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SHARP ESTIMATION IN SUP NORM WITH RANDOM DESIGN

STÉPHANE GAÏFFAS

Laboratoire de Probabilités et Modèles Aléatoires

Université Paris 7 Denis-Diderot

email: gaiffas@math.jussieu.fr

Abstract. In this paper, we study the estimation of a function based on noisy inho-
mogeneous data (the amount of data can vary on the estimation domain). We consider
the model of regression with random design, where the design density is unknown. We
construct an asymptotically sharp estimator which converges, for sup norm error loss,
with a spatially dependent normalisation which is sensitive to the variations in the local
amount of data. This estimator combines both kernel and local polynomial methods, and
it does not depend within its construction on the design density. Then, we prove that the
normalisation is optimal in an appropriate sense.

1. Introduction

In most cases, the models considered in curve estimation do not allow situations where
the data is inhomogeneous, in so far as the amount of data is implied to be constant over
space. This is the case in regression with equispaced design and white noise models, for
instance. In many situations, the data can happen to be concentrated at some points and
to be little elsewhere. In such cases, an estimator shall behave better at a point where there
is much data than where there is little data. In this paper, we propose a theoretical study
of this phenomenon.

The available data [(Xi, Yi), 1 6 i 6 n] is modeled by

Yi = f(Xi) + ξi, (1.1)

where ξi are i.i.d. centered Gaussian with variance σ2 and independent of Xi. The design
variables Xi are i.i.d. of unknown density µ on [0, 1], which is bounded away from 0 and
continuous. We want to recover f . When µ is not the uniform law, the information is
spatially inhomogeneous. We are interested in recovering f globally, with sup norm loss
‖g‖∞ := supx∈[0,1] |g(x)|. An advantage of this norm is that it is exacting: it forces an
estimator to behave well at every point simultaneously. A commonly used benchmark for
the complexity of estimation over some fixed class Σ is the minimax risk, which is given by

Rn(Σ) := inf
bfn

sup
f∈Σ

En
f

{
‖f̂n − f‖∞

}
, (1.2)

where the infimum is taken over all estimators. We say that ψn is the minimax convergence
rate over Σ if Rn(Σ) ≍ ψn, where an ≍ bn means 0 < liminfn an/bn 6 limsupn an/bn < +∞.
In the regression model (1.1) with Σ a Hölder ball with smoothness s > 0 and µ positive and

bounded, we have ψn = (log n/n)s/(2s+1), see Stone (1982). Thus, in this case, the minimax
rate is not sensitive to the variations in the amount of data. Indeed, such global minimax
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2 S. GAÏFFAS

benchmarks cannot assess the design-adaptation property of an estimator. Instead of (1.2),
an improvement is to consider the spatially dependent risk

sup
f∈Σ

En
f

{
sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|

}

of some estimator f̂n, where rn(·) > 0 is a family of spatially dependent normalisations.
If this quantity is bounded as n → +∞, we say that rn(·) is an upper bound over Σ.

Necessarily, the ”optimal” normalisation satisfies rn(x) ≍ (logn/n)s/(2s+1) for any x (note
that the optimality requires an appropriate definition here). Therefore, in order to exhibit
such an optimal normalisation, we need to consider the sharp asymptotics of the minimax
risk.

2. Results

If s, L > 0, we define the Hölder ball Σ(s, L) as the set of all the functions f : [0, 1] → R

such that

|f (k)(x) − f (k)(y)| 6 L|x− y|s−k, ∀x, y ∈ [0, 1],

where k = ⌊s⌋ is the largest integer k < s. If Q > 0, we define ΣQ(s, L) := Σ(s, L) ∩
{f s.t. ‖f‖∞ 6 Q}, and we denote simply Σ := ΣQ(s, L) (the constant Q needs not to be
known). All along this study, we suppose:

Assumption D. There is ν ∈ (0, 1] and ̺, q > 0 such that

µ ∈ Σ(ν, ̺) and µ(x) > q, for all x ∈ [0, 1].

In the following, we consider a continuous, non-negative and nondecreasing loss function
w(·) such that w(x) 6 A(1 + |x|b) for some A, b > 0 (typically a power function). Let us
consider

rn,µ(x) :=
( log n

nµ(x)

)s/(2s+1)
. (2.1)

We prove in theorem 1 below that this normalisation is, up to the constants, an upper bound
over Σ, and that it is indeed optimal in theorem 2. We denote by E

n
f,µ the integration with

respect to the joint law P
n
f,µ of the observations (Xi, Yi), 1 6 i 6 n. The estimator used in

theorem 1 does not depend, within its construction, on µ.

Theorem 1 (Upper bound). Under assumption D, if f̂n is the estimator defined in section 4
below, we have for any s, L > 0,

limsupn sup
f∈Σ

E
n
f,µ

{
w

(
sup

x∈[0,1]
rn,µ(x)−1|f̂n(x) − f(x)|

)}
6 w(P ), (2.2)

where

P := σ2s/(2s+1)L1/(2s+1) ϕs(0)
( 2

2s+ 1

)s/(2s+1)
(2.3)

and ϕs is defined as the solution of the optimisation problem

ϕs := argmax
ϕ∈Σ(s,1;R),
‖ϕ‖261

ϕ(0), (2.4)

where Σ(s, L; R) is the extension of Σ(s, L) to the whole real line.

In the same fashion as in Donoho (1994), the constant P is defined via the solution of
an optimisation problem which is connected to optimal recovery. We discuss this result in
section 3, where further details about optimal recovery can be found. The next theorem
shows that rn,µ(·) is indeed optimal in an appropriate sense. In what follows, the notation
|I| stands for the length of an interval I.
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Theorem 2 (Lower bound). Under assumption D, if In ⊂ [0, 1] is any interval such that
for some ε ∈ (0, 1),

|In|nε/(2s+1) → +∞ as n→ +∞, (2.5)

we have

liminfn inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup
x∈In

rn,µ(x)−1|f̂n(x) − f(x)|
)}

> w
(
(1 − ε)P

)
,

where P is given by (2.3) and the infimum is taken among all estimators. A consequence
is that if In is such that (2.5) holds for any ε ∈ (0, 1), we have

liminfn inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup
x∈In

rn,µ(x)−1|f̂n(x) − f(x)|
)}

> w(P ). (2.6)

This result says that the normalisation rn,µ(·) cannot be strongly improved: no normal-
isation is uniformly better than rn,µ(·) within a ”large” interval. This result is discussed in
the following section.

3. Discussion

Literature. When the design is equidistant, that is Xi = i/n, we know from Korostelev
(1993) the exact asymptotic value of the minimax risk for sup norm error loss. If ψn :=

(logn/n)s/(2s+1), we have for any s ∈ (0, 1] and Σ = Σ(s, L)

lim
n→+∞

inf
bfn

sup
f∈Σ

Ef

{
w(ψ−1

n ‖f̂n − f‖∞)
}

= w(C),

where

C := σ2s/(2s+1)L1/(2s+1)
(s+ 1

2s2

)s/(2s+1)
. (3.1)

This result was the first of its kind for sup norm error loss. In the white noise model

dY n
t = f(t)dt+ n−1/2dWt, t ∈ [0, 1], (3.2)

where W is a standard Brownian motion, Donoho (1994) extends the result by Korostelev
(1993) to any s > 1. In this paper, the author makes a link between statistical sup norm
estimation and the theory of optimal recovery (see below). It is shown for any s > 0 and
Σ = Σ(s, L) that the minimax risk satisfies

lim
n→+∞

inf
bfn

sup
f∈Σ

Ef

{
w(ψ−1

n ‖f̂n − f‖∞)
}

= w(P1), (3.3)

where P1 is given by (2.3) with σ = 1. When s ∈ (0, 1], we have P = C, see for instance
in Leonov (1997). Since the results by Korostelev and Donoho, many other authors worked
on the problem of sharp estimation (or testing) in sup norm. On testing, see Lepski and
Tsybakov (2000), see Korostelev and Nussbaum (1999) for density estimation and Bertin
(2004a) for white noise in an anisotropic setting. The paper by Bertin (2004b) works in
the model of regression with random design (1.1). When µ satisfies assumption D and
Σ = ΣQ(s, L) for s ∈ (0, 1], it is shown that

lim
n→+∞

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w(v−1

n,µ‖f̂n − f‖∞)
}

= w(C), (3.4)

where C is given by (3.1) and vn,µ := [logn/(n infx µ(x))]s/(2s+1). Note that the rate vn,µ

differs from (and is larger than) ψn when µ is not uniform. A disappointing fact is that vn,µ

depends on µ via its infimum only, which corresponds to the point in [0, 1] where we have
the least information. Therefore, this rate does not take into account all the other regions
with more data.

