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SHARP ESTIMATION IN SUP NORM WITH RANDOM DESIGN

STEPHANE GAIFFAS

Laboratoire de Probabilités et Modéles Aléatoires
Université Paris 7 Denis-Diderot
emasl: gaiffas@math.jussieu.fr

ABSTRACT. In this paper, we study the estimation of a function based on noisy inho-
mogeneous data (the amount of data can vary on the estimation domain). We consider
the model of regression with random design, where the design density is unknown. We
construct an asymptotically sharp estimator which converges, for sup norm error loss,
with a spatially dependent normalisation which is sensitive to the variations in the local
amount of data. This estimator combines both kernel and local polynomial methods, and
it does not depend within its construction on the design density. Then, we prove that the
normalisation is optimal in an appropriate sense.

1. INTRODUCTION

In most cases, the models considered in curve estimation do not allow situations where
the data is inhomogeneous, in so far as the amount of data is implied to be constant over
space. This is the case in regression with equispaced design and white noise models, for
instance. In many situations, the data can happen to be concentrated at some points and
to be little elsewhere. In such cases, an estimator shall behave better at a point where there
is much data than where there is little data. In this paper, we propose a theoretical study
of this phenomenon.

The available data [(X;,Y;),1 < i < n] is modeled by

Yi = f(Xi) + &, (1.1)

where & are i.i.d. centered Gaussian with variance o and independent of X;. The design
variables X; are i.i.d. of unknown density p on [0, 1], which is bounded away from 0 and
continuous. We want to recover f. When g is not the uniform law, the information is
spatially inhomogeneous. We are interested in recovering f globally, with sup norm loss
9lloc := sup,epoqy lg(x)]. An advantage of this norm is that it is exacting: it forces an
estimator to behave well at every point simultaneously. A commonly used benchmark for
the complexity of estimation over some fixed class ¥ is the minimax risk, which is given by

Rn(2) ::i?f?elgE}‘{Hﬁz—fHoo} (1.2)

where the infimum is taken over all estimators. We say that 1, is the minimax convergence
rate over ¥ if R, (X) < v, where a,, < b, means 0 < liminf, a,, /b, < limsup,, a, /b, < +oo.
In the regression model (1.1) with ¥ a Holder ball with smoothness s > 0 and p positive and
bounded, we have 1, = (logn/n)¥(2+1) see Stone (1982). Thus, in this case, the minimax
rate is not sensitive to the variations in the amount of data. Indeed, such global minimax
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benchmarks cannot assess the design-adaptation property of an estimator. Instead of (1.2),
an improvement is to consider the spatially dependent risk

sup EF{ sup 7 (2) 7| ful@) — f ()]}

fex z€[0,1]
of some estimator fn, where 7,(-) > 0 is a family of spatially dependent normalisations.
If this quantity is bounded as n — 400, we say that r,(-) is an upper bound over .
Necessarily, the ”optimal” normalisation satisfies 7, (z) < (logn/n)¥ s+t for any x (note
that the optimality requires an appropriate definition here). Therefore, in order to exhibit
such an optimal normalisation, we need to consider the sharp asymptotics of the minimax
risk.

2. RESULTS

If s, L > 0, we define the Holder ball ¥(s, L) as the set of all the functions f : [0,1] = R
such that
|f (@) = B )] < Llz —yl*, Va,y € [0,1],
where k = |s] is the largest integer k < s. If Q > 0, we define X9(s, L) := (s, L) N
{fst. ||fllo <@}, and we denote simply ¥ := X%(s, L) (the constant @ needs not to be
known). All along this study, we suppose:

Assumption D. There is v € (0, 1] and g, ¢ > 0 such that
p € X(v,0) and p(x) = q, for all z € [0,1].

In the following, we consider a continuous, non-negative and nondecreasing loss function
w(-) such that w(z) < A(1 4+ |z|°) for some A,b > 0 (typically a power function). Let us
consider

( logn )5/(2s+1). 2.1)

ny(x)
We prove in theorem 1 below that this normalisation is, up to the constants, an upper bound
over X, and that it is indeed optimal in theorem 2. We denote by IE" the integration with
respect to the joint law IPm of the observations (X;,Y;), 1 <i < n. The estimator used in
theorem 1 does not depend within its construction, on u.

Tnu(z) ==

Theorem 1 (Upper bound). Under assumption D, if fn is the estimator defined in section /
below, we have for any s, L > 0,

limsup, sup B, {w( sup ()" Yhal@) = f(2)])} < w(P), (22)
fex z€[0,1]
where i :
2 s/(2s+1
. 25/(25+1) 7 1/(25+1) s
Pi—o L 20 (52 - ) (2.3)
and @s is defined as the solution of the optimisation problem
s := argmax ¢(0), (2.4)
pEX(s,R),
lleoll2<1

where X(s, L;R) is the extension of ¥(s, L) to the whole real line.

In the same fashion as in Donoho (1994), the constant P is defined via the solution of
an optimisation problem which is connected to optimal recovery. We discuss this result in
section 3, where further details about optimal recovery can be found. The next theorem
shows that r, ,(-) is indeed optimal in an appropriate sense. In what follows, the notation
|I| stands for the length of an interval I.
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Theorem 2 (Lower bound). Under assumption D, if I, C [0,1] is any interval such that
for some € € (0,1),

L, n¥/ @) & 400 as n— +oo, (2.5)
we have
liminf,, 1nfsupEfM{w( sup 7 ()" Y fnlz) — f@)))} = w((1—e)P),
fn fEX z€ly

where P is given by (2.3) and the infimum is taken among all estimators. A consequence
is that if I, is such that (2.5) holds for any e € (0,1), we have

liminf,, inf supE’}’u{w( sup rnyu(aj)_1|ﬁ1(x) — f(@)])} = w(P). (2.6)
fn fEX zely

This result says that the normalisation ry, ,(-) cannot be strongly improved: no normal-
isation is uniformly better than 7, ,(-) within a "large” interval. This result is discussed in
the following section.

