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PHYSICAL REVIEW D, VOLUME 64, 083501
Testing quintessence models with large-scale structure growth

K. Benabed and F. Bernardeau
Service de Physique The´orique, CE de Saclay, F-91191 Gif-sur-Yvette Cedex, France

~Received 23 April 2001; published 18 September 2001!

We explore the possibility of putting constraints on quintessence models with large-scale structure observa-
tions. In particular, we compute the linear and second order growth rate of the fluctuations in different flavors
of quintessence scenarios. We show that effective models of quintessence~e.g., with a constant equation of
state! do not account for the results found in more realistic scenarios. The impact of these results on observa-
tional quantities such as the shape of the nonlinear power spectrum in weak lensing surveys or the skewness of
the convergence field is investigated. It appears that the observational signature of quintessence models is
specific and rather large. The effects clearly cannot be mistaken for a change ofV0.

DOI: 10.1103/PhysRevD.64.083501 PACS number~s!: 98.80.Cq, 98.62.Sb, 98.65.Dx
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I. INTRODUCTION

The recent evidence in favor of a nonzero cosmolog
constant@1–9# has led to the development of alternative sc
narios to explain such a nonzero vacuum energy density@10#.
In particular, models involving the so-called quintessen
have attracted attention from the high-energy physics c
munity @11–17#. Indeed, in such models the vacuum ener
density is due to the potential and kinetic energy of a sc
field rolling down its potential. Various models have be
proposed. The simplest implementation of such mod
widely used in the literature, is to introduce aneffectivequin-
tessence with a constant equation of state@11#. More elabo-
rate theories provide potentials that exhibit a tracking so
tion regime as long as the energy density of the quintesse
field is subdominant@13#. This behavior is generically en
countered in the Ratra-Peebles@17# model in which the quin-
tessence potential is a simple inverse power of the fi
Other models inspired by high-energy physics have also b
shown to exhibit this remarkable property@14–16#.

The presence of a quintessence field changes the en
content of the universe and therefore alters its global exp
sion rate. It is then natural to try to detect the signature o
nonstandard vacuum equation of state through its imp
upon the distance-luminosity function, which can be
vealed by supernova type Ia~SNIa! observations@18–20#. It
has been found, however, that the precision with which
vacuum equation of state can be measured depends cru
on whether priors are assumed on the other cosmolog
parameters, in particular on the matter content of the U
verse. This calls for a reexamination of the theoretical fo
dations upon which precision methods for determination
the cosmic density are based.

The cosmic microwave background~CMB! anisotropy
power spectrum has been recognized as a gold mine fo
determination of cosmological parameters. It is actually
very valuable method for measuring the global curvature
the Universe@1# ~through the value of the angular distance
the last scattering surface! but it suffers from an unavoidabl
parameter degeneracy@21,22# so thatV0 cannot be deter-
mined alone.

The impact of quintessence models on the propertie
the CMB as well as on the primordial density contrast pow
0556-2821/2001/64~8!/083501~10!/$20.00 64 0835
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spectrum has nonetheless been studied in different mod
the effectivequintessence~with the extra shortcoming tha
the possible fluctuations of the quintessence field were
glected! as well as some high-energy physics trackingpoten-
tials @14,23#. It has been found that at the redshift of recom
bination the dark energy fluid is subdominant and has o
significant superhorizon fluctuations. Quintessence effe
appear, therefore, only as a modest change of the Sa
Wolfe plateau, an effect difficult to detect unambiguous
because of the size of the cosmic variance.

It has been shown, however, that although the intrin
properties of CMB anisotropies fail to provide an unambig
ous test of quintessence, its existence can be shown by
amplitude of the density fluctuations on the last scatter
surface compared to those at low redshift. This can be do
for instance, with the help of galaxy cluster counts@24,25# or
with weak lensing measurements@26,27#.

In all cases, however, direct constraints onV0 that would
help to disentangle models rely on analysis of the local u
verse properties. The matter content of galaxy clusters
their number density evolution@24,28# can provide useful
constraints. Unfortunately these methods depend on n
trivial modeling of cluster properties such as x-ray lumino
ity or temperature-mass relations. It is therefore unlikely t
they can provide accurate constraints onV0 with a well con-
trolled level of systematics.

New methods, based on weak lensing observations,
now emerging that are in principle free of elaborate physi
modeling. The proposed means for constrainingV0 are
based on the rate at which nonlinear effects start to pla
role in the cosmic density field. Fundamentally, two ide
have been followed. One is based on the nonlinear evolu
of the shape of the power spectrum@29# and preliminary
results have already been reported in this case@27#. It relies
on some specific class of models, namely, some flavor
cold dark matter~CDM! model ~the shape of the nonlinea
power spectrum obviously depends on what is assumed
the linear one!. The other method, proposed in@30#, is more
demanding on the observation side but is based on the
assumption that the initial conditions were Gaussian. It re
on the direct detection of non-Gaussian properties of the d
sity field. In particular, it has been shown that the large-sc
convergence skewness can be used to measureV0. Exact
©2001 The American Physical Society01-1
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K. BENABED AND F. BERNARDEAU PHYSICAL REVIEW D64 083501
results obtained via second order perturbation theory h
been obtained for models with or without a cosmologi
constant. It is then crucial to know whether these res
would be affected in the case of quintessential dark ene

The aim of this paper is therefore to examine the grow
of structure in both the linear and the nonlinear regimes.
illustrate our results and their robustness we consider var
realistic models of quintessence. So far the evolution
large-scale structure has been studied only with effec
quintessence@11,31,32# and we will see that it does not pro
vide a realistic account of what is happening in explicit mo
els of quintessence.

