This notion was introduced by Karl Schlechta, see e.g. [24]. We have
formalized this notion in Definition 9 below.

Definition 9 Let C be a set of CRs. We have a normal characterization ofC iff we have found a
(finite or infinite) cardinalλ ≤ |L| and a relationΦ onP(L)2λ such that for all CR|∼,

|∼ ∈ C iff ∀ Γ1, . . . Γλ ⊆ L, Φ(Γ1, . . .Γλ, Γ̃1, . . . Γ̃λ) holds.

We specify thatΦ is a relation in the straightforward set-theoretic sense (i.e. any set of2λ-tuples of
subsets ofL). Now, we turn to two remarks.

First, letC be a family of CRs andA ⊆ P(L). Suppose now that for all CR|∼, |∼ ∈ C iff

∀ Γ, ∆ ∈ A, ˜
Γ ∪ ∆̃ = ∅. Then, we can immediately get a normal characterization ofC from this.

Indeed, just take the relationΦ such thatΦ(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) iff (if Γ1, Γ2 ∈ A and Γ3 =

4



Γ1 ∪ Γ5, thenΓ6 = ∅). Then, clearly|∼ ∈ C iff ∀ Γ1, Γ2, Γ3, Φ(Γ1, Γ2, Γ3, Γ̃1, Γ̃2, Γ̃3). In other
words, if there is no normal characterization, then there isno simple condition such as∀ Γ, ∆ ∈ A,
˜
Γ ∪ ∆̃ = ∅.

Second, suppose this time that for all CR|∼, |∼ ∈ C iff ∀ Γ, Γ̃ = T ({x ∈ MΓ : ∀ ∆, if x ∈
M∆, thenx ∈ M∆̃}). Then, it seems impossible to get a normal characterizationof C from this.
Roughly, the reason is that the condition depends on2|L| many subsets ofL, whilst we need to find
a relation that depends on at most|L| many subsets ofL.

2.7 Overview of the characterizations

The main contributions of the paper are characterizations of several families of pivotal CRs and
pivotal-discriminative CRs.Sometimes, to show a characterization, we will need to makesomeof
the following assumptions aboutL, V , |=, neg, or, andand:

(A0) ML = ∅;

(A1) ∀ α, β ∈ L, Mor(α,β) = Mα ∪Mβ ;

(A2) ∀α, β ∈ L, Mor(α,β) = Mα ∪Mβ andMand(α,β) = Mα ∩Mβ andMneg ◦neg(α) = Mα and
Mneg ◦ or(α,β) = Mand(neg(α),neg(β)) andMneg ◦ and(α,β) = Mor(neg(α),neg(β)), where◦ is
the function composition operator (i.e.neg ◦ or(α, β) = neg(or(α, β)), etc.);

(A3) V is finite;

(A4) ∀ Γ ⊆ L, ∀ α ∈ L, if α 6∈ T (MΓ) andneg(α) 6∈ T (MΓ), thenMΓ ∩Mα 6⊆Mneg(α).

But, for the time being, we do not make any assumption. Note that to show our characterizations,
we will never need other assumptions aboutL, V , |=, neg, or, andand. And note that(A0), (A1),
(A2), (A3), and(A4) are not independent of each other. For instance, obviously if (A2) holds, then
(A1) holds too. We will give normal characterizations of the following families:

• the definable pivotal CRs (in Section 3);

• the definable pivotal-discriminative CRs, under(A2), (A3), and(A4) (in Section 8);

• the CP definable pivotal-discriminative CRs, under(A2) and(A3) (in Section 8).

Recall that CP means: consistency preserving, defined in Definition 4. In addition, we will give
non-normal characterizations of the following families:

• the pivotal CRs (in Section 4);

• the codefinable pivotal CRs, under(A0) (in Section 5);

• the pivotal-discriminative CRs, under(A2), (A3), and(A4) (in Section 9);

• the codefinable pivotal-discriminative CRs, under(A0), (A2), (A3), and(A4) (in Section 9);

• the CP pivotal-discriminative CRs, under(A2) and(A3) (in Section 9);

• the CP codefinable pivotal-discriminative CRs, under(A0), (A2), and(A3) (in Section 9).

We will see in Sections 2.8, 2.9, and 2.10, that(A0), (A1), (A2), (A3), and(A4) are weak enough to
hold in the classical (propositional) framework, in theFOUR framework, and in theJ3 framework.
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2.8 The classical framework

Notation 10 We fix once and for all a setA of propositional symbols. We denote byLc the classical
language generated fromA, the constant symbols:0, 1, and the usual connectives:¬, ∨, ∧. We
denote byVc the classical valuations ofLc. We denote by|=c the classical satisfaction relation on
Vc × Lc.

Roughly speaking,(A0), (A1), (A2), (A3), and(A4) hold in the classical framework. More pre-
cisely, first(1) entails(A0), second(1) and(2) entail(A1), (A2) and(A4), and third(1) and(3)
entail(A3), where

(1) L = Lc, V = Vc, and |==|=c;

(2) ∀ α, β ∈ L, neg(α) = ¬α, or(α, β) = α ∨ β, and(α, β) = α ∧ β;

(3) A is finite.

2.9 TheFOUR framework

The logicFOUR was introduced by Belnap in [5, 6] to deal with inconsistent and incomplete
information. Intensive investigations ofFOUR were made by e.g. Ofer Arieli and Arnon Avron
[1, 2, 3]. They worked with richer languages than here, containing e.g. some constants⊥, ⊤ and
some implication connective⊃ first introduced by Avron in [4]. In addition, proof systems for ⊢ in
theFOUR framework have been given in [1, 2, 3]. Now, from e.g. [5, 6]:

Definition 11 We say thatx is aFOUR-valuation iff x is a function fromLc to {0, 1,⊥,⊤} such
thatx(0) = 0, x(1) = 1 and truth tables 1, 2, and 3 below hold. We denote byV4 the set of all
FOUR-valuations. We denote by|=4 the relation onV4×Lc such that∀x ∈ V4, ∀α ∈ Lc, x |=4 α

iff x(α) ∈ {1,⊤}. We call|=4 theFOUR-satisfaction relation.

α ¬α
0 1
1 0
⊥ ⊥
⊤ ⊤
Table 1.

β

0 1 ⊥ ⊤

α

0 0 1 ⊥ ⊤
1 1 1 1 1
⊥ ⊥ 1 ⊥ 1
⊤ ⊤ 1 1 ⊤

α ∨ β

Table 2.

β

0 1 ⊥ ⊤

α

0 0 0 0 0
1 0 1 ⊥ ⊤
⊥ 0 ⊥ ⊥ 0
⊤ 0 ⊤ 0 ⊤

α ∧ β

Table 3.

We found it useful to recall an intuitive meaning forFOUR, as given by e.g. John Fox [13]. We
will use this meaning in an example in Section 2.11.2. Letx ∈ V4 andα ∈ Lc, then

• x(α) = 0 means: we are informed thatα is false, but not informed thatα is true;

• x(α) = 1 means: we are informed thatα is true, but not informed thatα is false;

• x(α) = ⊥ means: we are neither informed thatα is true nor informed thatα is false;

• x(α) = ⊤ means: we are both informed thatα is true and informed thatα is false.
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Now consider the followingsimplifying assumption: the information about any formula can always
be obtained only from the information about the propositional symbols. In other words, the initial
information is the one about the propositional symbols and the information about general formulas
is constructed from the initial information. Then, intuitively

(1) We are informed (inf.) that¬α is true iff we are inf. thatα is false;

(2) We are inf. that¬α is false iff we are inf. thatα is true;

(3) We are inf. thatα ∨ β is true iff we are inf. thatα is true or inf. thatβ is true;

(4) We are inf. thatα ∨ β is false iff we are inf. thatα is false and inf. thatβ is false;

(5) We are inf. thatα ∧ β is true iff we are inf. thatα is true and inf. thatβ is true;

(6) We are inf. thatα ∧ β is false iff we are inf. thatα is false or inf. thatβ is false.