3. DISCUSSION

Literature. When the design is equidistant, that is X; = i/n, we know from Korostelev
(1993) the exact asymptotic value of the minimax risk for sup norm error loss. If v, :=
(logn/n)*/ (25t we have for any s € (0,1] and ¥ = (s, L)

hm 1nfsupEf{w 1||ﬁl — flloo)} = w(C),

n—-+
where
O = 525/(2s+1) [ 1/(25+1) (S + 1>$/(25+1)_ (3.1)
252
This result was the first of its kind for sup norm error loss. In the white noise model
dY = f(t)dt +n"Y2dW;, te[0,1], (3.2)

where W is a standard Brownian motion, Donoho (1994) extends the result by Korostelev
(1993) to any s > 1. In this paper, the author makes a link between statistical sup norm
estimation and the theory of optimal recovery (see below). It is shown for any s > 0 and
¥ = ¥(s, L) that the minimax risk satisfies

tim_infsup B {1 fu = fll)} = (P, (33)

n—-+o00 In fex

where P is given by (2.3) with ¢ = 1. When s € (0, 1], we have P = C, see for instance
in Leonov (1997). Since the results by Korostelev and Donoho, many other authors worked
on the problem of sharp estimation (or testing) in sup norm. On testing, see Lepski and
Tsybakov (2000), see Korostelev and Nussbaum (1999) for density estimation and Bertin
(2004a) for white noise in an anisotropic setting. The paper by Bertin (2004b) works in
the model of regression with random design (1.1). When p satisfies assumption D and
¥ = %%(s, L) for s € (0,1], it is shown that
i i sup Fulwnullfo = flloo)} = w(C), (34)
where C'is given by (3.1) and v, , := [logn/(ninf, u(x))]*?+1). Note that the rate vy,
differs from (and is larger than) 1, when g is not uniform. A disappointing fact is that vy, ,
depends on p via its infimum only, which corresponds to the point in [0, 1] where we have
the least information. Therefore, this rate does not take into account all the other regions
with more data.
As a consequence, the results presented here are extensions of both the papers by Donoho
(1994) and Bertin (2004b): our results are stated in the regression model with random
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design, where the design density is unknown. In particular, we provide the exact asymptotic
value of the minimax risk in regression with random design for any s > 0, which was
known only for s € (0,1] beforehand. Nevertheless, the main novelty is, in our sense,
the introduction of a spatially dependent normalisation factor for the assessment of an
estimator, with an appropriate optimality criterion. The asymptotically sharp minimax
framework is considered here only by necessity.

Optimal recovery. The problem of optimal recovery consists in recovering f from
y(t) = F(O) +ex(t), LER, (3.5)

where € > 0, z is an unknown deterministic function such that ||z||2 < 1 and f € C(s, L;R) :=
(s, L;R) N L%(R). The link between this deterministic problem and estimation with sup
norm loss in white noise model was made by Donoho (1994), see also Leonov (1999). The
minimax risk for the optimal recovery of f at 0 from (3.5) is defined by

Es(e, L) :=inf sup |T(y) — f(0)],
T feC(s,LiR)
Ilf— y||2<€

where inf7 is taken among all continuous and linear forms on L?(R). We know from Micchelli
and Rivlin (1977), Arestov (1990) that

Ben= it (s | [KOUE - F0)]+elKl) = sw f0).
KeL2(R) feC(s LiR) F€X(s,LiR)
[fll2<e

Note that oy satisfies p5(0) = E5(1,1). To our knowledge, the function ¢, is known only for
s € (0,1] U {2}. The kernel K, for s € (0,1] was found by Korostelev (1993) and by Fuller
(1961) for s = 2. For any s > 0, we know from Leonov (1997) that ¢, is well defined and
unique, that it is even and compactly supported and that ||¢s|][2 = 1. A renormalisation
argument from Donoho (1994) shows that Ey(e, L) = Eg(1,1)LY/2s+t1)g2s/@s+) - thus it
suffices to know FE(1,1). If we define

BsL)= s | [ K@ - £0)] (36)
feC(s,L;R)
we have the decomposition Es(1,1) = B(s,1)+| K||2, and in particular, if P is given by (2.3)
and
oN\N2/(2s+1) ;2 \1/(2s+1)
S o
we have
P = Lei(B(s, 1) + | K]J2). (3.5)

About theorem 1. We can understand the result of theorem 1 heuristically. Following
Brown and Low (1996) and Brown et al. (2002), we can say that an ”idealised” statistical
experiment which is equivalent (in the sense that the LeCam deficiency goes to 0) to the
model (1.1) is given by the heteroscedastic white noise model

dY;" = f(t)dt +

dB;, telo,1], (3.9)
nyu(t)

where B is a Brownian motion. In view of the result (3.3) by Donoho (1994), which is

stated in the model (3.2), and comparing the noise levels in the models (3.2) and (3.9)

(with o = 1), we can explain informally that our rate ry ,(-) comes from the former rate

¥y, where we "replace” n by nu(x).
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About theorem 2. From Bertin (2004b), we know when s € (0, 1] that

liminf,, i]glf ?LelgE?’u{w(v,;Lan - fHoo)} > w(P),

where vy, = [logn/(ninf, p(x))]*/ 2+, An immediate consequence is

liminf,, inf supE?’u{w( sup Tnyu(x)_1|fn(x) — f(@)])} = w(P), (3.10)
fn fEX z€[0,1]

where it suffices to use the fact that r, ,(z) < vy, for any z € [0,1]. This entails that ry, ,(-)
is optimal in the classical minimax sense. However, this lower bound is much weaker than
the one considered in theorem 2: it does not exclude the existence of another normalisation
on(+) such that o, () < 7y () for "many” x. Therefore, to prove the optimality of ry, ,(-),
we need to localise the lower bound. Indeed, in theorem 2, if we choose I,, = [0, 1] we find
back (3.10) and if I, = [z — (logn)?,Z + (logn)?] N[0, 1] for any v > 0 and z € [0, 1] such
that u(z) # inf,epo,1) #(), then obviously vy, does not satisfy (2.6).

About assumption D. In assumption D, p is supposed to be bounded from below, and
from above since it is continuous over [0,1]. When g is vanishing or exploding at a fixed
point, we know from Gaiffas (2005) that a wide range of pointwise minimax rates can be
achieved, depending on the behaviour of y at this point. In this case, we expect the optimal
normalisation (whenever it exists) to differ from the classical minimax rate 1), not only up
to the constants, but in order.

Adaptation to the smoothness. The estimator used in theorem 1 depends on the
smoothess s of f (see below). In practice, such a parameter is unknown. Therefore, this es-
timator cannot be used directly: some smoothness-adaptive technique, like Lepski’s method
(see Lepski et al. (1997)) can be applied. However, this estimator is considered here for
theoretical purposes only, and note that even in the white noise model, the problem of sharp
adaptive estimation in sup norm over Holder classes remains open when s > 1.

4. CONSTRUCTION OF AN ESTIMATOR

The estimator fn described below uses both kernel and local polynomial methods. Its
construction is divided into two parts: first, at some well-chosen discretization points, we
use a Nadaraya-Watson estimator with optimal kernel and a design data driven bandwidth.
This part of the estimator is used to attain the minimax constant. Then, between the
discretization points, the estimator is defined by a Taylor expansion where the derivatives
are estimated by local polynomial estimation. We define the empirical design sample dis-

tribution
1 n
Hn = E Z 5X¢7
=1
where ¢ is the Dirac mass, and for h > 0, = € [0, 1], we consider the intervals

<z <
(1) :_{ [z, +h] whenO0<2<1/2, (4.1)

[x —h,z] when 1/2 <z < 1.

