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RANKIN-COHEN BRACKETS ON QUASIMODULAR

FORMS

FRANÇOIS MARTIN AND EMMANUEL ROYER

Abstract. We give the algebra of quasimodular forms a collection of
Rankin-Cohen operators. These operators extend those defined by Co-
hen on modular forms and, as for modular forms, the first of them
provides a Lie structure on quasimodular forms. They also satisfy a
“Leibniz rule” for the usual derivation. Rankin-Cohen operators are
useful for proving arithmetical identities. In particular, we explain why
Chazy equation has the exact shape it has.

Introduction

The purpose of this paper is to present a generalisation for quasimodular
forms of the Rankin-Cohen brackets for modular forms: for each n ≥ 0,
k, ℓ, s, t positive integers, we define bilinear differential operators [ , ]n send-

ing M̃≤s
k × M̃≤t

ℓ to M̃≤s+t
k+ℓ+2n. We have denoted M̃≤s

k the vector space of
quasimodular forms of weight k and depth less or equal than s on SL(2, Z)
(see section 1.1 for the definitions).

We give a quite precise description of the image of this bilinear form in
terms of modular and parabolic forms. This allows us to obtain efficiently
classical differential equations and arithmetical identities.

Then we prove that the Rankin-Cohen brackets satisfy the “Leibniz rule”
for the normalized usual derivation (D := d

2πidz ): D[f, g]n = [D f, g]n +
[f,D g]n.

The first section is a presentation of the definitions and classical results
concerning quasimodular forms and Rankin-Cohen brackets on modular
forms.

In the second section, we prove the following theorem.

Theorem 1. Let k, ℓ in Z>0, s ∈ {0, . . . , ⌊k/2⌋}, t ∈ {0, . . . , ⌊ℓ/2⌋} and
n ∈ Z≥0. Define

Φn;k,s;ℓ,t(f, g) :=
n∑

r=0

(−1)r
(

k − s + n − 1

n − r

)(
ℓ − t + n − 1

r

)
Dr f Dn−r g.
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Then

Φn;k,s;ℓ,t

(
M̃≤s

k , M̃≤t
ℓ

)
⊂ M̃≤s+t

k+ℓ+2n.

In some case we get a more precise description in terms of the spaces of
modular forms Mk and the spaces of parabolic forms Sk.

Proposition 2. Under the hypothesis of theorem 1, if n > 0 then

Φn;k,s;ℓ,t

(
M̃≤s

k , M̃≤t
ℓ

)
∈ Sk+ℓ+2n ⊕

s+t⊕

j=1

Dj Mk+ℓ+2n−2j.

If moreover n > s + t, then

Φn;k,s;ℓ,t

(
M̃≤s

k , M̃≤t
ℓ

)
∈ Sk+ℓ+2n⊕

s+t−1⊕

j=1

Dj Mk+ℓ+2n−2j⊕Ds+t Sk+ℓ+2n−2s−2t.

The same conclusion holds if n = s + t and f or g vanishes at infinity.

Remark 1. This notion is consistent with the one for modular forms, the
standard Rankin-Cohen bracket of f ∈ Mk and g ∈ Mℓ is Φn;k,0;ℓ,0(f, g) (see
paragraph 1.2).

Remark 2. For n ≥ 0, a bilinear differential operator Ψ sending M̃≤s
k ×

M̃≤t
ℓ to

⋃
v M̃≤v

k+ℓ+2n is necessarily (for weight compatibility reasons) a linear

combination of (f, g) 7→ Dr f Dn−r f , r ∈ {0, . . . , n}. Such a differential

operator sends in principle M̃≤s
k × M̃≤t

ℓ to M̃≤s+t+n
k+ℓ+2n (see lemma 7). So the

operator Φ introduced before has the advantage of reducing the depth of the
quasimodular form obtained, and it was not obvious that such an operator
was existing.

Remark 3. Theorem 1 is valid for quasimodular forms on any subgroup of
finite index in SL(2, Z).

In the third section, we show that the behaviour of this operator under
derivation is natural.

Theorem 3. Under the hypothesis of theorem 1, for all f ∈ M̃≤s
k and

g ∈ M̃≤t
ℓ ,

D Φn;k,s;ℓ,t(f, g) = Φn;k,s;ℓ+2,t+1(f,D g) + Φn;k+2,s+1;ℓ,t(D f, g).

Remark 4. For f of weight k and exact depth s and g of weight ℓ and exact
depth t, we write [f, g]n instead of Φn;k,s;ℓ,t(f, g). Recall (see proposition 6)
that if h has weight w > 0 and depth d then Dh has weight w+2 and depth
d + 1. The following theorem may then be rewritten as

D[f, g]n = [D f, g]n + [f,D g]n.