This paper is divided as follows. In Sec. II we descri
the models we use and in particular the evolution of
vacuum equation of state they imply. In Sec. III the resu
for the linear and second order growth rates are presen
Implications of these results are discussed in Sec. IV for
nonlinear power spectrum.

II. THE QUINTESSENCE MODELS

We postulate that the content of the universe include
scalar fieldQ of potentialV. This scalar field is responsibl
for the dark energy we observe today and is usually
scribed as a cosmological constant. Its motion equatio
given by the Klein-Gordon equation

Q̈13H Q̇52
]V

]Q
~1!

and it contributes to the energy and pressure terms with

rQ5V~Q!1
1

2
Q̇2,

pQ52V~Q!1
1

2
Q̇2. ~2!

The equation of state of the dark energy

pQ5vQ rQ ~3!

is a priori no longer characterized by a constantvQ521
parameter. It can vary fromvQ521 when the dynamics o
the field is dominated by its potential, tovQ51, when the
kinetic energy dominates. In all the models we will consid
the parameters will be chosen so thatV050.3 and VQ
50.7 today, unless otherwise mentioned.

In the following we focus our analysis on two mode
with tracking solutions that provide explicit time dependen
of the equation of state, the Ratra-Peebles model@17# and the
model developed by Brax and Martin in which the potent
shape incorporates generic supergravity factors@15,16#. In
this section we succinctly review the properties of the eff
tive, Ratra-Peebles, and supergravity~SUGRA! quintessence
models and compute the resulting equation of state of
Universe in these models.
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A. Effective quintessence

Models of effective quintessence are the simplest imp
mentations of a nontrivial vacuum equation of state. It
simply assumed that the equation of state parameter is fi
and represents an average value of a cosmic componen
lowing a complex evolution~whether or not it is a quintes
sence field!. Considered as a simplified version of a quinte
sence model, this is a valid approach if, for some reason,
kinetic energy and the potential are almost constant and
the same order. This condition~which is not the slow-roll
condition where the kinetic energy is much smaller than
potential! seems unlikely to be satisfied in a realistic fram
work. We will nonetheless compare realistic models with t
approximation to show its impact on observed quantities

B. Tracking quintessence

In a very wide class of quintessence models the field
namics exhibits a tracking solution. It is such that the evo
tion of the dark energy, during radiation and matter domin
tion, is completely determined by the potential sha
regardless of the initial conditions.1 In other words, the only
tuning required to reproduce today’s observations is the
ergy scale of the potential. Eventually, this scale will have
be explained by high-energy physics computations. Wh
this task seems insuperable in the case of a pure cosmo
cal constant, it might be within theoretical grasp for tracki
quintessence@13,33#.

The phenomenological properties of this class of mod
can be summarized through the time evolution of the cos
equation of state. The detailed behavior of the field in
first stages of its evolution depends on the initial conditio
If initially rQ represents a fair fraction of the cosmic ener
density, the fieldQ rolls quickly down its potential so that th
quintessence energy density is purely kinetic. It is slowed
the expansion until it freezes at a value larger than the
corresponding to the tracking solution. The value of the fi
then remains constant—the quintessence energy densi
purely potential—until it coincides with the attractor sol
tion. Once on the attractor solution, the equation of st
parameter of the quintessence field takes a value that
pends only on the shape of the potential and on the equa
of state of the dominant species of the universe~it therefore
changes at equivalence!. When the energy density of the fiel
starts to dominate, the field follows an inflationary typ
slow-roll solution whose equation of state is approach
vQ521. These behaviors are displayed on Fig. 1 for
potentials we adopted. The time at which the tracking so
tion is reached is completely arbitrary and has no effect
the quantities we consider in the following.

Our analysis will be done for two tracking models.
First is the Ratra-Peebles model@17# whose potential is

VRP~Q!5
M41a

Qa
~4!