As a consequence, the results presented here are extensions of both the papers by Donoho
(1994) and Bertin (2004b): our results are stated in the regression model with random
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design, where the design density is unknown. In particular, we provide the exact asymptotic
value of the minimax risk in regression with random design for any s > 0, which was
known only for s ∈ (0, 1] beforehand. Nevertheless, the main novelty is, in our sense,
the introduction of a spatially dependent normalisation factor for the assessment of an
estimator, with an appropriate optimality criterion. The asymptotically sharp minimax
framework is considered here only by necessity.

Optimal recovery. The problem of optimal recovery consists in recovering f from

y(t) = f(t) + εz(t), t ∈ R, (3.5)

where ε > 0, z is an unknown deterministic function such that ‖z‖2 6 1 and f ∈ C(s, L; R) :=
Σ(s, L; R) ∩ L

2(R). The link between this deterministic problem and estimation with sup
norm loss in white noise model was made by Donoho (1994), see also Leonov (1999). The
minimax risk for the optimal recovery of f at 0 from (3.5) is defined by

Es(ε, L) := inf
T

sup
f∈C(s,L;R)
‖f−y‖26ε

|T (y) − f(0)|,

where infT is taken among all continuous and linear forms on L
2(R). We know from Micchelli

and Rivlin (1977), Arestov (1990) that

Es(ε, L) = inf
K∈L2(R)

(
sup

f∈C(s,L;R)

∣∣∣
∫
K(t)(f(t) − f(0))

∣∣∣ + ε‖K‖2

)
= sup

f∈Σ(s,L;R)
‖f‖26ε

f(0).

Note that ϕs satisfies ϕs(0) = Es(1, 1). To our knowledge, the function ϕs is known only for
s ∈ (0, 1] ∪ {2}. The kernel Ks for s ∈ (0, 1] was found by Korostelev (1993) and by Fuller
(1961) for s = 2. For any s > 0, we know from Leonov (1997) that ϕs is well defined and
unique, that it is even and compactly supported and that ‖ϕs‖2 = 1. A renormalisation

argument from Donoho (1994) shows that Es(ε, L) = Es(1, 1)L1/(2s+1)ε2s/(2s+1), thus it
suffices to know Es(1, 1). If we define

B(s, L) := sup
f∈C(s,L;R)

∣∣∣
∫
Ks(t)(f(t) − f(0))

∣∣∣, (3.6)

we have the decomposition Es(1, 1) = B(s, 1)+‖K‖2, and in particular, if P is given by (2.3)
and

cs :=
(σ
L

)2/(2s+1)( 2

2s+ 1

)1/(2s+1)
, (3.7)

we have

P = Lcss(B(s, 1) + ‖K‖2). (3.8)

About theorem 1. We can understand the result of theorem 1 heuristically. Following
Brown and Low (1996) and Brown et al. (2002), we can say that an ”idealised” statistical
experiment which is equivalent (in the sense that the LeCam deficiency goes to 0) to the
model (1.1) is given by the heteroscedastic white noise model

dY n
t = f(t)dt+

σ√
nµ(t)

dBt, t ∈ [0, 1], (3.9)

where B is a Brownian motion. In view of the result (3.3) by Donoho (1994), which is
stated in the model (3.2), and comparing the noise levels in the models (3.2) and (3.9)
(with σ = 1), we can explain informally that our rate rn,µ(·) comes from the former rate
ψn where we ”replace” n by nµ(x).
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About theorem 2. From Bertin (2004b), we know when s ∈ (0, 1] that

liminfn inf
bfn

sup
f∈Σ

E
n
f,µ

{
w(v−1

n,µ‖f̂n − f‖∞)
}

> w(P ),

where vn,µ = [log n/(n infx µ(x))]s/(2s+1). An immediate consequence is

liminfn inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup

x∈[0,1]
rn,µ(x)−1|f̂n(x) − f(x)|

)}
> w(P ), (3.10)

where it suffices to use the fact that rn,µ(x) 6 vn,µ for any x ∈ [0, 1]. This entails that rn,µ(·)
is optimal in the classical minimax sense. However, this lower bound is much weaker than
the one considered in theorem 2: it does not exclude the existence of another normalisation
̺n(·) such that ̺n(x) < rn,µ(x) for ”many” x. Therefore, to prove the optimality of rn,µ(·),
we need to localise the lower bound. Indeed, in theorem 2, if we choose In = [0, 1] we find
back (3.10) and if In = [x̄− (logn)γ , x̄+ (logn)γ ] ∩ [0, 1] for any γ > 0 and x̄ ∈ [0, 1] such
that µ(x̄) 6= infx∈[0,1] µ(x), then obviously vn,µ does not satisfy (2.6).

About assumption D. In assumption D, µ is supposed to be bounded from below, and
from above since it is continuous over [0, 1]. When µ is vanishing or exploding at a fixed
point, we know from Gäıffas (2005) that a wide range of pointwise minimax rates can be
achieved, depending on the behaviour of µ at this point. In this case, we expect the optimal
normalisation (whenever it exists) to differ from the classical minimax rate ψn not only up
to the constants, but in order.

Adaptation to the smoothness. The estimator used in theorem 1 depends on the
smoothess s of f (see below). In practice, such a parameter is unknown. Therefore, this es-
timator cannot be used directly: some smoothness-adaptive technique, like Lepski’s method
(see Lepski et al. (1997)) can be applied. However, this estimator is considered here for
theoretical purposes only, and note that even in the white noise model, the problem of sharp
adaptive estimation in sup norm over Hölder classes remains open when s > 1.

4. Construction of an estimator

The estimator f̂n described below uses both kernel and local polynomial methods. Its
construction is divided into two parts: first, at some well-chosen discretization points, we
use a Nadaraya-Watson estimator with optimal kernel and a design data driven bandwidth.
This part of the estimator is used to attain the minimax constant. Then, between the
discretization points, the estimator is defined by a Taylor expansion where the derivatives
are estimated by local polynomial estimation. We define the empirical design sample dis-
tribution

µ̄n :=
1

n

n∑

i=1

δXi
,

where δ is the Dirac mass, and for h > 0, x ∈ [0, 1], we consider the intervals

I(x, h) :=

{
[x, x+ h] when 0 6 x 6 1/2,

[x− h, x] when 1/2 < x 6 1.
(4.1)

The choice of non-symmetrical intervals allows to skip boundaries effects. Then we define,
when it makes sense, the ”bandwidth” at x by

Hn(x) := argmin
h∈[0,1]

{
h s.t. h2sµ̄n(I(x, h)) > log n/n

}
, (4.2)
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which makes the balance between the bias hs and the variance [logn/(nµ̄n(I))]1/2 of the
kernel estimator. When the event in (4.2) is empty (which occurs with a very small prob-
ability for large n), we take simply Hn(x) := max(1 − x, x). We consider the sequence of
points

xj := j∆n, ∆n := (logn)−2s/(2s+1)n−1/(2s+1), (4.3)

for j ∈ Jn := {0, . . . , [∆−1
n ]} where [a] is the integer part of a with xMn = 1, Mn = |Jn| (the

notation |A| stands also for the size of a finite set A). We define HM
n := maxj∈Jn Hn(xj).

From Leonov (1997, 1999) we know that the function ϕs defined by (2.4) is even and
compactly supported. We denote by [−Ts, Ts] its support and τn := min(2csTsH

M
n , δn)

where δn = (log n)−1 and cs is given by (3.7).
As usual with the estimation of a function over an interval, there is a boundary correction.

We decompose the unit interval into three parts [0, 1] = Jn,1∪Jn,2∪Jn,3 where Jn,1 := [0, τn],
Jn,2 := [τn, 1 − τn] and Jn,3 := [1 − τn, 1]. We also define Ja,n := {j|xj ∈ Ja,n} for
a ∈ {1, 2, 3}. If ϕs is defined by (2.4), we consider the kernel

Ks := ϕs/
∫
ϕs. (4.4)

The ”sharp” part of the estimator is defined as follows: at the points xj , we define f̂n by

f̂n(xj) :=





1

nHn(xj)

n∑

i=1

YiKs

( Xi − xj

csHn(xj)

)

max
[
δn,

1

nHn(xj)

n∑

i=1

Ks

( Xi − xj

csHn(xj)

)] if j ∈ J2,n,

f̄n(xj) if j ∈ J1,n ∪ J3,n.

(4.5)

This estimator is (up to the correction near the boundaries) a Nadaraya-Watson estimator
with the optimal kernel Ks and a bandwidth fitted to the local amount of data. The
boundary estimator f̄n is defined below.

