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PHYSICAL REVIEW D, VOLUME 64, 083501

Testing quintessence models with large-scale structure growth

K. Benabed and F. Bernardeau
Service de Physique Ttiéque, CE de Saclay, F-91191 Gif-sur-Yvette Cedex, France
(Received 23 April 2001; published 18 September 2001

We explore the possibility of putting constraints on quintessence models with large-scale structure observa-
tions. In particular, we compute the linear and second order growth rate of the fluctuations in different flavors
of quintessence scenarios. We show that effective models of quintes®eggcewith a constant equation of
state do not account for the results found in more realistic scenarios. The impact of these results on observa-
tional quantities such as the shape of the nonlinear power spectrum in weak lensing surveys or the skewness of
the convergence field is investigated. It appears that the observational signature of quintessence models is
specific and rather large. The effects clearly cannot be mistaken for a chafye of
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[. INTRODUCTION spectrum has nonetheless been studied in different models:
the effectivequintessencéwith the extra shortcoming that
The recent evidence in favor of a nonzero cosmologicathe possible fluctuations of the quintessence field were ne-
constan{1-9] has led to the development of alternative sce-glected as well as some high-energy physics trackimgen-
narios to explain such a nonzero vacuum energy defikily ~ tials [14,23. It has been found that at the redshift of recom-
In particular, models involving the so-called quintessencebination the dark energy fluid is subdominant and has only
have attracted attention from the high-energy physics comsignificant superhorizon fluctuations. Quintessence effects
munity [11-17. Indeed, in such models the vacuum energyappear, therefore, only as a modest change of the Sachs-
density is due to the potential and kinetic energy of a scalaWolfe plateau, an effect difficult to detect unambiguously
field rolling down its potential. Various models have beenbecause of the size of the cosmic variance.
proposed. The simplest implementation of such models, It has been shown, however, that although the intrinsic
widely used in the literature, is to introduce effiectivequin- ~ properties of CMB anisotropies fail to provide an unambigu-
tessence with a constant equation of sfdtd. More elabo- ous test of quintessence, its existence can be shown by the
rate theories provide potentials that exhibit a tracking soluamplitude of the density fluctuations on the last scattering
tion regime as long as the energy density of the quintessencirface compared to those at low redshift. This can be done,
field is subdominanf13]. This behavior is generically en- for instance, with the help of galaxy cluster couf24,25 or
countered in the Ratra-Peeb[d§] model in which the quin-  with weak lensing measuremen6,27.
tessence potential is a simple inverse power of the field. In all cases, however, direct constraints@g that would
Other models inspired by high-energy physics have also bedmelp to disentangle models rely on analysis of the local uni-
shown to exhibit this remarkable propefti4—18. verse properties. The matter content of galaxy clusters or
The presence of a quintessence field changes the enertfyeir number density evolutiof24,2g can provide useful
content of the universe and therefore alters its global exparsonstraints. Unfortunately these methods depend on non-
sion rate. It is then natural to try to detect the signature of drivial modeling of cluster properties such as x-ray luminos-
nonstandard vacuum equation of state through its impadty or temperature-mass relations. It is therefore unlikely that
upon the distance-luminosity function, which can be re-they can provide accurate constraints(®gwith a well con-
vealed by supernova type (8Nla) observation$§18-20. It  trolled level of systematics.
has been found, however, that the precision with which the New methods, based on weak lensing observations, are
vacuum equation of state can be measured depends crucialipw emerging that are in principle free of elaborate physical
on whether priors are assumed on the other cosmologicahodeling. The proposed means for constrainiflg are
parameters, in particular on the matter content of the Unibased on the rate at which nonlinear effects start to play a
verse. This calls for a reexamination of the theoretical fountole in the cosmic density field. Fundamentally, two ideas
dations upon which precision methods for determination ohave been followed. One is based on the nonlinear evolution
the cosmic density are based. of the shape of the power spectry9] and preliminary
The cosmic microwave backgroun@MB) anisotropy results have already been reported in this ¢asé It relies
power spectrum has been recognized as a gold mine for then some specific class of models, namely, some flavor of
determination of cosmological parameters. It is actually acold dark matte{CDM) model (the shape of the nonlinear
very valuable method for measuring the global curvature opower spectrum obviously depends on what is assumed for
the Universd 1] (through the value of the angular distance ofthe linear ong The other method, proposed|ig0], is more
the last scattering surfacbut it suffers from an unavoidable demanding on the observation side but is based on the sole
parameter degenera¢1,22 so that{), cannot be deter- assumption that the initial conditions were Gaussian. It relies
mined alone. on the direct detection of non-Gaussian properties of the den-
The impact of quintessence models on the properties ddity field. In particular, it has been shown that the large-scale
the CMB as well as on the primordial density contrast powerconvergence skewness can be used to meaQyreExact
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results obtained via second order perturbation theory have A. Effective quintessence
beent ot?[ta;tn(_ad tfr?r mode!sl v¥|thkor W|thr?uttha (iﬁsmologmﬁl Models of effective quintessence are the simplest imple-
constant. 1t 1S then crucial to know whether th€se resull3, . niations of a nontrivial vacuum equation of state. It is
would be affected in the case of quintessential dark energy,