1Over hundred orders of magnitude.
1-2
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TESTING QUINTESSENCE MODELS WITH LARGE- . . . PHYSICAL REVIEW D 64 083501
and which is the simplest model exhibiting a tracking so
tion. In particular, it is very hard, with this potential, to g
an equation of statevQ,20.7 while keeping a reasonab
energy normalization forM ~from the high-energy physic
point of view! if VL50.7 today. Note that for such a pote
tial the vacuum equation of state of the attractor solution
given by

vQ5
221avB

a12
~5!

where vB is the equation of state parameter of the ba
ground fluid (1/3 for a radiation dominated universe, 0 fo
matter dominated universe!. In the following we will con-
sider the casea52, which givesvQ;20.6 today, margin-
ally consistent with the supernovae observations althoug
leads to an unrealistic low-energy scale forM.

Second, we consider the SUGRA model, proposed
Brax and Martin@16,15#, whose potential is

VSugra~Q!5
M41a

Qa
expF4p

Q2

MPlanck
2 G . ~6!

The corrective factor is motivated by the fact that, in t
Ratra-Peebles scenario, the field naturally reaches the Pl
scale at low redshift. If the quintessence potential is to
derived from models beyond the standard model of part
physics that are expected to include supergravity proper
it is natural to expect supergravity corrections in the shap
the potential. The potential Brax and Martin proposed is
tually an extension of the Ratra-Peebles potential, with
generic supergravity correction~the exponential term!. This
last model is of particular interest since its predictions are
good agreement, for a wide range of parameters, with
SNIa measurements. We studied here two examples of
potential,a56 anda511, which both lead to the equatio
of statevQ;20.8 at zero redshift. These choices of para
eter lead to an energy scaleM from 106 to 1011 GeV, which
does not contradict our knowledge of high-energy physic

FIG. 1. The evolution of the vacuum equation of state a
function of the expansion parametera for different cosmological
models. The dotted line corresponds to a vacuum equation of s
p520.8r; the dot-dashed line to a Ratra-Peebles solution witha
52; the dashed line to a SUGRA behavior witha56; and the solid
line to a SUGRA model witha511. The amplitude of the quintes
sence potentials is such thatVmatter50.3 atz50 in all cases.
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The two models have the same tracking solution and
equation of state parameter on it is thus the same, given
Eq. ~5!. Differences between the two models arise when
field leaves the tracking solution. At this time, the field val
is of the order of the Planck mass, and the SUGRA corr
tion of the latter models starts to dominate. This SUGR
correction cures the problems encountered by the Ra
Peebles potential by quickly slowing the field as it ro
down, thus providing a smaller equation of state parame
@16,15#.

C. Solution of the equations with quintessence

The quintessence field contributes to the Friedman eq
tions, and therefore to the evolution of the expansion rate
the universe,

S ȧ

a
D 2

5
8p

3MPlanck
r tot ~7!

ä

a
52

4p

3MPlanck
~r tot13ptot! ~8!

wherer tot is the total energy density of the Universe andptot
its pressure, assuming we live in a zero curvature univers
is convenient to define the parameterv as the effective equa
tion of state parameter of the ensemble of cosmic fluids,

ptot5v r tot . ~9!

This parameter is expected to vary from 1/3 in the rad
tion dominated era,v50 in the matter dominated era, tov
→21 when the vacuum energy dominates. The shape of
transition and its implication for the growth of structure a
precisely what we investigate in this paper.

The evolutions of the equation of state of the universe
shown on Figs. 1 and 2. They show that the transition from
matter dominated universev50 to a vacuum dominated
universe is much smoother in the case of quintessence m
els. In fact, the universe leaves thev50 line much sooner in
the tracking quintessence models than in the effective q
tessence or theL models. It is then natural to expect signifi
cant effects on the angular distances or on the growth

a

te,

FIG. 2. The evolution of the global cosmic equation of state
a function of the expansion parametera for different cosmological
models for a redshift rangez50 to 10. Same convention as Fig.
with thin solid line corresponding to a pure cosmological const
such thatVL50.7 atz50.
1-3
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K. BENABED AND F. BERNARDEAU PHYSICAL REVIEW D64 083501
fluctuations. Moreover, the low-redshift behavior of the g
bal cosmic equation of state is very different in the thr
quintessence models. This also should induce signific
phenomenological differences between theL models and the
quintessence models.

The implication of these behaviors for the angular d
tances is shown on Fig. 3. The differences seem not v
noticeable at small redshift. However, they build up to
significant when the effect is integrated to the last scatte
surface. The end values of the angular distances for the
ferent tracking quintessence scenarios are very close to
other, although they correspond to different values of
equation of state today~see Fig. 2!. Not surprisingly, quan-
tities sensitive to the angular distance at highz, such as the
position of the first acoustic peak, have been found to dep
upon the vacuum equation of state@23#. One should also
expect significant differences in the amplitude of the le
effect on the CMB anisotropies~as its depends on the ang
lar distances between the observed objects and the len!.
We note however that aL model with a lower value ofV0
can reproduce fairly well the low-redshift behavior of th
angular distances in our quintessence models.

