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KILLING VECTOR FIELDS WITH TWISTOR DERIVATIVE

ANDREI MOROIANU

Abstract. Motivated by the possible characterization of Sasakian manifolds in terms
of twistor forms, we give the complete classification of compact Riemannian manifolds
carrying a Killing vector field whose covariant derivative (viewed as a 2–form) is a
twistor form.
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1. Introduction

The concept of twistor forms on Riemannian manifolds was introduced and intensively
studied by the Japanese geometers in the 50’s. Some decades later, theoretical physicists
became interested in these objects, which can be used to define quadratic first integrals
of the geodesic equation, (cf. Penrose and Walker [9]) or to obtain symmetries of field
equations (cf. [2], [3]). More recently, a new impetus in this direction of research was
given by the work of Uwe Semmelmann [10] (see also [1], [5], [6]).

Roughly speaking, a twistor form on a Riemannian manifold M is a differential p–
form u such that one of the three components of its covariant derivative ∇u with respect
to the Levi–Civita connection vanishes (the two other components can be identified
respectively with the differential du and codifferential δu). If moreover the codifferential
δu vanishes, u is called a Killing form. For p = 1, twistor forms correspond to conformal
vector fields and Killing forms correspond to Killing vector fields via the isomorphism
between T ∗M and TM induced by the metric.

Two basic examples of manifolds carrying twistor forms are the round spheres and
Sasakian manifolds, cf. [10], Prop. 3.2 and Prop. 3.4. A common feature of these
examples is the existence of Killing 1–forms whose exterior derivatives are twistor 2–
forms.

Conversely, if ξ is a Killing 1–form of constant length with twistor derivative, then it
defines a Sasakian structure (see Proposition 2.3 below). It is therefore natural to drop
the assumption on the length, and to address the question of classifying all Riemannian
manifolds with this property.

After some preliminaries on twistor forms in Section 2, we study the behaviour of
closed twistor 2–forms with respect to the curvature tensor in Section 3. This is used
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to obtain the following dichotomy in Section 4: if ξ is a Killing 1–form with twistor
exterior derivative, then either ξ satisfies a Sasaki–type equation, or its kernel is an
integrable distribution on M . The two possibilities are then studied in the last four
sections, where in particular new examples of Riemannian manifolds carrying twistor
2–forms are exhibited. A complete classification is obtained in the compact case, cf.
Theorem 8.9.

Acknowledgments. It is a pleasure to thank Paul Gauduchon and Christophe
Margerin for many enlightening discussions.

2. Preliminaries

Let (Mn, g) be a Riemannian manifold. Throughout this paper vectors and 1–forms
as well as endomorphisms of TM and two times covariant tensors are identified via the
metric. In the sequel, {ei} will denote a local orthonormal basis of the tangent bundle,
parallel at some point. We use Einstein’s summation convention whenever subscripts
appear twice.

We refer the reader to [10] for an extensive introduction to twistor forms. We only
recall here their definition and a few basic properties.

Definition 2.1. A p–form u is a twistor form if and only if it satisfies the equation

∇Xu =
1

p+ 1
X y du− 1

n− p+ 1
X ∧ δu, (1)

for all vector fields X, where du denotes the exterior derivative of u and δu its codiffer-

ential. If, in addition, u is co–closed (δu = 0) then u is said to be a Killing form.

By taking one more covariant derivative in (1) and summing over an orthonormal
basis X = ei we see that every twistor p–form satisfies

∇∗∇u =
1

p+ 1
δdu+

1

n− p+ 1
dδu.

Taking p = 1 and δu = 0 in this formula shows that

∇∗∇u =
1

2
∆u, (2)

for every Killing 1–form u. For later use we also recall here the usual Bochner formula
holding for every 1–form u:

∆u = ∇∗∇u+ Ric(u). (3)

Definition 2.2. A Sasakian structure on M is a Killing vector field ξ of constant length,

such that

∇2
X,Y ξ = k

(

〈ξ, Y 〉X − 〈X, Y 〉ξ
)

, ∀ X, Y ∈ TM, (4)

for some positive constant k.
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Notice that we have extended the usual definition (which assumes k = 1 and ξ of unit
length) in order to obtain a class of manifolds invariant through constant rescaling.

If we denote by u the 2–form corresponding to the skew–symmetric endomorphism
∇ξ, then (4) is equivalent to

∇Xu = kξ ∧X, k > 0. (5)

In particular, if ξ defines a Sasakian structure, then dξ is a closed twistor 2–form, a fact
which was noticed by U. Semmelmann (cf. [10], Prop. 3.4). As a partial converse, we
have the following characterization of Sasakian manifolds:

Proposition 2.3. Let ξ be a Killing vector field of constant length on some Riemannian

manifold such that dξ is a twistor 2–form. Then ξ is either parallel or defines a Sasakian

structure on M .

Proof. We may assume that ξ has unit length. Let us denote by u the covariant deriv-
ative of ξ

∇Xξ =: u(X), ∀ X ∈ TM. (6)

It is a direct consequence of the Kostant formula that u is parallel in the direction of ξ
(see Section 4 for details). Since u is a closed twistor form, we have

∇Xu =
1

n− 1
X ∧ δu, ∀ X ∈ TM,

whereas for X = ξ we get that δu is collinear to ξ. Since ξ never vanishes, there exists
some function f on M such that

∇Xu = fX ∧ ξ, ∀ X ∈ TM. (7)

On the other hand, ξ has unit length so u(ξ) = 0. Differentiating this last relation with
respect to some arbitrary vector X and using (6) and (7) yields

u2(X) = fX − f〈X, ξ〉ξ, ∀ X ∈ TM, (8)

and in particular the square norm of u (as tensor) is

〈u, u〉 := 〈u(ei), u(ei)〉 = −〈u2(ei), ei〉 = (1 − n)f.