Note that without the simplifying assumption only the left-to-right implications of(3) and(6) do
not longer hold. Now,(1) and(2) are formalized in Table 1,(3) and(4) are formalized in Table 2,
and(5) and(6) are formalized in Table 3. Thus, everyFOUR-valuation represents a way to be
informed about the formulas under the simplifying assumption. And clearly, every such way is rep-
resented by aFOUR-valuation.

Roughly speaking,(A0), (A1), (A2), (A3), but not (A4) hold in theFOUR framework. Indeed,
first (1) entails(A0), second(1) and(2) entail(A1), (A2), butnot(A4), and third(1) and(3) entail
(A3), where

(1) L = Lc, V = V4, and|==|=4;

(2) ∀ α, β ∈ L, neg(α) = ¬α, or(α, β) = α ∨ β, and(α, β) = α ∧ β;

(3) A is finite.

It can be easily checked that our assumptions still hold in the richer languages of [1, 2, 3].

2.10 TheJ3 framework

The logicJ3 was introduced in [10] to answer a question posed in 1948 by S.Jaśkowski, who was
interested in systematizing theories capable of containing contradictions, especially if they occur in
dialectical reasoning. The step from informal reasoning under contradiction and formal reasoning
with databases and information was done in [8] (also specialized for real database models in [9]),
where another formulation ofJ3 calledLFI1 was introduced, and its first-order version, semantics
and proof theory were studied in detail. Investigations ofJ3 have also been made by Avron in e.g.
[4] where richer languages than here are considered. In addition, proof systems for⊢ in the J3

framework can be found in e.g. [4, 10] and the chapter IX of [11]. Now, from e.g. [10]:

Definition 12 We say thatx is a J3-valuation iff x is a function fromLc to {0, 1,⊤} such that
x(0) = 0, x(1) = 1, and the truth tables 4, 5, and 6 below hold. We denote byV3 the set of all
J3-valuations. We denoted by|=3 the relation onV3 ×Lc such that∀ x ∈ V3, ∀ α ∈ Lc, x |=3 α iff
x(α) ∈ {1,⊤}. We call|=3 theJ3-satisfaction relation.

7



α ¬α
0 1
1 0
⊤ ⊤
Table 4.

β

0 1 ⊤

α

0 0 1 ⊤
1 1 1 1
⊤ ⊤ 1 ⊤

α ∨ β

Table 5.

β

0 1 ⊤

α

0 0 0 0
1 0 1 ⊤
⊤ 0 ⊤ ⊤

α ∧ β

Table 6.

The same intuitive meaning as forFOUR is valid, except that the following is added to the simpli-
fying assumption: for every propositional symbol, we are atleast informed that it is true or informed
that it is false.

Roughly speaking,(A0), (A1), (A2), (A3), and(A4) hold in theJ3 framework. More precisely,
first (1) entails(A0), second(1) and(2) entail(A1), (A2), and(A4), and third(1) and(3) entail
(A3), where

(1) L = Lc, V = V3, and|==|=3;

(2) ∀ α, β ∈ L, neg(α) = ¬α, or(α, β) = α ∨ β, and(α, β) = α ∧ β;

(3) A is finite.

It can be easily checked that our assumptions still hold in the richer languages of [4].

2.11 Different frameworks, different drawbacks

Pivotal (resp. pivotal-discriminative) CRs suffer from the following drawback: some sets of formulas
are rendered useless in the sense that everything (resp. nothing) can be concluded from them. A set
of formulasΓ is rendered useless in two situations:

• there does not exist a model forΓ;

• there exist models forΓ, but they are not in the pivot.

Note that in theFOUR and J3 frameworks, these two situations happen less often than in the
classical framework. Roughly speaking, this is due to the fact that in theFOUR andJ3 frameworks,
there are much more valuations than in the classical framework. Consequently, it is harder to be left
with no model or no model in the pivot. In particular, for all classically inconsistentΓ ⊆ Lc,
there are generallyFOUR andJ3 models. Thus, in theFOUR andJ3 frameworks, pivotal and
pivotal-discriminative CRs are paraconsistent.

On the other hand, in the paraconsistent frameworks, the Disjunctive Syllogism is not satisfied,
unlike in the classical framework. The Disjunctive Syllogism says that fromα and¬α ∨ β, we can
infer β. Let us illustrate all of this with examples.

2.11.1 A particular pivotal CR in the classical framework

Suppose that we are in the classical framework (more formally, supposeL = Lc, V = Vc, and
|==|=c) and supposeA = {r, q, p}. Recall thatA is a set of propositional symbols introduced in
Section 2.8. Intuitively,r means that Nixon is a republican,q means that Nixon is a quaker, andp
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means that Nixon is a pacifist. Then,V is the set of the 8 following classical valuations:v0, v1, v2,
v3, v4, v5, v6, andv7, which are defined in the obvious way by the following table:

r q p

v0 0 0 0
v1 0 0 1
v2 0 1 0
v3 0 1 1
v4 1 0 0
v5 1 0 1
v6 1 1 0
v7 1 1 1

Now, consider the class of all republicans and the class of all quakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normal iffhe is a pacifist. And, consider that a
valuation is negligible if (in it) Nixon is a non-normal individual of some class. This is formalized
by the following pivotP = {x ∈ V : if x |= r, thenx |= ¬p, and ifx |= q, thenx |= p}. Let |∼ be
the pivotal CR defined byP .

Then,|∼ leads us to “jump” to plausible conclusions from incompleteinformation. For instance,
r |∼ ¬p andq |∼ p. Thus, pivotal CRs can be useful to handle incomplete information.

But, we loose many sets of formulas because there is no model in the pivot. For instance:
{q, r} |∼ α, ∀ α ∈ L. In particular, we suffer from this drawback if we face new information that
contradict previous “hasty” conclusions. For instance,{r, p} |∼ α, ∀ α ∈ L, and{q,¬p} |∼ α,
∀ α ∈ L. We emphasize that this is the main difference compared to preferential CRs. Indeed, with
preferential CRs, we can revise previous “hasty” conclusions in the face of new information that
contradict them. Examples can be found in [7]. And, a lot of sets of formulas are rendered useless
because there is just no model. For instance:{p,¬p, q} |∼ α, ∀ α ∈ L. In other words,|∼ is not
paraconsistent.

2.11.2 A particular pivotal CR in the FOUR framework

Suppose that we are in theFOUR framework (more formally, supposeL = Lc, V = V4, and
|==|=4) and suppose again thatA = {r, q, p}. Consider the same classes, etc. as in the classical
case, except that this time a valuation is considered to be negligible if (in it) we are informed that
Nixon is an individual of some class, but not informed that Nixon is a normal individual of that class.
This is formalized by the following pivotP = {x ∈ V : if x |= r, thenx |= ¬p, and ifx |= q, then
x |= p}. Let |∼ be the pivotal CR defined byP .

Then, again|∼ leads us to “jump” to plausible conclusions from incompleteinformation. For
instance,r |∼ ¬p and q |∼ p. In addition, less sets of formulas are rendered useless because
there is no model in the pivot. For instance,{q, r} |∼ p and{q, r} |∼ ¬p and{q, r} |∼ q and
{q, r} 6|∼ ¬q and{q, r} |∼ r and{q, r} 6|∼ ¬r. In particular, we avoid trivialization if we face new
information that contradict previous “hasty” conclusions. For instance,{r, p} |∼ p and{r, p} |∼ ¬p
and{r, p} |∼ r and{r, p} 6|∼ ¬r and{r, p} 6|∼ q and{r, p} 6|∼ ¬q. Another example:{q,¬p} |∼
¬p and{q,¬p} |∼ p and{q,¬p} |∼ q and{q,¬p} 6|∼ ¬q and{q,¬p} 6|∼ r and{q,¬p} 6|∼ ¬r.
In addition, less sets of formulas are rendered useless because there is just no model. For instance,
{p,¬p, q} |∼ p and{p,¬p, q} |∼ ¬p and{p,¬p, q} |∼ q and{p,¬p, q} 6|∼ ¬q and{p,¬p, q} 6|∼ r

and{p,¬p, q} 6|∼ ¬r. In fact, |∼ is paraconsistent. Thus, in theFOUR framework, pivotal CRs
can be useful to handle both incomplete and inconsistent information.
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However,|∼ does not satisfy the Disjunctive Syllogism. Indeed, for instance,{¬r, r ∨ q} 6|∼ q.