III. THE GROWTH OF STRUCTURE

A. The linear growth rate

In the previous section we observed that, since the ev
tion of the universe with a quintessence component
smoother than with a pure cosmological constant, the de
ture from an Einstein–de Sitter~EdS! universe occurs later in
the former case. This effect has been described be
@32,11,12#, although only in the context of effective quinte
sence, but it is clearly amplified here because the ene
fraction of the quintessence field can be much larger at h
redshift in cases of realistic quintessence models.

In this section we investigate the impact of these effe
upon the evolution of large-scale structure. We consider
large-scale structure history only after recombination, a ti
at which the dark matter fluctuations dominate. After reco
bination and at subhorizon scales the quintessence field
turbations correspond to decaying modes and can there
be ignored. Within these assumptions the growth rate of
density contrast at linear order is driven by the equation@34#

FIG. 3. Evolution of the comoving angular distance in the d
ferent scenarios compared to a pure cosmological constant froz
51000 to the local universe. Same conventions as in Figs. 1 a
are used for the line styles. The lower solid line corresponds
pure cosmological constant model withV050.4.
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D̈1~ t !12HḊ1~ t !2
3

2
H2 V~ t ! D1~ t !50, ~10!

whereV(t) corresponds to the fraction of energy in the m
ter component. The growth rate is independent of the wa
length of the fluctuations as long as we consider fluctuat
at subhorizon scale and if we neglect the pressure effe
The time evolution ofD1 provides the amplitude of the den
sity fluctuations. Figure 4 gives the growth rate, for differe
models, as a function of redshift compared to the growth r
in the EdS case.2 In models with a pure cosmological con
stant, the growth factor remains very close to the EdS so
tion for a long period, and then changes abruptly betwe
redshift 2 and 3. In quintessence models the solutions fol
the same scheme, yet with a smoother slope change. H
ever, for the same normalization atz.100, when the uni-
verse is very close to an Einstein–de Sitter model, toda
growth rates are quite different. The quintessence scena
with a tracking field exhibit a smaller growth today~of order
20–30 % percent less!. To say it in other words, for the sam
s8, the quintessence models demand larger density fluc
tions at early times. This effect should lead to a differen
between CMB normalizations and low-redshift normaliz
tions.

The origin of this difference is clear. It is due to the fa
that the energy fraction in the quintessence field remains
nificant for a much longer time. In this respect the effecti
quintessence solution is very similar to theL scenario,
whereas realistic models of quintessence lead to lin
growth rates that depart from the EdS case at redshif
large as 30. Clearly, models of effective quintessence
can match the SNIa observations do not provide a good
count of the linear growth rates found in realistic models
quintessence.

B. Second order growth rate

As mentioned in the Introduction, for Gaussian initi
conditions the second order growth rate determines the

2Whose solution is well known,D1(t)5a(t).

2
a

FIG. 4. The ratioD1 /a ~normalized to unity atz.100) for the
different scenarios. Today’s growth rate is smaller by about 20%
tracking quintessence scenarios.
1-4
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TESTING QUINTESSENCE MODELS WITH LARGE- . . . PHYSICAL REVIEW D 64 083501
at which non-Gaussian properties emerge in the matter
sity field. In a perturbation theory approach it is indeed t
quantity that determines the value of the large-scale sk
ness. Furthermore, it turns out that weak lensing surveys
be used as a test ground for this effect and provide a ro
constraint onV0 through the value of convergence skewne
@35,30#. We examine here to what extent this approach
mains valid in a quintessence cosmology.

Such perturbation theory calculations are based on
computation of higher order terms in a perturbative a
proach. More precisely the reduced skewness defined a

S35
^d3&

^d2&2
~11!

can be related to the second order growth rate@36# and more
specifically to the second order growth rate in spherical c
lapse dynamics@37,38#. In this case it is simple to expand th
local density contrast to second order with respect to
initial density fluctuations,

dsc~ t !5D1~ t ! d i1
D2~ t !

2
d i

21•••, ~12!

with a time dependent coefficient that can be explicitly c
culated for any cosmological model. The functionD2(t) is
the growing mode of the equation

D̈2~ t !12HḊ2~ t !2
3

2
H2 V~ t ! D2~ t !53H2 V~ t ! D1

2~ t !

1
8

3
Ḋ1

2~ t !. ~13!

The 3D density skewness at large scale~and when smoothing
effects are neglected! is then directly proportional toD2(t),
and is given by

S353
D2~ t !

D1
2~ t !

. ~14!

From Fig. 5 it is clear that the variations of skewness w
the cosmological models are very small~below the percent
level! and are likely to remain undetectable. This means t
the second order growth rate does not introduce further

FIG. 5. The skewness for the different scenarios. The horizo
straight line gives the skewness in EdS models. The variation
the quintessence models are very small.
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pendence on the vacuum equation of state. This result a
ally extends a property already known for the dependenc
S3 on V0 for open universes@36#, flat universes with a cos
mological constant@38#, or in some flavors of nonstandar
vacuum equation of state@39#.