For modular forms, Zagier, Cohen and Manin showed [CMZ97] that the
sum of Rankin-Cohen brackets defines an associative product on the alge-
bra M =

∏
k≥0 Mk. In a recent paper, Bieliavski, Tang and Yao [BTY07]

showed that this sum is isomorphic to the standard Moyal product. Do the
Rankin-Cohen brackets for quasimodular forms introduced here have such
a geometric interpretation ?
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The existence of Rankin-Cohen brackets (thanks to proposition 2) pro-
vides a new tool to obtain arithmetical identities. For example, we recover
the Ramanujan differential equations, Chazy differential equation (and ex-
plain why such a differential equation has to exist), van der Pol equality and
Niebur equality. As usual, define for h ≥ 2 the Eisenstein series:

(1) Eh(z) := 1 −
2h

Bh

+∞∑

n=1

σh(n) exp(2πinz)

where Bh is the Bernoulli number and

σh(n) :=
∑

d|n

dh.

One of the three Ramanujan equations is

DE2 = −
1

12
(E4 − E2

2).

It is a direct consequence of

[E2,∆]1 = ∆E4

where ∆ is the unique primitive form of weight 12 on SL(2, Z). If we write
τ(n) for the nth coefficient of ∆, Niebur [Nie75] equality is

τ(n) = n4σ1(n) − 24

n−1∑

a=1

(35a4 − 52a3n + 18a2n2)σ1(a)σ1(n − a)

and it follows from
[E2, E2]4 = −48∆.

Van der Pol [vdP51] equality is

τ(n) = n2σ3(n) + 60

n−1∑

a=1

a(9a − 5n)σ3(a)σ3(n − a).

It follows from
[E4,D E4]1 = 960∆.

Many examples of the two previous type are given in [RS07]. Finally, a quite
astonishing equality is Chazy differential equation. Its usual form is

D3 E2 = E2 D2 E2 −
3

2
(D E2)

2

and it follows from

(2) [[K,∆]1,∆]1 = 24∆K2

where K = [E2,∆]1. The most outer bracket is on modular forms since it
may be shown that [K,∆]1 has depth 0. That such a differential equation
has to exist is a consequence of the following proposition that we prove using
Rankin-Cohen brackets.

Proposition 4. Let n ≥ 0 and r ∈ {0, . . . , n}. Then

Dr E2 Dn−r E2 ∈
n−4⊕

j=0
j≡n (mod 2)

Dj S2n+4−2j ⊕ C Dn E4 ⊕ C Dn+1 E2.



4 FRANÇOIS MARTIN AND EMMANUEL ROYER

In particular, [E2, E2]0 ∈ CE4+C DE2, [E2, E2]2 ∈ C D2 E4, [E2, E2]4 ∈ C∆
and

[E2, E2]2n ∈ S4(n+1) ⊕ D2 S4n if n ≥ 3.

Indeed for n = 2, this proposition implies that both quasimodular forms
E2 D2 E2 and (D E2)

2 are in C D2 E4⊕C D3 E2. Hence Vect(E2 D2 E2, (D E2)
2) =

Vect(D2 E4,D
3 E2) and D3 E2 is a linear combination of E2 D2 E2 and (D E2)

2:
this is the shape of Chazy equation.

1. Overview

1.1. Quasimodular forms. In this section, we introduce usual definitions
and notations and recall some useful properties of quasimodular forms. For
a more detailed introduction, see [MR05, §17].

We introduce the following notations: let γ =

(
a b
c d

)
∈ SL(2, Z) and

z ∈ H, we define

X(γ, z) :=
c

cz + d

and

X(γ) : z 7→ X(γ, z).

As usual, the complex upper half-plane is denoted by H. For k ≥ 0, f : H →

C and γ =

(
a b
c d

)
∈ SL(2, Z) the function (f |

k

γ) is defined by (f |
k

γ)(z) =

(cz + d)−kf(γz).

Definition 5. Let k ∈ Z≥0 and s ∈ Z≥0. An holomorphic function f : H →
C is a quasimodular form of weight k, depth s (over SL(2, Z)) if there exist
holomorphic functions Q0(f), Q1(f), . . . , Qs(f) on H such that

(3) (f |
k

γ) =
s∑

i=0

Qi(f)X(γ)i

for all
(

a b
c d

)
∈ SL(2, Z) and such that Qs(f) is not identically vanishing

and f has no negative terms in its Fourier expansion. By convention, the 0
function is a quasimodular form of depth −∞ and any weight.

Remark 5. Taking γ =
(

1 0
0 1

)
and γ =

(
1 1
0 1

)
in (3) implies that f is periodic

of period 1 hence has a Fourier expansion. The definition requires this
Fourier expansion to be of the shape

f(z) =

+∞∑

n=0

f̂(n)e2πinz.

The set of quasimodular forms of weight k and depth s is denoted by M̃ s
k .

It is often more convenient to use the C-vectorial space of quasimodular

forms of weight k and depth less or equal than s, which is denoted by M̃≤s
k .

