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Abstract

A pivotal consequence relation is defined to hold betweert afsermulasT’ and formulaa iff every non-
negligible model fo" is a model for. Unlike preferential consequence relations, the set afaitnegligible

(or preferred) valuations is fixed and thus does not depenth@mpremisses under consideration. The first
purpose of the present paper is to investigate pivotal cpresee relations. We provide characterizations of
several families in the classical framework, but also iaiarthree/four-valued frameworks, well-known as the
paraconsistent logicg& and FOUR. We show also that there is no “normal” characterizatiorheffamily of

all pivotal consequence relations, in the infinite cladsieanework. And we show a link witB-logics. Our
second purpose is to investigate a qualified version of piwansequence, which we call pivotal-discriminative
consequence. This is defined to hold between a set of foriudasl formulaw iff I' |~ o butT" |~ —a, where

|~ is the plain relation. We provide characterizations of saviamilies of such relations for the classical,
three, and four-valued frameworks.

1 Introduction

In [@ ], David Makinson introduceplivotal consequence relatiorfgivotal CRs for short) and
gave some of their basic properties. They are defined to hetldden a set of formulas and
formula« iff every non-negligible model fof" is a model fora. Unlike preferentialCRs, the set
of non-negligible (or preferred) valuations is fixed andgllees not depend on the premisses under
consideration. In the present paper, the author continuadridon’s investigation, but on a more
general level that covers certain three/four-valued fraarks, well-known as the paraconsistent
logics J3 and FOUR. The motivation is that pivotal CRs represent natural wdysasoning which
are useful to handle incomplete information in the clagdiganework and both incomplete and
inconsistent information in thé; and FOUR frameworks. We will illustrate this, together with the
different advantages and drawbacks of the different fraomksy with examples in Sectiofis 2.1J1.1
and[2.11], once the formal definitions will be made.

The first goal of the paper is to provide characterizationsestral families of pivotal CRs for
the classical, three and four-valued frameworks. Most eftitne, these characterizations have a



purely syntactic aspect (i.e. they involve only the languagd some proof systems).

Then, we will answer negatively a representation probleat tias left open by Makinson,
namely there is no “normal” characterization of the famifyalh pivotal CRs, in the infinite classical
framework. Roughly speaking, we have a normal charact&izdf we have found some conditions
that discriminate any CIRv only with a limited number of sets of formulas and their-closures.
And, we will show that a certain family of pivotal CRs corresyals precisely to a certain family of
X-logicswhich were introduced by Forget, Risch, and Siel [12].

Another goal of the paper is to investigate a qualified versib pivotal CRs, which we call
pivotal-discriminativeCRs. They are defined to hold between a set of formblasd formulax iff
[ |~ abutT |~ —a, where|~ is the plain relation. They capture the idea that usually o&aok
want to keep contradictory conclusions. We will providereltéerizations (often syntactic ones) of
several families of such relations for the classical, thaeel four-valued frameworks.

The rest of the paper is organized as follows. In Section 2give the formal definitions,
an overview of the characterizations, and examples in thgsial andFOUR frameworks. In
Sections 3, 4, and 5, we give characterizations of sevenailiés of pivotal CRs. In Section 6,
we show that pivotal CRs are linked f6-logics. In Section 7, we show that there is no “normal
characterization of pivotal CRs, in the infinite classiaainiework. In Sections 8 and 9, we give
characterizations of several families of pivotal-disdriative CRs. And, Section 10 is a conclusion,
summarizing and explaining what has been achieved.

2 Preliminaries

2.1 A general framework

We fix once and for all a sei, a setV, and a relatio= onV x L. Intuitively, £ is a set of formulas,
V is a set of valuations, anét is a satisfaction relation (i.e¥z € V,Va € L, z = a means
that the formulax is satisfied in the valuation, i.e. = is a model fora). We fix also once and
for all a functionneg : £L — L, a functionor : £L x L — L, and a functiorund : L x L — L.
Intuitively, V o, 8 € L, neg(«) is the negation ok, or(«, 3) is the disjunction ofx and 3, and
and(a, 3) is the conjunction ofv and 3. We use these functions instead of the usual connectives:
-, V, andA, because we do not want nor need to assume any structufe\We emphasize that for
the time beingno assumption is made abodt V, |=, neg, or, and. The idea is to obtain the most
general possible results (i.e. results under the leastlgesssumptions od, neg, ...) and then
to use them for instance in the particular case whkre a classical languagegg is the classical
negation, etc. The framework is the one presenteﬂin [7]. ndilar framework has been adopted
in two well-known papers,i[]LS], without anticipatingyaof the substantive work in the present
paper.

Notation 1 ForallT' C £, we denote by the set suchthat/r = {x € V : Va € T,z = o}. Let
X C V. We denote by'(X) the set such thaf(X) = {a € £L: X C M,}. We denote by ;(X)
the set such thaty(X) = {a € £L: X C M, andX & M4 }. We denote byD the set such
thatD = {X CV: 3T C £, Mr = X}. We denote byC the setsuchtha® = {X CV:Va € L,
X g M, or X ,@ Mneg(a)}'

Intuitively, My is the set of all models far, 7'(X) is the set of all formulas satisfied K, T4(X)

is the set of all formulas “discriminatively” satisfied id, D is the set of every set of valuations
definable by a set of formulas, ar is the set of all “consistent” sets of valuations. Note that
VI,ACL, Mr N Ma = Mpya.



2.2 Consequence relations and extended consequence relas

Definition 2 We denote byP the power set operator. We say that is a consequence relation
(CR for short) iff |~ is a relation orP(£) x £. For alll’ C £, we denote by the set such that
I'={a e L:T |~ a}. We denote by the CRsuchthat I C £,V o € £, T+ «iff My C M,.
Foralll' C £, we denote byl the setsuchthdf = {a € £ : T' - a}. We say thal’ C L is
consistentiffY a € £, T I/ « orT' I/ neg(«). We denote by, the CRsuchthat ' C L,V a € L,
b4 aiff T'F o andl 1 neg(a).

Intuitively, I- is the basic CR anid, is the “discriminative” CR. Note thdt is consistent iff\/ € C.
Note againthat I', A C £,T = T(Mr), Mr = Mg, andl’ C Aiff T C Aiff Ma C Mr.

Definition 3 We say that|~ is anextended consequence relat{®&CR for short) iff||~ is a relation
onP(L) x P(L).

2.3 Pivotal consequence relations

Pivotal CRs were introduced by David Makinsdﬂ [D, 18]. Whepresent natural ways of drawing
conclusions which are useful to handle incomplete andiorisistent information. Examples will

be given in Sections 2.11.1 ahd 2.71.2.

Definition 4 We say thatP is apivotiff P C V. We say that a pivoP is definableff P € D. We
say that a pivoP is codefinableff V\ P € D. LetY,Z C P(V) andu : Y — Z be a function.
We say thai: is consistency preservingP for short) iff X ¢ YNDNC, u(X) € C. We say
that a pivotP is CP iff the functiory : P(V) — P(V) such thav X, u(X) = X N P, is CP.

Intuitively, a pivot P is a way to choose a fixed set of valuations which are congiderée the
non-negligible ones. Reciprocally, every such way is repnéed by a pivot.

Definition 5 Let |~ be a CR. We say that- is a pivotal CR iff there exists a pivd® such that
VI C L, T =T(Mrn P). We say that~ is definable, codefinable, etc. |f can be defined by a
definable, codefinable, etc. pivot.

Intuitively |~ is a pivotal CR iff there exists a pivot such tHatf~ « iff the non-negligible models
for I" are models forx. Note that with preferential CRs, a valuatienbelonging to two sets of
valuationsX andY can be non-negligible (or preferred) i and negligible inY". In other words,
this depends on the set of valuations that is consideredpmnéhe “context”. This is not true with
pivotal CRs: a valuation is non-negligible iff it is in the & pivot, independently of the “context”.