2.12 Related Work

The theory of pivotal CRs has been widely investigated in theclassical framework. Characterizations
have already been given for them. For instance, the following one appears to be part of folklore for
decades: definable pivotal CRs correspond precisely to supraclassical closure operations that are
compact and satisfy Disjunction in the premisses. For more details see e.g. [20, 17, 18].

In addition, David Makinson argued in [17, 18] that pivotal CRs are conceptual bridges between
⊢ and a principal kind of nonmonotonic CRs:preferentialCRs, investigated in e.g. [7, 14, 16, 21,
22, 23, 24]. Similarly, Makinson argued that definable pivotal CRs are conceptual bridges between
⊢ and another kind of nonmonotonic CRs:default-assumptionsCRs that were introduced by Poole
in [19]. We can now add that pivotal-discriminative CRs are conceptual bridges between⊢d and
preferential-discriminativeCRs, investigated in [7]. Note that pivotal CRs correspond to Makinson’s
pivotal-valuation CRs, while definable pivotal CRs correspond to Makinson’s pivotal-assumption
CRs.

Technically, this paper has many points in common with [7] from the present author. We will
use some results from [7] as well as some results from [24]. And, we would like to emphasize that
many techniques we use for pivotal CRs are inspired by techniques that Karl Schlechta used for
preferential CRs.

3 Definable pivotal CRs

3.1 The necessary and sufficient conditions

In this section, we provide in our general framework a normalcharacterization of the family of all
definable pivotal CRs. Note that another characterization of this family has already been given un-
der the assumption that we are in the classical framework: the definable pivotal CRs correspond
precisely to the supraclassical closure operations that are compact and satisfy Disjunction in the pre-
misses. For more details see e.g. [17].

Before going further, note thatfor the rest of the papereach time we write one of the following
letters:α, β, γ, Γ, ∆, Θ, x, y, z, X , Y , Z, X, Y, Z (possibly with exponents and/or subscripts),
we assumeα, β, γ ∈ L andΓ, ∆, Θ ⊆ L andx, y, z ∈ V andX, Y, Z ⊆ V andX,Y,Z ⊆ P(V).
Thus, each time we write∀α, ∀X , ∃α, ∃X , etc., we mean∀α ∈ L, ∀X ⊆ V , ∃α ∈ L, ∃X ⊆ V , etc.

In Proposition 1.1 of [23], Karl Schlechta gave for any functionµ : Y → Y necessary and sufficient
conditions for the existence of a preferential structureZ such that∀ X ∈ Y, µ(X) = µZ(X),
whereµZ(X) is the set of themost preferredvaluations ofX (i.e. the valuations such that at least
one copy of which is minimal among the set of all copies of valuations inX). Then, Schlechta used
his general Proposition 1.1 in the classical framework to provide normal characterizations of certain
families of definability preserving preferential CRs. Definability preserving means that ifX ∈ D,
thenµZ(X) ∈ D too. Then, in [7], we used Proposition 1.1 in our general framework to show
that the Schlechta’s characterizations still hold. In addition, we used Proposition 1.1 in our general
framework again to provide normal characterizations of certain families of definability preserving
preferential-discriminative CRs. For more details, see [7].
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The idea is now to use similar techniques with pivotal CRs. More precisely, in Lemma 13 be-
low, we give for any functionµ : Y → Z, necessary and sufficient conditions for the existence of a
pivot P such that∀X ∈ Y, µ(X) = X ∩ P . Then, in the present section, we will use Lemma 13
in our general framework to provide normal characterizations of certain families of definable pivotal
CRs. In addition, in Section 8, we will use Lemma 13 in our general framework again to provide
normal characterizations of certain families of definable pivotal-discriminative CRs.

Lemma 13 Let Y,Z ⊆ P(V) andµ : Y → Z be a function. Then, there exists a pivotP such that
∀X ∈ Y, µ(X) = X ∩ P iff

(µ0) ∀X ∈ Y, µ(X) ⊆ X ;

(µ1) ∀X, Y ∈ Y, µ(Y ) ∩X ⊆ µ(X).

Proof Direction: “→”. Let X, Y ∈ Y. We show(µ0). µ(X) = X ∩ P ⊆ X . We show(µ1).
µ(Y ) ∩X = Y ∩ P ∩X ⊆ P ∩X = µ(X).

Direction: “←”. Let P = {x : ∃X ∈ Y, x ∈ µ(X)}. LetX ∈ Y. We showµ(X) ⊆ X ∩P . If
x ∈ µ(X), thenx ∈(µ0) X andx ∈ P . We showX ∩ P ⊆ µ(X). Letx ∈ X ∩ P . Then,∃ Y ∈ Y,
x ∈ µ(Y ). Thus,x ∈ µ(Y ) ∩X ⊆(µ1) µ(X).

Proposition 14 Let |∼ be a CR. Then,|∼ is a definable pivotal CR iff

(|∼ 0) ∀ Γ, ∆, if Γ = ∆, thenΓ̃ = ∆̃;

(|∼ 1) ∀ Γ, Γ̃ = Γ̃;

(|∼ 2) ∀ Γ, Γ ⊆ Γ̃;

(|∼ 3) ∀ Γ, ∆, Γ̃ ⊆ ∆̃ ∪ Γ.

Proof Direction: “→”. There exists a definable pivotP such that∀ Γ, Γ̃ = T (MΓ ∩ P ). We show
(|∼ 0). If Γ = ∆, thenMΓ = M∆, thusΓ̃ = T (MΓ ∩ P ) = T (M∆ ∩ P ) = ∆̃. We show(|∼ 1).

Γ̃ = T (MT (MΓ∩P )) = T (MΓ ∩ P ) = Γ̃. We show(|∼ 2). Γ ⊆ T (MΓ) ⊆ T (MΓ ∩ P ) = Γ̃.
Let µ : D → D be the function such that∀ X ∈ D, µ(X) = X ∩ P . As P, X ∈ D,
X ∩ P ∈ D, thusµ is well-defined. By Lemma 13, we get(µ0) and (µ1). Moreover,∀ Γ,
µ(MΓ) ∈ D, thusµ(MΓ) = MT (µ(MΓ)) = MT (MΓ∩P ) = MΓ̃. We show(|∼ 3). ∀ Γ, ∆,
M∆̃ ∩MΓ = µ(M∆) ∩MΓ ⊆(µ1) µ(MΓ) = MΓ̃.

Direction: “←”. Let µ : D → D be the function such that∀ Γ, µ(MΓ) = MΓ̃. If MΓ = M∆, then
Γ = ∆, thusMΓ̃ =(|∼0) M∆̃. Thus,µ is well-defined. We show(µ0). ∀ Γ, µ(MΓ) = MΓ̃ ⊆(|∼2)

MΓ. We show(µ1). ∀ Γ, ∆, µ(M∆)∩MΓ = M∆̃ ∩MΓ = M∆̃∪Γ ⊆(|∼3) MΓ̃ = µ(MΓ). Thus, by

Lemma 13, there exists a pivotP such that∀Γ, Γ̃ =(|∼1) Γ̃ = T (MΓ̃) = T (µ(MΓ)) = T (MΓ∩P ).
In addition,P = M∅ ∩ P = µ(M∅) ∈ D.

Note that the conditions:(|∼ 0), (|∼ 1), (|∼ 2), and(|∼ 3) depend only on|∼, ⊢ andL. As,⊢ has
been defined semantically (in Section 2.2), these conditions have a semantic aspect. In parallel, as
we have a proof system for⊢ in the classical,FOUR, andJ3 frameworks, the conditions have also
a syntactic aspect in these frameworks.
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3.2 Normal characterization

We now give in a straightforward manner a normal characterization of definable pivotal CRs. LetΦ
be the relation overP(L)4 such that∀ Γ1, Γ2, Γ3, Γ4, Φ(Γ1, Γ2, Γ3, Γ4) iff

• if Γ1 = Γ2, thenΓ3 = Γ4;

• Γ3 = Γ3;

• Γ1 ⊆ Γ3;

• Γ3 ⊆ Γ4 ∪ Γ1.