We recall that k = ⌊s⌋ where s is the smoothness of the unknown signal f . For any
interval I ⊂ [0, 1] such that µ̄n(I) > 0, we define the inner product

〈f , g〉I :=
1

µ̄n(I)

∫

I
fg dµ̄n,

where
∫
I f dµ̄n =

∑
Xi∈I f(Xi)/n. If I = I(x, h) (see (4.1)), we define φI,m(y) := (y − x)m

and we introduce the matrix XI and vector YI with entries

(XI)p,q := 〈φI,p , φI,q〉I and (YI)p := 〈Y , φI,p〉I ,

for 0 6 p, q 6 k. Then, we consider

X̄I := XI +
1√

nµ̄n(I)
Ik+1 1Ωc

n,I
,

where Ωn,I :=
{
λ(XI) > (nµ̄n(I))−1/2

}
, where λ(M) is the smallest eigenvalue of a matrix

M and where Ik+1 is the identity matrix on R
k+1. Note that the correction term in X̄I

entails λ(X̄I) > (nµ̄n(I))−1/2. When µ̄n(I) > 0, the solution θ̂I of the system

X̄Iθ = YI ,

is well defined. If µ̄n(I) = 0, we take θ̂I = 0. Then, for any 1 6 m 6 k, a natural estimate

of f (m)(xj) is

f̃ (m)
n (xj) := m!(θ̂I(xj ,hn))m,
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where hn := (σ/L)2/(2s+1)(logn/n)1/(2s+1). The boundary estimator is given by f̄n(xj) :=

(θ̂I(xj ,tn))0, where tn := (σ/L)2/(2s+1)n−1/(2s+1). If we define

Γn,I :=
{

min
16m6k

‖φI,m‖I > n−1/2
}
, (4.6)

where ‖ · ‖2
I = 〈· , ·〉I , then for x ∈ [xj , xj+1), j ∈ Jn, we take

f̂n(x) := f̂n(xj) +
( k∑

m=1

f̃
(m)
n (xj)

m!
(x− xj)

m
)
1Γn,I(xj,hn)

. (4.7)

5. Proof of theorem 1

The whole section is dedicated to the proof of theorem 1. We denote by Xn the sigma-
algebra generated by X1, . . . , Xn and by P

n
µ the joint law of X1, . . . , Xn. We recall that the

discretization points xj are given by (4.3). We introduce

hn,µ(x) := [logn/(nµ(x))]1/(2s+1),

and it is convenient to introduce for j ∈ Jn: Hj := Hn(xj), hj := hn,µ(xj), µj := µ(xj) and
rj := rn,µ(xj).

Step 1: approximation by the discretized risk. We introduce the uniform risk

En,f := sup
x∈[0,1]

rn,µ(x)−1|f̂n(x) − f(x)|,

and its discretized version E∆
n,f := supj∈Jn

r−1
j |f̂n(xj) − f(xj)|. In view of assumption D,

we have µ(·)s/(2s+1) ∈ Σ(sν/(2s+ 1), ̺s/(2s+1)), thus

sup
x∈[xj ,xj+1]

|rn,µ(x)−1 − r−1
j | 6 r−1

j

(
̺/q

)s/(2s+1)
∆sν/(2s+1)

n = o(1)r−1
j . (5.1)

Since f ∈ ΣQ(s, L), writing the Taylor expansion of f at x ∈ [xj , xj+1], we obtain:

|f̂n(x) − f(x)| 6 |f̂n(xj) − f(xj)| +
k∑

m=1

(f̃ (m)
n (xj) − f (m)(xj))

(x− xj)
m

m!
+ L∆s

n,

and in view of (5.1):

En,f 6 (1 + o(1))
(
E∆

n,f + max
j∈Jn

r−1
j

k∑

m=1

|f̃ (m)
n (xj) − f (m)(xj)|

∆m
n

m!

)
+O(δs

n),

where we recall that δn = (log n)−1. In this step, we need the following lemma, which
provides a control over the local polynomial estimator uniform risk. Its proof is given below
in the section.

Lemma 1. There is an event Cn ∈ Xn such that, under assumption D,

P
n
µ

{
Cc

n

}
6 exp

(
−DCn

s/(2s+1)
)
, (5.2)

where DC > 0, and a centered Gaussian vector W ∈ R
(k+1)Mn with

E
n
f,µ{W 2

p } = 1, 0 6 p 6 (k + 1)Mn,

such that on Cn, one has for any 0 6 m 6 k and f ∈ Σ(s, L):

max
j∈Jn

|f̃ (m)
n (xj) − f (m)(xj)| = O(hs−m

n )(1 + (logn)−1/2WM ), (5.3)
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where WM := max06p6(k+1)Mn
|Wp|. For the estimator near the boundaries, we have on

Cn, for a = 1 (the case a = 3 is similar):

max
j∈J1,n

|f̄n(xj) − f(xj)| = O(tsn)(1 +W (1)), (5.4)

where W (1) = max06p6(k+1)|J1,n| |Wp|.

In view of (5.3), we have on Cn, for any 1 6 m 6 k:

max
j∈Jn

r−1
j |f̃ (m)

n (xj) − f (m)(xj)|∆m
n /m! = O(δm

n )(1 + (logn)−1/2WM ),

then,

En,f1Cn 6 (1 + o(1))E∆
n,f1Cn +O(δn)(1 + δ1/2

n WM ) + o(1).

Let us define the event Wn := {|WM −E
n
f,µ{WM}| 6 δ−1

n }. Since W is a centered Gaussian

vector such that E
n
f,µ{W 2

p } = 1 for 0 6 p 6 (k + 1)Mn, it is well known (see for instance

in Ledoux and Talagrand (1991)) that E
n
f,µ{WM} 6 [2 log((k + 1)Mn)]1/2 = O(δ

−1/2
n ) and

P
n
f,µ{Wc

n} 6 2 exp(−δ−2
n /2). (5.5)

Thus,

En,f1Cn∩Wn 6 (1 + o(1))E∆
n,f1Cn + o(1). (5.6)

Step 2: some events study. In what follows, it is convenient to write K instead of Ks,
and to introduce

Kij := K[(Xi − xj)/(cshj)], K̄ij := K[(Xi − xj)/(csHj)],

and qj := ncshjµj , q̄j := ncsHjµj , where cs is given by (3.7). We introduce also

Q̄j :=
∑n

i=1K̄ij , Qj :=
∑n

i=1Kij , Sj :=
∑n

i=1K̄
2
ij ,

and the events

An,j :=
{∣∣Q̄j/q̄j − 1

∣∣ 6 LAδ
min(s,1)
n

}
, Bn,j :=

{∣∣Qj/qj − 1
∣∣ 6 δn

}
,

Cn,j :=
{
|Hj/hj − 1| 6 δn

}
, En,j :=

{∣∣Sj/qj − ‖K‖2
2

∣∣ 6 LEδ
min(s,1)
n

}
,

Bn :=
⋂

j∈J2,n

(
An,j ∩ Bn,j ∩ En,j

)
∩

⋂
j∈Jn

Cn,j , (5.7)

where LA and LE are some fixed positive constants, δn = (log n)−1, and the sets of indices
Ja,n are defined in section 4. In this step, we control the probabilities of these events.

For j ∈ J2,n, we consider the sequence of i.i.d variables ζij := Kij − E
n
µ{Kij}, 1 6 i 6 n.

Since µ ∈ Σq(ν, ̺) and
∫
K = 1, we have for n large enough |En

µ{K1j}/qj − 1| 6 δn/2, thus

Bc
n,j ⊂

{
|
∑n

i=1 ζij |/qj 6 δn/2
}
. Since |ζij | 6 2‖K‖∞ and

∑n
i=1 E

n
µ{ζ2

ij} 6 (1 + δn)qj
∫
K2

for n large enough, Bernstein inequality entails

P
n
µ{Bc

n,j} 6 2 exp(−D1δ
2
nn

2s/(2s+1)) (5.8)

for any j ∈ J2,n, where D1 is a positive constant. Since ϕs ∈ Σ(s, 1; R), we have K ∈
Σ(min(s, 1), LK ; R) where LK := (

∫
ϕs)

−1 if 0 < s 6 1 and LK := ‖K ′‖∞ if s > 1. Since
Supp K = [−Ts, Ts], we have on Cn,j

|K̄ij −Kij | 6 LKT
min(s,1)
s

( δn
1 − δn

)min(s,1)
1Mij

= o(1)1Mij
, (5.9)

where Mij := {|Xi − xj | 6 csTs(1 + δn)hj}. We define ηij := 1Mij
− P

n
µ{Mij}. On Cn,j we

have for n large enough 2csTsH
M
n 6 δn, and since xj ∈ [τn, 1 − τn],

xj 6 1 − τn = 1 − 2csTsH
M
n 6 1 − 2csTsHj 6 1 − 2csTs(1 − δn)hj 6 1 − csTs(1 + δn)hj
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for n large enough. On the other hand we have similarly xj > csTs(1 + δn)hj . Thus, since
µ ∈ Σq(ν, ̺) we have

∣∣∣
P

n
µ{M1j}

(1 + δn)cshjµj
− 2Ts

∣∣∣ 6
1

q

∫

|y|6Ts

|µ(xj + csy(1 + δn)hj) − µj |dy = O(hν
n).