On the other hand, (6) yields for every X ∈ TM

∇X(〈u, u〉) = 2f〈X ∧ ξ, u〉 = 4fu(X, ξ) = 0.

Thus f is a constant, non–positive by (8). If f = 0, ξ is parallel, otherwise ξ defines a
Sasakian structure by (7). �
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3. Closed twistor 2–forms

In this section (Mn, g) is a (not necessarily compact) Riemannian manifold of dimen-
sion n > 3. We start with the following technical result

Proposition 3.1. Let u be a closed twistor 2–form, identified with a skew–symmetric

endomorphism of TM . Then, for every other skew–symmetric endomorphism ω of TM
one has

(n− 2)(Rω ◦ u− u ◦Rω) = (Ru ◦ ω − ω ◦Ru) + (u ◦ Ric ◦ ω − ω ◦ Ric ◦ u), (9)

where Rω is the skew–symmetric endomorphism of TM defined by

Rω(X) :=
1

2
Rej ,ω(ej)X.

Proof. The identification between 2–forms and skew–symmetric endomorphisms is given
by the formula

u =
1

2
ei ∧ u(ei). (10)

Depending on whether u is viewed as a 2–form or as an endomorphism, the induced
action of the curvature on it reads

Rω(u) = Rωek ∧ u(ek) and Rω(u) = Rω ◦ u− u ◦Rω. (11)

Let X and Y be vector fields on M parallel at some point. Differentiating the twistor
equation satisfied by u

∇Y u =
1

1 − n
Y ∧ δu ∀ Y ∈ TM (12)

in the direction of X yields

∇2
X,Y u =

1

1 − n
Y ∧ ∇Xδu =

1

n− 1
Y ∧ ej y∇2

X,ej
u

=
1

n− 1
Y ∧ ej yRX,ej

u+
1

n− 1
Y ∧ ej y∇2

ej ,Xu

=
1

n− 1
Y ∧ ej yRX,ej

u+
1

n− 1
Y ∧ ej y∇ej

(
1

1 − n
X ∧ δu)

=
1

n− 1
Y ∧ ej yRX,ej

u− 1

(n− 1)2
Y ∧ ∇Xδu

=
1

n− 1
Y ∧ ej yRX,ej

u+
1

n− 1
∇2

X,Y u,

whence

∇2
X,Y u =

1

n− 2
Y ∧ ej yRX,ej

u. (13)

Using the first Bianchi identity we get

Ru(X) =
1

2
Rej ,u(ej)X =

1

2
(RX,u(ej)ej +Rej ,Xu(ej)) = RX,u(ej)ej .
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This, together with (11) and (13) yields

(n− 2)∇2
X,Y u = Y ∧ ej yRX,ej

ek ∧ u(ek)

= g(ej, RX,ej
ek)Y ∧ u(ek) − Y ∧RX,u(ek)ek

= −Y ∧ u(Ric(X)) − Y ∧ Ru(X).

After skew–symmetrizing in X and Y we get

(n− 2)RX,Y u = X ∧ u(Ric(Y )) +X ∧Ru(Y ) − Y ∧ u(Ric(X)) − Y ∧Ru(X).

Let now ω be some skew–symmetric endomorphism of TM . We take X = ei, Y = ω(ei)
in the previous equation and sum over i to obtain:

(n− 2)Rω(u) =
1

2

(

ei ∧ u(Ric(ω(ei))) + ei ∧Ru(ω(ei))

−ω(ei) ∧ u(Ric(ei)) − ω(ei) ∧Ru(ei)
)

= ei ∧ u(Ric(ω(ei))) + ei ∧ Ru(ω(ei))

= (u ◦ Ric ◦ ω − ω ◦ Ric ◦ u) + (Ru ◦ ω − ω ◦Ru),

taking into account that for every endomorphism A of TM , the 2–form ei ∧ A(ei)
corresponds to the skew–symmetric endomorphism A−tA of TM . �

Corollary 3.2. If u is a closed twistor 2–form, the square of the endomorphism corre-

sponding to u commutes with the Ricci tensor:

u2 ◦ Ric = Ric ◦ u2.

Proof. Taking ω = u in (9) yields

(n− 3)(Ru ◦ u− u ◦Ru) = 0, (14)

so u and Ru commute (as we assumed n > 3). We then have

0 = (n− 2)tr
(

u ◦ (Rω ◦ u− u ◦Rω)
)

(9)
= tr

(

u ◦Ru ◦ ω − u ◦ ω ◦Ru + u2 ◦ Ric ◦ ω − u ◦ ω ◦ Ric ◦ u
)

(14)
= tr(u2 ◦ Ric ◦ ω − Ric ◦ u2 ◦ ω)

= −〈ω, u2 ◦ Ric − Ric ◦ u2〉.
Since u2 ◦ Ric − Ric ◦ u2 is skew–symmetric and the equality above holds for every
skew–symmetric endomorphism ω, the corollary follows. �

4. Killing vector fields with twistor derivative

We will use the general results above in the particular setting which interests us. No
compactness assumption will be needed in this section.