The aim of this paper is therefore to examine the growthS'mply assumed that the equation of state parameter is fixed

: : : . and represents an aver value of mi mponent fol-
of structure in both the linear and the nonlinear regimes. T d represents a erage value ot a cosmic component 1o

illustrate our results and their robustness we consider variou§"V'"N9 @ compleg evolutlor(wh_ethe_r_ or not '.t 'S a qum'Fes-
realistic models of quintessence. So far the evolution ofcNCe fieldl Considered as a simplified version of a quintes-
large-scale structure has been studied only with effectivé€nCce model, this is a valid approach if, for some reason, the
quintessencgl1,31,33 and we will see that it does not pro- kinetic energy and t_he potgqtlal are glmost constant and of
vide a realistic account of what is happening in explicit mod-the same order. This conditiofwhich is not the slow-roll
els of quintessence. condition where the kinetic energy is much smaller than the
This paper is divided as follows. In Sec. Il we describepotentia) seems unlikely to be satisfied in a realistic frame-
the models we use and in particular the evolution of thework. We will nonetheless compare realistic models with this
vacuum equation of state they imply. In Sec. lll the resultsapproximation to show its impact on observed quantities.
for the linear and second order growth rates are presented.
Implications of these results are discussed in Sec. IV for the B. Tracking quintessence

nonlinear power spectrum. : . .
P P In a very wide class of quintessence models the field dy-

namics exhibits a tracking solution. It is such that the evolu-
Il. THE QUINTESSENCE MODELS tion of the dark energy, during radiation and matter domina-

We postulate that the content of the universe includes 40N iS completely determined by the potential shape
scalar fieldQ of potentialV. This scalar field is responsible regardless of the initial conditiortsin other words, the only
for the dark energy we observe today and is usually defuning required to reproduce today’s observations is the en-
scribed as a cosmological constant. Its motion equation i§"9y scale of the potential. Eventually, this scale will have to
given by the Klein-Gordon equation be explained by high-energy physics computations. While
this task seems insuperable in the case of a pure cosmologi-
) _ PV, cal constant, it might be within theoretical grasp for tracking
Q+3HQ=—-—= (1)  quintessencgl3,33.
9Q The phenomenological properties of this class of models
) ) _ can be summarized through the time evolution of the cosmic
and it contributes to the energy and pressure terms with  gquation of state. The detailed behavior of the field in the
first stages of its evolution depends on the initial conditions.
_ 1., If initially pq represents a fair fraction of the cosmic energy
Po=V(Q)+5Q7% density, the field rolls quickly down its potential so that the
quintessence energy density is purely kinetic. It is slowed by
1 the expansion until it freezes at a value larger than the one
po=—V(Q)+ -Q2 (2)  corresponding to the tracking solution. The value of the field
2 then remains constant—the quintessence energy density is
purely potential—until it coincides with the attractor solu-