Since xj ∈ [csTs(1 + δn)hj , 1 − (1 + δn)csTshj ] ⊂ [csTshj , 1 − csTshj ], we have for n large
enough that on Cn,j ,
∣∣∣
E

n
f,µ{K1j}
csHjµj

− 1
∣∣∣ 6

hj

Hjµj

∫
|K(y)||µ(xj + ycshj) − µj |dy +

∣∣∣
hj

Hj
− 1

∣∣∣ 6 O(hν
n) +

δn
1 − δn

.

Then, we obtain that on Cn,j and for n large enough,

∣∣∣
∑n

i=1 K̄ij

q̄j
− 1

∣∣∣ 6
o(1)

q̄j
|

n∑

i=1

ηij | +
LK(Tsδn)min(s,1)

(1 − δn)min(s,1)

P
n
µ{M1j}
csHjµj

+
1

q̄j
|

n∑

i=1

ζij | +O(hν
n) +

δn
1 − δn

6
o(1)

qj
|

n∑

i=1

ηij | +
1 + o(1)

qj
|

n∑

i=1

ζij | + 2(2LKT
min(s,1)+1 + 1)δmin(s,1)

n ,

and taking LA := 4(LKT
min(s,1)+1 + 1), we obtain

P
n
f,µ{Ac

n,j ∩ Cn,j} 6 P
n
µ

{
|

n∑

i=1

ηij | > δmin(s,1)
n qj

}
+ P

n
µ{|

n∑

i=1

ζij | > δmin(s,1)
n qj/2}.

Then, applying Bernstein inequality to the sum of variables ηij and ζij , 1 6 i 6 n, we
obtain that for any j ∈ Jn,2,

P
n
µ{Ac

n,j ∩ Cn,j} 6 2 exp(−D2δ
2
2,n n

2s/(2s+1)), (5.10)

where D2 is a positive constant and δ2,n := δ
min(s,1)
n . We can prove

P
n
µ{Ec

n,j ∩ Cn,j} 6 2 exp(−D3δ
2
2,nn

2s/(2s+1)), (5.11)

where D3 is a positive constant in the same way as for the proof of (5.10), with an appro-

priate choice for LE . If I = I(x, h) (see (4.1)) and δ1,n := 1− (1 + δn)−(2s+1), we define the
event

Nn,I :=
{∣∣∣
µ̄n(I)

µ(x)h
− 1

∣∣∣ 6 δ1,n

}
. (5.12)

From the definitions of Hj and hj , we obtain

{(1 − δn)hj < Hj} =
{
(1 − δn)2sh2s

j < log n/
(
nµ̄n(I(xj , (1 − δn)hj))

)}

=
{ µ̄n(I(xj , (1 − δn)hj))

µj(1 − δn)hj
6 (1 − δn)−(2s+1)

}
,

and then Nn,I(xj ,(1−δn)hj) ⊂ {(1 − δn)hj < Hj}. We can prove in the same way that on the

other hand Nn,I(xj ,(1+δn)hj) ⊂ {(1 + δn)hj > Hj}, hence

Nn,I(xj ,(1−δn)hj) ∩ Nn,I(xj ,(1+δn)hj) ⊂ Cn,j . (5.13)

If I = I(x, h), we have in view of assumption D that |
∫
I µ(t)dt − hµ(x)|= O(hν+1), thus,

if Zi := 1Xi∈I −
∫
I µ(t)dt, we have {|

∑n
i=1 Zi|6 nµ(x)hδn,1/2} ⊂ Nn,I for n large enough.

Then, using Bernstein inequality to the sum of Zi, 1 6 i 6 n, we obtain

P
n
µ{Cc

n,j} 6 2 exp(−DCδ
2
1,nn

2s/(2s+1)),

for n large enough, where DC > 0 is fixed. Using together the previous inequalities, we
obtain

P
n
µ{Bc

n} 6 exp(−DBn
s/(2s+1)) (5.14)

for n large enough, where DB > 0 is fixed.
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Step 3: controls on E∆
n,f . We need the following lemma, which is proven below in the

section.

Lemma 2. There is an event An ∈ Xn such that, under assumption D,

P
n
µ{Ac

n} 6 exp(−DAn
s/(2s+1)) (5.15)

for n large enough, where DA > 0 and such that

An ⊂ Bn ∩ Cn ∩ Γn, (5.16)

where Bn is given by (5.7), Cn by lemma 1 and Γn :=
⋂

j∈Jn
Γn,I(xj ,hn) where Γn,I is defined

by (4.6).

In this step, we prove that for any ε > 0, when n is large enough, the following inequality
holds:

sup
f∈ΣQ(s,L)

P
n
f,µ{E∆

n,f1An > (1 + ε)P} 6 exp
(
−DE ε(1 ∧ ε)(logn)2s/(2s+1)

)
, (5.17)

where DE > 0, and we prove that

sup
f∈ΣQ(s,L)

E
n
f,µ

{
w2(E∆

n,f1An)
}

= O(1). (5.18)

We decompose the risk into

E∆
n,f = E∆,1

n,f + E∆,2
n,f + E∆,3

n,f , (5.19)

where E∆,a
n,f := supj∈Ja,n

r−1
j |f̂n(xj) − f(xj)|. For a = 1 and a = 3, E∆,a

n,f is the risk at the

boundaries of [0, 1]. Since on Bn, Q̄j/q̄j > 1 − LAδ
min(s,1)
n > δn for n large enough, the

denominator in (4.5) is larger than δn. Hence, we can decompose on Bn the middle risk into
bias and variance terms as follows:

E∆,2
n,f 6 bn,f + Un,f + Zn, (5.20)

where the variance term is given by

Zn := max
j∈J2,n

|Zn,j |, Zn,j := r−1
j

∑n
i=1 ξiWij ,

with Wij := K̄ij/Q̄j , and the bias terms are

bn,f := max
j∈J2,n

|bn,f,j |, Un,f := max
j∈J2,n

|Un,f,j |,

where bn,f,j := E
n
f,µ{Bn,f,j1Bn}, Un,f,j := Bn,f,j − bn,f,j with Bn,f,j := r−1

j P̄j/Q̄j , P̄j :=∑n
i=1(f(Xi) − f(xj))K̄ij . We use the three following inequalities: we have

limsupn sup
f∈Σ(s,L)

bn,f 6 LcssB(s, 1), (5.21)

where B(s, L) is defined by (3.6), and there is a constant DU > 0 such that for any ε > 0,

sup
f∈Σ(s,L)

P
n
f,µ

{
Un,f1Bn > ε

}
6 exp

(
−DU ε(1 ∧ ε)n2s/(2s+1)

)
. (5.22)

Moreover, we have for any ε > 0,

sup
f∈ΣQ(s,L)

P
n
f,µ

{
Zn1Bn > (1 + ε)Lcss‖K‖2

}
6 2(logn)2s/(2s+1)n−ε/(2s+1). (5.23)

We prove these inequalities below in the section. In view of (5.21), we have bn,f 6 (1 +
2ε)LcssB(s, 1) for n large enough, and using (3.8) we obtain

{E∆,2
n,f 1Bn > (1 + 2ε)P} ⊂ {Zn1Bn > (1 + ε)Lcss‖K‖2} ∪ {Un,f1Bn > εLcss‖K‖2}.
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Then, in view of (5.22) and (5.23), it is easy to find D2 > 0 such that uniformly for
f ∈ ΣQ(s, L) and n large enough,

P
n
f,µ

{
E∆,2

n,f 1Bn > (1 + 2ε)P
}

6 exp
(
−D2 ε(1 ∧ ε) log n

)
. (5.24)

Now, we consider the boundary risk E∆,1
n,f (the result is the same for E∆,3

n,f ). In view of (5.4),

we obtain

E∆,1
n,f 1Cn = O(δs/(2s+1)

n )(1 +W (1)),

and we have as previously E
n
f,µ{W (1)} = O((log logn)1/2), since |J1,n| = O(logn), and for

any λ > 0,

P
n
f,µ

{
W (1) − E

n
f,µ{W (1)} > λ

}
6 2 exp(−λ2/2).

Then, for some D3 > 0, we obtain when n is large enough

P
n
f,µ

{
E∆,1

n,f 1Cn > 2εP
}

6 2 exp
(
−D3ε

2δ−2s/(2s+1)
n

)
.