We now give alternative definitions and intuitions for defileapivotal CRs. We say that is an
assumption choice it C L. Intuitively,  is a way to choose a fixed set of formulas that is consid-
ered to hold. Reciprocally, every such way is representeghlgssumption choice. Now, a R is

a definable pivotal CR iff there exists an assumption ch@iceich thaV T' C £L,Va € L, T |~ «

iff TUXF «a.

We do the same job with codefinable pivotal CRs. We say Yhist a negative-assumption choice
iff ¥ C L. Intuitively, X is a way to choose a fixed set of formulas that is consida¢do hold.
Reciprocally, every such way is represented by a negatigsaraption choice. Now, under the as-
sumptionthat o, 8 € £, My (a,3) = Mo UMp, a CR|~ is a codefinable pivotal CR iff there exists
a negative-assumption choigesuch thaV T' C £,Va € L, T |~ aiff V5 € &, T F or(a, §).



2.4 Pivotal-discriminative consequence relations

We now introduce pivotal-discriminative CRs. They captineidea that usually we do not want to
keep contradictory conclusions.

Definition 6 Let |-be a CR. We say that- is a pivotal-discriminative CR iff there exists a pivBt
suchthav T C £, T = T,(Mr N P). We say that~ is definable, codefinable, CP, etc. |iff can
be defined by a definable, codefinable, CP, etc. pivot.

Intuitively, |~ is a pivotal-discriminative CR iff there exists a pivot subhatT" |~ « iff « is satisfied
in all non-negligible models far', but not its negation.

2.5 Pertinence extended consequence relations (aliAslogics)
Pertinence ECRs (aliak-logics) were introduced by Forget, Risch, and Siegel, B8 [

Definition 7 We say thak is apertinence choicdf X C £. In addition, we say thaX is closed iff
=13

Intuitively, a pertinence choick is a way to choose a fixed set of formulas which are considered t
be the pertinent ones. Reciprocally, every such way is sgpited by a pertinence choice.

Definition 8 Let||~ be an ECR. We say thgt- is apertinenceECR (aliasX -logic) iff there exists
a pertinence choicE such thatV I', A C £, T ||~ Aiff TUANX C T'. We say that|~ is closed
iff ||~ can be defined by a closed pertinence choice.

Intuitively, ||~ is a pertinence ECR iff there exists a pertinence choice thatfi’ ||~ A iff every
pertinent basic consequencelof) A is a basic consequence Bf(i.e. iff the addition ofA to T’
does not yield more pertinent formulas than wiitlalone).

2.6 Normal Characterizations

Some of our characterizations are said torlmemal whilst some others are not. Let us make
this explicit. For every setl, we denote by A| the cardinality ofA. Let nowC be a family of
CRs. Intuitively, we have a normal characterization(offf we have found some conditions that
determine whether a CR- is in C or not, only withA < |£| many sets of formulad’y,...T, and
their |~-closuresﬁ, .. 1/“; This notion was introduced by Karl Schlechta, see @ @4 have
formalized this notion in Definitiof] 9 below.

Definition 9 Let C be a set of CRs. We have a normal characterizatioff df we have found a
(finite or infinite) cardinal < |£| and a relatior® onP(£)?* such that for all CR~,

|~ € C iff VIy,...Tx C L, ®(Ty,...Tx,T1,...T,) holds

We specify thatd is a relation in the straightforward set-theoretic senge éiny set o2 \-tuples of
subsets of). Now, we turn to two remarks.
First, letC' be a family of CRs andl C P(L£). Suppose now that for all CR-, |~ € C' iff

VI,A € A, TUA = . Then, we can immediately get a normal characterizatiafi @fom this.
Indeed, just take the relatioh such thatd(I'y,T'2, s, 'y, T'5, Tg) iff (if T'1,T2 € A andT's =




I'y UTs, thenTg = @). Then, clearlyj~ € C iff VI'1,T, T3, tI)(Fl,Fg,F3,1’“V1,1:;,1:§). In other
words, if there is no normal characterization, then thermisimple condition such asI",; A € A,
TUA=0. B

Second, suppose this time that forall R, |~ € Ciff VI, T = T({x € Mp : VA, if z €
Ma, thenz € My }). Then, it seems impossible to get a normal characterizafi@n from this.
Roughly, the reason is that the condition depend8/6hmany subsets of, whilst we need to find
a relation that depends on at mast many subsets of.

2.7 Overview of the characterizations

The main contributions of the paper are characterizatidreeweeral families of pivotal CRs and
pivotal-discriminative CRsSometimesto show a characterization, we will need to makeneof
the following assumptions abodt V, =, neg, or, andand:

(A0) M, =0;
(A1) Va,B € L, Mor(a,ﬁ) = M, U Mg,

(A2) Ya,B € L, Mor(a.ﬂ) = M,UMg andMand(aﬁ) = M,N Mg andMnegoneg(a) = M, and

Mnegoor(a,8) = Mand(neg(a)meg(8)) 8N Mrcgo and(a,8) = Mor(neg(a).neq(8)), Whereo is
the function composition operator (i.eeg o or(a, §) = neg(or(«, 3)), etc.);

(A3) Visfinite;
(A4) VI C L,Ya € L, if a € T(Mr) andneg(a) & T(Mr), thenMp N My € Mpeg(a)-

But, for the time being, we do not make any assumption. Naétthshow our characterizations,
we will never need other assumptions abguV, k=, neg, or, andand. And note tha( A0), (A1),
(A2), (A3), and(A4) are not independent of each other. For instance, obvioigi2) holds, then
(A1) holds too. We will give normal characterizations of thedalling families:

o the definable pivotal CRs (in Sectifh 3);
« the definable pivotal-discriminative CRs, undei2), (A3), and(A4) (in Section{B);
o the CP definable pivotal-discriminative CRs, un¢lé2) and(A3) (in Sectior[B).

Recall that CP means: consistency preserving, defined imiDefi E In addition, we will give
non-normal characterizations of the following families:

the pivotal CRs (in Sectiof] 4);

the codefinable pivotal CRs, undet0) (in Sectior{p);

the pivotal-discriminative CRs, undéA?2), (43), and(A4) (in Section{P);
e the codefinable pivotal-discriminative CRs, unddn), (A2), (43), and(A4) (in Section[p);

the CP pivotal-discriminative CRs, undet2) and(A3) (in Sectior{p);
« the CP codefinable pivotal-discriminative CRs, ungéd), (A2), and(A3) (in Sectior{p).

We will see in Sectionf 4.8, 2.9, ahd .10, th40), (A1), (A2), (43), and(A4) are weak enough to
hold in the classical (propositional) framework, in thé/R framework, and in the/s framework.



2.8 The classical framework

Notation 10 We fix once and for all a sed of propositional symbols. We denote By the classical
language generated from, the constant symbold), 1, and the usual connectives;, v, A. We
denote by, the classical valuations df.. We denote by=, the classical satisfaction relation on
V. x L.

Roughly speaking(A0), (A1), (A2), (A3), and(A4) hold in the classical framework. More pre-
cisely, first(1) entails(A0), second1) and(2) entail (A1), (A2) and(A4), and third(1) and(3)
entail(A3), where

(1) L=L., V=V, and ==};
(2) Va,B € L, neg(a) = —a, or(a,8) =a Vg, and(a, ) = a A S;
(3) Ais finite.

2.9 TheFOUR framework

The logic FOUR was introduced by Belnap ir[l[Eﬂ 6] to deal with inconsistemtl ancomplete
information. Intensive investigations GFOUR were made by e.g. Ofer Arieli and Arnon Avron
[, E@] They worked with richer languages than here, dairtg e.g. some constants, T and
some implication connective first introduced by Avron in|]4]. In addition, proof systents f- in
the FOUR framework have been given ifi fl, 2, 3]. Now, from e[d.[[5, 6]:

Definition 11 We say thatr is a F OU/R-valuation iff z is a function fromZ,.. to {0,1, L, T} such
thatz(0) = 0, (1) = 1 and truth tables 1, 2, and 3 below hold. We denoté/pyhe set of all
FOUR-valuations. We denote b4 the relation oV, x L. suchthavz € Vy,Va € Lo, 2 =4
iff x(«) € {1, T}. We calll=4 the FOUR-satisfaction relation.