The choice of non-symmetrical intervals allows to skip boundaries effects. Then we define,
when it makes sense, the "bandwidth” at x by

Ha(z) = argmin {h s.t. W2 n(I(z,h)) > log n/n}, (4.2)
hel0,1]
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which makes the balance between the bias h® and the variance [logn/(nfi,(I))]*/? of the
kernel estimator. When the event in (4.2) is empty (which occurs with a very small prob-
ability for large n), we take simply H,(z) := max(l — z,z). We consider the sequence of
points

xj:=jAn, Ay, :=(log n) 28/ @sH1) =1/ (@s41) (4.3)

for j € T, := {0, ..., [A 1]} where [a] is the integer part of a with xp;, = 1, M,, = |J,,| (the
notation |A| stands also for the size of a finite set A). We define HM := maxje s, Hn(z;).
From Leonov (1997, 1999) we know that the function ¢, defined by (2.4) is even and
compactly supported. We denote by [—T,Ts] its support and 7, := min(QCSTSHT]lV[,(Sn)
where §,, = (logn)~! and ¢, is given by (3.7).

As usual with the estimation of a function over an interval, there is a boundary correction.
We decompose the unit interval into three parts [0, 1] = J,, 1UJy, 2UJy, 3 where Jp, 1 := [0, 75,],
Jn2 = [tn,1 — 1] and Jp3 = [1 — 7,1]. We also define Jo, = {jlz; € Jon} for
a € {1,2,3}. If s is defined by (2.4), we consider the kernel

K = @5/ [s. (4.4)

The "sharp” part of the estimator is defined as follows: at the points x;, we define fn by

1 “ XZ‘ — Ty
nHy(z;) ;EKS<can(xj)>
" . = n 1f] S j2,n7
Folzj) =g [5 1 K ( Xi — x; )} (4.5)
v nHp(z;) _ ’ csHy ()
fn(xj) if j € jlm,UjS,n-

This estimator is (up to the correction near the boundaries) a Nadaraya-Watson estimator
with the optimal kernel Ky and a bandwidth fitted to the local amount of data. The
boundary estimator f,, is defined below.

We recall that & = [s] where s is the smoothness of the unknown signal f. For any
interval I C [0,1] such that f,(I) > 0, we define the inner product

1 _

where flfdﬂn = ZXieIf(Xi)/n. If I =I(z,h) (see (4.1)), we define ¢, (y) = (y — z)™
and we introduce the matrix X; and vector Y; with entries

(XD)pg = (b1p, b1g)1 and (Y1)p =Y, ¢1p)1,

for 0 < p,q < k. Then, we consider

X=X+

1
—— L1 1oc |,
nlan(I) n,I

where Q,, 1 := {\(X[) > (nﬂn(I))*l/z}, where A(M) is the smallest eigenvalue of a matrix
M and where Iy is the identity matrix on RF+1 Note that the correction term in X;
entails A(X7) > (nfin(1))~"/2. When fi,,(I) > 0, the solution #; of the system

X[Q =Y,

is well defined. If fi,,(I) = 0, we take 51 = 0. Then, for any 1 < m < k, a natural estimate
of f0m)(z;) is

Fm () = m!(gl(wwhn))m’
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where hy, := (¢/L)%?stY(logn/n)"/(25+1). The boundary estimator is given by f,(z;) :=
(01(2;,t0))0, Where t,, := (o) L)%/ @st0)p=1/(2s+1) 1f we define

- ; —-1/2
Pus = { min 67l > n'/2), (4.6)

where || - ||? = (-, -)7, then for x € [x;,%4+1), j € Tn, We take
fim ()
In (- xj)m) 10,y (4.7)

m

k
Jal@) = Fatw) + (3
m=1

5. PROOF OF THEOREM 1

The whole section is dedicated to the proof of theorem 1. We denote by X, the sigma-
algebra generated by X1,..., X, and by P} the joint law of X1,..., X;,. We recall that the
discretization points x; are given by (4.3). We introduce

hnu(@) = [logn/ (np(x))]/ 2+,
and it is convenient to introduce for j € J,: Hj := Hp(xj), hj := hy u(x;), 1y = p(z;) and
rj = Tp ().

Step 1: approximation by the discretized risk. We introduce the uniform risk

gn,f = sup "”n,u(x)71|ﬁl(m) - f(x)],

z€[0,1

and its discretized version 5ﬁf I= SUPje 7, 7“]-_1|fn(33j) — f(z;)|. In view of assumption D,
we have pu(-)%/(2stD) € S(sv/(25 + 1), 0/ ?+V) | thus

s rge(@) ™ = Y < (o/q) BTV AR @D = (1)L, (5.1)
TE[T;,Tj41

Since f € EQ(S, L), writing the Taylor expansion of f at = € [z;,z;41], we obtain:

Fule) — F@) < Vo) — £a)l+ 3T eg) — £ ) E 0 4 g,

1~

and in view of (5.1):
k _ A™
Eng < (140(1)) (&A,f +?;?7>§r;1 2—1 REHE f(m)(ﬂfjﬂﬁ) +0(57),

where we recall that §, = (logn)~!'. In this step, we need the following lemma, which
provides a control over the local polynomial estimator uniform risk. Its proof is given below
in the section.

Lemma 1. There is an event C, € X, such that, under assumption D,

Pr{cs} < exp (— Den®/ (<t (5.2)
where D¢ > 0, and a centered Gaussian vector W € RETDMn yyitp

PAWSE =1, 0<p< (k+1)M,,
such that on Cyp, one has for any 0 < m < k and f € X(s, L):

max FS @) = £ ()] = Oy ™) (1 + (logn) ' /2W M), (5:3)
J€In
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where WM = Maxo<p< (k+1)M, |Wpl- For the estimator near the boundaries, we have on
Cn, for a =1 (the case a = 3 is similar):
[max |[falaj) = fla;)] = O (1 + W), (5.4)

where W(l) = InaX()gpg(kJrl)llen‘ ‘Wp|
In view of (5.3), we have on Cy, for any 1 < m < k:

a7 (2) = 1) () |/t = O(5) (1 + (log ) 2107,

J n
then,

Ensle, < (1+0(1)Es1e, +O0(0n)(1+ 5,2 W™) +o(1).