This inequality, together with (5.24) and the fact that An ⊂ Bn ∩ Cn (see lemma 2) en-
tails (5.17). To prove (5.18), since w(x) 6 A(1 + |x|b), it suffices to use (5.17) and the fact

that E
n
f,µ{(E∆

n,f )p1An} = p
∫ +∞
0 tp−1

P
n
f,µ{E∆

n,f1An > t}dt for any p > 0.

Step 4: conclusion of the proof. We need the following inequality, which is proven
below in the section:

sup
f∈ΣQ(s,L)

E
n
f,µ

{
w2(En,f )

}
= O

(
n2b(1+s/(2s+1))

)
. (5.25)

Since w(·) is nondecreasing, we have for any ε > 0

E
n
f,µ{w(En,f )} 6 E

n
f,µ{w(En,f )1An∩Wn} + E

n
f,µ{w(En,f )1Ac

n∪W
c
n
}

6 w((1 + 2ε)P ) +
(
E

n
f,µ{w2(En,f )}P

n
f,µ{Ac

n ∪Wc
n}

)1/2

+
(
E

n
f,µ

{
w2

(
(1 + 2ε)E∆

n,f1An

)}
P

n
f,µ{E∆

n,f1An > (1 + ε)P}
)1/2

6 w((1 + 2ε)P ) +O
(
nb(1+s/(2s+1)) exp(−(logn)2/4)

)

+O
(
exp(−DE ε(1 ∧ ε)(logn)2s/(2s+1))

)
= w((1 + 2ε)P ) + o(1),

where we used together lemma 2, equations (5.5), (5.17), (5.18), (5.25), and the fact that
w(·) is continuous. Thus,

limsupn sup
f∈ΣQ(s,L)

E
n
f,µ{w(En,f )} 6 w((1 + 2ε)P ),

which concludes the proof of theorem 1 since ε can be chosen arbitrarily small. �

The proofs of several technical inequalities have been postponed all along the proof of
theorem 1. We give the proofs of these results in what follows. Since bn,f and Un,f only
depend on f via its values in [0, 1], we have

sup
f∈Σ(s,L)

bn,f = sup
f∈Σ(s,L;R)

bn,f , sup
f∈Σ(s,L)

Un,f = sup
f∈Σ(s,L;R)

Un,f . (5.26)
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Proof of (5.21). On An,j ∩ Cn,j we have (1 − o(1))qj 6 Q̄j 6 (1 + o(1))qj and since
Bn ⊂ An,j ∩ Cn,j for any j ∈ J2,n, we have

|bn,f,j | = r−1
j |En

f,µ{(P̄j/Q̄j)1Bn}| 6 (1 + o(1))(rjqj)
−1|En

f,µ{P̄j1Bn}|.

Using (5.9), and introducing νf,j(x) := 1f(x)>f(xj) − 1f(x)<f(xj), Pj :=
∑n

i=1(f(Xi) −
f(xj))Kij , Rij := νf,j(Xi)(f(Xi) − f(xj))1Mij

and Rj :=
∑n

i=1Rij , we obtain

1

rjqj
|En

f,µ{P̄j1Bn}
∣∣ 6

1

rjqj

(
|En

f,µ{Pj}| + o(1)|En
f,µ{Rj}|

)

6
1

rjµj

(∣∣
∫

(f(xj + ycshj) − f(xj))K(y)µ(xj + ycshj)dy
∣∣

+ o(1)
∣∣
∫

|y|6(1+δn)Ts

(f(xj + ycshj) − f(xj))νf,j(xj + csyhj)µ(xj + ycshj)dy
∣∣
)
,

and since µ ∈ Σq(ν, ̺) we have

bn,f,j 6
1 + o(1)

rj

∣∣
∫

(f(xj + ycshj) − f(xj))K(y)dy
∣∣

+
o(1)

rjq

∫

|y|62Ts

|f(xj + ycshj) − f(xj)|dy.

Using (5.26) and the fact that Σ(s, L; R) is invariant by translation,

sup
f∈Σ(s,L;R)

bn,f,j 6 (1 + o(1)) sup
f∈Σ(s,L;R)

max
j∈J2,n

1

rj

(∣∣
∫

(f(cshjy) − f(0))K(y)dy
∣∣

+ o(1)

∫

|y|62T
|f(cshjy) − f(0)|dy

)
.

Now we use an argument which is known as renormalisation, see Donoho and Low (1992).
We introduce the functional operator Ua,bf(·) := af(b ·). We have that f ∈ Σ(s, L; R) is
equivalent to Ua,bf ∈ Σ(s, Labs; R). Then, choosing a = (Lcssh

s
j)

−1 and b = cshj entails

sup
f∈Σ(s,L;R)

bn,f 6 (1 + o(1))LcssB(s, 1) + o(1),

and the result follows. �

Proof of (5.22). We recall that Un,f,j = Bn,f,j − E
n
f,µ{Bn,f,j1Bn}. We use the same

notations as in the proof of (5.21). On Bn we have (1 − o(1))qj 6 Q̄j 6 (1 + o(1))qj , and
since E

n
f,µ{P̄ 2

j } = O(n2), we obtain in view of lemma 2 that |En
f,µ{P̄j1Bc

n
}|/(rjqj) = o(1).

Then on Bn,

|Un,f,j | 6
1

rjqj

(
(1 + o(1))

∣∣P̄j − E
n
f,µ{P̄j}

∣∣ + o(1)
∣∣En

f,µ{P̄j1Bn}
∣∣
)

+ o(1),

and we know from the proof of (5.21) that |En
f,µ{P̄j1Bn}|/(rjqj) = O(1), thus

|Un,f,j | 6 (1 + o(1))(rjqj)
−1|P̄j − E

n
f,µ{P̄j}| + o(1)

on Bn. Using (5.9) we obtain that on Bn,

|P̄j − E
n
f,µ{P̄j}| 6 |Pj − E

n
f,µ{Pj}| + o(1)|Rj − E

n
f,µ{Rj}| + o(1)|En

f,µ{Rj}|,

and again from the proof of (5.21), we know that (rjqj)
−1|En

f,µ{Rj}| = O(1). Then, if

λj := εrjqj/3, we have for n large enough

P
n
f,µ{|Un,f,j |1Bn > ε} 6 P

n
f,µ

{
|Pj − E

n
f,µ{Pj}| > λj

}
+ P

n
f,µ

{
|Rj − E

n
f,µ{Rj}| > λj

}
.
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We use Bernstein inequality to the sum of variables Pij − E
n
f,µ{Pij} and Rij − E

n
f,µ{Rij},

1 6 i 6 n. These variables are independent and centered. We have |Pij − E
n
f,µ{Pij}| 6

4QK∞, and with the same arguments as at the end of the proof of (5.21) we obtain
∑n

i=1 E
n
f,µ{(Pij − E

n
f,µ{Pij})2} = O(r2j qj).

Then, using Bernstein inequality, we can find D4 > 0 such that for n large enough

P
n
f,µ{|Pj − E

n
f,µ{Pj}| > λj} 6 2 exp(−D4ε(1 ∧ ε)ns/(2s+1)).

We can prove likewise the same inequality for Rj −E
n
f,µ{Rj}, with some different constant

D4 > 0. Since |J2,n| 6 Mn and Mn exp(−Dns/(2s+1)/2) → 0 as n → +∞ for any D > 0,
the result follows with an appropriate constant DU > 0. �

Proof of (5.23). Conditionally on Xn, Zn,j is centered Gaussian with variance v2
j :=

σ2r−2
j

∑n
i=1W

2
ij . On Bn, we have for any j ∈ J2,n and n large enough

n∑

i=1

W 2
ij =

Sj

(Q̄j)2
6 (1 + o(1))

‖K‖2
2

qj
6 (1 + ε)

‖K‖2
2r

2
j

cs log n
,

where we used the definition of hn,µ(x), hence v2
j 6 (1 + ε)σ2‖K‖2

2/(cs log n). Using the

fact that P (|N(0, v2)| > λ) 6 2 exp(−λ2/(2v2)), we obtain

P
n
f,µ{|Zn,j |1Bn > (1 + ε)Lcss‖K‖2} 6 2 exp

(
− (1 + ε)

2s+ 1
log n

)
= 2n−(1+ε)/(2s+1),

and the result follows, since |J2,n| 6 Mn 6 (logn)2s/(2s+1)n1/(2s+1). �

Proof of (5.25). We prove that for any p > 0,

sup
f∈ΣQ(s,L)

E
n
f,µ{Ep

n,f} = O(np(1+s/(2s+1))), (5.27)

which entails (5.25). By definition of Hn(x), we have Hn(x) > (logn/n)1/(2s) for any
x ∈ [0, 1]. Since ‖f‖∞ 6 Q, we have for any j ∈ J2,n,

|f̂n(xj)| 6 δ−1
n (n/ log n)1/(2s)‖Ks‖∞(Q+ |ξ̄n|/

√
n),

where ξ̄n =
∑n

i=1 ξi/
√
n is standard Gaussian. Then,

E
n
f,µ

{
|f̂n(xj)|p|Xn

}
6 δ−p

n (n/ log n)p/(2s)(Q ∨ 1)p‖Ks‖p
∞E

n
f,µ{(1 + |ξ̄n|)p|Xn}

= O(np/(2s)(logn)p(1−1/(2s))).