It can be shown that there are no quasimodular forms (except 0) of negative
weight or of depth s > k/2 [MR05, lemme 120]. Hence we extend our

notation by defining M≤s
k = {0} if k < 0 and M≤s

k = M
≤k/2
k if s > k/2.



RANKIN-COHEN BRACKETS ON QUASIMODULAR FORMS 5

Remark 6. With this definition, the space Mk of modular forms of weight k

for SL(2, Z) is exactly the space M̃≤0
k .

Remark 7. A basic example of quasimodular form which is not a modular
form is E2 defined in (1). It satisfies for all γ ∈ SL(2, Z) the transformation
property

(E2 |
2
γ) = E2 +

6

πi
X(γ),

proving that E2 ∈ M̃1
2 (see e.g., [MR05, lemme 19]).

The space M̃∗ =
⋃

k,s

M̃≤s
k is equipped with a natural filtered-graded al-

gebra structure (the graduation according to the weight, the filtration ac-
cording to the depth). The canonical multiplication (f, g) 7−→ fg defines a

morphism M̃≤s
k × M̃≤t

ℓ −→ M̃≤s+t
k+ℓ .

If f ∈ M̃≤s
k , the sequence (Qi(f))i∈Z

is defined by the quasimodularity
condition (3), if i ∈ {0, . . . , s}, and Qi(f) = 0 for i /∈ {0, . . . , s}. One can

show that Q0(f) = f and Qi(f) ∈ M̃≤s−i
k−2i [MR05, Lemme 119].

Quasimodular forms are the natural extension of modular forms into a
stable by derivation space, because of the following proposition.

Proposition 6. If k > 0, the normalized derivation D :=
d

2πidz
maps M̃ s

k

to M̃ s+1
k+2.

For r ∈ Z≥0, write f (r) := Dr(f) and f ′ = f (1). The following lemma

connects the transformation equation of f and f (r).

Lemma 7. Let f ∈ M̃≤s
k . Then,

(4)

(Dr f |
k+2r

γ) =

s+r∑

i=0




r∑

j=0

1

(2πi)j
j!

(
r

j

)(
k + r − i + j − 1

j

)
Dr−j Qi−j(f)


X(γ)i

for all r ∈ Z≥0 and γ ∈ Γ.

Proof. The result is obtained inductively on r: it is obvious for r = 0, and
for the induction suppose that for r ≥ 0, formula (4) holds. Let g = f (r).
For i ∈ Z we have

(5) Qi(g) =

r∑

j=0

1

(2πi)j
j!

(
r

j

)(
k + r − i + j − 1

j

)
Qi−j(f)(r−j) ∈ M̃≤s+r−i

k+2r−2i.

Then using proposition 6 (which implies that f (r+1) ∈ M̃≤r+s+1
k+2r+2 ) and lemma

118 of [MR05] we find

(f (r+1) |
k+2r+2

γ) =

s+r+1∑

i=0

(
Qi(g)′ +

k + 2r − i + 1

2πi
Qi−1(g)

)
X(γ)i.
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From (5) we compute

Qi(g)′ +
k + 2r − i + 1

2πi
Qi−1(g) =

Qi(f)(r+1)+
k + 2r − i + 1

(2πi)r+1
r!

(
k + 2r − i

r

)
Qi−r−1(f)+

r∑

j=1

1

(2πi)j
Qi−j(f)(r+1−j)

×

(
r!

(r − j)!

(
k + r − i + j − 1

j

)
+

(k + 2r − i + 1)r!

(r + 1 − j)!

(
k + r − i + j − 1

j − 1

))
.

Formula (4) for r + 1 instead of r follows by expanding the binomial coeffi-
cients. �

Finally, we shall need the following structure result. For completness, we
provide a short proof that should convince that the theory requires E2.

Proposition 8. Quasimodular forms can be expressed as linear combina-
tions of derivatives of modular forms and E2 :

M̃
≤k/2
k =

k/2−1⊕

i=0

Di Mk−2i ⊕ C Dk/2−1 E2.

Proof. We proceed by descent on the depth. If f has weight k and depth
s, we would like to have a modular form g such that f − Ds g has depth
strictly less than s. For any g ∈ Mk−2s, multiple use of differentiation
theorem [MR05, Lemme 118] lead to

(6) Qs(D
sg) =

(
1

2πi

)s

s!

(
k − s − 1

s

)
g.

If
(k−s−1

s

)
6= 0, which happens if s < k/2, we can choose

g = (2πi)s
(k − 2s − 1)!

(k − s − 1)!
Qs(f) ∈ Mk−2s.

For s = k/2, we use

Qk/2(D
k/2−1E2) =

(
1

2πi

)k/2−1 (
k

2
− 1

)
!
6

πi

and choose

α =
πi

6
·
(2πi)k/2−1

(
k
2 − 1

)
!

Qk/2(f) ∈ M0 = C

to obtain

f − αDk/2 E2 ∈ M̃
≤k/2−1
k .