B B
a -a 0 1 L T 0 1 1 7T
0] 1 0]0 1 L T 0/0 0 0 0
1] 0 101 1 1 1 110 1 1 T
N T R T T Y T T e A I DI N
T T TIT 1 1 T Tlo T o T
Table 1. aVp aNf
Table 2. Table 3.

We found it useful to recall an intuitive meaning f6IOUR, as given by e.g. John Fo[[lS]. We
will use this meaning in an example in Sectjon 2.J11.2.+etV, anda € L., then

e z(a) = 0 means: we are informed thatis false, but not informed that is true;

e I
e z(a) = L means: we are neither informed thais true nor informed that is false;

o = T means: we are both informed thais true and informed that is false.

)
a) = 1 means: we are informed thatis true, but not informed that is false;
)
)

(
(
(
(



Now consider the followingimplifying assumptiarthe information about any formula can always
be obtained only from the information about the proposai@mymbols. In other words, the initial
information is the one about the propositional symbols &ednformation about general formulas
is constructed from the initial information. Then, intuély

1) We are informed (inf.) that« is true iff we are inf. thatv is false;

2) We are inf. that-« is false iff we are inf. that is true;

3) We are inf. thaty v 3 is true iff we are inf. thaty is true or inf. thats is true;

4) We are inf. thaty v 3 is false iff we are inf. thatv is false and inf. thap is false;

5) We are inf. thaty A 3 is true iff we are inf. thaty is true and inf. thaB is true;

(1)
(2)
(3)
(4)
(5)
(6)

6) We are inf. thatx A 3 is false iff we are inf. thaty is false or inf. thaf3 is false.

Note that without the simplifying assumption only the l&ftright implications of(3) and (6) do
not longer hold. Now(1) and(2) are formalized in Table 13) and(4) are formalized in Table 2,
and(5) and(6) are formalized in Table 3. Thus, eveAOUR-valuation represents a way to be
informed about the formulas under the simplifying assuomptiAnd clearly, every such way is rep-
resented by & OUR-valuation.

Roughly speaking,A40), (A1), (A2), (A3), butnot (A4) hold in the FOUR framework. Indeed,
first (1) entails(A0), second 1) and(2) entail (A1), (A2), butnot(A4), and third(1) and(3) entail
(A3), where

(1) L= Ec, V= V4, and):=|:4;
(2) Yo, B € L, neg(a) =, or(a, f) =aV P, and(a, B) = a A G;
(3) Ais finite.

It can be easily checked that our assumptions still holdérither languages ofl[1} B, 3.

2.10 TheJ; framework

The logic.J; was introduced ian] to answer a question posed in 1948 a&kowski, who was
interested in systematizing theories capable of contgicémtradictions, especially if they occur in
dialectical reasoning. The step from informal reasonindeurcontradiction and formal reasoning
with databases and information was done|]n [8] (also speeidffor real database models ﬂ 9D,
where another formulation of; calledLFI1 was introduced, and its first-order version, semantics
and proof theory were studied in detail. Investigationgphave also been made by Avron in e.g.
[E] where richer languages than here are considered. Irtiaddproof systems fok in the Js
framework can be found in e.d] [#,]10] and the chapter I{ df.[Nbw, from e.g. [1D]:

Definition 12 We say thatc is a Js-valuation iff z is a function from£. to {0,1, T} such that
z(0) = 0, (1) = 1, and the truth tables 4, 5, and 6 below hold. We denot®pthe set of all
Js-valuations. We denoted by the relation orvs x £. suchthav z € V3, Va € L., x 3 «ff
z(a) € {1, T}. We call =3 the J3-satisfaction relation.



B B
a o 0O 1 T 0O 1 T
0 1 0O 1 T 0|0 O O
1 0 ol 1 1 1 1 al1 |0 1 T
T T T T 1 T T]10 T T
Table 4. aV i alp
Table 5. Table 6.

The same intuitive meaning as f61OUR is valid, except that the following is added to the simpli-
fying assumption: for every propositional symbol, we arleast informed that it is true or informed
that it is false.

Roughly speaking(A0), (A1), (A2), (A3), and(A4) hold in the J; framework. More precisely,
first (1) entails(A0), second1) and(2) entail (A1), (A2), and(A4), and third(1) and(3) entail
(A3), where

(1) L=L.,V = Vs, andE==}=3;
(2) Va,B € L, neg(a) = —a, or(a, ) =a VB, and(a,B) = a A S;
(3) Ais finite.

It can be easily checked that our assumptions still holdéither languages o|f|[4].

2.11 Different frameworks, different drawbacks

Pivotal (resp. pivotal-discriminative) CRs suffer fronettollowing drawback: some sets of formulas
are rendered useless in the sense that everything (respngptan be concluded from them. A set
of formulasl is rendered useless in two situations:

o there does not exist a model fbr
o there exist models fdr, but they are not in the pivot.

Note that in theFOUR and J; frameworks, these two situations happen less often thahen t
classical framework. Roughly speaking, this is due to thetfaat in theF OUR and.J; frameworks,
there are much more valuations than in the classical framev@onsequently, it is harder to be left
with no model or no model in the pivot. In particular, for albssically inconsistenf C L.,
there are generallfFOUR and.J; models. Thus, in theeOUR and J; frameworks, pivotal and
pivotal-discriminative CRs are paraconsistent.

On the other hand, in the paraconsistent frameworks, thierive Syllogism is not satisfied,
unlike in the classical framework. The Disjunctive Syllemi says that from and—« Vv 3, we can
infer 3. Let us illustrate all of this with examples.

2.11.1 A particular pivotal CR in the classical framework

Suppose that we are in the classical framework (more foymnstlipposeC = L., V = V., and
E=[.) and supposel = {r, ¢, p}. Recall that4 is a set of propositional symbols introduced in
Section. Intuitivelyy means that Nixon is a republicapmeans that Nixon is a quaker, and



means that Nixon is a pacifist. Then,is the set of the 8 following classical valuationg; vy, vs,
v3, U4, Us, Vg, @andur, which are defined in the obvious way by the following table:

r1q9|Pp
v9 ||0]0]0
U1 0101
v2 |0 1]0
V3 0111
v |1]0]0
Vs 1701
vg ||1]1]0
(V%4 1(1]1

Now, consider the class of all republicans and the classl afuakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normaiéffis a pacifist. And, consider that a
valuation is negligible if (in it) Nixon is a non-normal inddual of some class. This is formalized
by the following pivotP = {z € V : if x = r, thenz = —p, and ifz |= ¢, thenz |= p}. Let|~ be
the pivotal CR defined by’.

Then,|~ leads us to “jump” to plausible conclusions from incomplafermation. For instance,
r |~ —p andq |~ p. Thus, pivotal CRs can be useful to handle incomplete iné&iom.

But, we loose many sets of formulas because there is no modéki pivot. For instance:
{¢,7} |~ o, Y @ € L. In particular, we suffer from this drawback if we face neviormation that
contradict previous “hasty” conclusions. For instangep} |~ o,V «a € £, and{q, -p} |~ «a,

Y a € L. We emphasize that this is the main difference comparedefemntial CRs. Indeed, with
preferential CRs, we can revise previous “hasty” conchsim the face of new information that
contradict them. Examples can be foundﬁh [7]. And, a lot ¢f ¢ formulas are rendered useless
because there is just no model. For instange:—p,q} |~ «,V « € L. In other words]~ is not
paraconsistent.

2.11.2 A particular pivotal CR in the FOUR framework

Suppose that we are in tHEOUR framework (more formally, supposé = L., V = V,, and
==[=4) and suppose again that = {r, ¢, p}. Consider the same classes, etc. as in the classical
case, except that this time a valuation is considered to gkgitae if (in it) we are informed that
Nixon is an individual of some class, but not informed thatd\i is a normal individual of that class.
This is formalized by the following pivoP = {z € V : if = = r, thenz | —p, and ifz = ¢, then

x = p}. Let|~ be the pivotal CR defined b¥.