Let us define the event W), := {|WM —E}LW{WMH 51}, Since W is a centered Gaussian
vector such that E;‘”{Wg} =1for 0 < p < (k+ 1)M,, it is well known (see for instance
in Ledoux and Talagrand (1991)) that E?vu{WM} < [2log((k 4 1)M,)]Y/? = 0(6;1/2) and

1AW} < 2exp(—6,7/2). (5.5)
Thus,
EnLle,rw, < (1+0(1)Em e, + o(1). (5.6)

Step 2: some events study. In what follows, it is convenient to write K instead of K,
and to introduce

Kij = K[(X; — 25)/(eshy)],  Kij == K[(X; — ) /(csHj)],
and g; := ncshjpg, q_j = ncsHj,uj, where ¢ is given by (3.7). We introduce also

Zz 1Kij, Q= ZZ 1Kj, S5 = ZZ 1 zg’

and the events
Any = {]Qs/T — 1] S Lasy™ VY, Bpj = {|Qs/q; — 1] <dn},
Crj = {|Hj/hj = 1] < 6n}, Enji={|8;/g; — |K[3] < Lusy™D},

By :=Njeg,, (Anj VB NEnj) N Njez,Cns (5:7)
where L4 and Lg are some fixed positive constants, 6, = (logn)~!, and the sets of indices
Jan are defined in section 4. In this step, we control the probabilities of these events.

For j € Jan, we consider the sequence of i.i.d variables (;; 1= K;; — ]EZ{Kij}, 1<i<n
Since p € ¥y(v, 0) and [ K = 1, we have for n large enough |E{K1;}/q; — 1| < 8,/2, thus
B, C {12011 Gijl /a5 < 0n/2}. Since [Gij| < 2||K oo and Y77 ER{¢Z} < (14 dn)g; [ K?
for n large enough, Bernstein inequality entails

Pr{BS ;} < 2exp(—Dyd2n*/(25+)) (5.8)

for any j € Jo,, where D is a p081t1ve constant. Since ¢; € X(s,1;R), we have K €
Y(min(s, 1), Li; R) where L == ([ ¢s) 71 if 0 < s <1 and Lg := |[K'||« if s > 1. Since
Supp K = [T, Ts], we have on C,,

On min(s,1)
) g = et (5.9)

where M;; := {|X; — ;| < ¢sTs(1 + 6n)h;}. We define ;5 := 1n,; — P{M;;}. On Cp ; we

have for n large enough ZCST Hn < Oy, and since z; € [7,,1 — Tn]

;) <1 =7y =1—=2¢,TeHM <1 —2¢,TsH; <1 —2¢Ts(1 — 8,)hj <1 — esTs(1+ 6,)h;

|KZJ Kz]| L Tmm(s 1) (
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for n large enough. On the other hand we have similarly z; > ¢sTs(1 + d,,)h;. Thus, since
p € X4(v, 0) we have

P2{M,; 1
‘u{lﬂ} —2T,| < / [z + csy(l + 0n)hy) — pjldy = O(hy).
(L4 0n)eshjp; yI<Ts

Since z; € [csTs(1 4 6n)hj, 1 — (1 + 0p)csTshj] C [csTshj, 1 — csTshj], we have for n large
enough that on C,, ;,

E? {Ki;} h; 0
fz,u' J _ ‘ . ‘ J _ ‘ v n
— - 1 K(y shj d —= — 11 <O(h .
| “/| Mo+ yes) = iy +| 72 (1) + 125
Then, we obtain that on C,, ; and for n large enough,
S K ‘ L (Ts6,)™m(sD ]P’”{Mlj} 5n
= -1 E nij| + — E Cz + O h¥
‘ di | j‘ (1 Y )mln(s 1) SHJ;UJ] q] | ]| ) — 0,

1 .
‘ Z zg‘ + O | Z CZ]’ " 2<2L Tmm(s 1)+1 + 1)('52(1111(3,1)7
=1

and taking L := 4(LKTmm(Svl>+1 + 1), we obtain
n n
T AL N Cryy <P an > gmin(sDg. ) 4 Py ZQJ’| > gmin(s.) g9y,
=1 =1

Then, applying Bernstein inequality to the sum of variables 7;; and ¢, 1 < 7 < n, we
obtain that for any j € J, 2,
Pr{AL ;N Chj} < 2exp(—Dad3,, n?/25HD), (5.10)

min(s, 1)

where Dy is a positive constant and dz ,, := 0y, We can prove

PI{ES ;N Cpj} < 2exp(—Dsd3,,n*/ @), (5.11)

where Dj is a positive constant in the same way as for the proof of (5.10), with an appro-
priate choice for L. If I = I(z,h) (see (4.1)) and 015, := 1 — (1 +6,) "1 we define the
event

N,.p = {‘Z&E })l - 1‘ < 51,71}. (5.12)

From the definitions of H; and hj, we obtain
{1 =6,)h; < Hj} = {(1 — (5n)25h?8 < log n/(nﬁn(I(xj, (1- 5n)hj)))}
_ {ﬂn(I(xj,(l — 0n)hy;)) <(1- 5n>f(2s+1)}’
115 (1 = 6n)h;
and then Ny, 702, (1-5,)n;) C {(1 — dn)h; < H;j}. We can prove in the same way that on the
other hand Ny, 7(z; (146,)n;) C {(1 +dn)h; > H;}, hence

No1(2;,(1-8,)h) O N 1(25,(1+62)h5) € Cni- (5.13)
If I = I(z,h), we have in view of assumption D that | [, u(t)dt — hu(z)|= O(h¥*1), thus,
if Z; := 1x,er — [; p(t)dt, we have {|>°1" | Zi|< nu(x)hdp1/2} C Ny 1 for n large enough.
Then, using Bernstein inequality to the sum of Z;, 1 < i < n, we obtain
P;{Ch;} < 2exp(—Dod ,n?/2Y),

for n large enough, where Do > 0 is fixed. Using together the previous inequalities, we
obtain
Pr{B5} < exp(—Dpn®/ D) (5.14)

for n large enough, where Dg > 0 is fixed.
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Step 3: controls on SnAf. We need the following lemma, which is proven below in the
section.

Lemma 2. There is an event A, € X,, such that, under assumption D,

Pr{AS} < exp(—Dan/ @) (5.15)
for n large enough, where D4 > 0 and such that
A, CcB,NC,NT,, (5.16)

where B, is given by (5.7), Cp, by lemma 1 and Ty, = ﬂjejnfn’l(%hn) where Iy, 1 is defined
by (4.6).