Let ξ be a Killing vector field on M , and denote by u its covariant derivative:

∇Xξ =: u(X). (15)
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By definition, u is a skew–symmetric tensor, which can be identified with 1
2
dξ. Taking

the covariant derivative in (15) yields

∇2
X,Y ξ = (∇Xu)(Y ). (16)

This equation, together with the Kostant formula

∇2
X,Y ξ = RX,ξY (17)

(which holds for every Killing vector field ξ) shows that

∇ξu = 0. (18)

Suppose now, and throughout the remaining part of this article, that the covariant
derivative u of ξ is a twistor 2–form. Notice that in contrast to Proposition 2.3, we no
longer assume the length of ξ to be constant. Taking Y = ξ in (12) and using (18)
yields

ξ ∧ δu = 0, (19)

so δu and ξ are collinear. We denote by f the function defined on the support of ξ
satisfying (1 − n)δu = fξ (this normalization turns out to be the most convenient one
in the computations below). On the support of ξ the twistor equation (12) then reads

∇Xu = fX ∧ ξ, ∀ X ∈ TM. (20)

Recall now the formula

(n− 2)∇2
X,Y u = −Y ∧ u(Ric(X)) − Y ∧Ru(X)

obtained in the previous section. We take the inner product with Y in this formula and
sum over an orthonormal basis Y = ei to obtain:

−(n− 2)∇Xδu = −(n− 1)(u(Ric(X)) +Ru(X)).

Taking the scalar product with some vector Y in this equation and symmetrizing the
result yields

−n− 2

n− 1
(〈∇Xδu, Y 〉 + 〈∇Y δu,X〉) = 〈Ric(u(X)), Y 〉 + 〈Ric(u(Y )), X〉.

If we replace Y by u(Y ) in this last equation and use Corollary 3.2, we see that the
expression

〈∇Xδu, u(Y )〉 + 〈∇u(Y )δu,X〉
is symmetric in X and Y , i.e.

〈∇Xδu, u(Y )〉 + 〈∇u(Y )δu,X〉 = 〈∇Y δu, u(X)〉+ 〈∇u(X)δu, Y 〉. (21)

A straightforward calculation taking (20) and (21) into account yields

u(ξ) ∧ df + u(df) ∧ ξ = 0. (22)

On the other hand we have u(ξ) = ∇ξξ = −1
2
d(|ξ|2) and

X(|u|2) = 2〈∇Xu, u〉 = 2f〈X ∧ ξ, u〉 = −2f〈X, u(ξ)〉,
whence

d(|u|2) = −2fu(ξ) = fd(|ξ|2). (23)
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Notice that the norm |u| used here is the norm of u as 2–form, and differs by a factor√
2 from the norm of u as tensor. More explicitly, |u|2 = 1

2
〈u(ei), u(ei)〉. Taking the

exterior derivative in (23) yields

0 = df ∧ d(|ξ|2) = −2df ∧ u(ξ), (24)

which, together with (22) leads to

u(df) ∧ ξ = 0. (25)

The main goal of this section is to show the following

Proposition 4.1. Either f is constant on M , or u has rank 2 on M and ξ ∧ u = 0.

Proof. Suppose that f is non–constant. Since the support of ξ (say M0) is a dense open
subset of M , there exists a non–empty connected open subset U of M0 where df does
not vanish. We restrict to U for the computations below. First, (24) shows that u(ξ) is
collinear to df , which, together with (25) implies that

u2(ξ) = αξ, (26)

for some function α defined on U .

Differentiating this relation with respect to some vector X and using (15) and (20)
yields

(X ∧ fξ)(u(ξ)) + u((X ∧ fξ)(ξ)) + u3(X) = αu(X) +X(α)ξ,

or equivalently

u3(X) − (f |ξ|2 + α)u(X) = (X(α) − f〈X, u(ξ)〉)ξ − f〈X, ξ〉u(ξ). (27)

In terms of endomorphisms of TM , identified with (2, 0)–tensors, (27) becomes

u3 − (f |ξ|2 + α)u = (dα− fu(ξ)) ⊗ ξ − fξ ⊗ u(ξ).

The left hand side of this relation is clearly skew–symmetric. The symmetric part of
the right hand side thus vanishes: (dα− 2fu(ξ)) ⊙ ξ = 0, whence dα = 2fu(ξ)) on U .
Using (23) we get dα = −d(|u|2), so

α = −|u|2 + c (28)

for some constant c. We now use (27) in order to compute the trace of the symmetric
endomorphism u2 on TxM for some x ∈ U . It is clear that ξ and u(ξ) are linearly
independent eigenvectors of u2 with eigenvalue α. Let V denote the orthogonal com-
plement of {ξ, u(ξ)} in TxM . For X ∈ V , (27) becomes u3(X) − (f |ξ|2 + α)u(X) = 0,
so the minimal polynomial of the endomorphism u|V divides the degree 2 polynomial
λ(λ− (f |ξ|2 + α)). Thus u2 has at most 2 different eigenvalues on V : f |ξ|2 + α and 0,
with multiplicities denoted by k and n− k − 2 respectively. We obtain:

−2|u|2 = tr(u2) = 2α+ k(f |ξ|2 + α)
(28)
= 2c− 2|u|2 + k(f |ξ|2 + α),
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showing that either f |ξ|2 +α is constant or k = 0. In the first case we obtain by taking
the exterior derivative

0 = d(f |ξ|2 + α) = |ξ|2df + fd(|ξ|2) + dα
(28)
= |ξ|2df + fd(|ξ|2) − d(|u|2) (23)

= |ξ|2df.
This shows that f is constant on U , contradicting the definition of U .