The equation of state of the dark energy tion. Once on the attractor solution, the equation of state
parameter of the quintessence field takes a value that de-
Po=wq P ©) pends only on the shape of the potential and on the equation

of state of the dominant species of the univelis¢herefore
changes at equivalenc&Vhen the energy density of the field
starts to dominate, the field follows an inflationary type

the field is dominated by its potential, tao=1, when the slow-roll solution whose equation of state is approaching

kinetic energy dominates. In all the models we will consider, Q= ~ - These behaviors are displayed on Fig. 1 for the
the parameters will be chosen so tHat=0.3 and Q potentials we adopted. The time at which the tracking solu-
~0.7 today, unless otherwise mentioned Q tion is reached is completely arbitrary and has no effect on

In the following we focus our analysis on two models theoquantmles.we _clzlotr)mger mfthet follctnwmkg. del
with tracking solutions that provide explicit time dependency F.urta.\natlhySIE V\t” Pe glne or V;CI; raﬁ ng m? et'S.I'
of the equation of state, the Ratra-Peebles mpgland the irst is the Ratra-Peebles mod@l7] whose potential is

is a priori no longer characterized by a constasg=—1
parameter. It can vary fromvo=—1 when the dynamics of

model developed by Brax and Martin in which the potential 4t
shape incorporates generic supergravity facfdfs16. In Ve Q) = (4)
this section we succinctly review the properties of the effec- Q“

tive, Ratra-Peebles, and supergray®)GRA) quintessence
models and compute the resulting equation of state of the
Universe in these models. lover hundred orders of magnitude.
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FIG. 1. The evolution of the vacuum equation of state @s @ i 2. The evolution of the global cosmic equation of state as
function of the expansion parametarfor different cosmological 5 fnction of the expansion parametefor different cosmological

models. The dotted line corresponds to a vacuum equation of statg, jqels for a redshift range=0 to 10. Same convention as Fig. 1

p=—0.8p; the dot-dashed line to a Ratra-Peebles solution with i, thin solid line corresponding to a pure cosmological constant
=2; the dashed line to a SUGRA behavior witk 6; and the solid ¢ -, that), =0.7 atz=0.

line to a SUGRA model withe=11. The amplitude of the quintes-

sence potentials is such th@nane~0.3 atz=0 in all cases. The two models have the same tracking solution and the

equation of state parameter on it is thus the same, given by
and which is the simplest model exhibiting a tracking solu-gq. (5). Differences between the two models arise when the
tion. In particular, it is very hard, with this potential, to get fie|qd leaves the tracking solution. At this time, the field value
an equation of stateg<—0.7 while keeping a reasonable s of the order of the Planck mass, and the SUGRA correc-
energy normalization foM (from the high-energy physics tjon of the latter models starts to dominate. This SUGRA
point of view if 1, =0.7 today. Note that for such a poten- correction cures the problems encountered by the Ratra-
tial the vacuum equation of state of the attractor solution ipeebles potential by quickly slowing the field as it rolls
given by down, thus providing a smaller equation of state parameter
[16,15.
-2+ awg
@Q~= a+2 (5) C. Solution of the equations with quintessence

The quintessence field contributes to the Friedman equa-
where wg is the equation of state parameter of the back+ions, and therefore to the evolution of the expansion rate of
ground fluid (1/3 for a radiation dominated universe, O for athe universe,
matter dominated universeln the following we will con- s
sider the caser=2, which giveswgy~ —0.6 today, margin- a 87
ally consistent with the supernovae observations although it (g) = mkptot
leads to an unrealistic low-energy scale kér

Second, we consider the SUGRA model, proposed by a

R 4
Brax and Martin[16,15, whose potential is —=— —W(ptot-l- 3Pior) )
a 3Mpianck

)

VSugre(Q) =

2 (6) its pressure, assuming we live in a zero curvature universe. It
Planc is convenient to define the parameiers the effective equa-