Then, agair|~ leads us to “jump” to plausible conclusions from incompletfermation. For
instance,r |~ —p andq |~ p. In addition, less sets of formulas are rendered uselessubec
there is no model in the pivot. For instande,r} |~ p and{q,r} |~ —p and{q,r} |~ ¢ and
{¢g,7} |~ ~gand{q,r} |~ r and{q,r} |~ —r. In particular, we avoid trivialization if we face new
information that contradict previous “hasty” conclusioRsr instance{r, p} |~ pand{r, p} |~ —p
and{r,p} |~ r and{r,p} |~ —r and{r,p} |~ ¢ and{r, p} |~ —¢. Another example{q, —p} |~
—p and{q, -p} |~ p and{q, -p} |~ g and{q, -p} |~ —¢ and{q, —p} |~ r and{q, -p} |~ —r.

In addition, less sets of formulas are rendered uselessibethere is just no model. For instance,
{p7 -p, q} |N p and{p7 -p, q} |N -p and{p7 -p, q} |N q and{pa -p, q} l/\‘ -q and{p7 -p, q} l/\‘ r
and{p, —-p,q} |~ —r. Infact, |~ is paraconsistent. Thus, in tfeOUR framework, pivotal CRs
can be useful to handle both incomplete and inconsisteatrimdtion.



However,|~ does not satisfy the Disjunctive Syllogism. Indeed, fotanse {—r,r V ¢} |~ q.

2.12 Related Work

The theory of pivotal CRs has been widely investigated ircthssical framework. Characterizations
have already been given for them. For instance, the follgwime appears to be part of folklore for
decades: definable pivotal CRs correspond precisely taaslgssical closure operations that are
compact and satisfy Disjunction in the premisses. For metails see e.g[[2{, [L}.]18].

In addition, David Makinson argued i@ 18] that pivot&€are conceptual bridges between
- and a principal kind of nonmonotonic CRereferentialCRs, investigated in e.g[][[,]14,] 16] 21,
@,,]. Similarly, Makinson argued that definable pi¢@Rs are conceptual bridges between
F and another kind of nonmonotonic CR¥efault-assumptionSRs that were introduced by Poole
in [@]. We can now add that pivotal-discriminative CRs aomaeptual bridges betweén, and
preferential-discriminativ€Rs, investigated ir[[?]. Note that pivotal CRs correspadakinson’s
pivotal-valuation CRs, while definable pivotal CRs corasp to Makinson’s pivotal-assumption
CRs.

Technically, this paper has many points in common V\ﬂh [@hirthe present author. We will
use some results frorﬂ[?] as well as some results f@n [24H, Are would like to emphasize that
many techniques we use for pivotal CRs are inspired by tecias that Karl Schlechta used for
preferential CRs.

3 Definable pivotal CRs

3.1 The necessary and sufficient conditions

In this section, we provide in our general framework a noroferacterization of the family of all
definable pivotal CRs. Note that another characterizatighis family has already been given un-
der the assumption that we are in the classical framewomrk:d#finable pivotal CRs correspond
precisely to the supraclassical closure operations tleat@npact and satisfy Disjunction in the pre-
misses. For more details see e [17].

Before going further, note thdior the rest of the papeeach time we write one of the following
letters: o, 8, v, [, A, O, z, 9, 2, X, Y, Z, X, Y, Z (possibly with exponents and/or subscripts),
we assumey, 8,y € Landl',A;© C Landz,y,z € VandX,Y,Z C VandX,Y,Z C P(V).
Thus, each time we writéo, VX, 3o, 3X, etc.,, wemeaa € L,VX CV,da € L£,3X C V, etc.

In Proposition 1.1 of|E3], Karl Schlechta gave for any fuaot: : Y — Y necessary and sufficient
conditions for the existence of a preferential structdrsuch thaty X € Y, u(X) = pz(X),
wherepz(X) is the set of thenost preferredialuations ofX (i.e. the valuations such that at least
one copy of which is minimal among the set of all copies of a#ins inX). Then, Schlechta used
his general Proposition 1.1 in the classical framework tvjaote normal characterizations of certain
families of definability preserving preferential CRs. Defiility preserving means that X € D,
thenpz(X) € D too. Then, in |I|7], we used Proposition 1.1 in our general #awrk to show
that the Schlechta’s characterizations still hold. In #ddj we used Proposition 1.1 in our general
framework again to provide normal characterizations ofaierfamilies of definability preserving
preferential-discriminative CRs. For more details, ﬂe [7
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The idea is now to use similar techniques with pivotal CRs. réMprecisely, in Lemmﬂs be-
low, we give for any function. : Y — Z, necessary and sufficient conditions for the existence of a
pivot P such thaty X € Y, u(X) = X n P. Then, in the present section, we will use Le 13
in our general framework to provide normal characterizegiof certain families of definable pivotal
CRs. In addition, in Sectioﬂ 8, we will use Lemr@ 13 in our gahfamework again to provide
normal characterizations of certain families of definateal-discriminative CRs.

Lemma 13 LetY,Z C P(V) andu : Y — Z be a function. Then, there exists a pivdsuch that
VX eY,uX)=XnPiff

(H0) VX €Y, pu(X) CX;
(pl) VX, Y €Y, u(Y)N X C pu(X).

Proof Direction: “—". Let X,Y € Y. We show(u0). u(X) = X NP C X. We show(ul).
p(Y)NX=YNPNXCPNX =puX).

Direction: “—". Let P={z:3X €Y,z € pu(X)}. LetX € Y. We showu(X) C X N P. If
x € p(X), thenz €0y X andz € P. We showX NP C u(X). Letz € XN P. Then3Y €Y,
zepu(Y). Thus,e € u(Y)NX Crny w(X). |

Proposition 14 Let |~ be a CR. Then|~ is a definable pivotal CR iff
(|~ 0) VT, A, if T =A, thenl' = A;
(~1) ¥, T =T;

(|~2) VI, T CT;

(]~ 3) VI,A, T CAUT.

Proof Direction: “~". There exists a definable pivét such that/ T, I = T'(Mr N P). We show
(|~ 0). f T = A, thenMr = Ma, thusl' = T(Mp N P) = T(Ma N P) = A. We show(|~ 1).
T = T(Mr(venp)) = T(Mp 0 P) =T. We show(|~ 2). T C T(Mr) C T(Mr N P) =T.

Let x : D — D be the function such that X ¢ D, u(X) = X nP. As P, X € D,
X NP € D, thusp is well-defined. By Lemmﬂ3, we gé€r0) and (u1). Moreover,V T,
/L(MF) e D, thUS,u(MF) = MT(#(A{F)) = MT(MFHP) = Mf. We ShOW(|N 3). VI,A,
MZ N My = ,LL(MA) N Mr g(ul) ,LL(MF) e Mf.

Direction: “—". Let . : D — D be the function such thatT’, (Mr) = Mg. If Mp = Ma, then
T =A, thUSMf =(|~0) M3. Thus,p is well-defined. We showu0). VT, u(Mr) = Mz C(j~2)

Mr. We ShOW(,ul). VI, A, u(Ma)N My = Mﬁ N Mr = ]\/[EUF C(j~3) MIN“ = /L(Mr). Thus, by
Lemmd 1B, there exists a pivétsuch that/ T, T' = (1) T’ = T(Mz) = T(u(Mr)) = T(MrNP).

In addition,P = My N P = u(My) € D. |}

Note that the conditiong|~ 0), (|~ 1), (]~ 2), and(|~ 3) depend only on~, - and.L. As,+ has
been defined semantically (in Secti@ 2.2), these conditi@ve a semantic aspect. In parallel, as
we have a proof system forin the classicalF OUR, and.J; frameworks, the conditions have also
a syntactic aspect in these frameworks.
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3.2 Normal characterization

We now give in a straightforward manner a normal characédn of definable pivotal CRs. L&t
be the relation oveP(L£)* such that/ T'y, 'y, '3, Ty, ®(I'y, 2, T3, Ty) iff

o if T; =T, thenl's = Ty;
o I3 =Tj;
o I'y C Ty
e I3 CT,UTLY.
Then, by PropositioEM,N is a definable pivotal CRiff' T'y, 'y, ®(I'1, s, ﬁ, f;).