We therefore get k = 0. This means that the restriction of u to the distribution V
vanishes, so

1

2
dξ = u =

ξ ∧ u(ξ)
|ξ|2 (29)

on U . In particular we get

ξ ∧ u = 0 and u ∧ u = 0 on U. (30)

It remains to show that the equation ξ ∧ u = 0 holds on the entire manifold M , not
only on the (possibly small) open set U . This is a consequence of the following remark.
The covariant derivatives of the 3–form ξ ∧ u and of the 4–form u∧ u can be computed
at every point of M0 using (15) and (20):

∇X(ξ ∧ u) = u(X) ∧ u+ ξ ∧ (fX ∧ ξ) =
1

2
X y (u ∧ u)

∇X(u ∧ u) = 2fX ∧ ξ ∧ u.
This can be interpreted by saying that the section (ξ ∧ u, u ∧ u) of Λ3M0 ⊕ Λ4M0 is
parallel with respect to the covariant derivative D on this bundle defined by

DX(σ, τ) = (∇Xσ − 1

2
X y τ,∇Xτ − 2fX ∧ σ).

Since a parallel section which vanishes at some point is identically zero, (30) implies
that ξ ∧ u vanishes identically on M0, thus on M because M0 is dense in M . �

Most of the remaining part of this paper is devoted to the study of the two possibilities
given by the above proposition.

5. The case where f is constant

In this section we consider the case where the function f defined on the support of ξ
is constant and we assume that M is compact. We then have

Theorem 5.1. If the covariant derivative u := ∇ξ of a non–parallel Killing vector field

ξ on M satisfies

∇Xu = cξ ∧X (31)

for some constant c, then either ξ defines a Sasakian structure on M , or M is a space

form.
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Proof. For the reader’s convenience we provide here a proof of this rather standard fact.
We start by determining the sign of the constant c. From (16), (17) and (31) we obtain

RX,ξY = ∇2
X,Y ξ = (∇Xu)(Y ) = (cξ ∧X)(Y ) = c(〈ξ, Y 〉X − 〈X, Y 〉ξ).

Taking the trace over X and Y in this formula yields

Ric(ξ) = −Rei,ξei = (n− 1)cξ.

Now, the two Weitzenböck formulas (2) and (3) applied to the Killing 1–form ξ read

∇∗∇ξ =
1

2
δdξ =

1

2
∆ξ and ∆ξ = ∇∗∇ξ + Ric(ξ).

Thus Ric(ξ) = ∇∗∇ξ so taking the scalar product with ξ and integrating over M yields

(n− 1)c|ξ|2L2 = |∇ξ|2L2.

This shows that c is non–negative, and c = 0 if and only if ξ is parallel, a case which
is not of interest for us. By rescaling the metric on M if necessary, we can therefore
assume that c = 1, i.e. ξ satisfies the Sasakian condition (4)

∇2
X,Y ξ = 〈ξ, Y 〉X − 〈X, Y 〉ξ.

If the norm of ξ is constant, we are in the presence of a Sasakian structure by Definition
2.2.

Suppose that λ := |ξ|2 is non–constant. Then the function λ is a characteristic
function of the round sphere. More precisely, the second covariant derivative of the
1–form dλ can be computed as follows. Using the relation ∇Xξ = u(X) we first get
dλ = −2u(ξ), therefore (31) gives

∇Y dλ = −2(ξ ∧ Y )(ξ) − 2u2(Y ).

By taking another covariant derivative with respect to some vector X (at a point where
Y is assumed to be parallel) we obtain after a straightforward calculation

∇2
X,Y dλ+ 2X(λ)Y + Y (λ)X + dλ〈X, Y 〉 = 0.

By a classical theorem of Obata (cf. [7]), if dλ does not vanish identically, the sectional
curvature of M has to be constant, so M is a finite quotient of the round sphere. �

We end up this section by remarking that conversely, every Killing vector field on
the round sphere (and all the more on its quotients) satisfies (14). This follows for
instance from [10], Prop. 3.2. The main idea is that the space of Killing 1–forms
(respectively of closed twistor 2–forms) on the sphere coincides with the eigenspace for
the least eigenvalue of the Laplace operator on co–closed 1–forms (respectively on closed
2–forms), and the exterior differential defines an isomorphism between these two spaces.
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6. The case where ξ ∧ u = 0

From now on we suppose that the function f defined by (20) is non–constant. By
Proposition 4.1 the 3–form ξ ∧ dξ vanishes on M , thus the distribution orthogonal to ξ
(defined on the support of ξ) is integrable. We start by a local study of the metric, at
points where ξ does not vanish.

Proposition 6.1. Around every point in the support of ξ, the manifold M is locally

isometric to a warped product I ×λ N of an open interval I and a (n− 1)–dimensional

manifold N such that the differential of the warping function λ is a twistor 1–form on

N .