. . ) ) tion of state parameter of the ensemble of cosmic fluids,
The corrective factor is motivated by the fact that, in the

Ratra-Peebles scenario, the field naturally reaches the Planck Piot= @ Prot- 9
scale at low redshift. If the quintessence potential is to be

derived from models beyond the standard model of particle This parameter is expected to vary from 1/3 in the radia-
physics that are expected to include supergravity propertiesion dominated erap=0 in the matter dominated era, &®

it is natural to expect supergravity corrections in the shape of> —1 when the vacuum energy dominates. The shape of this
the potential. The potential Brax and Martin proposed is aciransition and its implication for the growth of structure are
tually an extension of the Ratra-Peebles potential, with grecisely what we investigate in this paper.

generic supergravity correctidithe exponential terim This The evolutions of the equation of state of the universe are
last model is of particular interest since its predictions are irshown on Figs. 1 and 2. They show that the transition from a
good agreement, for a wide range of parameters, with thenatter dominated universe=0 to a vacuum dominated
SNla measurements. We studied here two examples of thisniverse is much smoother in the case of quintessence mod-
potential, =6 anda=11, which both lead to the equation els. In fact, the universe leaves tle=0 line much sooner in

of statewq~ — 0.8 at zero redshift. These choices of param-the tracking quintessence models than in the effective quin-
eter lead to an energy scdlefrom 1¢° to 10'* GeV, which  tessence or thA models. It is then natural to expect signifi-
does not contradict our knowledge of high-energy physics. cant effects on the angular distances or on the growth of

M4+a o ;{4 Q2 J wherep, is the total energy density of the Universe angl
X[ 4 .
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FIG. 3. Evolution of the comoving angular distance in the dif-
ferent scenarios compared to a pure cosmological constantZrom
=1000 to the local universe. Same conventions as in Figs. 1 and
are used for the line styles. The lower solid line corresponds to
pure cosmological constant model with,=0.4.

FIG. 4. The ratidD , /a (normalized to unity az>100) for the
ifferent scenarios. Today’s growth rate is smaller by about 20% in
aracking quintessence scenarios.

fluctuations. Moreover, the low-redshift behavior of the glo-
bal cosmic equation of state is very different in the three
guintessence models. This also should induce significant
phenomenological differences between thenodels and the
guintessence models.

Dl(t)+2HD1(t)—gHZQ(t)Dl(t)=0, (10)

The implication of these behaviors for the angular dis—WhereQ(t) corresponds to the fraction of energy in the mat-
tances is Zhown on Fia. 3. The differences seer% ot Verter component. The growth rate is independent of the wave-
g. o }éngth of the fluctuations as long as we consider fluctuation

nptheable at small redshlft. _However, they build up to l.)eat subhorizon scale and if we neglect the pressure effects.
significant when the effect is integrated to the last scattennq_he time evolution oD, provides the amplitude of the den
surface. The end values of the angular distances for the dif-. fl . Fi 1 4 qi h h for diff
. : X sjty fluctuations. Figure 4 gives the growth rate, for different

ferent tracking quintessence scenarios are very close to eag . .
. rmodels, as a function of redshift compared to the growth rate
other, although they correspond to different values of the

equation of state todagsee Fig. 2 Not surprisingly, quan- in the EdS cas@.In models with a pure cosmological con-
-d " 9. brisingly, q stant, the growth factor remains very close to the EdS solu-
tities sensitive to the angular distance at higlsuch as the

position of the first acoustic peak, have been found to depen%On fqr a long penodz and then changes abruptly between
upon the vacuum equation of sta@3]. One should also redshift 2 and 3. In quintessence models the solutions follow
P e d . L the same scheme, yet with a smoother slope change. How-
expect significant differences in the amplitude of the lens o .
: i . ever, for the same normalization at-100, when the uni-

effect on the CMB anisotropie&s its depends on the angu- . . . . ,
. . verse is very close to an Einstein—de Sitter model, today’s

lar distances between the observed objects and the Jenses L ; .
We note however that & model with a lower value of) growth rates are quite different. The quintessence scenarios