We need the following lemma (its proof is given below).

Lemma 3. For any interval I ⊂ [0, 1] and p > 0 we have

E
n
f,µ

{
|(θ̂I)0|p|Xn

}
= O(np/2).

Moreover, for any 1 6 m 6 k, we have on Γn,I (see section 4)

E
n
f,µ

{
|(θ̂I)m|p|Xn

}
= O(np).

When j ∈ Jn,1 ∪ Jn,3, we have f̂n(xj) = (θ̂I(xj ,tn))0, thus E
n
f,µ

{
|f̂n(xj)|p|Xn

}
= O(np/2)

in view of lemma 3. For any j ∈ Jn, since f̃
(m)
n (xj) = m!(θ̂I(xj ,hn))m, we have in view of

lemma 3 that on Γn,I(xj ,hn), E
n
f,µ

{
|f̃ (m)

n (xj)|p|Xn

}
= O(np) for any 1 6 m 6 k. Then, we

have for any ‖f‖∞ 6 Q

En,f = O((n/ log n)s/(2s+1))
(

sup
x∈[0,1]

|f̂n(x)| +Q
)
,
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and since

sup
x∈[0,1]

|f̂n(x)| 6 max
j∈Jn

(
|f̂n(xj)| +

( k∑

m=1

|f̃ (m)
n (xj)|
m!

)
1Γn,I(xj,hn)

)
= O(np),

we obtain (5.27) and (5.25). �

Now, it remains to prove lemmas 1, 2 and 3. We need to introduce some notations.
We consider the diagonal matrix ΛI with entries (ΛI)m,m = ‖φI,m‖−1

I for 0 6 m 6 k,
where ‖ · ‖2

I := 〈· , ·〉I (see section 4), the matrix GI := ΛIX̄IΛI , where X̄I is introduced

in section 4 and the matrix G with entries (G)p,q := χp+q/(χ2pχ2q)
1/2, for 0 6 p, q 6 k,

where χm := (1 + (−1)m)/(2(m + 1)). Note that λ(G) > 0, where we recall that λ(M) is
the smallest eigenvalue of a matrix M . We define the events

Ωn :=
⋂

j∈Jn
Ωn,I(xj ,hn) ∩ Ωn,I(xj ,tn), Ln :=

⋂
j∈Jn

Ln,I(xj ,hn) ∩ Ln,I(xj ,tn),

where Ωn,I , I(x, h), hn and tn are defined in section 4 and where, if I = I(x, h),

Ln,I := {|λ(GI) − λ(G)| 6 δn}.
For 0 6 m 6 2k, an interval I ⊂ [0, 1], and δ > 0, we define

D̄n,m,I,δ :=
{∣∣ 1

µ̄n(I)|I|m
∫

I
φI,m dµ̄n − χm

∣∣ 6 δ
}
,

and Dn :=
⋂2k

m=0

⋂
j∈Jn

D̄n,m,I(xj ,hn),δn
∩ D̄n,m,I(xj ,tn),δn

. For Nn,I given by (5.12), we define

Nn :=
⋂

j∈Jn
Nn,I(xj ,hn) ∩ Nn,I(xj ,tn),

and we introduce
Cn := Ωn ∩ Ln ∩ Dn ∩ Nn. (5.28)

This event is used within lemma 1 above, where a control on its probability is given. We
recall that Γn is defined in lemma 2.

To a vector θ ∈ R
k+1 we associate the polynomial Pθ(y) := θ0+θ1y+· · ·+θky

k. If θ̂I is the

solution of the system X̄Iθ = YI (see section 4) for I = I(x, h), we define f̂I(y) := PbθI
(y−x).

If VI,k := Span{φI,m; 0 6 m 6 k}, we note that on Ωn,I , f̂I satisfies

〈f̂I , φ〉I = 〈Y , φ〉I , ∀φ ∈ VI,k. (5.29)

By definition, we have f̃
(m)
n (xj) = f̂

(m)
I(xj ,hn)(xj), where f̂

(m)
I is the derivative of order m of

f̂I , and f̄n(xj) = f̂I(xj ,tn)(xj), see section 4. We recall that Mn is the cardinal of Jn.

Proof of lemma 1. We take I = I(x, h) for some x ∈ [0, 1], h > 0 and define the vector

θI with coordinates (θI)m = f (m)(x)/m! for 0 6 m 6 k. Since X̄I = XI on Ωn,I , we have

Λ−1
I (θ̂I − θI) = G−1

I ΛIXI(θ̂I − θI). If fI(y) = PθI
(y− x), we have in view of (5.29) for any

0 6 m 6 k:

(XI(θ̂I − θI))m = 〈f̂I − fI , φI,m〉I = 〈Y − fI , φI,m〉I = 〈f − fI , φI,m〉I + 〈ξ , φI,m〉I ,
thus XI(θ̂I − θI) := BI + VI . Since f ∈ Σ(s, L),

(ΛIBI)m 6 ‖φI,m‖−1
I |〈f − fI , φI,m〉I | 6 ‖f − fI‖I 6 Lhs/k!,

then we can write

Λ−1
I (θ̂I − θI) = G−1

I

Lhs

k!
u+

σ√
nµ̄n(I)

G−1/2
I γI ,

where u ∈ R
k+1 is such that ‖u‖∞ 6 1 and γI = (σ

√
nµ̄n(I))−1G−1/2

I ΛIDIξ =: TIξ,
where DI is the matrix of size nµ̄n(I) × (k + 1) with entries (DI)i,m = (Xi − x)m, so that
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XI = (nµ̄n(I))−1D′
IDI . Since T′

ITI = σ−1Ik+1, we obtain that γI is, conditionally on Xn,
centered Gaussian with covariance equal to Ik+1. Consider I = I(xj , h) for some j ∈ Jn,

h > 0. From the inequality ‖ · ‖∞ 6 ‖ · ‖ 6
√
k + 1‖ · ‖∞ and since ‖G−1/2

I ‖ 6
√
k + 1‖G−1

I ‖
(GI is symmetrical with entries smaller than 1 in absolute value) we get

‖Λ−1
I (θ̂I − θI)‖∞ 6 ‖G−1

I

Lhs

k!
u‖∞ +

σ√
nµ̄n(I)

‖G−1/2
I γI‖∞

6 ‖G−1
I ‖(k + 1)

(
Lhs +

σ√
nµ̄n(I)

‖γI‖∞
)

= λ−1(GI)(k + 1)
(
Lhs +

σ√
nµ̄n(I)

max
06m6k

|W(k+1)j+m|
)
,

where W := (γI(x0,h), . . . , γI(xMn ,h))
′. If T := (TI(x0,h), . . . ,TI(xMn ,h))

′ we have W = Tξ,

thus W is a centered Gaussian vector and for any (k + 1)j 6 m 6 (k + 1)j + k, j ∈ Jn we
have

E
n
f,µ{W 2

m} = (Var{W})m,m = (Var{γI(xj ,h)})m−(k+1)j,m−(k+1)j = 1,

since Var{γI(xj ,h)} = Ik+1. Then, we have proved that on ∩j∈JnΩn,I(xj ,h),

max
j∈Jn

‖Λ−1
I(xj ,h)(θ̂I(xj ,h) − θI(xj ,h))‖∞ 6 λ−1(GI(xj ,h))(k + 1)

(
Lhs +

σ√
nµ̄n(I(xj , h))

WM
)
,

where WM = max06m6(k+1)|Jn| |Wm|. Since Cn ⊂ Nn ∩ Ωn ∩ Ln, we have on Cn for h = hn

or h = tn,

max
j∈Jn

‖Λ−1
I(xj ,h)(θ̂I(xj ,h) − θI(xj ,h))‖∞ 6 (1 + o(1))λ−1(G)(k + 1)

(
Lhs +

σ√
nhµj

WM
)
.

Since Cn ⊂ Dn, we have for any j ∈ Jn, 0 6 m 6 k,

Cn ⊂ D̄n,2m,I(xj ,hn),δn
∩ D̄n,2m,I(xj ,tn),δn

,

thus on Cn, when h = hn or h = tn, we clearly have

(ΛI(xj ,h))m,m = ‖φI(xj ,h),m‖−1
I(xj ,h) 6 (1 + o(1))h−m

√
2m+ 1.