The skewness of the convergence is thus expected t
left unchanged, except through the dependence of the a
lar distances and the linear growth rate of the fluctuatio
We recall here the formal expression for the converge
skewness in perturbation theory for a power law spectr
~of index n) @30#. For a flat universe, it is given by

s35

E
0

Ds
dD w3~D! D1

4~D! D 22(n12)FS3
2D2

3

2
~n12!G

F E
0

Ds
dD w2~D! D1

2~D! D 2(n12)G2

~15!

with an efficiency functionw(D) given by

w~D!5
3

2
V0

D~Ds2D!

Ds a
~16!

whereDs is the comoving distance to the sources ands3 is
the skewness parameter for the 2D dynamics. The latter
be related to the 3D one, since it implies only a differe
combination of the terms appearing for the 3D case@38,30#.
This finally gives

s35
3

2
1

9

4

D2

D1
2

, ~17!

which amounts to 36/7 for an Einstein–de Sitter case.
In Table I we present the expected skewness for the

ferent models we have considered for sources at redshi
or 2. The results show that the projection effects on the va
of the skewness can be quite large. They increase the v
of the skewness so that quintessence models withV050.3
mimic what one expects for aV050.25 model with a pure
cosmological constant.

It is to be noted that angular diameter distances, in a qu
tessence scenario, rather resemble aL model with alarger
value ofV0 ~see Fig. 3!. From those two joint observations
should then be possible to test the quintessence model
pothesis. However, results should be extended to the in

al
in

TABLE I. Value of the skewness, Eq.~15!, of the local conver-
gence in weak lensing surveys for sources at redshifts 1 or 2 an
a power law indexn521.5.

Skewness zs51 zs52

L model (V050.3) 76 26
L model (V050.25) 85 28
wQ520.8 83 28
Ratra-Peebles,a52 91 32
SUGRA,a56 85 30
SUGRA,a511 86 30
1-5
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K. BENABED AND F. BERNARDEAU PHYSICAL REVIEW D64 083501
mediate and nonlinear regime where most of the data
going to be, although we expect the qualitative results fou
here to remain valid.

IV. NONLINEAR MATTER POWER SPECTRUM
IN QUINTESSENCE MODELS

A. The shape of the nonlinear power spectrum

We complete these investigations with the nonlinear e
lution of the matter density contrast power spectrum. Assu
ing a stable clustering ansatz and the Hamiltonet al. map-
ping @40#, we compare the power spectrum in quintesse
and cosmological constant models in the deeply nonlin
regime.

The linear matter power spectrum in quintessence s
narios has been studied before@41,14,42,23#. For modes in-
side the horizons, models with a pure cosmological cons
or with a quintessence field show very little difference in t
shape of the linear transfer function. Limiting our study
those modes, we can reliably approximate the linear quin
sence power spectrum by a standard cold dark matter m
with a cosmological constant (LCDM! one.

However, there is no reason for the nonlinear evolution
these models to lead to the same power spectrum. Indeed
showed in Sec. III A that generically the large-scale struct
grows more slowly in quintessence scenarios. Hence, for
same amount of structure today, the density contrast ha
be bigger in the quintessence scenario at early time. T
implies that modes that are in the nonlinear regime now h
reached this regime sooner in quintessence scenarios.

Following the idea of Hamiltonet al. @40#, later extended
by Peacock and Dodds@43,44#, we postulate that one ca
describe the effects of nonlinear evolution through a univ
sal functionf nl that maps the linear power spectrum onto t
nonlinear one:

Dnl
2 ~knl!5 f nl„D

2~k!…,

k5@11Dnl
2 ~knl!#

21/3knl , ~18!

D2~k!54pk3P~k!.

Enforcing stable clustering, Peacock and Dodds showed
this function must follow an asymptotic behavior at largex
such thatf nl(x)}g(V)23x3/2—whereg(V)5D1(a)/a is the
ratio of the linear growth factor to the EdS growth fact
described in Sec. III A—and proposed analytical forms
f nl that depend on the cosmological parameters throughg(a)
only and that are calibrated on variousN-body simulations.
We assume that their results hold for quintessence scena
In particular, we assume that the nonlinear regime alw
reaches a stable clustering regime. Moreover, and in the
sence of quintessenceN-body simulation for our particula
scenarios, we also assume that the normalization factor in
asymptotic branch is independent of the cosmological s
nario. These assumptions are not trivial and can probabl
challenged~see, for instance,@32#, where the behavior of the
nonlinear power spectrum is investigated for effective qu
tessence models with a different perspective!.
08350
re
d

-
-

e
ar

e-

nt

s-
el

f
we
e
e
to
is
e

r-

at

r

os.
s
b-

he
e-
be

-

From the Hamiltonet al. ansatz we expect very differen
behaviors for the small-scale nonlinear power spectr
when quintessence and nonquintessence models are
pared. We previously obtained the result that about 20%
30% discrepancy is expected, depending on the quintess
potential, betweengQ and DL. The consequences of thisa
priori modest discrepancy are dramatic for the nonlin
power spectrum. For a mode that entered the non-linear
gion long before redshiftz, we have

Pnl
Q~knl ,z!