4 Pivotal CRs

In this section, we give a non-normal characterization ef family of all pivotal CRs. We can-
not use Lemmﬂ3 to characterize the pivotal CRs as we didamacterize the definable pivotal
CRsin Propositiorﬂ4. Roughly speaking, this is due to tloe tfaat, in the “>” direction, from
I' = T(u(Mr)), we can no longer concludg Mr) = Mg, asu(Mr) is no longer necessarily iD.

Thus, we cannot get the conditions lon from the conditions o (clearly, the “—" direction still
holds, as ifi~ is a definable pivotal CR, then it is also a pivotal CR).

Karl Schlechta encountered a similar problen’@ [24] whealidg with preferential CRs (not nec-
essarily definability preserving). Here is his remedy. logasition 5.2.5 0f|E4], he gave for any
functiony : Y — Y, necessary and sufficient conditions for the existence oéfepential structure
Z suchthat X €Y, u(X) is the smallest element &f that containg:z (X) (the most preferred
valuations ofX). Note that it is assumed thaf is closed under arbitrary intersections and finite
unions, and), V € Y. Then, Schlechta used his general Proposition 5.2.5 inléissical framework
to provide non-normal characterizations of certain fagsilbf preferential CRs.

Then, strongly inspired by Proposition 5.2.5, we gave in hen8.3 of [}’] for any functionu :
Y — Y, necessary and sufficient conditions for the existence oéfeential structureZ such that
VX eY,uX)= Mrpy.(x)- Note that, unlike Proposition 5.2.5, Lemma 3.3 requiretunther
prerequisites. Then, in|[7], we used Lemma 3.3 in our gerfemeiework to provide non-normal
characterizations of certain families of preferential CiRal of certain families of preferential-
discriminative CRs.

The idea is now to use similar techniques with pivotal CRs. réMprecisely, in LemmEII.G be-
low, we give for any function:, : Y — Z, necessary and sufficient conditions for the existence of
apivotP such thaty X € Y, u(X) = Mpxnpy- Then, in the present section and in Secﬁbn 5,
we will use LemmaEIG in our general framework to provide nonsmal characterizations of certain
families of pivotal CRs. In addition, in Secti@ 9, we wiIIeuSemma@6 in our general framework
again to provide non-normal characterizations of certamifies of pivotal-discriminative CRs.

Definition 15 LetY,Z C P(V) andu : Y — Z be a function. We denote hy : Y — P (V) the
functionsuchthat X € Y

W(X)={zeX:VYeY,ifzeY, thenz € u(Y)}.
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Lemma 16 LetY,Z C P(V) andu : Y — Z be a function. Then, there exists a piv@such that
VXeY, /L(X) = MT(XﬂP) iff

(12) VX €Y, u(X) = My (xy)-

Proof Direction: “—". We show(;:2). Let X € Y.

Case ldz c XNP,x ¢ p/(X). Then3dY € Y,z e Yandz ¢ u(Y) = Mpynpy 2 Y NP,
which is impossible.

Case2X NP C i/ (X).

Case 2.13z € p/(X),z ¢ w(X). Then,x € X andvY € Y, if x € Y, thenz € u(Y), thus
x € p(X), which is impossible.

Case 2.2)/(X) C u(X). Thenu(X) = Mr(xnp)y € Mre(x)) © Mrux) = Mr(irixop) =
Mpxnpy = m(X).

Direction: “~". Let P={z:3X €Y, z € ¢/(X)}andX € Y. Clearly,/(X) C X N P. We
showX NP C u/(X). Letz € XNP.Then3Y € Y,z € i/ (Y). ThusVZ € Y, if z € Z, then
x € u(Z). Thus, by definition ofs/, x € p/(X). Thus,u(X) =2y My (x)) = Mrxnpy- |

Proposition 17 Let |~ be a CR. Then|,~ is a pivotal CR iff

(|~4) VT, T =T({x € Mr : Y A, if x € Ma, thenz € Mx}).

Proof Direction: “—”. There exists a pivoP such that/ T', T = T(Mr N P). Lety : D — D
be the function such that X € D, u(X) = Mpxnp)- By Lemma[1p, we getu2). In addition,
VT, u(Mr) = Mz. We show(|~ 4). LetT C £. Then,I' = T(Mr N P) = T(Mpenp)) =
T (u(Mr)) =(u2) T(MT(;L’(MF))) =TWMr)) =T{x € Mr : VY € D,if z € Y, then
reuY)}) =T{x e Mp:VA,if x € Ma, thenz € M }).

Direction: “—". Let y : D — D be the function such that I, (Mr) = Mz. If Mr = Mo,
thenT' =(.4) O, thusy is well-defined. We show that satisfies(;2). LetT' C £. u(Mr) =
My =(j~a) MT({mE]Wp:VA, if zeMa, thenzenmzy) — MT({wEJ\{r:VYED, if zey, thenzeu(y)y) —
My (vry)- Thus, by Lemm# 16, there exists a pivosuch thal’ =(j~a) T(M7) = T(p(Mr)) =
T(Mrpnpnpy) = T(Mr 0 P). |

We cannot get a normal characterization of pivotal CRs frmp@sitio, becaugé~ 4) depends
on too many subsets d@f. Recall that more explanations have been given in Sen 2.

5 Codefinable pivotal CRs

In this section, we give a non-normal characterization effamily of all codefinable pivotal CRs,
under the assumption th@t0) holds.

Lemma 18 Let (A0) holds,Y,Z C P(V), D C Y andu : Y — Z be a function. Then, there
exists a codefinable pivdt such that' X € Y, u(X) = My xnp) iff (12) and

(13) V\w'(V) € D.

Proof Direction: “—". We show
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(0) u satisfies(1:2);
(1) @(v) = P;
(2) p satisfies(3).

Proof of (0). Obvious by Lemm$ 16.

Proof of (1). Direction: “C”. Supposed z € u/(V),z ¢ P. Then,z € V\ P € D C Y. However,
VY €Y,ifx €Y, thenr € /L(Y) Thus,x € ,LL(V\P) = MT((V\p)ﬂp) = MT(@) =M, =(A0) 0,
which is impossible.

Direction: “D”. Supposedx € P,x & p/(V). Asz € V,3Y € Y,x € Y andz ¢ u(Y) =
Mrynpy 2 Y N P, which is impossible.

Proof of (2). V\ 1//(V) =) V\ P € D, asP is codefinable.

Direction: “—". Let P={z:3X €Y, z € ¢/(X)}. We show
) VXeY,(X)=XnP;

(1) V\ P eD;

(2) VX Y, pX) = MT(XmP)-

Proof of (0). Direction: “C". Obvious.

Direction: “D". Letz € XNP. ThendY €Y,z ¢ W (). Thus,vZ € Y, if z € Z, then
x € p(Z). Thus, by definition of//, z € p/(X)

Proofof(1). V\ P =V\ (VNP) =) V\/(V),asV = My € D C Y. But, V\ i/(V) €3 D.
Proof of (2). u(X) =(u2) Mr(u(x)) =) Mr(xnp)

Proposition 19 Let (A0) holds and~ be a CR. Then~ is a codefinable pivotal CR iff~ 4), and
(|~5) V\{z e V:VA, if x € Ma, thenz € My} € D.

Proof Direction: “—". First, by Propositiod 17, we gef~ 4). Now, there is a codefinable
pivot P such thaty I', I' = T(Mr N P). Lety : D — D be the function such that X ¢ D,
1(X) = Mr(xnp). By Lemma[1B(13) holds. MoreoveW I, ju(Mr) = M. We show(|~ 5).
V\{z: VA, ifx € Ma,thenz € M3} = V\{z:VY € D,ifz €Y, thenz € u(Y)} =
VAU(V) €z D

Direction: “—". Let y : D — D be the function such that I, (Mr) = Mz. If Mr = Mo,
thenT =(|~a) O, thus is well-defined. We now showy2). LetT' C £. Then,u(Mp) =

My =(~t) Moty A, if sema, thensensy ) = Mre ). We show(u3). VA @/(V) =
V\{z: VA, ifze MA, thenz € Mz} €5 D. Thus, by Lemm§ 18, there exists a codefinable

pivot P such that/ T, r =(|~4) T(Ml:) =T(uw(Mr)) = T(MT(MFHP)) T(MrnP). |}

We cannot get a normal characterization of codefinable aivORs from Propositioﬂg, because
(|~ 4) and(]~ 5) depend on too many subsets/fRecall that more explanations have been given

in Sectior] 2}6.
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6 Alink with X-logics

In this section, we define several families of pivotal ECRd give easy characterizations for them.
Then, we will show that codefinable pivotal ECRs are pregiskelsed pertinence ECRs (alias closed
X-logics), under the assumption that1) holds.