Proof. By the integrability theorem of Frobenius, M can be written locally as a product
I ×N where ξ = ∂

∂t
and N is a local leaf tangent to the distribution ξ⊥. The metric g

can be written

g = λ2dt2 + ht

for some positive function λ on I × N and some family of Riemannian metrics ht on
N . Of course, the fact that ξ = ∂

∂t
is Killing just means that λ and ht do not depend

on t, i.e. g = λ2dt2 + h is a warped product. The 1–form ζ , metric dual to ξ, is just
λ2dt, so u = 1

2
dζ = λdλ ∧ dt. We now express the fact that u is a twistor form on M

in terms of the new data (λ, h). Let X denote a generic vector field on N , identified
with the vector field on M projecting over it. Similarly, we will identify 1–forms on N
with their pull–back on M . Since the projection M → N is a Riemannian submersion,
these identifications are compatible with the metric isomorphisms between vectors and
1–forms.

The O’Neill formulas (cf. [8], p. 206) followed by a straightforward computation give

∇ ∂
∂t
u = 0 and ∇Xu = λ∇Xdλ ∧ dt, ∀ X ∈ TN,

where we denoted by the same symbol ∇ the covariant derivative of the Levi–Civita
connection of h on N . Taking the inner product with X in the second equation and
summing over an orthonormal basis of N yields δMu = λ∆Nλdt, so u is a twistor form
if and only if

∇Xdλ = − 1

n− 1
X∆Nλ, ∀ X ∈ TN

which just means that dλ is a twistor 1–form on N . �

We can express the above property of dλ by the fact that its metric dual is a gradient

conformal vector field on N . These objects were intensively studied in the 70’s by
several authors. In particular Bourguignon [4] has shown that a compact manifold
carrying a gradient conformal vector field is conformally equivalent to the round sphere.
The converse of this result does not hold (i.e. not every conformally flat metric on the
sphere carries gradient conformal vector fields, cf. Remark 8.3 below). We study this
notion in greater detail in the next section.
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7. Gradient conformal vector fields

Definition 7.1. A gradient conformal vector field (denoted for convenience GCVF in

the remaining part of this paper) on a connected Riemannian manifold (Mn, g) is a

conformal vector field X whose dual 1–form is exact: X = dλ. The function λ (defined

up to a constant) is called the primitive of X.

Let X be a GCVF. Since X is a gradient vector field, its covariant derivative is a
symmetric endomorphism, and the fact that X is conformal just means that the trace–
free symmetric part of ∇X vanishes. Thus X satisfies the equation

∇YX = αY, ∀ Y ∈ TM (32)

where α = − δX
n

. In particular, LXg = 2αg.

In the neighbourhood of every point where X is non–zero, the metric g can be written

g = ψ(t)(dt2 + h) (33)

for some positive function ψ. Conversely, if g can be written in this form, then ∂
∂t

is a
GCVF whose primitive is Ψ (the primitive of ψ in the usual sense).

We thus see that the existence of a GCVF does not impose hard restrictions on the
metric in general. Remarkably, if the GCVF has zeros, the situation is much more rigid:

Proposition 7.2. Let X be a GCVF on a Riemannian manifold (Mn, g) vanishing at

some x ∈ M . Then there exists an open neighbourhood of x in M on which the metric

can be expressed in polar coordinates

g = ds2 + γ2(s)gSn−1, (34)

where gSn−1 denotes the canonical round metric on Sn−1 and γ is some positive function

γ : (0, ε) → R
+. The norm of X in these coordinates is a scalar multiple of γ:

|X| = cγ. (35)

Notice that the metric defined by (34) is in particular of type (33), as shown by the

change of variable s(t) :=
∫ t

0

√

ψ(r)dr.

Proof. Let τ be the unit tangent vector field along geodesics passing trough x. From
([4], Lemme 4) we have that X is everywhere collinear to τ . Using the Gauss Lemma,
we know that the metric g can be expressed as g = ds2 + hs in geodesic coordinates on
some neighbourhood U of x, where hs is a family of metrics on Sn−1 (of course, τ = ∂

∂s

in these coordinates). Since x is an isolated zero of X (cf. [4], Corollaire 1), the norm
of X is a smooth function |X| = β defined on U −{x}, and X = βτ . We then compute

ḣs = L τg = β−1LXg + 2d(β−1) ⊙X♭ = 2αβ−1g − 2
dβ

β
⊙ ds

= 2αβ−1hs + 2αβ−1ds2 − 2
dβ

β
⊙ ds
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By identification of the corresponding terms in the above equality we obtain the differ-
ential system

{

dβ = αds

ḣs = 2αβ−1hs

The first equation shows that β only depends on s: β = β(s) =
∫ s

0
α(t)dt. The second

equation yields

hs = β2(s)h (36)

for some metric h on Sn−1.

We claim that h is (up to a scalar multiple) the canonical round metric on the
sphere. To see this, we need to understand the family of metrics hs on Sn−1. We
identify (TxM, g) with (Rn, eucl) and Sn−1 is viewed as the unit sphere in TxM . If V
is a tangent vector to Sn−1 at some v ∈ TxM , then hs(V, V ) is the square norm with
respect to g of the image of V by the homothety of ratio s followed by the differential
at v of the exponential map expx. In other words,

hs = s2(expx)
∗(g)

∣

∣

∣

TvSn−1

.

Since the differential at the origin of the exponential map is the identity, we get

lim
s→0

hs

s2
= gSn−1 .