In this step, we prove that for any € > 0, when n is large enough, the following inequality
holds:

sup Pfu{g 114, > (1+€)P} <exp (— Dge(l Ae)(log n)2s/(25+1)), (5.17)
feXQ(s,L)
where Dg > 0, and we prove that
sup E7% u{w flAn)} =0(1). (5.18)
FEXQ(s,L)
We decompose the risk into

ERy =E07 +ERT+EXT (5.19)

where SnAf I= SUPje, T}llﬁ](xj) — f(zj)|. For a =1 and a = 3, E . is the risk at the

boundaries of [0,1]. Since on B, Qj/q; = 1 — L (57Ilnm(3 DS 0, for n large enough, the

denominator in (4.5) is larger than dy,. Hence, we can decompose on B,, the middle risk into
bias and variance terms as follows:

EXT <bug +Ung+ Zn, (5.20)
where the variance term is given by

-1
Zp = max |Zn;l, Zn;:= T >t &iWij,
JE€ET2,n

with W;; = I_(ij/Qj, and the bias terms are
bn s = max |b, ril, Upr:= max |U, 1,
n?f ]€j27n | n7f7.7| n?f JGJQ’n ’ n’fh]‘

{Bn.rj18,}, Un.fj i= Bungj — bngj with By pj := r; ' P;/Q;, Pj =

where b, 5 ; = E T
f(z))K;j. We use the three following inequalities: we have

2 (f(X) =

limsup, sup by s < LciB(s, 1), (5.21)

fex(s,L)
where B(s, L) is defined by (3.6), and there is a constant Dy > 0 such that for any € > 0,
sup IP’fM{U s, > e} <exp(—Dye(lA 5)n25/(23+1)). (5.22)

fex(s,L)
Moreover, we have for any € > 0,

sup P} {Zy1p, > (1+e)Lci| K2} < 2(logn)?/ sty =</t (5.23)
fEXQ(s,L)

We prove these inequalities below in the section. In view of (5.21), we have b, y < (1 +
2e)LciB(s, 1) for n large enough, and using (3.8) we obtain

(€871, > (14 26)P} C {Zalp, > (14 €)L&\ Kll2} U {Uus1p, > eLel||K |2}
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Then, in view of (5.22) and (5.23), it is easy to find Dy > 0 such that uniformly for
f € ¥9(s, L) and n large enough,

{68718, > (1+2e)P} <exp (— Dye(1Ae)logn). (5.24)

n

Now, we consider the boundary risk Sf }1 (the result is the same for SnA f3) In view of (5.4),
we obtain

£ le, = 0/ )1+ W),

and we have as previously E?M{W(l)} = O((loglogn)'/?), since | J1.n| = O(logn), and for
any A > 0,

P AWW —EL (W) > AL < 2exp(—22/2).
Then, for some D3 > 0, we obtain when n is large enough

Ful€nyle, > 2eP} < 2exp (— Dse?6, 2/,

This inequality, together with (5.24) and the fact that A, C B, NC, (see lemma 2) en-
tails (5.17). To prove (5.18), since w(z) < A(l + |z|?), it suffices to use (5.17) and the fact
that E {(6’A Ply,} = pf+o°tp 1IP’ { 114, > t}dt for any p > 0.

Step 4: conclusion of the proof. We need the following inequality, which is proven
below in the section:

sup Ef,u{w nf} O( 2b(1+s/(2s+1))) (5.25)
FEXQ(s,L)

Since w(-) is nondecreasing, we have for any € > 0
EY {w(€n )} SEY {w(€np)laom,} +EF {w(&n r)Lasowe b
c ey 1/2
w<<1 +20)P) + (B}, {0 (En )} P} LA UWEN)Y

(B, {w? (14 20)E214,) } PLAER 14, > (1 4+2)P})?
w((1+ 25) ) + O(nP1+s/25H1) exp(—(log n)?/4))
O(exp(—Dge(1 Ae)(log n)23/<2s+1))) =w((1+2¢)P) +o(1),

Py

where we used together lemma 2, equations (5.5), (5.17), (5.18), (5.25), and the fact that
w(+) is continuous. Thus,

limsup, sup E% {w(&, )} <w((1+2e)P),
fEXQ(s,L)

which concludes the proof of theorem 1 since € can be chosen arbitrarily small. U

The proofs of several technical inequalities have been postponed all along the proof of
theorem 1. We give the proofs of these results in what follows. Since b, ; and U, ; only
depend on f via its values in [0, 1], we have

sup bpr= sup byy, sup Upp= sup U,y. (5.26)
fex(s,L) fEX(s,LiR) fex(s,L) fex(s,L;R)
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Proof of (5.21). On A, ; N C,; we have (1 —o(1))g; < Q; < (14 o(1))g; and since
B, C A, ; NCy; for any j € Ja,, we have

bt = 5 B, {(Pi/Qi)1s, 3} < (1+0(1))(rjay) ' [E},{ P15, }.

n

Using (5.9), and introducing vy;(z) = Lpa)>fa;) — Li@)<fa;) L = e (f(Xi) —
f(a:j))Kij, Rij = Vf’j(Xi)(f(Xi) — f(fL’))].M and R; := Z?:l Rz‘j, we obtain

\E (APils,}| < . (IE" {Pj} +o(1)|EF  {R;})
1
TiH;

+o(1)] / (f(zj +yeshy) — f(z;))vy (2 + csyhj)p(z; + yeshy)
[yl <(1+dn)

<

(I s+ ycshn — @)K Wula; + yeshy)dy|

).

and since 1 € 34(v, o) we have

1+ 0(1)

bt < | / (F( + yeahy) — F(@) K (y)dy]

J
o(1) | Nt
+ riq /ZJ|<2T5 |f(x] " yCShJ) f(x])’dy'

Using (5.26) and the fact that (s, L; R) is invariant by translation,

sup by < (14+0(1)) sup max — ‘/ (cshyy) — f(0)K (y)dy|
feX(s,L;R) fex(s,LiR) JE€ET2,n T

Fo) [ Is(eshy) — SO)1dy).

Now we use an argument which is known as renormalisation, see Donoho and Low (1992).
We introduce the functional operator U, ,f(-) := af(b-). We have that f € ¥(s,L;R) is
equivalent to U, f € (s, Lab®;R). Then, choosing a = (Lcshs) and b = cgh; entails

sup by < (14 (1) LesB(5,1) + o(1),
fex(s,L;R)

and the result follows. OJ

Proof of (5.22). We recall that Uy, ¢; = By, — E?M{Bn,f,jll?n}- We use the same

notations as in the proof of (5.21). On B, we have (1 —o(1))g; < Q; < (1 + o(1))gj, and
since E?’H{Pf} = O(n?), we obtain in view of lemma 2 that |]E {P 15 H/(rjq5) = o(1).
Then on B,

U5l < (0 o) Py =~ B (R + o(D)ER, (P, }) + o),
and we know from the proof of (5.21) that [E% | {Pj1g,}|/(r;q;) = O(1), thus
[Unp il < (L4 0(1))(rja;) " 1P = B}, {P}| + o(1)
on B,,. Using (5.9) we obtain that on B,
1P =B}, AP} < |P =B}, {F} +o()|R; —E} {R;} + o(V)[E} ,{R;}],

and again from the proof of (5.21), we know that (rjqj)*1|E?’H{Rj}] = O(1). Then, if
Aj := er;q;/3, we have for n large enough

b ollUnpills, > e} <P} {IP; — B} {P;} > N} + P} {IR; —E} {R;}| > \;}.
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We use Bernstein inequality to the sum of variables P;; —E% {F;;} and R;; —E} {Ri;},
1 < i < n. These variables are independent and centered. We have |P;; —E’} {Pj;}| <
4Q K, and with the same arguments as at the end of the proof of (5.21) we obtain
S EF APy —EY {Py})*} = O(r3g).
Then, using Bernstein inequality, we can find D4 > 0 such that for n large enough
1 AP —E AP > A} < 2exp(—Dae(1 A e)n®/5HD),
We can prove likewise the same inequality for R; — IE;} N{Rj}’ with some different constant