Definition 20 Let ||~ be an ECR. We say th#it- is a pivotal ECR iff there exists a piva@t such
thatvV T, A, T ||~ Aiff Mr N P C Ma. We say that|~ is definable, codefinable, etc. jff~ can
be defined by a definable, codefinable, etc. pivot.

Proposition 21 Let ||~ be an ECR. Then|~ is a codefinable pivotal ECR iff
(0) |~ is a codefinable pivotal CR;

(1) VLA T ||~ Aiff Va e A, T |~ o

where|~ isthe CR suchthat T', o, T" |~ «xiff T ||~ {a}.

Proof Direction: “—". There exists a codefinable pivBtsuch thatV T', A, T ||~ A iff MrNP C
Ma. We show(0). VT, o, T |~ «iff T ||~ {a} iff Mpr NP C M,. We show(1). VI',A, T ||~ A
iff Mp NP C MA=Npenr Moiff Va€ A, MrNP C M, iff Vo€ A, T [~ «, as shown in the
proof of (0).

Direction: “—". By (0), there exists a codefinable pivBtsuch thav'T', o, T |~ « iff MNP C M,,.
We show thaf|~ is a codefinable pivotal ECR.I', A, T' ||~ Aiff () Va € A, T |~ «aiff Va € A,
MrN P C My iff Mr NP C(,en Mo = Ma.

Consequently, undefA0), by Propositiond 39 anfi 1, we get a characterization of foatde
pivotal ECRs. It is easy to see that by the same technique awejet characterizations of pivotal
ECRs, definable pivotal ECRs, etc.

Notation 22 VT, A, we denote byr (T, A) the set s.tor(T', A) = {or(a,8) : a € T, 5 € A}.
Proposition 23 Let (A1) holds and™, A C L. Then,Mr U Ma = M1, a)-

Proof Direction: “C". Let z € My U Ma. We showz € M, a). Leté € or(I', A). Then,
Jael, 38 €A, d=or(a,f). But,x € M, U Mg =(A1) Mor(a.ﬂ) = Ms.

Direction: “2”. Supposed x € My, (r,a), © € MrU Ma. Thenda €I’z ¢ M, and3 3 € A,
x & Mg, thus,z & M, U Mg =(a1) Moy(a,g), howeveror(a, §) € or(T, A), thusz & My,(r a)
which is impossible. |

Proposition 24 Let (A1) holds. Then, codefinable pivotal ECRs are precisely closgtnence
ECRs.

Proof Direction: “C”". Let ||~ be a codefinable pivotal ECR. Then, there exists a codefipalaée
Psuchthatv A, T ||~ Aiff MprN P C Ma. LetX = T(V\ P). As P is codefinable,
My, = My py =V \ PandX = T(Ms) = T(V\ P) = %, thusX is a closed pertinence choice.
We show that|~ is a closed pertinence ECRL', A, T" ||~ A iff MrNP C Ma iff My C MAUMsy,

iff Mt C Mprua U My iff, by Proposition,Mp - Mor(I‘UA,E) iff T(MOT(FUA,E)) - T(]\/[F)
iff, by Proposition again (Mrua U Myx) C T(My) iff T(Mrua) NT(Mys) C T(My) iff
TUANYSCTIiffTUANY CT.
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Direction: “D". Let ||~ be a closed pertinence ECR. Then, there exists a closedgmr# choice
Ysuchthaty I,A, T ||~ Aiff TUANY CT. LetP = V\ Mx. Then,V\ P = My € D,
thus P is a codefinable pivot. We show thjgt- is a codefinable pivotal ECR.T, A, T ||~ A iff
TUANXY C Tif TUANYS - T iff T(MFUA)QT(ME) - T(Mp) iff T(MFUAUME) - T(MF)
iff, by Propositio2BT (M, (rua,s)) € T(My) iff Mr € M, rua v iff, by Proposition 2B again,
Mt C Mprua U My iff My C Ma U My, iff MrnN (V\ME) C Ma iff Mr NP C M. I

Consequently,

Proposition 25 Let (A0), (A1) hold and||~ be an ECR. Thefi~ is a closed pertinence ECR iff
(0) |~ satisfieg|~ 4) and(|~ 5);

(1) VLA T ||~ Aiff Va e AT |~ a;

where|~ isthe CR suchthat T', o, T" |~ «iff T ||~ {a}.

Proof Obvious by Propositions [L§, 21, ahd 24.

7 There is no normal characterization of pivotal CRs

In this section we show that it is impossible to find a normalrelsterization of pivotal CRs under
the assumption tht45) and(A6) (defined below) hold. Karl Schlechta has showr{ir} [24] thist it
impossible to get a normal characterization of preferé@is in the infinite classical framework.
We have been inspired by his techniques.

Definition 26 Let (A5) and(A6) be the framework assumptions such that
(A5) L= L.,V =V, andE==|. (i.e. we are in the classical framework);

(A6) A is infinite (i.e. infinite number of propositional symbols).

Recall thatA has been defined in Notati¢n]10. We need an important lemma#raSchlechta
gavein ] (called there Lemma 5.2.14).

Lemma 27 From [24]. Let(45) and(A46) hold and lefy € {X C V : | X| < |.A|} be closed under
unions of size at mogt4| and subsets. TheW,I', 3 Xr € Y,

0) T(Nxey Mrmr\x)) = T(Mr \ Xr);
(1) VX eY,T(Mr\X)CT(Mr\ Xr).

Note that the subscript iXT is written just to keep in mind that in the statement of therieamit
depends oi'. Now we come to the negative result.

Proposition 28 Let (A5) and(A6) hold. Then, it is impossible to find a normal characterizatd
pivotal CRs.
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Proof Suppose on the contrary that there exist a (finite or infiruggdlinal\ < |£| and a relation
® overP(L£)?* such that for all CR~, |~ is a pivotal CRiffvT'y,... Ty, ®(Ty,...Tx,Ty,...Ty).
Then, letX be the set such that

X = {X CV:|X| < |A]}.

Let |~ the CR such that T,

T=T(() Mromx))
XeX

Note thatX # 0, thus|~ is well-defined. We show
(0) VX CV,if | X| < |A|, thenT(V) = T(V\ X);
(1) 9Tq,...Ty, O(Ty,...Ty, fvl, . ..ﬁ) does not hold.

Proof of (0). Let X be such thatX| < |.A|. Obviously,T(V) C T(V \ X). We showI'(V \ X) C
T(V) by contradiction. Supposea € TV \ X),a € T(V). Then, 3z € V, x ¢ M,. Consider
the set of valuation¥™ such that

Y = {y € V : for all propositional symbaj appearing iny, y(q) = z(q)}.

Then,Vy € Y, y(a) = z(«a), thusy ¢ M, Moreover, as the number of propositional sym-
bols appearing im is finite, we get|Y| = 2. However|X| < |A|. Thus,|X| < [Y|, thus
Jye Y\ X CV\X. ThusV\ X € M,, thusa ¢ T(V \ X), which is impossible.

Proof of(1). It suffices to show thdt- is not a pivotal CR. Suppose on the contrary that there exists
a pivot P such thav'T', I = T(Mrn P). We show a contradiction. Letbe a propositional symbol.
Case 1:3z € P,z ¢ M,. We posel' = T'({z}). Then,Mp = {z}. Thus,I' = T({z} N P) =
T({z}). Thus,p ¢ I'. However,Mr € X, thus(\y.x Mri\x) € Moy = Mg = 0.
Thus,I' = T(0), thusp € T, which is impossible.