Since f̃
(m)
n (xj) − f (m)(xj) = m!

(
(θ̂I(xj ,hn))m − (θI(xj ,hn))m

)
, it follows that on Cn:

|f̃ (m)
n (xj) − f (m)(xj)| 6 (1 + o(1))λ−1(G)m!

√
2m+ 1(k + 1)h−m

n (Lhs
n +

σ√
nhnµj

WM )

= O(hs−m
n )(1 + (logn)−1/2WM ),

thus (5.3). Inequality (5.4) is obtained similarly, and (5.2) follows from lemma 2. �

Proof of lemma 2. If I = I(x, h), we define the event

Dn,m,I,δ :=
{∣∣∣

1

µ(x)hm+1

∫

I
φI,m dµ̄n − χm

∣∣∣ 6 δ
}
.

Note that (5.13) entails

Dn,0,I(xj ,(1−δn)hj),δ1,n
∩ Dn,0,I(xj ,(1+δn)hj),δ1,n

⊂ Cn,j , (5.30)

where we recall that δ1,n := 1− (1+δn)−(2s+1). First, we prove (5.16). If δ3,n = δn/(2−δn),
we have for any interval I,

Dn,m,I,δ3,n
∩ Dn,0,I,δ3,n

⊂ D̄n,m,I,δn
.
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Using the fact that λ(M) = inf‖x‖=1〈x , Mx〉 for any symmetrical matrix M and since GI ,
G, XI are symmetrical, we obtain

⋂

06p,q6k

{
|(GI − G)p,q| 6

δn
(k + 1)2

}
⊂ Ln,I , (5.31)

and

2k⋂

m=0

D̄n,m,I, δn
(k+1)2

⊂
⋂

06p,q6k

{∣∣(XI − X)p,q

∣∣ 6
δn

(k + 1)2

}
⊂ {|λ(XI) − λ(X)| 6 δn}.

Recalling that if I = I(xj , h),

(GI)p,q =
〈φI,p , φI,q〉I
‖φI,p‖I‖φI,q‖I

=

1
µjhm+1

∫
I φI,p+q dµ̄n

(
1

µjhm+1

∫
I φI,2p dµ̄n

)1/2( 1
µjhm+1

∫
I φI,2q dµ̄n

)1/2
,

we obtain for δ4,n = δn/
(
(2 − δn)(2k + 1)(k + 1)2

)
,

Dn,2p,I,δ4,n
∩ Dn,2q,I,δ4,n

∩ Dn,p+q,I,δ4,n
⊂

{
|(GI − G)p,q| 6

δn
(k + 1)2

}
,

thus
2k⋂

m=0

Dn,m,I,δ4,n
⊂ Ln,I ,

and clearly for n large enough, if I = I(xj , hn) or I = I(xj , tn),

2k⋂

m=0

Dn,m,I,δ4,n
⊂ {|λ(XI) − λ(X)| 6 δn} ∩

{∣∣∣
µ̄n(I)

|I|µj
− 1

∣∣∣ 6 δn

}
⊂ Ωn,I . (5.32)

Moreover, if I = I(xj , hn), we have on D̄n,2m,I,δn
for any 1 6 m 6 k and n large enough,

‖φI,m‖I > (1 − o(1))hm
n

√
2m+ 1 > 1/

√
n. (5.33)

We define

Dn,m :=
⋂

j∈Jn

(
Dn,m,I(xj ,hn),δ5,n

∩ Dn,m,I(xj ,tn),δ5,n

∩ Dn,0,I(xj ,(1−δn)hj),δ5,n
∩ Dn,0,I(xj ,(1+δn)hj),δ5,n

)
,

where δ5,n = δ4,n ∧ δ3,n ∧ δ1,n, Dn :=
⋂2k

m=0 Dn,m and we choose

An := Dn ∩ Bn.

In view of (5.30), (5.31), (5.32), (5.33) we have Dn ⊂ Ωn∩Ln∩Dn∩Γn and since Dn,0,I,δ =
Nn,I , we obtain Dn ⊂ Cn ∩ Γn, thus (5.16). Now, we prove (5.15). Since µ ∈ Σ(ν, ̺), it is
easy to see that for I = I(xj , hn) or I = I(xj , tn) and n large enough,

∣∣∣En
µ

{ 1

µ(x)|I|m+1

∫

I
φI,m dµ̄n

}
− χm

∣∣∣ 6 δ5,n/2.

Then, using Bernstein inequality, we obtain for n large enough, if h = hn, h = tn, h =
(1 − δn)hj or h = (1 + δn)hj ,

P
n
µ{Dc

n,m,I(xj ,h),δ5,n
} 6 2 exp(−D4δ

2
5,nnh) 6 2 exp(−D5n

s/(2s+1)),

with D4, D5 positive constants, where we used the fact that δ25,nn
s/(2s+1) > 1 for n large

enough and nh > D6n
2s/(2s+1). Hence, together with (5.14), we obtain (5.15). �
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Proof of lemma 3. If µ̄n(I) = 0 we have θ̂I = 0 and the result is obvious, thus we assume

µ̄n(I) > 0. In this case, ΛI , X̄I and GI are invertible, and by definition of θ̂I ,

θ̂I = ΛIΛ
−1
I θ̂I = ΛIG−1

I ΛIX̄I θ̂I = ΛIG−1
I ΛIYI = ΛIG−1

I (BI + VI),

where (BI)m = ‖φI,m‖−1
I 〈f , φI,m〉I and (VI)m = ‖φI,m‖−1

I 〈ξ , φI,m〉I . Since ‖f‖∞ 6 Q we

have |(BI)m| = ‖φI,m‖−1
I |〈f , φI,m〉I | 6 ‖f‖I 6 Q, thus ‖BI‖∞ 6 Q.

Conditionally on Xn, VI is centered Gaussian and it is an easy computation to see that
its covariance matrix is equal to σ2(nµ̄n(I))−1ΛIXIΛI . Then ΛIG−1

I VI is conditionally

on Xn centered Gaussian with covariance matrix σ2(nµ̄n(I))−1X̄−1
I XIX̄

−1
I . If em is the

canonical vector with coordinates (em)p = 1p=m, we have

|(θ̂I)m| = |〈θ̂I , em〉| = |〈ΛIG−1
I BI , em〉| + σ

√
k + 1 γ,

where γ = (σ
√
k + 1)−1〈ΛIG−1

I VI , em〉. By definition, we have ‖X̄−1
I ‖ = λ−1(X̄I) 6√

nµ̄n(I), and clearly ‖XI‖ 6 k+1 and ‖Λ−1
I ‖ 6 1. Then, conditional on Xn, γ is centered

Gaussian with variance

〈em , X̄−1
I XIX̄

−1
I em〉

(k + 1)nµ̄n(I)
6

‖X̄−1
I ‖2‖XI‖

(k + 1)nµ̄n(I)
6 1.

Since ‖G−1
I ‖ 6 ‖Λ−1

I ‖‖X̄−1
I ‖‖Λ−1

I ‖ 6
√
nµ̄n(I) 6

√
n and (ΛI)0,0 = 1, we have

E
n
f,µ

{
|(θ̂I)0|p|Xn

}
6 (k + 1)p/2np/2(Q ∨ 1)p

E
n
f,µ{

(
1 + σ|γ|)p|Xn

}
= O(np/2),

for any I ⊂ [0, 1], and since ‖ΛI‖ 6
√
n on Γn,I , it follows that

E
n
f,µ

{
|(θ̂I)m|p|Xn

}
6 (k + 1)p/2np(Q ∨ 1)p

E
n
f,µ{

(
1 + σ|γ|)p|Xn

}
= O(np),

for any 1 6 m 6 k. �

6. Proof of theorem 2

The proof of the lower bound consists in a classical reduction to the Bayesian risk over an
hardest cubical subfamily of functions, see Korostelev (1993), Donoho (1994), Korostelev
and Nussbaum (1999) and Bertin (2004b). The main difference with the former proofs is
that the subfamily of functions depends on the design via the bandwidth hn,µ(x), and that
we work within a ”small” interval In. We recall that ϕs is defined by (2.4) and that it has
compact support [−Ts, Ts]. Let hI

n := maxx∈In hn,µ(x) and

Ξn := 2Tscs(2
1/(s−k) + 1)hI

n.