Dy > 0. Since |Jon| < M, and M, exp(—Dn*/5t1)/2) — 0 as n — +oc for any D > 0,
the result follows with an appropriate constant Dy > 0. O

Proof of (5 23) Conditionally on X,, Z,; is centered Gaussian with variance UJZ =

_2 Yoy Wz, On By, we have for any j € Jo,, and n large enough

Z 1y < oI o 1T

where we used the definition of hn,#( ), hence U < (1+¢)0?|K|3/(cslogn). Using the
fact that P(|N(0,v2)| > A) < 2exp(—A?/(2v?)), we obtain

(I+¢) —(14e)/(25+1
$ullZnil1s, > (L LAKl2} < 2exp (= o= logn) = 2n~(49/CxD),

and the result follows, since |72, < M, < (log n)zs/(%*l)nl/@s“). O

Proof of (5.25). We prove that for any p > 0,

sup B}, {EF } = O(npU s/t (5.27)
fEDQ(s,L) o

which entails (5.25). By definition of H,(z), we have H,(z) > (logn/n)/(?9) for any
x € [0,1]. Since || f|loo < @, we have for any j € Jop,

[Fu(w)] < 8, (n/ Togn) V) || K| (Q + €nl /v/7),
where &, = Y1 &/+/n is standard Gaussian. Then,
1Al B @)X} < 6,7 (n/logn)P/ Qv VP KJBE,{(1+ |&)71 %0}

= O(nP/?*) (1og n)PU—1/(29))y.
We need the following lemma (its proof is given below).
Lemma 3. For any interval I C [0,1] and p > 0 we have

1 A1000P1%,} = O(nP/?).

Moreover, for any 1 < m < k, we have on I'y, 1 (see section /)

n {ODmP1X,} = O(nP).
When j € Jp1 U Jns, we have fn(2;) = (014, 0,0, thus E% {|fo())P|Xn} = O(n?/?)

in view of lemma 3. For any j € [J,, since f,(Lm) (xj) = m!(é\l(zj’hn))m, we have in view of
lemma 3 that on I'y, 7(z; ) E?u{| Agm)(xj)|l)|%n} = O(nP) for any 1 < m < k. Then, we
have for any || f|lcc < @

En. = O((n/logn)*/ 1) ( sup Fn(@)] + Q).
xe|0,



14 S. GAIFFAS

and since

k
sup 1Fal@)] < max (17 + (0 gy~ o),

x€[0,1] J€In

we obtain (5.27) and (5.25). O

Now, it remains to prove lemmas 1, 2 and 3. We need to introduce some notations.
We consider the diagonal matrix A; with entries (Af)mm = |[¢rmll;" for 0 < m < k,
where || - [|? := (-, -)s (see section 4), the matrix G := A;X;Aj, where X/ is introduced
in section 4 and the matrix G with entries (G)pq = Xprq/(X2pX2q) "%, for 0 < p,q < k,
where ., := (1 + (=1)")/(2(m + 1)). Note that A(G) > 0, where we recall that A\(M) is
the smallest eigenvalue of a matrix M. We define the events

Q= ﬂjeann,I(xj,hn) N Qn,[(xj,tn)7 Ly = njejn En,[(xj,hn) N En,[(xj,tn)7
where €, 1, I(x,h), hy, and t,, are defined in section 4 and where, if I = I(x, h),

L1 :={IMGr) = AG)] < 0n}.
For 0 < m < 2k, an interval I C [0,1], and 0 > 0, we define

1 _
Dym,is = {}W/lﬁbl,mdﬂn _Xm‘ < 5}7

and D,, := ﬂifzo jejnDn,m,I(a:j,hn),én N Dn,m,l(xj,tn),én- For N,,  given by (5.12), we define

N, = ﬂjejnNn,I(:vj,hn) N Nn,[(mj,tn)v
and we introduce
Cn:=Q,NL,ND, NN, (5.28)
This event is used within lemma 1 above, where a control on its probability is given. We
recall that I';, is defined in lemma 2.
To a vector # € RF! we associate the polynomial Py (y) := 0g+601y+- - -+0py*. If f; is the
solution of the system X ;6 = Y (see section 4) for I = I(x, h), we define fl(y) =Py (y—=x).

If Vi1 = Span{¢r,m;0 < m < k}, we note that on Q, ;, ]?[ satisfies

(fr, o)=Y, o)1, Vo€ Vi (5.29)
By definition, we have f‘;(Lm) (x5) = J/"}Zg hn)(xj), where f}m) is the derivative of order m of

fr, and fulzy) = fl(xj’tn)(xj), see section 4. We recall that M, is the cardinal of 7,,.
Proof of lemma 1. We take I = I(x,h) for some z € [0,1], h > 0 and define the vector
0r with coordinates (07),, = f(m)(x)/m! for 0 < m < k. Since X; = X7 on O, 7, we have
A7NOr—0r) =G A X (07 — 0r). If fr(y) = Py, (y — ), we have in view of (5.29) for any
0<m<k:

(X1 (0r = 01))m = (Fr = f1. S1m)1 = Y = f1, brm)1 = (f = f1, S1m)1 + (€, 1)1,
thus XI(51 —0r):=By+ V. Since f € (s, L),

(A1B)m < brmll7 G = fry drm)il < — fillr < Lh®/E),
then we can write
Lh? o _
1 1/2
u+ G ,
T R

where v € RFF! is such that |jullec < 1 and 77 = (U\/nﬁn(I))*lgl_l/zAIDlg =: Ty,
where Dy is the matrix of size nf,(I) x (k + 1) with entries (Dy);m = (X; — 2)™, so that

A7HOr - 6r) =G;
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X = (njin(1))"'D}Dy. Since T/T; = 0!I}, 1, we obtain that 77 is, conditionally on X,
centered Gaussian with covariance equal to I1;. Consider I = I(x;, h) for some j € J,,

h > 0. From the inequality || - [[oo < || || < vk + 1| - ||c and since ||Q_1/2|| <VEFTIG7Y
(Gr is symmetrical with entries smaller than 1 in absolute value) we get
Lh? —-1/2
1471 @1 = 6D)loo <1167 =y ulloo + ———— 167 1]l

”Nn( )

-1 S o
<1G; ||(7f+1)(Lh +\/7(I)H’YIHOO)