0

. . ; with a tracking field exhibit a smaller growth todé&yf order
can repro_duce fa|rly well the low-redshift behavior of the 20-30 % percent legsTo say it in other words, for the same
angular distances in our quintessence models.

og, the quintessence models demand larger density fluctua-
tions at early times. This effect should lead to a difference
Ill. THE GROWTH OF STRUCTURE between CMB normalizations and low-redshift normaliza-
tions.
The origin of this difference is clear. It is due to the fact
In the previous section we observed that, since the evoluthat the energy fraction in the quintessence field remains sig-
tion of the universe with a quintessence component isificant for a much longer time. In this respect the effective
smoother than with a pure cosmological constant, the depatjuintessence solution is very similar to the scenario,
ture from an Einstein—de SittéEdS universe occurs later in  whereas realistic models of quintessence lead to linear
the former case. This effect has been described beforgrowth rates that depart from the EdS case at redshift as
[32,11,13, although only in the context of effective quintes- large as 30. Clearly, models of effective quintessence that
sence, but it is clearly amplified here because the energyan match the SNla observations do not provide a good ac-
fraction of the quintessence field can be much larger at higleount of the linear growth rates found in realistic models of
redshift in cases of realistic quintessence models. guintessence.
In this section we investigate the impact of these effects
upon the evolution of large-scale structure. We consider the
large-scale structure history only after recombination, a time
at which the dark matter fluctuations dominate. After recom- As mentioned in the Introduction, for Gaussian initial
bination and at subhorizon scales the quintessence field petonditions the second order growth rate determines the rate
turbations correspond to decaying modes and can therefore
be ignored. Within these assumptions the growth rate of the—
density contrast at linear order is driven by the equai8 AWhose solution is well knowrD(t)=a(t).

A. The linear growth rate

B. Second order growth rate

083501-4
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4.875 TABLE |. Value of the skewness, E¢15), of the local conver-
4.87 gence in weak lensing surveys for sources at redshifts 1 or 2 and for
4.865 a power law indexn=—1.5.
4.86
S3 4855 Skewness z=1 z,=2
4.85 A model ,=0.3) 76 26
4.8435 A model Q,=0.25) 85 28
484 wo=-0.8 83 28
0.01 002 0.05 06.11 02 05 1 Ratra-Peeblesy=2 o1 32
SUGRA, a=6 85 30
FIG. 5. The skewness for the different scenarios. The horizontaSUGRA, «=11 86 30

straight line gives the skewness in EAS models. The variations in
the quintessence models are very small.

pendence on the vacuum equation of state. This result actu-

at which non-Gaussian properties emerge in the matter demily extends a property already known for the dependence of
sity field. In a perturbation theory approach it is indeed thiss; on (), for open universe§36], flat universes with a cos-
quantity that determines the value of the large-scale skewmological constanf38], or in some flavors of nonstandard
ness. Furthermore, it turns out that weak lensing surveys cayacuum equation of sta{@9].
be used as a test ground for this effect and provide a robust The skewness of the convergence is thus expected to be
constraint orf through the value of convergence skewnesseft unchanged, except through the dependence of the angu-
[35,30. We examine here to what extent this approach retar distances and the linear growth rate of the fluctuations.
mains valid in a quintessence cosmology. We recall here the formal expression for the convergence

Such perturbation theory calculations are based on thekewness in perturbation theory for a power law spectrum
computation of higher order terms in a perturbative ap-of indexn) [30]. For a flat universe, it is given by
proach. More precisely the reduced skewness defined as

DS
(8% fo dDw3(D) D}(D) D 2("*2)

S3:<(;)\2>2 (11) S3=

sgD—g(n+2)

Dy 2
f dDw?(D) D4(D) D~ ("2
0

can be related to the second order growth faé and more
specifically to the second order growth rate in spherical col- (15
lapse dynamicE37,38. In this case it is simple to expand the

local density contrast to second order with respect to the/ ith an efficiency functiow(D) given by

initial density fluctuations, 3 D(DD)
W(D)= = Qg—r (16)
Dz(t) ) 2 Dsa
Ssdt)=Da(t) 5+ —5— &+, (12 _ o
whereD; is the comoving distance to the sources agpds

the skewness parameter for the 2D dynamics. The latter can
be related to the 3D one, since it implies only a different
combination of the terms appearing for the 3D cg&&30.