Then, by Proposition 14,|∼ is a definable pivotal CR iff∀ Γ1, Γ2, Φ(Γ1, Γ2, Γ̃1, Γ̃2).

4 Pivotal CRs

In this section, we give a non-normal characterization of the family of all pivotal CRs. We can-
not use Lemma 13 to characterize the pivotal CRs as we did to characterize the definable pivotal
CRs in Proposition 14. Roughly speaking, this is due to the fact that, in the “→” direction, from
Γ̃ = T (µ(MΓ)), we can no longer concludeµ(MΓ) = MΓ̃, asµ(MΓ) is no longer necessarily inD.
Thus, we cannot get the conditions on|∼ from the conditions onµ (clearly, the “←” direction still
holds, as if|∼ is a definable pivotal CR, then it is also a pivotal CR).

Karl Schlechta encountered a similar problem in [24] when dealing with preferential CRs (not nec-
essarily definability preserving). Here is his remedy. In Proposition 5.2.5 of [24], he gave for any
functionµ : Y → Y, necessary and sufficient conditions for the existence of a preferential structure
Z such that∀X ∈ Y, µ(X) is the smallest element ofY that containsµZ(X) (the most preferred
valuations ofX). Note that it is assumed thatY is closed under arbitrary intersections and finite
unions, and∅,V ∈ Y. Then, Schlechta used his general Proposition 5.2.5 in the classical framework
to provide non-normal characterizations of certain families of preferential CRs.

Then, strongly inspired by Proposition 5.2.5, we gave in Lemma 3.3 of [7] for any functionµ :
Y→ Y, necessary and sufficient conditions for the existence of a preferential structureZ such that
∀X ∈ Y, µ(X) = MT (µZ (X)). Note that, unlike Proposition 5.2.5, Lemma 3.3 requires nofurther
prerequisites. Then, in [7], we used Lemma 3.3 in our generalframework to provide non-normal
characterizations of certain families of preferential CRsand of certain families of preferential-
discriminative CRs.

The idea is now to use similar techniques with pivotal CRs. More precisely, in Lemma 16 be-
low, we give for any functionµ : Y → Z, necessary and sufficient conditions for the existence of
a pivotP such that∀ X ∈ Y, µ(X) = MT (X∩P ). Then, in the present section and in Section 5,
we will use Lemma 16 in our general framework to provide non-normal characterizations of certain
families of pivotal CRs. In addition, in Section 9, we will use Lemma 16 in our general framework
again to provide non-normal characterizations of certain families of pivotal-discriminative CRs.

Definition 15 Let Y,Z ⊆ P(V) andµ : Y → Z be a function. We denote byµ′ : Y → P(V) the
function such that∀X ∈ Y

µ′(X) = {x ∈ X : ∀ Y ∈ Y, if x ∈ Y, thenx ∈ µ(Y )}.
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Lemma 16 Let Y,Z ⊆ P(V) andµ : Y → Z be a function. Then, there exists a pivotP such that
∀X ∈ Y, µ(X) = MT (X∩P ) iff

(µ2) ∀X ∈ Y, µ(X) = MT (µ′(X)).

Proof Direction: “→”. We show(µ2). Let X ∈ Y.
Case 1:∃ x ∈ X ∩ P , x 6∈ µ′(X). Then,∃ Y ∈ Y, x ∈ Y andx 6∈ µ(Y ) = MT (Y ∩P ) ⊇ Y ∩ P ,
which is impossible.
Case 2:X ∩ P ⊆ µ′(X).
Case 2.1:∃ x ∈ µ′(X), x 6∈ µ(X). Then,x ∈ X and∀ Y ∈ Y, if x ∈ Y , thenx ∈ µ(Y ), thus
x ∈ µ(X), which is impossible.
Case 2.2:µ′(X) ⊆ µ(X). Then,µ(X) = MT (X∩P ) ⊆MT (µ′(X)) ⊆MT (µ(X)) = MT (MT (X∩P )) =
MT (X∩P ) = µ(X).

Direction: “←”. Let P = {x : ∃X ∈ Y, x ∈ µ′(X)} andX ∈ Y. Clearly,µ′(X) ⊆ X ∩ P . We
showX ∩P ⊆ µ′(X). Letx ∈ X ∩P . Then,∃ Y ∈ Y, x ∈ µ′(Y ). Thus,∀Z ∈ Y, if x ∈ Z, then
x ∈ µ(Z). Thus, by definition ofµ′, x ∈ µ′(X). Thus,µ(X) =(µ2) MT (µ′(X)) = MT (X∩P ).

Proposition 17 Let |∼ be a CR. Then,|∼ is a pivotal CR iff

(|∼ 4) ∀ Γ, Γ̃ = T ({x ∈MΓ : ∀∆, if x ∈M∆, thenx ∈M∆̃}).

Proof Direction: “→”. There exists a pivotP such that∀ Γ, Γ̃ = T (MΓ ∩ P ). Let µ : D → D

be the function such that∀ X ∈ D, µ(X) = MT (X∩P ). By Lemma 16, we get(µ2). In addition,

∀ Γ, µ(MΓ) = MΓ̃. We show(|∼ 4). Let Γ ⊆ L. Then,Γ̃ = T (MΓ ∩ P ) = T (MT (MΓ∩P )) =
T (µ(MΓ)) =(µ2) T (MT (µ′(MΓ))) = T (µ′(MΓ)) = T ({x ∈ MΓ : ∀ Y ∈ D, if x ∈ Y , then
x ∈ µ(Y )}) = T ({x ∈MΓ : ∀∆, if x ∈M∆, thenx ∈M∆̃}).

Direction: “←”. Let µ : D → D be the function such that∀ Γ, µ(MΓ) = MΓ̃. If MΓ = MΘ,

then Γ̃ =(|∼4) Θ̃, thusµ is well-defined. We show thatµ satisfies(µ2). Let Γ ⊆ L. µ(MΓ) =
MΓ̃ =(|∼4) M

T ({x∈MΓ:∀ ∆, if x∈M∆, thenx∈M∆̃}) = M
T ({x∈MΓ:∀ Y ∈D, if x∈Y, thenx∈µ(Y )}) =

MT (µ′(MΓ)). Thus, by Lemma 16, there exists a pivotP such that̃Γ =(|∼4) T (MΓ̃) = T (µ(MΓ)) =
T (MT (MΓ∩P )) = T (MΓ ∩ P ).

We cannot get a normal characterization of pivotal CRs from Proposition 17, because(|∼ 4) depends
on too many subsets ofL. Recall that more explanations have been given in Section 2.6.

5 Codefinable pivotal CRs

In this section, we give a non-normal characterization of the family of all codefinable pivotal CRs,
under the assumption that(A0) holds.

Lemma 18 Let (A0) holds,Y,Z ⊆ P(V), D ⊆ Y andµ : Y → Z be a function. Then, there
exists a codefinable pivotP such that∀X ∈ Y, µ(X) = MT (X∩P ) iff (µ2) and

(µ3) V \ µ′(V) ∈ D.

Proof Direction: “→”. We show
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(0) µ satisfies(µ2);

(1) µ′(V) = P ;

(2) µ satisfies(µ3).

Proof of(0). Obvious by Lemma 16.
Proof of(1). Direction: “⊆”. Suppose∃ x ∈ µ′(V), x 6∈ P . Then,x ∈ V \ P ∈ D ⊆ Y. However,
∀Y ∈ Y, if x ∈ Y , thenx ∈ µ(Y ). Thus,x ∈ µ(V \P ) = MT ((V\P )∩P ) = MT (∅) = ML =(A0) ∅,
which is impossible.
Direction: “⊇”. Suppose∃ x ∈ P , x 6∈ µ′(V). As x ∈ V , ∃ Y ∈ Y, x ∈ Y andx 6∈ µ(Y ) =
MT (Y ∩P ) ⊇ Y ∩ P , which is impossible.
Proof of(2). V \ µ′(V) =(1) V \ P ∈ D, asP is codefinable.