G (k+ 1) (Lh° + Wikt 1)j+ml)»

max
nfin (1) 0<m<k
where W : (,YI(I(), h)y - ,’)/I(IMmh)),. IfT: .= (Tl(xo h)» - T[(xM h ))/ we have W = Tf,
thus W is a centered Gaussian vector and for any (k + 1) m< (k+1)j+k, je T, we
have

?,H{Wé} = (Var{W})mm = (Val"{%(xj,h)})m—(k+1)j,m—(k+1)j =1,
since Var{"y(z, n)} = Ix+1. Then, we have proved that on Nje7, . 1(2;.1):

AL iy =010 ) lee S A (Griw ) (k + 1) (LA " WMy,
?elngH xjh)( k) — O, m) (Gr(a,n)) (k4 1) (LR° + PR ITERAY )

where WM = MaX) << (k+1)| T |W,,|. Since C,, € N,, N Q,, N L, we have on C,, for h = h,
or h =t,,

max A7 1y Brta, = Oray )l < (1 0(L)AH(@) 4+ 1) (Lb* +

wh.

o
/nh;
Since C,, C D,,, we have for any j € J,, 0 < m < k,

Cn - Dn,2m,[(xj,hn),5n N Dm?m,](xj,tn),én?

thus on C,,, when h = h,, or h = t,, we clearly have

(Al(a:j, ))mm - H¢I $J7 m”[ m h) (1 + 0(1))h_m\/m
Since f;(Lm)( i) = f)(z)) = m'((HI(zﬁhn)) (01($j,hn))m), it follows that on C:

70 (25) — £ ()] < (14 o)A (Gymlv/Zm T 1(k + 1)h;™ (LS, + WZTWWM)

= O(h;,™)(1 + (logn) ~/2W ™),

thus (5.3). Inequality (5.4) is obtained similarly, and (5.2) follows from lemma 2. O

Proof of lemma 2. If I = I(z, h), we define the event

1
Dyym :{’7 m Afin — m‘gé}
Note that (5.13) entails

D01z, (1=60)h)01.0 1 P01, (1460)h),61.0 C Crugs (5.30)

where we recall that 01, := 1 — (146,)” 251, First, we prove (5.16). If d3,, = 8, /(2 —6n),
we have for any interval I,

Dy, 1,65, N Dn0,1,63,, € Dnm,1,6,-
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Using the fact that A(M) = inf), =1 (z, Mz) for any symmetrical matrix M and since Gy,
G, X are symmetrical, we obtain

Sn
B S 77 1a n,l s 31
O<Q<k{|<gz Gpal < 1y} © L (5.31)
and
2% 5
C <35 - < ).
pODn, - CO<Q<k{ — X)pql < (kH)Q} € {IAX7) — AX)| < 8}
Recalling that if I = I(z}, h),
1 _
(= (P1p, Prq)1 _ Wf[ PIp+qdiin
p.qa — - s
lé1pllrllérgllr e ¢I,2pdﬁn)1/2(W [ o120 diin)

we obtain for 84, = 6,/ ((2 — 6,)(2k + 1)(k + 1)?),

0,
Dn2p.1.61,, N Dn2g,164 NV Dnpra s, C {\(91 —G)pgl < 771)2}

(k+1
thus
2%k
m Dn,m,],&;,n C /-:n,I?
m=0
and clearly for n large enough, if I = I(zj, hy) or I = I(xj,t,),
2k (1)
M Dumotnn © IANXD) = AX)| <80} 0 { |5 T ™ 1| <dn}cQur (5.32)
m=0 ]

Moreover, if I = I(x}, hy,), we have on Dy, 9 15, for any 1 < m < k and n large enough,

lérmllr = (1 —o(1)h'vV2m+1>1/y/n. (5.33)
We define
Dn,m = m (Dn,m,l(xj,hn)ﬁ&n N Dn,m,l(acj,tn),dsm

JE€EIn
N Dn7071(xj7(1_6n)hj)765,n n Dn,071(90j»(1+5n)hj)755,n)7

where d5 5, = 04, A 03 A 011, Dy, := ﬂif:o D,, m and we choose

An = D'I’L N B'I’L'

In view of (5.30), (5.31), (5.32), (5.33) we have D,, C Q,,N L, "D, NI, and since D,, o 15 =
N,, 1, we obtain D,, C C, N T, thus (5.16). Now, we prove (5.15). Since p € X(v, ), it is
easy to see that for I = I(xj, hy) or I = I(x;,t,) and n large enough,

1
Bp{ s [ Grmdiin } = x| < G50/2
e fomand =l <ol

Then, using Bernstein inequality, we obtain for n large enough, if h = hy,, h = t,, h =
(1 — 5n)h] or h = (1 + 6n)hj,

Pn{Dnm I(ah).05 n} < 2exp(—D45§’nnh) < Qexp(—D5nS/(25+1)),

with Dy, D5 positive constants, where we used the fact that 5%,71”5/(25“) > 1 for n large
enough and nh > Dgn?*/(2st1) Hence, together with (5.14), we obtain (5.15). O
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Proof of lemma 3. If i, (1) = 0 we have 6; = 0 and the result is obvious, thus we assume
fin(I) > 0. In this case, A;, X; and Gy are invertible, and by definition of 6,

0r = ArAT'0r = MG A X 0; = ArGT ArY = ArGr (B + Vi),

where (Br)m = |61mlI7 - (f s d1m)1 and (Vi)m = [@1mll7 (€, d1m)1- Since |[flloo < Q we
have [(Br)m| = [|62mll7 ' 1(f s drm)1l < fllr < Q, thus Byl < Q.

Conditionally on X,,, V7 is centered Gaussian and it is an easy computation to see that
its covariance matrix is equal to o?(nji,(I)) " *A;X;A;. Then Ajgl_lV] is conditionally
on X, centered Gaussian with covariance matrix o2(nji,(I)) "' X' XX 1. If e, is the
canonical vector with coordinates (e, ), = 1p—m, we have

O)ml = 101, em)| = [(A1GT "By, em)| + ovE + 17,

where v = (ovk+1)"1(A;G; 'V, en). By definition, we have X' = A"1(X;) <
V/1fin(I), and clearly ||X;|| < k+1 and |A;"| < 1. Then, conditional on X,, v is centered

Gaussian with variance
(e, Xy X0 X o) _ XIS _
(k+Dni,(I)  ~ (k+ Dna,(I) =
Since |G| < [A7NIXT AL < /nin (1) < v/ and (Ag)oo = 1, we have
2 G012} < O+ 17 207/2(Q v PES, { (1 + a7} |%} = OP'2),
for any I C [0,1], and since ||Af|| < v/n on T, 1, it follows that
0 @120} < (k+ 1P202(Q v 1PES {(1+ o]y )?|Zn} = O(n),
forany 1 <m < k. O