Using this together with (36) shows that lims→0
β(s)

s
is a positive real number denoted

by c and c2h = gSn−1.

We thus have proved that g = ds2 + γ2(s)gSn−1, where γ = β
c
. �

8. The classification

We turn our attention back to the original question. Recall that ξ is a non–parallel
Killing vector field on (Mn, g) such that ξ ∧ dξ = 0 and dξ is a twistor form. We
distinguish two cases, depending on whether ξ vanishes or not on M .

Case I. The vector field ξ has no zero on M . The distribution orthogonal to ξ is
then globally well–defined and integrable, its maximal leaves turn out to be compact
and can be used in order to obtain a dimensional reduction of our problem.

Definition 8.1. Let N be a Riemannian manifold, let λ be a positive smooth function

on N and let ϕ be an isometry of N preserving λ (that is, λ ◦ ϕ = λ). The quotient of

the warped product R ×λ N by the free Z–action generated by (t, x) 7→ (t + 1, ϕ(x)) is

called the warped mapping torus of ϕ with respect to λ and is denoted by Nλ,ϕ.

Proposition 8.2. A compact Riemannian manifold (Mn, g) carries a nowhere vanish-

ing Killing vector field ξ as above if and only if it is isometric to a warped mapping



KILLING VECTOR FIELDS WITH TWISTOR DERIVATIVE 13

torus Nλ,ϕ where (Nn−1, h) is a compact Riemannian manifold carrying a GCVF with

primitive λ and ϕ is an isometry of N preserving λ.

Proof. The “if” part follows directly from the local statement given by Proposition 6.1.
Suppose, conversely, that (M, ξ) satisfy the conditions above. We denote by ϕt the flow
of ξ and by Nx the maximal leaf of of the integrable distribution ξ⊥. Clearly ϕt maps
Nx isometrically over Nϕt(x). We claim that this action of R on the space of leaves of
ξ⊥ is transitive. Let x ∈M be an arbitrary point of M and denote

Mx :=
⋃

t∈R

Nϕt(x).

For every y ∈Mx we define a map ψ : (−ε, ε) ×Ny →M by

ψ(t, z) := ϕt(z).

The differential of ψ at (0, y) is clearly invertible, thus the inverse function theorem en-
sures that the image of ψ contains an open neighbourhood of y in M . On the other hand
Mx contains the image of ψ by construction, therefore Mx contains an open neighbour-
hood of y. Thus Mx is open. For any x, y ∈M one either has Mx = My or Mx∩My = ∅.
Thus M is a disjoint union of open sets

M =
⋃

x∈M

Mx

so by connectedness we get Mx = M for all x.

Since the norm of ξ is constant along its flow, we deduce that |ξ| attains its maximum
and its minimum on each integral leaf Nx. By the main theorem in [4], each leaf is
conformally diffeomorphic to the round sphere, so in particular it is compact. Reeb’s
stability theorem then ensures that the space of leaves is a compact 1–dimensional
manifold S and the natural projection M → S is a fibration. Hence S is connected, i.e.

S ∼= S1. On the other hand we have a group action of R on S given by t(Nx) := Nϕt(x)

and S is the quotient of R by the isotropy group of some point. Since S is a manifold,
this isotropy group has to be discrete, therefore is generated by some t0 ∈ R. Then
clearly M can be identified with the warped mapping torus Nλ,ϕ, where N := Nx,
ϕ := ϕt0 and the warping function λ is the restriction to N of |ξ|. �

Remark 8.3. A compact Riemannian manifold admitting gradient conformal vector

fields is completely classified by one single smooth function defined on some closed in-

terval and satisfying some boundary conditions. More precisely, such a manifold is

isometric to the Riemannian completion of a cylinder (0, l) × Sn−2 with the metric

dt2 + f(t)gSn−2, where f : (0, l) → R
+ is smooth and satisfies the boundary conditions

f(t) = t2(1 + t2a(t2)) and f(l − t) = t2(1 + t2b(t2)), ∀ |t| < ε, (37)

for some smooth functions a, b : (−ε, ε) → R
+.

The proof is very similar to that of Theorem 8.6 below and will thus be omitted.
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Case II. The vector field ξ has zeros on M . The study of this situation is more
involved since the distribution orthogonal to ξ is no longer globally defined. On the
other hand one can prove that the orbits of ξ are always closed in this case, which turns
out to be crucial for the classification. This follows from a more general statement:

Proposition 8.4. Let M be a compact Riemannian manifold and let ξ be a Killing

vector field on M . If the covariant derivative of ξ has rank 2 (as skew–symmetric

endomorphism) at some point x ∈M where ξ vanishes, then ξ is induced by an isometric

S1–action on M , and in particular its orbits are closed.

Proof. Let Z denote the set of points where ξ vanishes, and let Z0 the connected com-
ponent of Z containing x. It is well–known that Z0 is a totally geodesic submanifold
of M of codimension 2 (equal to the rank of ∇ξ). Moreover, at each point of Z0, ∇ξ
vanishes on all vectors tangent to Z0.