Direction: “←”. Let P = {x : ∃X ∈ Y, x ∈ µ′(X)}. We show

(0) ∀X ∈ Y, µ′(X) = X ∩ P ;

(1) V \ P ∈ D;

(2) ∀X ∈ Y, µ(X) = MT (X∩P ).

Proof of(0). Direction: “⊆”. Obvious.
Direction: “⊇”. Let x ∈ X ∩ P . Then,∃ Y ∈ Y, x ∈ µ′(Y ). Thus,∀ Z ∈ Y, if x ∈ Z, then
x ∈ µ(Z). Thus, by definition ofµ′, x ∈ µ′(X)
Proof of(1). V \P = V \ (V ∩P ) =(0) V \µ

′(V), asV = M∅ ∈ D ⊆ Y. But,V \µ′(V) ∈(µ3) D.
Proof of(2). µ(X) =(µ2) MT (µ′(X)) =(0) MT (X∩P )

Proposition 19 Let (A0) holds and|∼ be a CR. Then,|∼ is a codefinable pivotal CR iff(|∼ 4), and

(|∼ 5) V \ {x ∈ V : ∀∆, if x ∈M∆, thenx ∈M∆̃} ∈ D.

Proof Direction: “→”. First, by Proposition 17, we get(|∼ 4). Now, there is a codefinable
pivot P such that∀ Γ, Γ̃ = T (MΓ ∩ P ). Let µ : D → D be the function such that∀ X ∈ D,
µ(X) = MT (X∩P ). By Lemma 18,(µ3) holds. Moreover∀ Γ, µ(MΓ) = MΓ̃. We show(|∼ 5).
V \ {x : ∀ ∆, if x ∈ M∆, thenx ∈ M∆̃} = V \ {x : ∀ Y ∈ D, if x ∈ Y , thenx ∈ µ(Y )} =
V \ µ′(V) ∈(µ3) D.

Direction: “←”. Let µ : D → D be the function such that∀ Γ, µ(MΓ) = MΓ̃. If MΓ = MΘ,

then Γ̃ =(|∼4) Θ̃, thusµ is well-defined. We now show(µ2). Let Γ ⊆ L. Then,µ(MΓ) =
MΓ̃ =(|∼4) M

T ({x∈MΓ:∀ ∆, if x∈M∆, thenx∈M∆̃}) = MT (µ′(MΓ)). We show(µ3). V \ µ′(V) =

V \ {x : ∀∆, if x ∈M∆, thenx ∈M∆̃} ∈(|∼5) D. Thus, by Lemma 18, there exists a codefinable

pivot P such that∀ Γ, Γ̃ =(|∼4) T (MΓ̃) = T (µ(MΓ)) = T (MT (MΓ∩P )) = T (MΓ ∩ P ).

We cannot get a normal characterization of codefinable pivotal CRs from Proposition 19, because
(|∼ 4) and(|∼ 5) depend on too many subsets ofL. Recall that more explanations have been given
in Section 2.6.
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6 A link with X-logics

In this section, we define several families of pivotal ECRs and give easy characterizations for them.
Then, we will show that codefinable pivotal ECRs are precisely closed pertinence ECRs (alias closed
X-logics), under the assumption that(A1) holds.

Definition 20 Let ||∼ be an ECR. We say that||∼ is a pivotal ECR iff there exists a pivotP such
that∀ Γ, ∆, Γ ||∼ ∆ iff MΓ ∩ P ⊆ M∆. We say that||∼ is definable, codefinable, etc. iff||∼ can
be defined by a definable, codefinable, etc. pivot.

Proposition 21 Let ||∼ be an ECR. Then,||∼ is a codefinable pivotal ECR iff

(0) |∼ is a codefinable pivotal CR;

(1) ∀ Γ, ∆, Γ ||∼ ∆ iff ∀ α ∈ ∆, Γ |∼ α;

where|∼ is the CR such that∀ Γ, α, Γ |∼ α iff Γ ||∼ {α}.

Proof Direction: “→”. There exists a codefinable pivotP such that∀Γ, ∆, Γ ||∼ ∆ iff MΓ ∩P ⊆
M∆. We show(0). ∀ Γ, α, Γ |∼ α iff Γ ||∼ {α} iff MΓ ∩ P ⊆Mα. We show(1). ∀ Γ, ∆, Γ ||∼ ∆
iff MΓ ∩ P ⊆M∆ =

⋂
α∈∆ Mα iff ∀ α ∈ ∆, MΓ ∩ P ⊆Mα iff ∀ α ∈ ∆, Γ |∼ α, as shown in the

proof of (0).

Direction: “←”. By (0), there exists a codefinable pivotP such that∀Γ, α, Γ |∼ α iff MΓ∩P ⊆Mα.
We show that||∼ is a codefinable pivotal ECR.∀Γ, ∆, Γ ||∼ ∆ iff (1) ∀α ∈ ∆, Γ |∼ α iff ∀α ∈ ∆,
MΓ ∩ P ⊆Mα iff MΓ ∩ P ⊆

⋂
α∈∆ Mα = M∆.

Consequently, under(A0), by Propositions 19 and 21, we get a characterization of codefinable
pivotal ECRs. It is easy to see that by the same technique, we can get characterizations of pivotal
ECRs, definable pivotal ECRs, etc.

Notation 22 ∀ Γ, ∆, we denote byor(Γ, ∆) the set s.t.or(Γ, ∆) = {or(α, β) : α ∈ Γ, β ∈ ∆}.

Proposition 23 Let (A1) holds andΓ, ∆ ⊆ L. Then,MΓ ∪M∆ = Mor(Γ,∆).

Proof Direction: “⊆”. Let x ∈ MΓ ∪M∆. We showx ∈ Mor(Γ,∆). Let δ ∈ or(Γ, ∆). Then,
∃ α ∈ Γ, ∃ β ∈ ∆, δ = or(α, β). But,x ∈Mα ∪Mβ =(A1) Mor(α,β) = Mδ.
Direction: “⊇”. Suppose∃ x ∈ Mor(Γ,∆), x 6∈ MΓ ∪M∆. Then,∃ α ∈ Γ, x 6∈ Mα and∃ β ∈ ∆,
x 6∈ Mβ, thus,x 6∈ Mα ∪Mβ =(A1) Mor(α,β), howeveror(α, β) ∈ or(Γ, ∆), thusx 6∈ Mor(Γ,∆)

which is impossible.

Proposition 24 Let (A1) holds. Then, codefinable pivotal ECRs are precisely closed pertinence
ECRs.

Proof Direction: “⊆”. Let ||∼ be a codefinable pivotal ECR. Then, there exists a codefinablepivot
P such that∀ Γ, ∆, Γ ||∼ ∆ iff MΓ ∩ P ⊆ M∆. Let Σ = T (V \ P ). As P is codefinable,
MΣ = MT (V\P ) = V \ P andΣ = T (MΣ) = T (V \ P ) = Σ, thusΣ is a closed pertinence choice.
We show that||∼ is a closed pertinence ECR.∀Γ, ∆, Γ ||∼ ∆ iff MΓ∩P ⊆M∆ iff MΓ ⊆M∆∪MΣ

iff MΓ ⊆ MΓ∪∆ ∪MΣ iff, by Proposition 23,MΓ ⊆ Mor(Γ∪∆,Σ) iff T (Mor(Γ∪∆,Σ)) ⊆ T (MΓ)
iff, by Proposition 23 again,T (MΓ∪∆ ∪ MΣ) ⊆ T (MΓ) iff T (MΓ∪∆) ∩ T (MΣ) ⊆ T (MΓ) iff
Γ ∪∆ ∩Σ ⊆ Γ iff Γ ∪∆ ∩ Σ ⊆ Γ.
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Direction: “⊇”. Let ||∼ be a closed pertinence ECR. Then, there exists a closed pertinence choice
Σ such that∀ Γ, ∆, Γ ||∼ ∆ iff Γ ∪∆ ∩ Σ ⊆ Γ. Let P = V \MΣ. Then,V \ P = MΣ ∈ D,
thusP is a codefinable pivot. We show that||∼ is a codefinable pivotal ECR.∀ Γ, ∆, Γ ||∼ ∆ iff
Γ ∪∆∩Σ ⊆ Γ iff Γ ∪∆∩Σ ⊆ Γ iff T (MΓ∪∆)∩T (MΣ) ⊆ T (MΓ) iff T (MΓ∪∆∪MΣ) ⊆ T (MΓ)
iff, by Proposition 23,T (Mor(Γ∪∆,Σ)) ⊆ T (MΓ) iff MΓ ⊆Mor(Γ∪∆,Σ) iff, by Proposition 23 again,
MΓ ⊆MΓ∪∆ ∪MΣ iff MΓ ⊆M∆ ∪MΣ iff MΓ ∩ (V \MΣ) ⊆M∆ iff MΓ ∩ P ⊆M∆.