�

1.2. Usual Rankin-Cohen brackets for modular forms. The Rankin-
Cohen brackets have been introduced by Cohen after a work of Rankin.
These are bilinear differential operators, whose main property is to preserve
modular forms. More precisely, let Γ be a finite index subgroup of SL(2, Z).
We write Mk(Γ) for the space of modular forms of weight k over Γ. For each



RANKIN-COHEN BRACKETS ON QUASIMODULAR FORMS 7

n ≥ 0, (f, g) ∈ Mk(Γ)×Mℓ(Γ), define the n-Rankin-Cohen bracket of f and
g by

(7) [f, g]n =
n∑

r=0

(−1)r
(

k + n − 1

n − r

)(
ℓ + n − 1

r

)
Dr f Dn−r g.

Then [f, g]n ∈ Mk+ℓ+2n(Γ). Moreover, if Φ is a bilinear differential oper-
ator sending Mk(Γ) × Mℓ(Γ) to Mk+ℓ+2n(Γ) for all Γ ⊂ SL(2, Z) a finite
index subgroup, then (up to constant) Φ(f, g) = [f, g]n. For an overview of
Rankin-Cohen brackets including a proof of these results1, see for instance
[Zag94], [Zag92] or [MR05].

Rankin-Cohen brackets appear to be useful in various mathematical do-
mains as for instance invariant theory ([UU96] and [CMS01]) or non-commutative
geometry [Yao07].

2. Rankin-Cohen brackets

We prove our main result (theorem 1). For n ≥ 0 and any sequence
a = (ar)0≤r≤n, the bilinear forms we study take the form

Φa(f, g) =

n∑

r=0

ar Dr f Dn−r g.

We first establish a sufficient condition on a (lemma 9). For s, t and n
nonnegative integers, we introduce the set

E(s, t, n) =
{
(u, v, α, β) ∈ Z

4
≥0 : u ≤ s, v ≤ t, α + β ≤ u + v + n− s− t− 1

}
.

Lemma 9. Let k, ℓ in Z>0, s ∈ {0, . . . , ⌊k/2⌋}, t ∈ {0, . . . , ⌊ℓ/2⌋} and
n ∈ Z>0. For a = (ar)0≤r≤n satisfying

n∑

r=0

ar

(
r

α

)(
n − r

β

)
(k + r − u − 1)!(ℓ + n − r − v − 1)! = 0

for all (u, v, α, β) ∈ E(s, t, n), one has

Φa

(
M̃≤s

k , M̃≤t
ℓ

)
⊂ M̃≤s+t

k+ℓ+2n.

Proof. Let f ∈ M̃≤s
k and g ∈ M̃≤t

ℓ . From lemma 7 we deduce

(Φa(f, g) |
k+ℓ+2n

γ) =

n∑

r=0

ar(f
(r) |

k+2r

γ)(g(n−r) |
ℓ+2(n−r)

γ)

=

s+t+n∑

i=0

C(a; i)(f, g)X(γ)i

1The uniqueness result needs explanations: it is proved by using only algebraic argu-
ments, the demonstration does not depend on the group Γ or on growth conditions. Of
course, it is possible that for some fixed group Γ the uniqueness result does not hold (for
instance if Mk(Γ) = {0} !).
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with

(8)

C(a; i)(f, g) =
∑

(i1,i2)∈Z
2

≥0

i1+i2=i

n∑

r=0

ar

r∑

j1=0

(
1

2πi

)j1

j1!

(
r

j1

)(
k + r − i1 + j1 − 1

j1

)

×
n−r∑

j2=0

(
1

2πi

)j2

j2!

(
n − r

j2

)(
ℓ + n − r − i2 + j2 − 1

j2

)
Qi1−j1(f)(r−j1)Qi2−j2(g)(n−r−j2).

It follows that Φa(f, g) ∈ M̃≤s+t
k+ℓ+2n if and only if C(a; s + t + i) = 0 for all

i ∈ {1, . . . , n}. This is easily seen to be equivalent to

∑

u

∑

v

∑

(α,β)∈Z
2

≥0

α+β=n+u+v−s−t−i

(
1

2πi

)n−α−β ∑

r

ar(r − α)!(n − r − β)!