Pnl
L~knl ,z!

5
Dnl

Q~knl ,z!2

Dnl
L~knl ,z!2

;
gQ~z!23

gL~z!23

DQ~kQ ,z!3

DL~kL ,z!3
~19!

wherekQ (kL) is the linear mode in the quintessence (L)
linear power spectrum giving rise to theknl mode in the
nonlinear spectrum. Assuming, as stated before, that at
subhorizon scales we are interested in the linear power s
tra of the models are identical, up to a normalization fac
P0, we write P(k,z)5g2(z)a2 P0 kn with n.23. For a
mode in the nonlinear region we have

k;S knl
2

a2P0
D 1/(51n)

~20!

and Eq.~19! reduces to

Pnl
Q~knl ,z!

Pnl
L~knl ,z!

;
gQ~z!23

gL~z!23 S gQ~z!2a2 P0
Q kQ

n13

gL~z!2a2 P0
L kL

n13D 3/2

;S P0
Q

P0
LD (3/2)[12(n13)/(n15)]

. ~21!

We suppose here that the spectral indexn is identical for
both PQ(kQ) andPL(kL), which is a reasonable approxima
tion. Finally, if we set both the spectra to fit the cluster no
malization, the ratioP0

Q/P0
L is simply the ratio of the grow-

ing modes atz50 and we get

Pnl
Q~knl ,z!

Pnl
L~knl ,z!

5S gQ~z50!

gL~z50!
D 23 [12(n13)/(n15)]

. ~22!

Note that the exponent gets close to23 when the spectra
index goes to23. Given the variation ofgQ the ratio given
in Eq. ~22! can be as large as 2.

The same ratio is easier to compute for modes in
linear regime,

PQ~k,z!

PL~k,z!
5S gQ~z! gL~0!

gQ~0! gL~z!
D 2

. ~23!

These simple investigations show unambiguously a
with a limited number of assumptions that the shape of
nonlinear power spectrum is very sensitive to the presenc
a quintessence field. In order to have a full description of
power spectrum behavior, including the intermediate regim
we use the Peacock and Dodds prescription. This form
has been shown to be reasonably accurate for effective q
1-6
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tessence models inN-body simulation, at least at low redshi
@32#. Anyway, we are more interested, in this paper, in
general trend rather than a completely accurate descriptio
the transition between linear and nonlinear evolution. Fig
6 shows a comparison between quintessence models a
standardLCDM. The curves represent the ratios betwee
quintessence nonlinearP3D at z50 and theLCDM one as-
suming that the linear power spectra have the same nor
ization. As expected, the small-scale ratio tends toward
(g1

Q /g1
L )23 asymptote. The shape of the curve in this reg

is described by the 3@12(n13)/(n15)# power calculated
above. Since the effect is proportional to the growth ratio
the power 1/3, it is much smaller for effective quintessen
where the discrepancy between its growth and theL model
growth is smaller. We stress again therefore that the use
constant equation of state cannot account for the amplit
of this effect as it is expected in realistic models.

Note that the transition between the linear and nonlin
regimes depends on the ansatz used forf nl . However, a very
sharp transition, as encountered here, is not unnatural. I
counts for the different times a given mode enters the n
linear regime in different models. If one follows a give
mode throughout its evolution, it will first obey the linea
growth and evolve asa2g2(a). Then it enters the nonlinea
regime and grows asa3. The transition between these tw
regimes is very sharp. When models with a different grow
factor are compared, this rapid transition translates int
sharp increase of the power spectrum ratio between the li
and nonlinear regimes.

Moreover, we note that this effect cannot be mistaken
a variation ofV0. The latter has a much more dramatic effe
on the shape of the linear power spectrum through a cha
of the shape of the transfer function. In this case, not onl
the linear growth rate changed but the position of the ma
mum of the linear power spectrum is also shifted.

In principle, large-scale galaxy surveys such as the 2dF
the SDSS should be able to put constraints on the ampli
and shape of the power spectrum. However, the possible
fects of biasing mechanisms, which are extremely poorly

FIG. 6. The ratioP3D
Q /P3D

L at z50. The solid and dashed line
are the SUGRA quintessence models fora511 anda56, the dot-
dashed line is the Ratra-Peebles model, and the thin dotted lin
the effective quintessence model for an avQ520.8. We also show
here the results for aV050.4 flatLCDM model~thin dashed line!
and anV050.25 flat LCDM model ~thin double dashed line!,
which were discussed in previous sections.
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derstood in the transition regime between the linear and n
linear regimes, prevent a robust and reliable test of th
scenarios. In the next section we rather try to validate th
properties in the context of a better defined observatio
procedure: the projected power spectrum in weak lens
surveys.

B. Projected power spectrum in weak lensing surveys

Weak lensing surveys can potentially provide us with p
cision maps of the projected density up to redshifts aroun
@45–48,26,49,27,50#. These measurements are expected
be free of observation biases once the redshift distribution
the sources is known.