6. PROOF OF THEOREM 2

The proof of the lower bound consists in a classical reduction to the Bayesian risk over an
hardest cubical subfamily of functions, see Korostelev (1993), Donoho (1994), Korostelev
and Nussbaum (1999) and Bertin (2004b). The main difference with the former proofs is
that the subfamily of functions depends on the design via the bandwidth h, , (), and that
we work within a ”small” interval I,,. We recall that s is defined by (2.4) and that it has
compact support [—Ts, Ts]. Let bl := maxyer, hpu(x) and

2, = 2T,cs(2Y/7F) L 1)p!
If I, = [an, by, My, := [|I,| Z,,!], we define the points
Tji=an+J=,, JjE€Tn:={1,..., My} (6.1)

We denote again p; = p(z;), hj = hy p(x;). Let us define the event

b= g S 1 <)
d neshipg — *\ cghy =

and H,, := Njcz,Hy ;. Together with the fact that |¢s|l2 = 1, we obtain using Bernstein
inequality that

lim PP{H,}=1. (6.2)

n—-+o0o

The subfamily of functions is defined as follows: we consider an hypercube © C [~1, 1]M»,
and for 0 € ©, we define

Fai6) = 3 ), @) = Leihpn(1).

csh;
JETn s
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Clearly, f; € X(s,L). Let us show that f(-;6) € (s, L). We note that

Supp (SOS(.C_hx‘j)) = [mj —csTshj, xj + CSTShj] =:1;.
s/t

If z,y € I then f(x;0) =6,f;(x), f(y;0) = 0,f;(y) and the result is obvious. It suffices to
consider the case x € I; and y € Ij41. In this case, we have
1O 0) = O (w:0)] = 10,47 (@) = 1111 (0)]
<17 (@) = £ @) + e Tuh) |+ 15 @i = esTihj) = 12 )]
< L(jx — x5 — eTohy "™ + w11 — e Tehj — y|" ")
< L((2¢5Tshy)* ™" + (26, Tshyan)* ™) < 2L(2¢sTuhy) ™",
Moreover, since € I; and y € Ij41 we have | — y| > zj41 — x5 — ¢Ts(hj + hjy1) =

En — 2¢T,hE = 2V/(=k) (2¢,T,hl), and finally |f*)(z;0) — f®)(y;0)| < L|z — y[*~*, thus
f(-:0) € ¥(s,L). For any j € J,, we define the statistics

yi = Z?:l Y;@S(Xi)
T ei(X)
Since the f; have disjoint supports, we have that conditionally on X,,, the y; are Gaussian
independent with E% {y;|X,} = 0;. Since

2

2 n 2 g
o =B (1%} = <
’ T Zi:1 fJQ(Xz)

we obtain that on H,,,
_ 2541 <vP < ﬂ (6.3)
2(1+¢e)logn = 7 ~2(1—¢)logn
In the model (1.1) with f(-) = f(-;0), conditionally on X, the likelihood function of
(Y1,...,Y,) can be written on H,, in the form

dP" - 9v; (y; — 05)
n . 'aYn = gUY; . — ) 6.4
Tl v = L) T #2205 (6.4)

where g, is the density of N(0,v?), and A" is the Lebesgue measure over R™. This fact
follows from the following computation:

Hgﬂ(n) jgn Gu; (y])
= W [Texp (—Y2/(20%) TT exp (2659, —6;)/(203))
=1 JETn
1 Y+ Y e, (2Y56,5i(X0) — 6 £5(X0)?)
~ L 2 )
n - L 0Y))2 dpn
:¥H6Xp<—(yl J;Ef);z,e)) )_ d;nu|xn( ~--,Yn)-

O-n(27r)n/2 Pl

In the following, we denote ¥ = X(s, L) and Si’fj i= supges nu(2) YT (z) — f(z)|. Since
w(+) is nondecreasing and f(-;0) € X for any 6 € ©, we have for any probability distribution
B on ©, by a minoration of the minimax risk by the Bayesian risk,

mfsupEfu{w nfT)}> w((l—¢) )mf/ { (1—e)P}B(db),
fex



SHARP ESTIMATION WITH RANDOM DESIGN 19

where Pj := P o) . Since by construction f(z;;0) =1r;0;P and x; € I, we obtain
1nf/}P’9{ wpr = (1—e)P}B(do) 1nf// Pg{max 9 — 05| > 1 — | X, }dP}B(d6),
> inf [ P§ 0; — 6| > 1—e|X, }B(do)dP},,
/nl%/@f’{?é?f,f'] il e|X,, } B(dO)dP),

where infj is taken among any measurable vector (with respect to the observations (1.1))
in RM» . Then, we note that theorem 2 follows from (6.2) if we prove that on H,,,
Sup/ By { max [0 — ;] < 1 — £[%,}B(d6) = o(1). (6.5)
5 Jo JEIn
We choose © := OM» where O, := {—(1 —¢),1 — ¢} and B := e, be where b,
(0_(1—¢) + 61-¢)/2. Note that using (6.4), the left hand side of (6.5) is smaller than

/H _1 90(Yi) ( H sup/é 6;—0;]<1— Egvj( —0;)db, (ej))dyl...dYn,

j€Tn Vi yJ jejng’jER

and é\] = (1-¢)1y,50 — (1 —¢€)1y,<o are strategies attaining the maximum. Thus, it suffices

to prove the lower bound among estimators 0 with coordinates 5] € O, and measurable
with respect to y; only. Since the y; are independent with density g,,(- — 6;), the left hand
side of (6.5) is smaller than

H max / /Rl@-(uj)—b"jld—s Gu; (uj — 0;)du; db(0;)

=1 (1- it / / 30—t 1s 9oy (4 — 03)dudbo(67)),

Jej 6;€0:
and if ®(x) := [*__g1(t)dt and Dy is a positive constant,
_inf / / o;>1— - Gu; (u — 0;)du db:(0;)
9j€@5 e

= 012(2 / (1;0\]_20 + 1§j<0)gvj(u —(1=¢)) Agy(u+ (1 —¢))du

1 /0 y—(1—¢) 1—¢ Dy o2
== z v = =& — > (1=e)*(1+e)/(2s+1)
vj 70091( vj )du (I)< v > - \/lognn ’

where we used (6.3) and the fact that for > 0, ®(—x) = (1 + o(1)) exp(—x2/2)/(x\/27)
If L, :=n~(179)*(1+e)/2st1) (15 ) ~1/2 it follows that the left hand side of (6.5) is smaller
than

(1 — DyLp)" < exp (|I,| E, log (1 — D1 L)),
and if Dy is a positive constant,

|1, E;an = Dg][n|n6/(25+1) % ne2(1—a)/(2s+1)(logn)—1/2—1/(25+1) 4o

as n — 400, since |I,,|n*/(?**1) — 400, thus the theorem. O
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