×

(
r

α

)(
n − r

β

)(
k + r − u − 1

r − α

)(
ℓ + n − r − v − 1

n − r − β

)
Qu(f)(α)Qv(g)(β) = 0

for all i ∈ {1, . . . , n}, the sets of summation being determined by the bino-

mial coefficients. Hence, Φa

(
M̃≤s

k , M̃≤t
ℓ

)
⊂ M̃≤s+t

k+ℓ+2n is implied by

(9)
∑

r

ar

(
r

α

)(
n − r

β

)
(k + r − u − 1)!(ℓ + n − r − v − 1)! = 0

for all (u, v, α, β) ∈ E(s, t, n). �

Remark 8. The statement of the previous lemma is in fact an equivalence,

if we ask Φa to satisfy Φa

(
M̃≤s

k (Γ), M̃≤t
ℓ (Γ)

)
⊂ M̃≤s+t

k+ℓ+2n(Γ) for each finite

index subgroup Γ of SL(2, Z): indeed for {a(u, v, α, β)} a non identically zero

family of complex numbers, if Ψ: (f, g) 7→
∑

(u,v,α,β)∈E(s,t,n) a(u, v, α, β)Qu(f)(α)Qv(g)(β)

satisfy Ψ(M̃≤s
k (Γ), M̃≤t

ℓ (Γ)) = 0, then exists M > 0 such that the minimum

of dim(M̃≤s
k (Γ)) and dim(M̃≤t

ℓ (Γ)) is strictly smaller than M . However, as
for modular forms, for each A > 0 exists Γ a finite index subgroup of SL(2, Z)

such that dim M̃≤s
k (Γ) > A and dim M̃≤t

ℓ (Γ) > A (recall that k, ℓ ∈ Z>0).

We shall now give a necessary condition for a satisfying the condition of
lemma 9.

Lemma 10. Let k, ℓ in Z>0, s ∈ {0, . . . , ⌊k/2⌋}, t ∈ {0, . . . , ⌊ℓ/2⌋} and
n ∈ Z>0. If a = (ar)0≤r≤n satisfies

n∑

r=0

ar

(
r

α

)(
n − r

β

)
(k + r − u − 1)!(ℓ + n − r − v − 1)! = 0

for all (u, v, α, β) ∈ E(s, t, n), then there exists λ ∈ C such that

ar = λ(−1)r
(

k + n − s − 1

n − r

)(
ℓ + n − t − 1

r

)

for all r ∈ {0, . . . , n}.
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Proof. Define b = (br)0≤r≤n by

br = ar(k + r − s − 1)!(ℓ + n − r − t − 1)!

for all r. Then
n∑

r=0

br

(
r

α

)(
n − r

β

)(
k + r − u − 1

s − u

)(
ℓ + n − r − v − 1

t − v

)
= 0

for all (u, v, α, β) ∈ E(s, t, n). Choosing u = s, t = v and β = 0 leads to

F (α)(1) = 0 for all α ∈ {0, . . . , n−1} where F is the generating (polynomial)
function of b defined by

F (x) =
n∑

r=0

brx
r.

This implies the existence of µ ∈ C such that F (x) = µ(x − 1)n and thus
br = µ(−1)r

(
n
r

)
. The result follows by defining

λ = µ
n!

(k − s + n − 1)!(ℓ − t + n − 1)!
.

�

We obtain the existence of the Rankin-Cohen operator for quasimodular
forms in showing that the vector a we found in lemma 10 is admissible.

Lemma 11. Let k, ℓ in Z>0, s ∈ {0, . . . , ⌊k/2⌋}, t ∈ {0, . . . , ⌊ℓ/2⌋} and
n ∈ Z>0. Let a = (ar)1≤r≤n be defined by

ar = (−1)r
(

k − s + n − 1

n − r

)(
ℓ − t + n − 1

r

)
.

Then

Φa

(
M̃≤s

k , M̃≤t
ℓ

)
⊂ M̃≤s+t

k+ℓ+2n.

Proof. By lemma 9 it suffices to check that
(10)

∑

(r1,r2)∈Z≥0×Z≥0

r1+r2=n

(−1)r1

r1!r2!

(
r1

α

)(
r2

β

)(
k − u − 1 + r1

s − u

)(
ℓ − v − 1 + r2

t − v

)
= 0

for all (u, v, α, β) ∈ E(s, t, n). Fix (u, v, α, β) ∈ E(s, t, n), then (10) is the
coefficient of order n in the product P1(X)P2(X) where

P1(X) =

+∞∑

r1=0

(−1)r1

r1!

(
r1

α

)(
k − u − 1 + r1

s − u

)
Xr1

P2(X) =

+∞∑

r2=0

1

r2!

(
r2

β

)(
ℓ − v − 1 + r2

t − v

)
Xr2 .

We have

P1(X) =
Xα

α!
Q

(α)
1 (X)

with

Q1(X) =

+∞∑

r1=0

(−1)r1

r1!

(
k − u − 1 + r1

s − u

)
Xr1
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and

Q1(X) =
X−k+s+1

(s − u)!
R

(s−u)
1 (X)

with

R1(X) =

+∞∑

r1=0

(−1)r1

r1!
Xr1+k−u−1

= Xk−u−1e−X .