Weak lensing surveys, through observation of the de
mation of background galaxies, can give access to the c
vergence field. The latter can be written as the projection
the matter density along the line of sight@30#,

k~aW !5E
0

Ds
dD w~D!d„aW ,z~D!…, ~24!

where theD stands for the angular distance~and this formula
is valid for a flat spatial curvature only!. The geometrical
kernelw(D), defined in Eq.~16!, accounts for the projection
effects.

We expect that the ratio of the power spectra of the c
vergence field for models with a cosmological constant a
models with a quintessence field will exhibit roughly th
same properties as the ratio of the three-dimensional po
spectra. However, the value of this ratio is expected to
affected by a corrective factor induced by the geometri
kernel which itself depends on the details of the cosmolo
cal model. In the following we present an evaluation of th
rescaling factor along the line of reasoning of the previo
subsection.

In the small-angle limit, we have

Pk~aW !5E
0

Ds
dD w~D!2E d2k

~2p!2
P3D„k,z~D!…eıkWD•aW

~25!

so that the convergence power spectrum is simply

Pk~ l !5E
0

Ds dD
D 2

w~D!2P3D„l /D,z~D!…, ~26!

where a possible redshift evolution of the shape of the po
spectrum is included. The kernelw is a bell shaped window
that reaches its maximum atzeff5z(Ds/2). To evaluate
roughly the rescaling factor we will approximatew2 by a
simple Dirac functionw2(D);weff

2 d(D2Ds/2) with weff

5*Ds dD w(D) and zeff;0.4 ~it depends on the cosmolog
we are considering! for sources at redshiftzs . Now, the ratio
of the convergence power spectrum is simply

Pk
Q~ l !

Pk
L~ l !

;S weff
Q /D s

Q

weff
L /D s

LD 2
P3D

Q ~2 l /D s
Q ,zeff

Q !

P3D
L ~2 l /D s

L ,zeff
L !

. ~27!

is
1-7
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For a mode in the nonlinear region, a few percent error in
position of the mode is not significant, so that we can ign
the difference betweenDQ and DL in the last term of the
equation. As a result,

Pk
Q~ l nl!

Pk
L~ l nl!

;S weff
Q /D s

Q

weff
L /D s

LD 2S aeff
Q

aeff
L D 3

3S gQ~z50!

gL~z50!
D 23 [12(n13)/(n15)]

, ~28!

which, compared to Eq.~22!, contains an extra geometrica
factor due to the projection effects. It evaluates to 0.8 to
depending on the model and position of the source plane.
expect therefore the conclusions reached in the previous
tion to survive in weak lensing observations.

Similarly, for a mode in the linear region, we have

Pk
Q~ l !

Pk
L~ l !

;S weff
Q /D s

Q

weff
L /D s

LD 2S aeff
Q

aeff
L D 2S gQ~zeff

Q !

gQ~0!

gL~0!

gL~zeff
L !

D 2

.

~29!

Table II gives the value of the expected ratio in the line
region. It is about 0.9. This indicates that the normalizat
ratio for the linear 3D power spectrum and that for the p
jected weak lensing spectrum will differ by this amount.

These semianalytical results give a good account of
ratio Pk

Q/Pk
L for all angular scales. At large scale, it

roughly flat; its value is given in Table II. Then, as we g
closer to the transition between the linear and nonlinear
gimes, the ratio exhibits a slight drop. Indeed, from Eq.~27!
the LCDM model enters the nonlinear regime earlier, b
cause of the difference between thezeff . Hence, one expect
to have, for a few modes, aPk

L that rises more quickly than
its quintessence counterpart. Then, when the quintess
power spectrum also hits the nonlinear regime, the ratio
exhibit a shape very similar to that of the three-dimensio
power spectrum ratio, with the rescaling factor compu
above.

In Fig. 7 we present the explicit computation of the no
linear power spectra of the convergence field using the
scription of Peacock and Dodds to compute the redshift e
lution of the 3D power spectrum. Unlike in Fig. 6, here t
power spectra are not cluster normalized. In this case
power spectra are normalized so that the weak lensing
plitudes match at 108 scale when computed with the linea
power spectrum and match the amplitude of the recent
tections of weak lensing effects~e.g., s8'1 for a LCDM

TABLE II. Evaluation of the ratioPk
Q/Pk

L in the linear domain,
from Eq. ~29!.

z51 z52 z51000

vQ520.8 0.94 0.95 1.06
Ratra-Peeblesa52 0.86 0.88 1.20
SUGRAa56 0.92 0.92 1.16
SUGRAa511 0.91 0.91 1.18
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model withL50.7). Because of the projection effects give
in Table II, this is not equivalent to the normalized linear 3
power spectrum. Projection effects also slightly change
shape of the projected linear power spectrum. The redshi
the sources is simply assumed to be unity here. The dif
ences in the shape of the power spectra are clearly vis
and should be already within observational constraints.