Consequently,

Proposition 25 Let (A0), (A1) hold and||∼ be an ECR. Then||∼ is a closed pertinence ECR iff

(0) |∼ satisfies(|∼ 4) and(|∼ 5);

(1) ∀ Γ, ∆, Γ ||∼ ∆ iff ∀ α ∈ ∆, Γ |∼ α;

where|∼ is the CR such that∀ Γ, α, Γ |∼ α iff Γ ||∼ {α}.

Proof Obvious by Propositions 19, 21, and 24.

7 There is no normal characterization of pivotal CRs

In this section we show that it is impossible to find a normal characterization of pivotal CRs under
the assumption that(A5) and(A6) (defined below) hold. Karl Schlechta has shown in [24] that itis
impossible to get a normal characterization of preferential CRs in the infinite classical framework.
We have been inspired by his techniques.

Definition 26 Let (A5) and(A6) be the framework assumptions such that

(A5) L = Lc, V = Vc, and|==|=c (i.e. we are in the classical framework);

(A6) A is infinite (i.e. infinite number of propositional symbols).

Recall thatA has been defined in Notation 10. We need an important lemma that Karl Schlechta
gave in [24] (called there Lemma 5.2.14).

Lemma 27 From [24]. Let(A5) and(A6) hold and letY ⊆ {X ⊆ V : |X | ≤ |A|} be closed under
unions of size at most|A| and subsets. Then,∀ Γ, ∃XΓ ∈ Y,

(0) T (
⋂

X∈Y
MT (MΓ\X)) = T (MΓ \XΓ);

(1) ∀X ∈ Y, T (MΓ \X) ⊆ T (MΓ \XΓ).

Note that the subscript inXΓ is written just to keep in mind that in the statement of the lemma, it
depends onΓ. Now we come to the negative result.

Proposition 28 Let (A5) and(A6) hold. Then, it is impossible to find a normal characterization of
pivotal CRs.
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Proof Suppose on the contrary that there exist a (finite or infinite)cardinalλ ≤ |L| and a relation
Φ overP(L)2λ such that for all CR|∼, |∼ is a pivotal CR iff∀Γ1, . . . Γλ, Φ(Γ1, . . .Γλ, Γ̃1, . . . Γ̃λ).
Then, letX be the set such that

X = {X ⊆ V : |X | ≤ |A|}.

Let |∼ the CR such that∀ Γ,

Γ̃ = T (
⋂

X∈X

MT (MΓ\X)).

Note thatX 6= ∅, thus|∼ is well-defined. We show

(0) ∀X ⊆ V , if |X | ≤ |A|, thenT (V) = T (V \X);

(1) ∃ Γ1, . . . Γλ, Φ(Γ1, . . . Γλ, Γ̃1, . . . Γ̃λ) does not hold.

Proof of(0). Let X be such that|X | ≤ |A|. Obviously,T (V) ⊆ T (V \X). We showT (V \X) ⊆
T (V) by contradiction. Suppose∃ α ∈ T (V \X), α 6∈ T (V). Then,∃ x ∈ V , x 6∈ Mα. Consider
the set of valuationsY such that

Y = {y ∈ V : for all propositional symbolq appearing inα, y(q) = x(q)}.

Then,∀ y ∈ Y , y(α) = x(α), thusy 6∈ Mα Moreover, as the number of propositional sym-
bols appearing inα is finite, we get|Y | = 2|A|. However|X | ≤ |A|. Thus, |X | < |Y |, thus
∃ y ∈ Y \X ⊆ V \X . Thus,V \X 6⊆Mα, thusα 6∈ T (V \X), which is impossible.

Proof of(1). It suffices to show that|∼ is not a pivotal CR. Suppose on the contrary that there exists
a pivotP such that∀Γ, Γ̃ = T (MΓ∩P ). We show a contradiction. Letp be a propositional symbol.
Case 1:∃ x ∈ P , x 6∈ Mp. We poseΓ = T ({x}). Then,MΓ = {x}. Thus,Γ̃ = T ({x} ∩ P ) =

T ({x}). Thus,p 6∈ Γ̃. However,MΓ ∈ X, thus
⋂

X∈X
MT (MΓ\X) ⊆ MT (MΓ\MΓ) = ML = ∅.

Thus,Γ̃ = T (∅), thusp ∈ Γ̃, which is impossible.
Case 2:P ⊆ Mp. Then,̃∅ = T (

⋂
X∈X

MT (V\X)) =(0) T (
⋂

X∈X
MT (V)) = T (MT (V)) = T (V).

Thus,p 6∈ ∅̃, asV 6⊆Mp. However,̃∅ = T (V ∩ P ) = T (P ), thusp ∈ ∅̃, which is impossible.

Now, by lemma 27, we get

(2) ∀ Γ, ∃XΓ ∈ X, Γ̃ = T (MΓ \XΓ) and∀X ∈ X, T (MΓ \X) ⊆ T (MΓ \XΓ).

Then, LetZ be the set such that
Z =

⋃

Γ∈{Γ1,...Γλ}

XΓ,

and let|∼′ be the pivotal CR defined by the pivotV \ Z. The following entails a contradiction and
thus ends the proof. We show

(3) ∀ Γ ∈ {Γ1, . . . Γλ}, Γ̃ = T (MΓ \ Z);

(4) |∼′ is not a pivotal CR.
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Proof of (3). Let Γ ∈ {Γ1, . . . Γλ}. Direction: “⊆”. XΓ ⊆ Z, thusMΓ \ Z ⊆ MΓ \ XΓ, thus
Γ̃ =(2) T (MΓ \XΓ) ⊆ T (MΓ \ Z).
Direction: “⊇”. As λ ≤ |L| = |A| (in the infinite case, there are indeed as many propositional
symbols as formulas),|Z| ≤ |A|2 = |A|, thusZ ∈ X, thusT (MΓ \ Z) ⊆(2) T (MΓ \XΓ) =(2) Γ̃.

Proof of(4). ∀Γ ∈ {Γ1, . . . Γλ}, Γ̃
′

= T (MΓ∩ (V \Z)) = T (MΓ \Z) =(3) Γ̃. Thus,Φ(Γ1, . . . Γλ,

Γ̃1

′
, . . . Γ̃λ

′
) iff Φ(Γ1, . . . Γλ, Γ̃1, . . . Γ̃λ), which does not hold. Thus,|∼′ is not a pivotal CR.

8 Definable pivotal-discriminative CRs

8.1 The necessary and sufficient conditions

In this section, we give normal characterizations of the twofollowing families:

• the definable pivotal-discriminative CRs, under(A2), (A3), and(A4);

• the CP definable pivotal-discriminative CRs, under(A2) and(A3).

Notation 29 IN denotes the natural numbers:{0, 1, 2, . . .} and IN+ the positive natural numbers:
{1, 2, . . .}.

Definition 30 Let |∼ be a CR,Γ ⊆ L, andi ∈ IN, i ≥ 2. Then,

H1(Γ)
def
= {neg(β) : β 6∈ Γ̃, β ∈ Γ ∪ Γ̃, andneg(β) 6∈ Γ ∪ Γ̃};

Hi(Γ)
def
= {neg(β) :





β 6∈ Γ̃ and

β ∈ Γ ∪ Γ̃ ∪H1(Γ) ∪ . . . ∪Hi−1(Γ) and

neg(β) 6∈ Γ ∪ Γ̃ ∪H1(Γ) ∪ . . . ∪Hi−1(Γ)

};

H(Γ)
def
=

⋃

i∈IN+

Hi(Γ).