We therefore may write P1(X) = Π1(X)e−X where Π1 is a polynomial of
degree α + s − u. Similary, P2(X) = Π2(X)eX where Π2 is a polynomial of
degree β + t− v. It follows that P1P2 is a polynomial of degree α + β + s +
t − u − v. Finally, since, by definition, α + β − u − v < n − s − t we get
(10). �

Remark 9. With the help of the hypergeometric methods [PWZ96, Chapter
3], we obtain that

Π1(X) = (−1)α
s−u+α∑

r=α

(
k + α − u − 1

k + r − s − 1

)(
r

α

)
Xr

r!

and

Π2(X) = (−1)β
t−v+β∑

r=β

(−1)r
(

ℓ + β − v − 1

ℓ + r − t − 1

)(
r

β

)
Xr

r!

Previous lemmas prove theorem 1.

3. Rankin-Cohen brackets and derivation

In this section, we prove theorem 3. First, we remark that

(11) Φn;k,s;ℓ,t(f, g)′ =

n−1∑

r=0

(−1)r

[(
k − s + n − 1

n − r

)(
ℓ − t + n − 1

r

)

−

(
k − s + n − 1

n − r − 1

)(
ℓ − t + n − 1

r + 1

)]
f (r+1)g(n−r)

+

(
k − s + n − 1

n

)
fg(n+1) + (−1)n

(
ℓ − t + n − 1

n

)
f (n+1)g.

Next,

Φn;k,s;ℓ+2,t+1(f, g′) =

(
k − s + n − 1

n

)
fg(n+1)

−

n−1∑

r=0

(−1)r
(

k − s + n − 1

n − r − 1

)(
ℓ − t + n

r + 1

)
f (r+1)g(n−r)
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so that

(12) Φn;k+2,s+1;ℓ,t(f
′, g) + Φn;k,s;ℓ+2,t+1(f, g′) =

(
k − s + n − 1

n

)
fg(n+1) + (−1)n

(
ℓ − t + n − 1

n

)
f (n+1)g

+
n−1∑

r=0

(−1)r

[(
k − s + n

n − r

)(
ℓ − t + n − 1

r

)

−

(
k − s + n − 1

n − r − 1

)(
ℓ − t + n

r + 1

)]
f (r+1)g(n−r)

and equality from (11) and (12) follows by expanding the binomial coeffi-
cients.

4. A more precise structure result

In this section, we prove proposition 2. Let n > 0. If f ∈ M̃ s
k and g ∈ M̃ t

ℓ
then Φn;k,s;ℓ,t(f, g) has weight k + ℓ + 2n and depth less than s + t. Since
n > 0 this depth is not maximal since

s + t ≤
k

2
+

ℓ

2
<

k + ℓ + 2n

2
.

Then it follows from proposition 8 that

Φn;k,s;ℓ,t(f, g) ∈ Mk+ℓ+2n ⊕
s+t⊕

j=1

Dj Mk+ℓ+2n−2j.

However, the definition of Φn;k,s;ℓ,t(f, g) implies that its Fourier coefficient
at 0 is 0 and since this is also true for derivatives of modular forms we get

Φn;k,s;ℓ,t(f, g) ∈ Sk+ℓ+2n ⊕
s+t⊕

j=1

Dj Mk+ℓ+2n−2j.

The contribution to Φn;k,s;ℓ,t(f, g) coming from

Sk+ℓ+2n ⊕

s+t−1⊕

j=1

Dj Mk+ℓ+2n−2j

has depth strictly less than s + t. Hence

Qs+t (Φn;k,s;ℓ,t(f, g)) = Qs+t(D
s+t g)

where g ∈ Mk+ℓ+2n−2s−2t. Since

Qs+t(D
s+t g) = (2πi)−s−t (k + ℓ + 2n − s − t − 1)!

(k + ℓ + 2n − 2s − 2t − 1)!
g
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(see (6)), to prove that g is parabolic we shall prove that the Fourier coeffi-
cient at 0 of Qs+t (Φn;k,s;ℓ,t(f, g)) is 0. From (8) we get

(13)

Qs+t (Φn;k,s;ℓ,t(f, g)) =
∑

u

∑

v

∑

(α,β)∈Z
2

≥0

α+β=n+u+v−s−t

(
1

2πi

)n−α−β ∑

r

ar(r−α)!(n−r−β)!

×

(
r

α

)(
n − r

β

)(
k + r − u − 1

r − α

)(
ℓ + n − r − v − 1

n − r − β

)
Qu(f)(α)Qv(g)(β).

Since derivatives of quasimodular forms have Fourier coefficients vanishing
at 0, the only contribution to the Fourier coefficient of Qs+t (Φn;k,s;ℓ,t(f, g))
at 0 is given by (α, β) = (0, 0) in (13). However, the summation is on (α, β)
such that α + β = n + u + v − s − t and we have n + u + v − s − t > 0 if

n > s+ t. Thanks to (13) we also see that if f ∈ M̃≤s
k and g ∈ M̃≤t

ℓ satisfies
s + t > 0 and ĝ(0) = 0 then

Φs+t;k,s;ℓ,t(f, g) ∈ Sk+ℓ+2s+2t ⊕
s+t−1⊕

j=1

Dj Mk+ℓ+2s+2t−2j ⊕ Ds+t Sk+ℓ.