We also give the effects of a change ofV0, following the
same prescription for the normalization. In this case, beca
we normalized to theconvergencelinear power spectrum, the
change ofV0 also directly affects the normalization. Com
pared to 3D power spectra, it actually worsens the situa
and make the distinction between quintessence models
such models striking.

The result of Fig. 7 gives us hope to strongly constrain
quintessence scenario using weak lensing surveys. The
generation weak lensing surveys will made available w
surveys where a precise determination of the lensing ef
will be possible for a range of scales large enough to map
sharp rise predicted here. For example, measurements o
weak lensing effect amplitude at the 1° scale and the8
scale with only a 10 % precision appear sufficient to test
SUGRA quintessence hypothesis. It seems that the obse
tional requirements are much more modest than for dir
measurements of the angular distances through SNIa ob
vations.

C. Weak lensing on cosmic microwave background

In passing we note that weak lensing effects on CM
maps could also be used to test the quintessence hypoth
The amplitude of the effect is mainly given by the amplitu
of the fluctuations ofk, sk

2 , along the line of sight@51,52#.
In Table III we show the amplitude of the lens effect on t
last scattering surface at two different angular resolutio
The amplitude is mainly sensitive to the linear change of
growth rate integrated over the line of sight. It would pro
ably not be a crucial test for the nature of the vacuum ene
but it is potentially an important test to pass once the gen
cosmological parameters are determined. If the coming g
eration of observations requires quintessence, observatio

FIG. 7. RatiosPk
Q( l )/Pk

L( l ) for a source plane atz51. All
models are normalized so thatsk are the same at 108 scale and
correspond to anV050.3 flat LCDM model withs851. The ob-
servational window, in which measurements with an accuracy be
than 10% are foreseeable, corresponds tol of 200 to 10 000~minute
to degree scale! where the most dramatic changes take place.
1-8
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an excess of power in the lens effect as suggested by t
calculations will be an important consistency test.

V. CONCLUSION

In this paper we have examined the growth of structure
quintessence models in both the linear and the second o
regimes and present their more striking implications for
statistical properties of the low-redshift large-scale struct
of the universe. We paid particular attention to cases of r
istic implementations of the quintessence field since t
lead to scenarios where the energy fraction in the quin
sence component can represent a significant fraction of
total energy density over a long period. We found that t
effect is responsible for important differences in the behav
of the linear growth rate of the fluctuations: For the sa
values ofV0, realistic quintessence models lead to a line
growth rate that can be 20% or 30% lower than in mod
with a pure cosmological constant or with an effective qu
tessence component~where the vacuum has a constant eq
tion of state which matches the angular distance constrai!.

The consequences of this discrepancy have been exp
at the level of the nonlinear power spectrum for which su
differences are amplified. For power spectra with identi
linear normalization~at z50), the variation of the amplitude
of the nonlinear power spectrum can be as large as 2.

We have also computed the second order growth rat

TABLE III. Ratios between the amplitudes of the lens effects
the last scattering surface for different models and the stan
LCDM model (L50.7) at two different angular resolutions.

sk
2 at z51000 58 108

V50.25, L50.75 model 1.23 1.29
V50.4, L50.6 model 0.68 0.73
vQ520.8 1.20 1.21
Ratra-Peeblesa52 1.49 1.54
SUGRAa56 1.29 1.32
SUGRAa511 1.33 1.36
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the fluctuation. We found that, when expressed in terms
the square of the linear rate, it is not sensitive to the natur
the dark energy. This ratio is actually not significantly sen
tive to any of the cosmological parameters. In this resp
our result extends previously known properties.

Weak lensing surveys appear to be the natural playgro
for such effects. They combine effects on the angular d
tances and on the growth rate of the fluctuations. We sh
that the skewness of the convergence field, at large ang
scale, is notably sensitive to the projection effects. It is to
noted, however, that a universe with a quintessence fi
does not resemble a universe with a cosmological cons
and larger matter density~as is the case for the behavior o
the angular distances! but rather one with a lower densit
parameter.

Moreover, the shape of the power spectrum of the conv
gence field, which can be identified with a projected 3D m
ter power spectrum, retains the properties found for the
nonlinear spectrum. It appears clear that CDM family mod
for a flat universe can be distinguished from one anothe
variation ofV0 changes the shape of the linear power sp
trum, whereas the introduction of a quintessence fi
changes the time at which modes become nonlinear.

The precision level of the current semianalytical pred
tions for the shape of the nonlinear spectrum does not pe
us so far to make precise predictions from which the qu
tessence potential could be reconstructed. Moreover, the
of the prescription of Peacock and Dodds for models of qu
tessence with a tracking solution should probably be v
dated with specific numerical simulations.

The calculations have been done in two specific model
quintessence, the Ratra-Peebles model and the SUG
model developed in@16#. We think, however, that our con
clusions would survive for any model where the energy d
sity in the quintessence component can be a significant f
tion of the total energy up to recombination.
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