Case 2.P C Mp. Then,p = T(mXEX MT(V\X)) =(0) T(ﬂXEX MT(V)) = T(MT(V)) = T(V)
Thus,p ¢ 0, asV ¢ M, However,) = T(YVNP)=T(P),thusp € @, which is impossible.

Now, by lemmd 37, we get
(2) VI,3Xr €X, f = T(MF \ Xp) andvV X € X, T(Mp \ X) - T(MF \ Xp).

7= U Xr,

re{r,..I'x}

Then, LetZ be the set such that

and let|~' be the pivotal CR defined by the pivigt\ Z. The following entails a contradiction and
thus ends the proof. We show

(3) VI € {Fl,...FA},f =T(Mr\ 2Z);

(4) |~ is not a pivotal CR.
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Proof of (3). LetT' € {I'y,...I'y}. Direction: “C". Xp C Z, thusMr \ Z C Mrp \ Xp, thus
T =@ T(Mr \ Xr) C T(Mr \ Z),

Direction: “2". As A < |L| = |A] (in the infinite case, there are indeed as many propositional
symbols as formulas)Z| < |A[? = |A], thusZ € X, thusT(My \ Z) C (s T(My \ Xr) =) T

Proof of(4). VT € {T'y,...I2\}, T = T(MrN(V\ Z)) = T(Mr\ Z) =) I. Thus,®(I'y,...Ty,
Ty ,...Ty ) iff ®(Ty,...Tx, T1,...Tx), which does not hold. Thug' is not a pivotal CR.

8 Definable pivotal-discriminative CRs

8.1 The necessary and sufficient conditions

In this section, we give normal characterizations of the fallmwing families:
e the definable pivotal-discriminative CRs, undér), (A3), and(A4);
o the CP definable pivotal-discriminative CRs, undég) and(A3).

Notation 29 IN denotes the natural number§0, 1,2, ...} and IN" the positive natural numbers:

{1,2,...}.
Definition 30 Let|~bea CRI' C £, andi € IN, i > 2. Then,

Hy(T) Y {neg(8): 5 ¢ T, BT UT, andneg(8) ¢ T UT};
’ B¢T and
H;(T) =) {neg(B):{ BeTUTUH(T)U...UH;_1(T)and };
neg(8) ¢ TUTUH(T) U... U H;_(T)

def
HT)= | Hi(D).
ieNT
Note thatH should be indexed biy, but as there will never be any ambiguity, we omit it to incea
readability. We come to the representation results.

Proposition 31 Let |~ be a CR. Then,

(1) if (A2), (43), and(A4) hold, then~ is a definable pivotal-discriminative CR iff~ 0), (]~ 6),
(I~ 7), (]~ 8) and(|~ 9) hold;

(1) if (A2) and(A43) hold, then|~ is a CP definable pivotal-discriminative CR {f~ 0), (|~ 6),
(|~ 7), (]~ 8), (|~ 9), and(|~ 10) hold;

where

(I~ 6) VT,a,8,if 3¢T, 8T UL, andl' UT U {neg(a)} C T UT U {neg(B)}, thena & T;

(|~ 7) VI, a,8,if, ¢ T, e TUT, andl UT U{S} C T UT U {neg(a)}, thenor(a, 8) € T;
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(|~ 8) VT, if o € T, thenneg(a) ¢ T UT;

(I~9) VI,A,TUTUH() CAUAUH(A)UT;

(|~ 10) YT, if ['is consistent, thefi C T, T is consistent, anil = T.

Before we show Propositi31, we need to introduce Lemmjpsn8?38 below. They are taken
from [ﬁ]. Moreover, [?] has nothing to do with pivots, but tipreferential structures. In fact, it
seems that these lemmas can be useful to characterize aity €of CRs such thai~ € C'iff VT,

T = Ty(u(Mr)), wherep : P(V) — P(V) is simply a function satisfyingu.0).

Lemma 32 From [f]. Let(A2) and(A3) hold, and let~ be a CR such that~ 6), (|~ 7), and
(|~ 8) hold. Theny T, T = Td(MrufUH(r))-

Lemma 33 From ["{N] Let(A2) and(A3) hold,|~ be a CR, ang. : D — D be a function such that
(u0) holds andv T, T = Ty (u(Mrt)). Then,

(0) (I~ 6). (|~ 7). (|~ 8) hold;
(1) if (A4) holds, thetW T, u(Mr) = My 5 pr(rys
(2) if pis CP, thetW T', u(Mr) = My 50y

We come to the@roof of Proposition @

Proof Direction: “—”. For (i) and (ii), there exists a definable pivét such thaty I', I' =
T4(Mr N P). We show(|~ 0). If T = A, thenT' = Ty(Mr N P) = Ty(Ma N P) = A. Let
@ : D — D be the function such that X € D, u(X) = X n P. As P is definable,u is
well-defined. By Lemmé 13, we gét0) and(x1). In addition,v T, I' = T,(u(Mr)). Thus, by
Lemma[3B(0), (|~ 6), (|~ 7), and(|~ 8) hold.

(i). By Lemma|35(1), VT, u(Mr) = Mg pr(ry- Thus, by(pl), (|~ 9) holds.

(i4). In addition,P is CP, thus: is CP, thus by Lemm@aB®), VT, uu(Mr) = My 5 )~ THUS,
by (1:1), (]~ 9) holds. In addition, we sho@~ 10). LetT’ C £ be consistent. Thed/r € DN C,
thusp(Mr) € DN C. We showl' C T. Leta € I. Then,u(Mr) C0) Mr C M,. Thus,
((Mr) € Mgty thusa € Ty(u(Mr)) = T. We show thal is consistentMz = Mr, (u(asp ) =
Mz )y = p(Mr) € C. And,T' = Ty(u(Mr)) = T(u(Mr)) = T(Mruary)) = T(Mz) =

r.

Direction: “—". For (¢) and(ii), (|~ 0), (|~ 6), (]~ 7), (]~ 8), and(|]~ 9) hold. Lety : D — D be
the function such thatT’, u(Mr) = My gy ry- if M = Ma, thenl = (o) A andH (') = jq
H(A), thusp(Mr) = pu(Ma), thusy is well-defined. By Ler’:nr&?& I, T = Ty(u(Mr)). Obvi-
ously (x0) holds. And, by(|~ 9), (¢1) holds. Thus, by Lem 3, there exists a piasuch that
VT, T = Ty(u(Mr)) = Ty(Mp N P). In addition,P = My N P = u(My) € D.

(). This has been shown in the common part above.

(ii). We show thaf is CP. LetMr € D N C. Case 1:H; (') # 0. Thus,33, 3 ¢ T and
MfﬂMp C Mpg. As,T’ C(j~10) f, MfﬂMp = Mf, thUSMf C Mg, thusg € T(Mf) =T =(|~10)
T, which is impossible. Case #,(I") = . Thus,H(T") = . Thus,u(Mr) = M e Gmr) =
M 5 = Mz €(j~10) C. We show that? is CP. If X e DN C,thenX NP =pu(X)c C. |
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Note that the conditions{|~ 0), (|~ 6), (]~ 7), (|~ 8), (]~ 9), and (]~ 10) depend only on
|~, F, L, neg, andor. As,F has been defined semantically (in Sec 2.2), these dongdihave
a semantic aspect. In parallel, as we have a proof system fiorthe classical,FOUR, and Js
frameworks, the conditions have also a syntactic aspebeisetframeworks.