If In = [an, bn], Mn := [|In|Ξ−1
n ], we define the points

xj := an + j Ξn, j ∈ Jn := {1, . . . ,Mn}. (6.1)

We denote again µj = µ(xj), hj = hn,µ(xj). Let us define the event

Hn,j :=
{∣∣∣

1

ncshjµj

n∑

i=1

ϕ2
s

(Xi − xj

cshj

)
− 1

∣∣∣ 6 ε
}
,

and Hn := ∩j∈JnHn,j . Together with the fact that ‖ϕs‖2 = 1, we obtain using Bernstein
inequality that

lim
n→+∞

P
n
µ{Hn} = 1. (6.2)

The subfamily of functions is defined as follows: we consider an hypercube Θ ⊂ [−1, 1]Mn ,
and for θ ∈ Θ, we define

f(x; θ) :=
∑

j∈Jn

θjfj(x), fj(x) := Lcssh
s
jϕs

(x− xj

cshj

)
.
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Clearly, fj ∈ Σ(s, L). Let us show that f(· ; θ) ∈ Σ(s, L). We note that

Supp
(
ϕs

( · − xj

cshj

))
=

[
xj − csTshj , xj + csTshj

]
=: Ij .

If x, y ∈ Ij then f(x; θ) = θjfj(x), f(y; θ) = θjfj(y) and the result is obvious. It suffices to
consider the case x ∈ Ij and y ∈ Ij+1. In this case, we have

|f (k)(x;θ) − f (k)(y; θ)| = |θjf
(k)
j (x) − θj+1f

(k)
j+1(y)|

6 |f (k)
j (x) − f

(k)
j (xj + csTshj)| + |f (k)

j+1(xj+1 − csTshj+1) − f
(k)
j+1(y)|

6 L
(
|x− xj − csTshj |s−k + |xj+1 − csTshj+1 − y|s−k

)

6 L
(
(2csTshj)

s−k + (2csTshj+1)
s−k

)
6 2L(2csTsh

I
n)s−k.

Moreover, since x ∈ Ij and y ∈ Ij+1 we have |x − y| > xj+1 − xj − csTs(hj + hj+1) >

Ξn − 2csTsh
I
n = 21/(s−k)(2csTsh

I
n), and finally |f (k)(x; θ) − f (k)(y; θ)| 6 L|x − y|s−k, thus

f(· ; θ) ∈ Σ(s, L). For any j ∈ Jn, we define the statistics

yj :=

∑n
i=1 Yiϕs(Xi)∑n
i=1 ϕ

2
s(Xi)

.

Since the fj have disjoint supports, we have that conditionally on Xn, the yj are Gaussian
independent with E

n
f,µ{yj |Xn} = θj . Since

v2
j := E

n
f,µ{y2

j |Xn} =
σ2

∑n
i=1 f

2
j (Xi)

,

we obtain that on Hn,
2s+ 1

2(1 + ε) log n
6 v2

j 6
2s+ 1

2(1 − ε) log n
. (6.3)

In the model (1.1) with f(·) = f(· ; θ), conditionally on Xn, the likelihood function of
(Y1, . . . , Yn) can be written on Hn in the form

dP
n
f,µ

dλn
|Xn

(Y1, . . . , Yn) =

n∏

i=1

gσ(Yi)
∏

j∈Jn

gvj
(yj − θj)

gvj
(yj)

, (6.4)

where gv is the density of N(0, v2), and λn is the Lebesgue measure over R
n. This fact

follows from the following computation:
n∏

i=1

gσ(Yi)
∏

j∈Jn

gvj
(yj − θj)

gvj
(yj)

=
1

σn(2π)n/2

n∏

i=1

exp
(
− Y 2

i /(2σ
2)

) ∏

j∈Jn

exp
(
(2θjyj − θj)/(2v

2
j )

)

=
1

σn(2π)n/2

n∏

i=1

[
exp

(−Y 2
i +

∑
j∈Jn

(
2Yjθjfj(Xi) − θ2

j fj(Xi)
2
)

2σ2

)]

=
1

σn(2π)n/2

n∏

i=1

exp
(
− (Yi − f(Xi; θ))

2

2σ2

)
=

dP
n
f,µ

dλn
|Xn

(Y1, . . . , Yn).

In the following, we denote Σ = Σ(s, L) and EI
n,f,T := supx∈I rn,µ(x)−1|T (x) − f(x)|. Since

w(·) is nondecreasing and f(· ; θ) ∈ Σ for any θ ∈ Θ, we have for any probability distribution
B on Θ, by a minoration of the minimax risk by the Bayesian risk,

inf
T

sup
f∈Σ

E
n
f,µ

{
w(EI

n,f,T )
}

> w
(
(1 − ε)P

)
inf
T

∫

Θ
P

n
θ

{
EI

n,f,T > (1 − ε)P
}
B(dθ),
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where P
n
θ := P

n
f(· ;θ),µ. Since by construction f(xj ; θ) = rjθjP and xj ∈ In, we obtain

inf
T

∫

Θ
P

n
θ

{
EI

n,f,T > (1 − ε)P
}
B(dθ) > inf

bθ

∫

Θ

∫

Hn

P
n
θ

{
max
j∈Jn

|θ̂j − θj | > 1 − ε|Xn

}
dP

n
µB(dθ),

>

∫

Hn

inf
bθ

∫

Θ
P

n
θ

{
max
j∈Jn

|θ̂j − θj | > 1 − ε|Xn

}
B(dθ)dP

n
µ,

where infbθ
is taken among any measurable vector (with respect to the observations (1.1))

in R
Mn . Then, we note that theorem 2 follows from (6.2) if we prove that on Hn,

sup
bθ

∫

Θ
P

n
θ

{
max
j∈Jn

|θ̂j − θj | < 1 − ε|Xn

}
B(dθ) = o(1). (6.5)

We choose Θ := ΘMn
ε where Θε := {−(1 − ε), 1 − ε} and B :=

⊗
j∈Jn

bε where bε :=

(δ−(1−ε) + δ1−ε)/2. Note that using (6.4), the left hand side of (6.5) is smaller than
∫ ∏n

i=1 gσ(Yi)∏
j∈Jn

gvj
(yj)

( ∏

j∈Jn

sup
bθj∈R

∫

Θε

1
|bθj−θj |<1−ε

gvj
(yj − θj)dbε(θj)

)
dY1 . . . dYn,

and θ̂j = (1− ε)1yj>0− (1− ε)1yj<0 are strategies attaining the maximum. Thus, it suffices

to prove the lower bound among estimators θ̂ with coordinates θ̂j ∈ Θε and measurable
with respect to yj only. Since the yj are independent with density gvj

(· − θj), the left hand
side of (6.5) is smaller than

∏

j∈Jn

max
bθj∈Θε

∫

Θε

∫

R

1
|bθj(uj)−θj |<1−ε

gvj
(uj − θj)duj dbε(θj)

=
∏

j∈Jn

(
1 − inf

bθj∈Θε

∫

Θε

∫

R

1
|bθj(u)−θj |>1−ε

gvj
(u− θj)du dbε(θj)

)
,

and if Φ(x) :=
∫ x
−∞ g1(t)dt and D1 is a positive constant,

inf
bθj∈Θε

∫

Θε

∫

R

1
|bθj(u)−θj |>1−ε

gvj
(u− θj)du dbε(θj)

> inf
bθj∈Θε

1

2

∫

R

(
1bθj>0

+ 1bθj<0

)
gvj

(u− (1 − ε)) ∧ gvj
(u+ (1 − ε))du

=
1

vj

∫ 0

−∞
g1

(y − (1 − ε)

vj

)
du = Φ

(
− 1 − ε

vj

)
>

D1√
log n

n−(1−ε)2(1+ε)/(2s+1),

where we used (6.3) and the fact that for x > 0, Φ(−x) = (1 + o(1)) exp(−x2/2)/(x
√

2π)

If Ln := n−(1−ε)2(1+ε)/(2s+1)(logn)−1/2, it follows that the left hand side of (6.5) is smaller
than

(1 −D1Ln)Mn 6 exp
(
|In|Ξ−1

n log
(
1 −D1Ln

))
,

and if D2 is a positive constant,

|In|Ξ−1
n Ln = D2|In|nε/(2s+1) × nε2(1−ε)/(2s+1)(logn)−1/2−1/(2s+1) → +∞

as n→ +∞, since |In|nε/(2s+1) → +∞, thus the theorem. �
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Bertin, K. (2004b). Minimax exact constant in sup-norm for nonparametric regression with random
design. J. Statist. Plann. Inference, 123 225–242.

Brown, L. D., Cai, T., Low, M. G. and Zhang, C.-H. (2002). Asymptotic equivalence theory
for nonparametric regression with random design. The Annals of Statistics, 30 688 – 707.

Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and
white noise. The Annals of Statistics, 24 2384–2398.

Donoho, D. L. (1994). Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery.
Probability Theory and Related Fields, 99 145–170.

Donoho, D. L. and Low, M. G. (1992). Renormalization exponents and optimal pointwise rates
of convergence. The Annals of Statistics, 20 944–970.

Fuller, A. T. (1961). Relay control systems optimized for various performance criteria,. Automatic
and remote control, 1.
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