Since M is compact, its isometry group G is also compact. The Killing vector field ξ
defines an element X of the Lie algebra g of G. The exponential map of G send the line
RX onto a (not necessarily closed) Abelian subgroup of G. Let T be the closure of this
subgroup and denote by t its Lie algebra. T is clearly a compact torus. We claim that
T is actually a circle. If this were not the case, one could find an element Y ∈ t defining
a Killing vector field ζ on M non–collinear to ξ. Let y be some point in Z0. Since by
definition ξy = 0 we get exp(tX) · y = y for all t ∈ R, whence g · y = y for all g ∈ T ,
thus showing that ζ vanishes on Z0. Since the space of skew–symmetric endomorphisms
of TxM vanishing on TxZ0 is one–dimensional, we deduce that (∇ζ)x is proportional to
(∇ξ)x. Finally, since a Killing vector field is determined by its 1–jet at some point, and
ξx = ζx = 0, we deduce that ζ is collinear to ξ, a contradiction.

Therefore T is a circle acting isometrically on M and ξ is the Killing vector field
induced by this action. �

Let M0 denote as before the set of points where ξ does not vanish. The integrable
distribution ξ⊥ is well–defined alongM0 and T acts freely and transitively on its maximal
integral leaves. If (N, h) denotes such a maximal integral leaf, Proposition 6.1 shows
that M0 is isometric to the warped product S1×λN , g = λ2dθ2+h, where λ is a positive
function on N whose gradient is a conformal vector field X. Since λ is the restriction
of the continuous function |ξ| on M , it attains its maximum at some x ∈ N . Of course,
X vanishes at x.

We thus may apply Proposition 7.2 to the gradient conformal vector field X on N .
The metric on N can be written h = ds2 +γ2(s)gSn−2 on some neighbourhood of x. The
length of X, which by (34) is equal to cγ(s), only depends on the distance to x. Assume
that X vanishes at some point y := expx(tV ) (where V is a unit vector in TxN). Then
it vanishes on the whole geodesic sphere of radius t. On the other hand X has only
isolated zeros, so the geodesic sphere S(x, t) is reduced to y. This would imply that N
is compact, homeomorphic to Sn−1, so M0 = S1 × N is compact, too. On the other
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hand M0 is open, so by connectedness M0 = M , contradicting the fact that ξ has zeros
on M .

This proves that x is the unique zero of X on N . In fact we can now say much
more about the global geometry of M . Recall that M is the disjoint union of M0 and
Z, where Z, the nodal set of ξ, is a codimension 2 submanifold and M0 = N × S1 is
endowed with a warped product metric. In order to state the global result we need the
following

Definition 8.5. Let l > 0 be a positive real number and let γ, λ : (0, l) → R
+ be two

smooth functions satisfying the following boundary conditions:
{

lims→0 γ(s) = 0, lims→l γ(s) > 0

lims→0 λ(s) > 0, lims→l λ(s) = 0
(38)

We view the sphere Sn as the topological join of Sn−2 and S1, obtained from [0, l] ×
Sn−2×S1 by shrinking {0}×Sn−2×S1 to {point}×S1 and by shrinking {l}×Sn−2×S1

to {point} × Sn−2.

Then Sn, endowed with the Riemannian metric

g = ds2 + γ2(s)gSn−2 + λ2(s)dθ2

defined on its open submanifold (0, l)×Sn−2 ×S1 is called the Riemannian join of Sn−2

and S1 with respect to γ and λ and is denoted by Sn−2 ∗γ,λ S
1.

Notice that the metric g extends to a continuous metric on Sn. We will see below
under which circumstances this extension is smooth.

Theorem 8.6. Let N be a maximal leaf of the distribution ξ⊥ of M0 and let x ∈ N be

the unique zero of the gradient conformal vector field X = ∇(|ξ|) on N . We then have

(i) There exists some positive number l, not depending on N , such that the exponential

map at x maps diffeomorphically the open ball B(0, l) in TxN onto N .

(ii) The submanifold Z is connected, isometric to a round sphere Sn−2. The closure

of each integral leaf N defined above is N = N ∪ Z.

(iii) M is isometric to a Riemannian join Sn−2 ∗γ,λ S
1, where γ is (up to a constant)

equal to the derivative of λ.

Proof. (i) Consider the isometric action of S1 on M induced by ξ. For θ ∈ S1 denote
by Nθ the image of N through the action of θ on M . Of course, Nθ is itself a maximal
integral leaf of ξ⊥. For every unit vector V ∈ TxN , we define

l(x, V ) := sup{t > 0 | expx(rV ) ∈ N, ∀ r ≤ t}.
Clearly, l(x, V ) is the distance along the geodesic expx(tV ) from x to the first point on
this geodesic where X vanishes. Of course, the exponential map on Nθ coincides (as
long as it is defined) with the exponential map on M since each Nθ is totally geodesic.
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As noticed before, the norm of X along geodesics issued from x only depends on the
parameter along the geodesic, therefore l(x, V ) is independent of V and can be denoted
by l(x). Since we have a transitive isometric action on the Nθ’s, l(x) actually does not
depend on x neither, and will be denoted by l. This proves that each Nθ is equal to the
image of the open ball B(0, l) in Tθ(x)Nθ via the exponential expθ(x).

(ii) Let us denote by Zθ the set Nθ \ Nθ. By the above, Zθ is the image of the
round sphere S(0, l) in Tθ(x)Nθ ⊂ Tθ(x)M via the exponential map (on M) expθ(x). In

particular, each Zθ is a connected subset of Z, diffeomorphic to Sn−2. Every element
θ′ ∈ S1 maps (by continuity) Zθ to Zθ′θ and on the other hand, it preserves Z. We
deduce that Zθ = Zθ′ for all θ, θ′ ∈ S1 and since Z is the union of all Zθ, we obtain
Z = Zθ. The other assertions are now clear.