5. Applications

An easy but useful consequence of the fact that D ∆ = ∆E2 is the follow-
ing lemma.

Lemma 12. Let n ≥ 0. Let f ∈ M̃≤s
k and g ∈ M̃≤t

ℓ . There exists h ∈

M̃≤s+t
k+ℓ+2n such that

Φn;k,s;ℓ,t(f,∆g) = ∆h.

For example, we have

Φ1;k+12,s;12,0(∆f,∆) = ∆Φ1;k,s;12,0(f,∆).

5.1. Homogoneous products of derivatives of E2. In this section we
prove proposition 4 by recursion on n. For n = 0 we have E2

2 = E4 +
12D E2 ∈ CE4 ⊕ C DE2. Assume that:

Dr E2 Dn−r E2 ∈
n−4⊕

j=0
j≡n (mod 2)

Dj S2n+4−2j⊕C Dn E4⊕C Dn+1 E2 (0 ≤ r ≤ n).

Deal first with the case where n = 2m is even. By recursion hypothesis,
we have

D
(
Dr E2 Dn−r E2

)
= Dr E2 Dn+1−r E2 + Dr+1 E2 Dn−r E2

∈
n−4⊕

j=0
j≡n (mod 2)

Dj+1 S2n+4−2j ⊕ C Dn+1 E4 ⊕ C Dn+2 E2.
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The set {Dr E2 Dn−r E2, 0 ≤ r ≤ n} has m+1 distinct terms (corresponding
to 0 ≤ r ≤ m). The set {Dr E2 Dn+1−r E2, 0 ≤ r ≤ n + 1} has also m + 1
distinct terms (corresponding to 0 ≤ r ≤ m). It follows that

{
Dr E2 Dn+1−r E2 + Dr+1 E2 Dn−r E2, r ∈ {0, . . . ,m}

}

and {
Dr E2 Dn+1−r E2, r ∈ {0, . . . ,m}

}

are basis of the same space with change of basis matrix given by




1 0 . . . . . . 0

1 1
. . .

...

0 1
. . .

. . .
...

...
. . .

. . . 1 0
0 . . . 0 1 2




.

It follows that for any r ∈ {0, . . . ,m} (hence any r ∈ {0, . . . , n}) we have

Dr E2 Dn+1−r E2 ∈

n−3⊕

j=0
j≡n+1 (mod 2)

Dj S2n+6−2j ⊕ C Dn+1 E4 ⊕ C Dn+2 E2.

We now deal with the case where n = 2m − 1 is odd. Again, by recursion
hypothesis, we have

D
(
Dr E2 Dn−r E2

)
= Dr E2 Dn+1−r E2 + Dr+1 E2 Dn−r E2

∈

n−4⊕

j=0
j≡n (mod 2)

Dj+1 S2n+4−2j ⊕ C Dn+1 E4 ⊕ C Dn+2 E2.

The subspace generated by all the quasimodular forms Dr E2 Dn+1−r E2 +
Dr+1 E2 Dn−r E2 when r runs over {0, . . . , 2m − 1} is the hyperplane

{
2m∑

r=0

αr Dr E2 D2m−r E2|
2m∑

r=0

(−1)rαr = 0

}

hence it is sufficient for the proof of our recursion step to find a linear
combination

2m∑

r=0

αr Dr E2 D2m−r E2 ∈
2m−4⊕

j=0
j even

Dj S4m+4−2j ⊕ C D2m E4 ⊕ C D2m+1 E2

with
2m∑

r=0

(−1)rαr 6= 0.

This is the step where we use Rankin-Cohen brackets. Since [E2, E2]2m+2 ∈

M̃≤2
4m+8 we have Q2 ([E2, E2]2m+2) ∈ S4m+4 (see (13) for the cuspidality).



14 FRANÇOIS MARTIN AND EMMANUEL ROYER

Equation (8) combined with the fact that Q1(E2) is constant implies that

(14) Q2 ([E2, E2]2m+2) =
24

(2πi)2
(2m + 2)D2m+1 E2 +

4

(2πi)2

[

2m+2∑

r=2

(−1)r
(

2m + 2

r

)2(r

2

)(
r + 1

2

)
Dr−2 E2 D2m+2−r E2

+

2m+1∑

r=1

(−1)r
(

2m + 2

r

)2(r + 1

2

)(
2m + 3 − r

2

)
Dr−1 E2 D2m+1−r E2

]
.

Let

αr(N) = 2(−1)r
(

r

2

)(
N

r

)(
N

r − 1

)
(N + 1 − 2r).

Equation (14) gives

2m+2∑

r=2

αr(2m + 2)Dr−2 E2 D2m+2−r E2 =

(2πi)2Q2 ([E2, E2]2m+2) − 24(2m + 2)D2m+1 E2

∈ S4m+4 ⊕ C D2m+1 E2.