Note thatH should be indexed by|∼, but as there will never be any ambiguity, we omit it to increase
readability. We come to the representation results.

Proposition 31 Let |∼ be a CR. Then,

(i) if (A2), (A3), and(A4) hold, then|∼ is a definable pivotal-discriminative CR iff(|∼ 0), (|∼ 6),
(|∼ 7), (|∼ 8) and(|∼ 9) hold;

(ii) if (A2) and(A3) hold, then|∼ is a CP definable pivotal-discriminative CR iff(|∼ 0), (|∼ 6),
(|∼ 7), (|∼ 8), (|∼ 9), and(|∼ 10) hold;

where

(|∼ 6) ∀ Γ, α, β, if β 6∈ Γ̃, β ∈ Γ ∪ Γ̃, andΓ ∪ Γ̃ ∪ {neg(α)} ⊆ Γ ∪ Γ̃ ∪ {neg(β)}, thenα 6∈ Γ̃;

(|∼ 7) ∀Γ, α, β, if α, β 6∈ Γ̃, α ∈ Γ ∪ Γ̃, andΓ∪ Γ̃∪{β} ⊆ Γ ∪ Γ̃ ∪ {neg(α)}, thenor(α, β) 6∈ Γ̃;
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(|∼ 8) ∀ Γ, α, if α ∈ Γ̃, thenneg(α) 6∈ Γ ∪ Γ̃;

(|∼ 9) ∀ Γ, ∆, Γ ∪ Γ̃ ∪H(Γ) ⊆ ∆ ∪ ∆̃ ∪H(∆) ∪ Γ;

(|∼ 10) ∀ Γ, if Γ is consistent, thenΓ ⊆ Γ̃, Γ̃ is consistent, and̃Γ = Γ̃.

Before we show Proposition 31, we need to introduce Lemmas 32and 33 below. They are taken
from [7]. Moreover, [7] has nothing to do with pivots, but with preferential structures. In fact, it
seems that these lemmas can be useful to characterize any family C of CRs such that|∼∈ C iff ∀Γ,
Γ̃ = Td(µ(MΓ)), whereµ : P(V)→ P(V) is simply a function satisfying(µ0).

Lemma 32 From [7]. Let(A2) and(A3) hold, and let|∼ be a CR such that(|∼ 6), (|∼ 7), and
(|∼ 8) hold. Then,∀ Γ, Γ̃ = Td(MΓ∪Γ̃∪H(Γ)).

Lemma 33 From [7]. Let(A2) and(A3) hold,|∼ be a CR, andµ : D→ D be a function such that
(µ0) holds and∀ Γ, Γ̃ = Td(µ(MΓ)). Then,

(0) (|∼ 6), (|∼ 7), (|∼ 8) hold;

(1) if (A4) holds, then∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ);

(2) if µ is CP, then∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ).

We come to theproof of Proposition 31.

Proof Direction: “→”. For (i) and (ii), there exists a definable pivotP such that∀ Γ, Γ̃ =

Td(MΓ ∩ P ). We show(|∼ 0). If Γ = ∆, thenΓ̃ = Td(MΓ ∩ P ) = Td(M∆ ∩ P ) = ∆̃. Let
µ : D → D be the function such that∀ X ∈ D, µ(X) = X ∩ P . As P is definable,µ is
well-defined. By Lemma 13, we get(µ0) and(µ1). In addition,∀ Γ, Γ̃ = Td(µ(MΓ)). Thus, by
Lemma 33(0), (|∼ 6), (|∼ 7), and(|∼ 8) hold.

(i). By Lemma 33(1), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus, by(µ1), (|∼ 9) holds.
(ii). In addition,P is CP, thusµ is CP, thus by Lemma 33(2), ∀Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus,

by (µ1), (|∼ 9) holds. In addition, we show(|∼ 10). Let Γ ⊆ L be consistent. Then,MΓ ∈ D∩C,
thusµ(MΓ) ∈ D ∩ C. We showΓ ⊆ Γ̃. Let α ∈ Γ. Then,µ(MΓ) ⊆(µ0) MΓ ⊆ Mα. Thus,

µ(MΓ) 6⊆Mneg(α), thusα ∈ Td(µ(MΓ)) = Γ̃. We show that̃Γ is consistent.MΓ̃ = MTd(µ(MΓ)) =

MT (µ(MΓ)) = µ(MΓ) ∈ C. And, Γ̃ = Td(µ(MΓ)) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (MΓ̃) =

Γ̃.

Direction: “←”. For (i) and(ii), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 9) hold. Letµ : D→ D be
the function such that∀Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). If MΓ = M∆, thenΓ̃ =(|∼0) ∆̃ andH(Γ) =(|∼0)

H(∆), thusµ(MΓ) = µ(M∆), thusµ is well-defined. By Lemma 32,∀ Γ, Γ̃ = Td(µ(MΓ)). Obvi-
ously(µ0) holds. And, by(|∼ 9), (µ1) holds. Thus, by Lemma 13, there exists a pivotP such that
∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(MΓ ∩ P ). In addition,P = M∅ ∩ P = µ(M∅) ∈ D.

(i). This has been shown in the common part above.
(ii). We show thatµ is CP. LetMΓ ∈ D ∩ C. Case 1:H1(Γ) 6= ∅. Thus,∃ β, β 6∈ Γ̃ and

MΓ̃∩MΓ ⊆Mβ . As,Γ ⊆(|∼10) Γ̃, MΓ̃∩MΓ = MΓ̃, thusMΓ̃ ⊆Mβ, thusβ ∈ T (MΓ̃) = Γ̃ =(|∼10)

Γ̃, which is impossible. Case 2:H1(Γ) = ∅. Thus,H(Γ) = ∅. Thus,µ(MΓ) = MΓ∪Γ̃∪H(Γ) =

MΓ∪Γ̃ = MΓ̃ ∈(|∼10) C. We show thatP is CP. IfX ∈ D ∩C, thenX ∩ P = µ(X) ∈ C.
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Note that the conditions:(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9), and(|∼ 10) depend only on
|∼, ⊢, L, neg, andor. As,⊢ has been defined semantically (in Section 2.2), these conditions have
a semantic aspect. In parallel, as we have a proof system for⊢ in the classical,FOUR, andJ3

frameworks, the conditions have also a syntactic aspect in these frameworks.

8.2 Normal characterizations

We now give in a straightforward manner normal characterizations of definable pivotal-discriminative
CRs and of CP definable pivotal-discriminative CRs. We use the following definitions: letΓ1, Γ2 ⊆
L andi ∈ IN, i ≥ 2, then

H1(Γ1, Γ2)
def
= {neg(β) : β 6∈ Γ2, andβ ∈ Γ1 ∪ Γ2, neg(β) 6∈ Γ1 ∪ Γ2};

Hi(Γ1, Γ2)
def
= {neg(β) :





β 6∈ Γ2 and
β ∈ Γ1 ∪ Γ2 ∪H1(Γ1, Γ2) ∪ . . . ∪Hi−1(Γ1, Γ2) and
neg(β) 6∈ Γ1 ∪ Γ2 ∪H1(Γ1, Γ2) ∪ . . . ∪Hi−1(Γ1, Γ2)

};

H(Γ1, Γ2)
def
=

⋃

i∈IN+

Hi(Γ1, Γ2).

Let Φ be the relation overP(L)4 such that∀ Γ1, Γ2, Γ3, Γ4, Φ(Γ1, Γ2, Γ3, Γ4) iff

• if Γ1 = Γ2, thenΓ3 = Γ4;

• ∀α, β, if β 6∈ Γ3, β ∈ Γ1 ∪ Γ3, Γ1 ∪ Γ3 ∪ {neg(α)} ⊆ Γ1 ∪ Γ3 ∪ {neg(β)}, thenα 6∈ Γ3;

• ∀α, β, if α, β 6∈ Γ3, α ∈ Γ1 ∪ Γ3, Γ1∪Γ3∪{β} ⊆ Γ1 ∪ Γ3 ∪ {neg(α)}, thenor(α, β) 6∈ Γ3;

• ∀ α, if α ∈ Γ3, thenneg(α) 6∈ Γ1 ∪ Γ3;

• Γ1 ∪ Γ3 ∪H(Γ1, Γ3) ⊆ Γ2 ∪ Γ4 ∪H(Γ2, Γ4) ∪ Γ1.