(iii) This point is an implicit consequence of the local statements from the previous
sections. First, by Proposition 6.1 M0 is diffeomorphic to N × S1 with the warped
product metric g = gN + λ2dθ2, where λ is a function on N whose gradient X is a
GCVF vanishing at x. From Proposition 7.2 and (i) above we see that N \ {x} is
diffeomorphic to (0, l) × Sn−2 with the metric gN = ds2 + γ2(s)gSn−2. If we denote by
S the orbit of x under the S1–action on M defined by ξ, this shows that M0 \ S is
diffeomorphic to (0, l) × Sn−2 × S1 with the metric

g = ds2 + γ2(s)gSn−2 + λ2(s)dθ2,

where λ represents the norm of ξ and X = ∇λ = λ′(s) ∂
∂s

. From (35) we get |λ′| =
|X| = cγ. Taking into account that X does not vanish on M0 \ S, we see that λ′ does
not change sign on (0, l), so γ equals the derivative of λ up to some non–zero constant.
Finally, the boundary conditions (38) are easy to check: lims→0 γ(s) = 1

c
|Xx| = 0,

lims→l γ(s) is equal to the radius of the round (n − 2)–sphere Z and is thus positive,
lims→0 λ(s) = |ξx| > 0 and lims→l λ(s) = 0 because ξ vanishes on Z. �

In order to obtain the classification we have to understand which of the above Rie-
mannian join metrics are actually smooth on the entire manifold. For this we will use
the following folkloric result

Lemma 8.7. Let f : (0, ε) → R
+ be a smooth function such that limt→0 f(t) = 0. The

Riemannian metric dt2 + f(t)gSn−1 extends to a smooth metric at the singularity t = 0

if and only if the function f̃(t) := f(t
1

2 ) has a smooth extension at t = 0 and f̃ ′(0) = 1.

Notice that the above condition on f amounts to say that f(t) = t2 + t4h(t2) for some
smooth germ h around 0.

Corollary 8.8. Let γ : (0, l) → R
+ be a smooth function satisfying lims→0 γ(s) = 0 and

lims→l γ(s) > 0. For c > 0 consider the function

λ(s) := c

∫ l

s

γ(t)dt. (39)
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The Riemannian join metric

g = ds2 + γ2(s)gSn−2 + λ2(s)dθ2

defined on (0, l)×Sn−2 ×S1 extends to a smooth metric on Sn if and only if there exist

two smooth functions a and b defined on some interval (−ε, ε) such that

γ(t) = t(1 + t2a(t2)) and γ(l − t) =
1

c
+ t2b(t2), ∀ |t| < ε. (40)

Proof. Since λ(0) > 0, g extends to a smooth metric at s = 0 if and only if ds2 +
γ2(s)gSn−2 extends smoothly at s = 0. By Lemma 8.7, this is equivalent to γ2(t) =

t2 + t4h(t2) for some smooth h, so γ(t) = t
√

1 + t2h(t2) = t(1 + t2a(t2)) for some
smooth function a. Similarly, g extends smoothly at s = l if and only if the same holds
for ds2 + λ2(s)dθ2, which, by Lemma 8.7 is equivalent to the existence of some smooth
function d defined around 0 such that λ(l − t) = t+ t3d(t2). Taking (39) into account,
this is of course equivalent to the second part of (40). �

Summarizing, we have

Theorem 8.9. Let (Mn, g) be a compact Riemannian manifold carrying a non–parallel

Killing vector field ξ whose covariant derivative is a twistor 2–form. Then one of the

following possibilities occurs:

1. M is a space form of positive curvature and ξ is any Killing vector field on M .

2. M is a Sasakian manifold and ξ is the Sasakian vector field.

3. M is a warped mapping torus Nλ,ϕ

M = (R ×N)/(t,x)∼(t+1,ϕ(x)), g = λ2dθ2 + gN ,

where N is is a compact (n − 1)–dimensional Riemannian manifold carrying a GCVF

with primitive λ (cf. Remark 8.3), ϕ is an isometry of N preserving λ and ξ = ∂
∂θ

.

4. M is a Riemannian join Sn−2∗γ,λS
1 with the metric g = ds2+γ2(s)gSn−2+λ2(s)dθ2

where γ : (0, l) → R
+ is a smooth function satisfying the boundary conditions (40), λ is

given by formula (39), and ξ = ∂
∂θ

.

We end up these notes with some open problems related to the classification above.
One natural question is the following : which compact Riemannian manifolds carry
twistor 1–forms ξ with twistor exterior derivative? To the author’s knowledge, in all
known examples ξ is either closed or co–closed. In the first case, the metric dual of ξ is
a GCVF, so the manifold is described by Proposition 7.2. The second case just means
that ξ is Killing, and the possible manifolds are described by Theorem 8.9.

More generally, one can address the question of classifying all compact Riemannian
manifolds Mn carrying a Killing or twistor p–form whose exterior derivative is a non–
zero twistor form (2 ≤ p ≤ n−2). Besides the round spheres, the only known examples
are Sasakian manifolds (for odd p), nearly Kähler 6–manifolds (for p = 2 and p = 3)
and nearly parallel G2–manifolds (for p = 3).
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