Let βr(N) = (−1)rαr(N). We prove that

A(N) =
N∑

r=2

(−1)rαr(N) =
∑

r∈Z

βr(N)

is strictly negative (hence differs from 0). Zeilberger’s algorithm (e.g., on the
open-source computer algebra system Maxima) [PWZ96, Chapter 6] provides
a function K(N, r) such that2

2(N + 1)(2N − 1)βr(N) − N(N − 1)βr(N + 1) =

K(N, r + 1)βr+1(N) − K(N, r)βr(N).

More precisely

(15) K(N, r) =

(r − 2)(r − 1)(N + 1)[3N3 + 8N2(1 − r) + N(4r2 − 6r + 3) − 2r2 + 4r − 2]

(N − 2r + 1)(N − r + 1)(N − r + 2)(N − 1)
.

We deduce the recursive formula

A(N + 1)

A(N)
=

2(N + 1)(2N − 1)

N(N − 1)

which, since A(2) = 4, implies

A(N) = −N(N − 1)

(
2N − 2

N − 1

)
< 0.

Finally, we have found a function which belongs to the hyperplane. This
completes the proof.

2Note that no algorithm is needed to check that K(N, r) as defined in (15) works.
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5.2. Niebur formula. From proposition 4 we obtain

Φ4;2,1;2,1(E2, E2) ∈ S12 = C∆.

The computation of the first coefficients gives Φ4;2,1;2,1(E2, E2) = −48∆.
This is the differential equation proved by Niebur in [Nie75] :

23 · 3∆ = 18(D2 E2)
2 + E2 D4 E2 − 16D E2 D3 E2

and comparing the Fourier expansions gives Niebur formula.

5.3. van der Pol formula. From proposition 2 we obtain

Φ1;4,0;6,1(E4,D E4) ∈ S12.

The computation of the first coefficient gives Φ1;4,0;6,1(E4,D E4) = 960∆.
This is the differential equation proved by van der Pol:

4E4 D2 E4 − 5(D E4)
2 = 960∆.

It leads to

τ(n) = n2σ3(n) + 60
∑

a+b=n

(4b − 5a)bσ3(a)σ3(b)

= n2σ3(n) + 60
n−1∑

a=1

(9a2 − 13an + 4n2)σ3(a)σ3(n − a)

= n2σ3(n) + 60

n−1∑

b=1

(9b2 − 5bn)σ3(a)σ3(n − a)

and the summation of the two last equalities implies the van der Pol formula
in its original form [vdP51, eq. (53)]:

τ(n) = n2σ3(n) + 60

n−1∑

a=1

(2n − 3a)(n − 3a)σ3(a)σ3(n − a).

5.4. Chazy equation. Recall that we proved at the end of the introduction
that an equation of the shape

αE2 D2 E2 + β(D E2)
2 = D3 E2

has to exist. Coefficients α and β can be computed by identifications of the
first Fourier coefficients. Our aim in this section is to give an interpretation
of this equation in terms of Rankin-Cohen brackets. We have

Φ1;2,1;12,0(E2,∆) ∈ ∆M̃≤1
4 = C∆E4

hence

Φ1;2,1;12,0(E2,∆) = ∆E4

and

Φ1;4,0;12,0(E4,∆) ∈ ∆M6 = C∆E6

hence

Φ1;4,0;12,0(E4,∆) = 4∆E6

so that

Φ1;16,0;12,0 (Φ1;2,1;12,0(E2,∆),∆) = ∆Φ1;4,0;12,0(E4,∆) = 4∆2E6.
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Next we compute

Φ1;30,0;12,0(∆
2E6,∆) = ∆2Φ1;6,0;12,0(E6,∆) ∈ ∆3M8 = C∆3E2

4

hence

Φ1;30,0;12,0(∆
2E6,∆) = 6∆3E2

4 = 6∆Φ1;2,1;12,0(E2,∆)2

and

Φ1;30,0;12,0 (Φ1;16,0;12,0 (Φ1;2,1;12,0(E2,∆),∆) ,∆) = 24∆Φ1;2,1;12,0(E2,∆)2.

This is (2). We deduce the usual form of the Chazy equation in the following
way. From

K := Φ1;2,1;12,0(E2,∆) = E2 D ∆ − 12D E2∆ = ∆(E2
2 − 12D E2)

we get

L := Φ1;16,0;12,0(K,∆) = 16K∆−12D K∆ = 4∆2(E3
2−18E2 DE2+36D2 E2)

and since

Φ1;30,0;12,0(L,∆) = 30LD ∆ − 12D L∆

= 24∆3
(
E4

2 − 24E2
2 DE2 + 72E2 D2 E2 + 36(D E2)

2 − 72D3 E2

)

the equality Φ1;30,0;12,0(L,∆) = 24∆K2 gives the Chazy equation

2D3 E2 − 2E2 D2 E2 + 3(D E2)
2 = 0.
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