Then, under(A2), (A3), and(A4), by Proposition 31(i), |∼ is a definable pivotal-discriminative
CR iff ∀ Γ1, Γ2, Φ(Γ1, Γ2, Γ̃1, Γ̃2). Let Φ′ be the relation overP(L)4 such that∀ Γ1, Γ2, Γ3, Γ4,
Φ′(Γ1, Γ2, Γ3, Γ4) iff Φ(Γ1, Γ2, Γ3, Γ4) and

if Γ1 is consistent, thenΓ1 ⊆ Γ3, Γ3 is consistent, andΓ3 = Γ3.

Then, under(A2) and(A3), by Proposition 31(ii), |∼ is a CP definable pivotal-discriminative CR
iff ∀ Γ1, Γ2, Φ′(Γ1, Γ2, Γ̃1, Γ̃2).

9 General and codefinable pivotal-discriminative CRs

In this section, we give non-normal characterizations of the four following families:

• the pivotal-discriminative CRs, under(A2), (A3), and(A4);

• the codefinable pivotal-discriminative CRs, under(A0), (A2), (A3), and(A4);

• the CP pivotal-discriminative CRs, under(A2) and(A3);
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• the CP codefinable pivotal-discriminative CRs, under(A0), (A2) and(A3).

Proposition 34 Let |∼ be a CR. Then,

(i) if (A2), (A3), and(A4) hold, then|∼ is a pivotal-discriminative CR iff(|∼ 0), (|∼ 6), (|∼ 7),
(|∼ 8), and(|∼ 11) hold;

(ii) if (A0), (A2), (A3), and(A4) hold, then|∼ is a codefinable pivotal-discriminative CR iff
(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 11), and(|∼ 12) hold;

(iii) if (A2) and(A3) hold, then|∼ is a CP pivotal-discriminative CR iff(|∼ 0), (|∼ 6), (|∼ 7),
(|∼ 8), (|∼ 10), and(|∼ 11) hold;

(iv) if (A0), (A2), and(A3) hold, then|∼ is a CP codefinable pivotal-discriminative CR iff(|∼ 0),
(|∼ 6), (|∼ 7), (|∼ 8), (|∼ 10), (|∼ 11), and(|∼ 12) hold;

where

(|∼ 11) ∀ Γ, MΓ∪Γ̃∪H(Γ) = M
T ({x∈MΓ:∀ ∆, if x∈M∆, thenx∈M∆∪∆̃∪H(∆)})

;

(|∼ 12) V \ {x ∈ V : ∀∆, if x ∈M∆, thenx ∈M∆∪∆̃∪H(∆)} ∈ D.

Proof Direction: “→”. For (i), (ii), (iii), and(iv), there exists a pivotP such that∀ Γ, Γ̃ =
Td(MΓ ∩ P ). We get obviously(|∼ 0). Let µ : D → D be the function such that∀ Γ, µ(MΓ) =

MT (MΓ∩P ). As ∀X , X ⊆ Mα iff MT (X) ⊆ Mα, we getΓ̃ = Td(MΓ ∩ P ) = Td(MT (MΓ∩P )) =
Td(µ(MΓ)). In addition,∀ Γ, µ(MΓ) = MT (MΓ∩P ) ⊆ MT (MΓ) = MΓ, thus(µ0) holds. Thus, by
Lemma 33(0), (|∼ 6), (|∼ 7), and(|∼ 8) hold. In addition, by Lemma 16,(µ2) holds.

(i). By Lemma 33(1), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus, By(µ2), (|∼ 11) hold.
(ii). As above,∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ) and(|∼ 11) holds. In addition to the common part,

P is codefinable, thus by Lemma 18,(µ3) holds, thus(|∼ 12) holds.
(iii). In addition to the common part,P is CP. We show thatµ is CP. LetMΓ ∈ D ∩C. Then,

MΓ∩P ∈ C, thusµ(MΓ) = MT (MΓ∩P ) ∈ C, asMΓ∩P ⊆Mα iff MT (MΓ∩P ) ⊆Mα. Therefore,
by Lemma 33(2), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus, by(µ2), (|∼ 11) holds. We show(|∼ 10).
Verbatim the same reasoning as for “→” (ii) of Proposition 31.

(iv). As above∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ), and(|∼ 11) and(|∼ 10) hold. In addition to the
common partP is codefinable, thus by Lemma 18,(µ3) holds, thus(|∼ 12) holds.

Direction: “←”. For (i), (ii), (iii), and(iv), we have(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 11).
Let µ : D → D be the function such that∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). If MΓ = M∆, then

Γ̃ =(|∼0) ∆̃ andH(Γ) =(|∼0) H(∆), thusµ is well-defined. By Lemma 32,∀ Γ, Γ̃ = Td(µ(MΓ)).
And, by(|∼ 11), (µ2) holds.

(i). By Lemma 16, there exists a pivotP such that∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(MT (MΓ∩P )) =
Td(MΓ ∩ P ).

(ii). By (|∼ 12), (µ3) holds. Thus, by Lemma 18, there exists a codefinable pivotP such that
∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(MT (MΓ∩P )) = Td(MΓ ∩ P ).

(iii). By Lemma 16, there exists a pivotP such that∀Γ, Γ̃ = Td(µ(MΓ)) = Td(MT (MΓ∩P )) =
Td(MΓ ∩ P ). We show that, by(|∼ 10), µ is CP. Verbatim the same reasoning as “←” (ii) of
Proposition 31. We show thatP is CP. LetX ∈ D ∩ C. Then,MT (X∩P ) = µ(X) ∈ C. Thus,
X ∩ P ∈ C, asMT (X∩P ) ⊆Mα iff X ∩ P ⊆Mα.
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(iv). By (|∼ 12), (µ3) holds. Thus, by Lemma 18, there exists a codefinable pivotP such
that∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(MT (MΓ∩P )) = Td(MΓ ∩ P ). In addition, by verbatim the same
reasoning as just above,µ is CP, thusP is CP.

We cannot get a normal characterization for any of these fourfamilies from proposition 34, because
(|∼ 11) and(|∼ 12) depend on too many sets∆. Recall that more explanations have been given in
Section 2.6.

10 Summary and conclusion

Pivotal and pivotal-discriminative CRs formalize naturalways of reasoning. They are useful to
handle incomplete information in the classical framework,and both incomplete and inconsistent
information in theJ3 andFOUR frameworks. The main goal of this work was to characterize
several families of them in a general framework that covers all of the classical, three, and four-
valued frameworks. We have also answered negatively a representation problem that was left open
by Makinson, namely there is no normal characterization of the family of all pivotal CRs, in the
infinite classical framework. And we have shown that codefinable pivotal ECRs are precisely closed
pertinence ECRs (aliasX-logics).

Technically, this paper has many points of commonality with[7]. We have used some results of
[7] and it seems that some results of the present papers can beused in future work. More precisely,
Lemmas 13, 16, and 18 have an interest of their own. Indeed, weused them in both the basic and
the discriminative case. This suggests that they may be useful to characterize some other families of
CRs based on pivots.

Similarly, Lemmas 32 and 33 which are taken from [7] were usedthere to characterize some fam-
ilies of preferential-discriminative CRs and are used hereto characterize some families of pivotal-
discriminative CRs. In fact, it seems that these lemmas can be useful to characterize any familyC
of CRs such that|∼ ∈ C iff ∀ Γ, Γ̃ = Td(µ(MΓ)), whereµ : P(V) → P(V) is simply a function
satisfying(µ0).

Let us finish by a constructive self-criticism: some of our conditions are are probably too com-
plex (and ugly) to be used efficiently. Simplifying them could be the goal of a future work.
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