8.2 Normal characterizations

We now give in a straightforward manner normal charactédmna of definable pivotal-discriminative
CRs and of CP definable pivotal-discriminative CRs. We usddhowing definitions: lef";, I’y C
Landi € N, i > 2, then

Hl(l—‘l,rg) d;f {neg(ﬁ) : ﬁ Q/ Iy, andﬁ el uly, neg(ﬁ) Q/ I'u Fg};

e 8 ¢TIy and
Hi(l—‘l,l—‘g) ;j {neg(ﬁ) : selitulyuU Hl(Fl,Fg) U... UHl',l(Fl,FQ) and };
neg(ﬁ) g Fl UFQ U Hl(Fl,Fg) Uu...u Hi,l(I‘l,Fg)

de
H(LT2) Y ) Hi(T,Ty).
icINT
Let ® be the relation oveP(L£)?* such that? T'y, Ty, '3, Ty, ®(T'y, T2, '3, Ty) iff

o if F_l = F_Q, thenI‘3 =Ty,

Va,B, if B¢ T3, BT UL, MUT3U{neg(a)} CT1UT3 U {neg(8)}, thena ¢ I's;

Va,B,ifa,8 €T3, a €Ty U3, T1UT3U{B} CT; UT3 U {neg(a)}, thenor(a, 3) & I's;

e Va, if €T3, thenneg(a) € T'1 UTs;

Iy UF3UH(F1,F3) CTI'y UF4UH(F2,F4)UF1.

Then, unde(42), (A3), and(A4), by Propositio] 14), |~ is a definable pivotal-discriminative
CRff VI'1,I'y, ®('1,T2,T'1,T2). Let ® be the relation oveP(L£)* such thatv I'y, 'y, '3, Ty,
(I)/(Fl, 'y, s, F4) iff (I)(Fl, 'y, s, F4) and

if ', is consistent, thef’; C I's, I's is consistent, anfls = I's.

Then, undefA2) and(A3), by Proposition 3ii), |~ is a CP definable pivotal-discriminative CR
iff V1, Dy, ®(I'y, o, T1,Ty).

9 General and codefinable pivotal-discriminative CRs
In this section, we give non-normal characterizations efftur following families:
e the pivotal-discriminative CRs, undéd2), (A43), and(A44);
¢ the codefinable pivotal-discriminative CRs, undén), (A2), (A3), and(A4);
¢ the CP pivotal-discriminative CRs, undet2) and(A43);
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¢ the CP codefinable pivotal-discriminative CRs, ungdéd), (42) and(A3).

Proposition 34 Let |~ be a CR. Then,

(1) if (A2), (A3), and(A4) hold, then|~ is a pivotal-discriminative CR iff|~ 0), (|~ 6), (|~ 7),
(|~ 8), and(|~ 11) hold;
)

(id) if (A

0), (A2), (A3), and(A4) hold, then|~ is a codefinable pivotal-discriminative CR iff
[~ 0), (|~

6), (I~ 7), (I~ 8), (]~ 11), and(|~ 12) hold;

(I~ 0)
(i4i) if (A2) and(A3) hold, then|~ is a CP pivotal-discriminative CR iff|~ 0), (|~ 6), (|~ 7),
(|~ 8), (|~ 10), and(|~ 11) hold;

(i) if (A0), (A2), and(A3) hold, then|~ is a CP codefinable pivotal-discriminative CR(iff- 0),
6), (I~

(I~ 6), (I~ 7), (I~ 8), (I~ 10), (|~ 11), and(|~ 12) hold;
where
(I~ 1) VI Mpogoary = Mr(eeny a, if zes, thenzedy s a )

(|~ 12) V\{z € V:VA, ifz € Ma, thenz € MAuAuH(A)} eD.

Proof Direction: “—". For (i), (ii), (iii), and (iv), there exists a pivoP such thatv I, T' =
Tq(Mr N P). We get obviously|~ 0). Lety : D — D be the function such thatT", p(Mr)
MT(MFF\P) AsVY X, X C M, iff MT(X) C M,, we getl’ = Td(MF N P) = Td(MT(MFﬁP)) =
Ty((Mr)). In addmonVF w(Mr) = Mypvpnpy € My = Mr, thus(u0) holds. Thus, by
Lemma[3B(0), ( 7), and(|~ 8) hold. In addition, by Lemmp 16:2) holds.

(i). By Lemma.(l VT, p(Mr) = Mp gy ry- Thus, By(u2), (|~ 11) hold.

(i1). As abovey T, u(Mr) = My G m(r) and(|~ 11) holds. In addition to the common part,
P is codefinable, thus by Lemnfia] 1@:3) holds, thug(|~ 12) holds.

(#i7). In addition to the common parE} is CP. We show that is CP. LetM € D N C. Then,
MrNP e C, thusu(Mr) = Mpnpy € C,asMr NP C M, iff Mpgnpy € M,. Therefore,
by Lemma3B(2), VT, u(Mr) = My i gy Thus, by(p2), (|~ 11) holds. We show|~ 10).
Verbatim the same reasoning as fes® (ii) of Propositior] 31.

(iv). As abovevV T, u(Mr) = My w0 pr (). and(|~ 11) and(|~ 10) hold. In addition to the

common pariP is codefinable, thus by Lemn@ 1843) holds, thug|~ 12) holds.

Direction: “—". For (3), (i%), (iii), and(iv), we have(|~ 0), (|~ 6), (]~ 7), (]~ 8), and(|~ 11).
Let x : D — D be the function such that T, u(Mr) = MFuf‘uH(F)' If Mr = Ma, then
r =(~0) A andH () =(j~0) H(A), thusy is well-defined. By LemmA 32/ T, T = Ty(u(Mr)).
And, by (]~ 11), (12) holds.

(i). By Lemmg[1p, there exists a pivétsuch that/ T, T = Ty(u(Mr)) = Ta(Mranp)) =
Ty(Mp N P).

(ii). By (|~ 12), (13) holds. Thus, by Lemmp]18, there exists a codefinable givetich that
vVIbT = Td(,u(Mp)) = Td(MT(Mme)) = Td(MF n P)

(ii7). By Lemmg1p, there exists a pivBtsuch that/T', T = Ty(j(Mr)) = Ta(Mranp)) =
Tq(Mr N P). We show that, by(|~ 10), u is CP. Verbatim the same reasoning as™ (i:) of
Propositior[3|1. We show thdt is CP. LetX € DN C. Then, My xnp) = p(X) € C. Thus,
XNPeC,asMpxnp) C My iff X NP C M,.
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(iv). By (]~ 12), (u3) holds. Thus, by Lemmp 18, there exists a codefinable pi/stich
thatv ', I' = Ty(u(Mr)) = Ta(Mpenpy) = Ta(Mr N P). In addition, by verbatim the same
reasoning as just above,s CP, thusP is CP.  |]

We cannot get a normal characterization for any of theseftouilies from propositio@4, because
(|~ 11) and(|~ 12) depend on too many sefs. Recall that more explanations have been given in

Sectior[ 2.p.

10 Summary and conclusion

Pivotal and pivotal-discriminative CRs formalize natuwedys of reasoning. They are useful to
handle incomplete information in the classical framewakd both incomplete and inconsistent
information in theJ; and FOUR frameworks. The main goal of this work was to characterize
several families of them in a general framework that covéirefahe classical, three, and four-
valued frameworks. We have also answered negatively aseptation problem that was left open
by Makinson, namely there is no normal characterizatiorheffamily of all pivotal CRs, in the
infinite classical framework. And we have shown that codé&fimpivotal ECRs are precisely closed
pertinence ECRs (aliak -logics).

Technically, this paper has many points of commonality \@]h We have used some results of
[IZ] and it seems that some results of the present papers caseldan future work. More precisely,
Lemmaq 13[ 16, ar{d L8 have an interest of their own. Indeedisee them in both the basic and
the discriminative case. This suggests that they may bellutsetharacterize some other families of
CRs based on pivots.

Similarly, Lemmag 32 ar{d B3 which are taken fr¢in [7] were ubede to characterize some fam-
ilies of preferential-discriminative CRs and are used hereharacterize some families of pivotal-
discriminative CRs. In fact, it seems that these lemmas eamskful to characterize any famify
of CRs such thaf~ € C iff VT, T = Ty(u(Mr)), wherep : P(V) — P(V) is simply a function
satisfying(u0).

Let us finish by a constructive self-criticism: some of oundibions are are probably too com-
plex (and ugly) to be used efficiently. Simplifying them adble the goal of a future work.
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