This finally gives

with a time dependent coefficient that can be explicitly cal-
culated for any cosmological model. The functibi(t) is
the growing mode of the equation

3 . 3
Da(t) +2HD (1) — 5 HZ (1) Da(1) =3H? Q(t) DI(1) 53:§+ 9D, 17
2 4 Di,

N2
+3D1(0. (13 which amounts to 36/7 for an Einstein—de Sitter case.
In Table | we present the expected skewness for the dif-

The 3D density skewness at large sdaled when smoothing ferent models we have considered for sources at redshifts 1
effects are neglecteds then directly proportional t®,(t),  OF 2. The results show that the projection effects on the value

and is given by of the skewness can be quite large. They increase the value
of the skewness so that quintessence models @ik 0.3
D,(t) mimic what one expects for 8,=0.25 model with a pure
=3 (14  cosmological constant.
Di(t) It is to be noted that angular diameter distances, in a quin-

From Fig. 5 it is clear that the variations of skewness withtessence scenario, rather resemblé anodel with alarger
the cosmological models are very sméklow the percent value ofQ), (see Fig. 3 From those two joint observations it
level) and are likely to remain undetectable. This means thashould then be possible to test the quintessence model hy-
the second order growth rate does not introduce further dggothesis. However, results should be extended to the inter-
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mediate and nonlinear regime where most of the data are From the Hamiltoret al. ansatz we expect very different
going to be, although we expect the qualitative results foundbehaviors for the small-scale nonlinear power spectrum

here to remain valid. when quintessence and nonquintessence models are com-
pared. We previously obtained the result that about 20% to
IV. NONLINEAR MATTER POWER SPECTRUM 30% discrepancy is expected, depending on the quintessence
IN QUINTESSENCE MODELS potential, betweem® and D*. The consequences of this
priori modest discrepancy are dramatic for the nonlinear
A. The shape of the nonlinear power spectrum power spectrum. For a mode that entered the non-linear re-

We complete these investigations with the nonlinear evogion long before redshifz, we have
lution of the matter density contrast power spectrum. Assum-

ing a stable clustering ansatz and the Hamiletral. map- PRk 2) Afﬁ(kn,,z)ZM 9%2) "2 A%kq,2)* 19

ping [40], we compare the power spectrum in quintessence PA(Ky,2) - Ak, 22 gM2)3AMK, ,2)3 (19)
and cosmological constant models in the deeply nonlinear ni il ni '

regime. wherekq (k,) is the linear mode in the quintessenck)(

The linear matter power spectrum in quintessence scqmear power spectrum giving rise to thg, mode in the
narios has been studied befg¥el,14,42,23 For modes in-  nonlinear spectrum. Assuming, as stated before, that at the
side the horizons, models with a pure cosmological constar§yphorizon scales we are interested in the linear power spec-

or with a quintessence field show very little difference in thetra of the models are identical, up to a normalization factor
shape of the linear transfer function. Limiting our study top, we write P(k,z)=g?(z)a? Pok” with n>—3. For a

those modes, we can reliably approximate the linear quintesnode in the nonlinear region we have
sence power spectrum by a standard cold dark matter model

with a cosmological constanf\(CDM) one. kg |\ Ve

However, there is no reason for the nonlinear evolution of k~ > (20
these models to lead to the same power spectrum. Indeed, we a“P
showed in Sec. Il A that generically the large-scale structure

. . : and Eq.(19) reduces to

grows more slowly in quintessence scenarios. Hence, for the
same amount of structure today, the density contrast had to Q Q=3 [ Q[ 242 PQ | n+3) 372
be bigger in the quintessence scenario at early time. This Prikn . 2) 9 (2) 9-(2)7a" Pg kg
implies that modes that are in the nonlinear regime now have PA(kn,2) 9(z2) %\ g*(2)%a®? P} k13
reached t.hIS regime sooner in quintessence scenarios. 0\ (3/2)[1—(n+3)/(n+5)]

Following the idea of Hamiltoret al.[40], later extended Ps
by Peacock and Dodd#3,44], we postulate that one can - P_OA (2D

describe the effects of nonlinear evolution through a univer-
sal functionf,, that maps the linear power spectrum onto thewe suppose here that the spectral indeis identical for
nonlinear one: both P9(kq) andP*(k,), which is a reasonable approxima-
A2 (k)= . (A%(K)) tion. Finally, if we set both the spectra to fit the cluster nor-
nitEnl) = Tnl : malization, the rati®®$/Pj is simply the ratio of the grow-
ing modes az=0 and we get

PR(Kn/2) ( g9(z= 0)) -3 [1—(n+3)/(n+5)]
Phi(ka,2) | gh(z=0)

k=[1+A% (k)] Y3y, (18)

A%(K)=47k3P(K).

(22

Enforcing stable clustering, Peacock and Dodds showed that
this function must follow an asymptotic behavior at lasge NOt€ that the exponent gets close 48 when the spectral

such thatf ,(x) < g(Q) ~3x¥2—whereg(Q) =D, (a)/a is the index goes to— 3. Given the variation 0§? the ratio given
ratio of the linear growth factor to the EAS growth factor I EQ- (22) can be as large as 2. ,
described in Sec. Ill A—and proposed analytical forms for "€ same ratio is easier to compute for modes in the

f . that depend on the cosmological parameters thrggh ~ I"€ar regime,

only and that are calibrated on variodsbody simulations. Q 0 A 2

We assume that their results hold for quintessence scenarios. P~(k2) [9%(2)97(0) 29
In particular, we assume that the nonlinear regime always PA(k,2) g?(0) g’(2) '

reaches a stable clustering regime. Moreover, and in the ab-

sence of quintessendé-body simulation for our particular These simple investigations show unambiguously and
scenarios, we also assume that the normalization factor in theith a limited number of assumptions that the shape of the
asymptotic branch is independent of the cosmological scenonlinear power spectrum is very sensitive to the presence of
nario. These assumptions are not trivial and can probably ba quintessence field. In order to have a full description of the
challengedsee, for instancd 32], where the behavior of the power spectrum behavior, including the intermediate regime,
nonlinear power spectrum is investigated for effective quin-we use the Peacock and Dodds prescription. This formula
tessence models with a different perspedtive has been shown to be reasonably accurate for effective quin-
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2 - ~ ' : - derstood in the transition regime between the linear and non-
1.8 | linear regimes, prevent a robust and reliable test of these
16 scenarios. In the next section we rather try to validate these
14| properties in the context of a better defined observational
Po 151 procedure: the projected power spectrum in weak lensing
P ; surveys.
0.8 |
06 B. Projected power spectrum in weak lensing surveys
Weak lensing surveys can potentially provide us with pre-

0.4 —— : : :
0001 001 01 1 10 100 1000 cision maps of the projected density up to redshifts around 1

k (Mpc.h™) [45-48,26,49,27,590 These measurements are expected to

FIG. 6. The ratioP$,/PA; atz=0. The solid and dashed lines be free of observation biases once the redshift distribution of

are the SUGRA quintessence models dor 11 anda =6, the dot- the sources i$ known. .
dashed line is the Ratra-Peebles model, and the thin dotted line is Weak lensing surveys, through observation of the defor-

the effective quintessence model for amg= —0.8. We also show ~mation of background galaxies, can give access to the con-
here the results for ,=0.4 flatA CDM model(thin dashed line ~ Vergence field. The latter can be written as the projection of
and anQ,=0.25 flat ACDM model (thin double dashed line the matter density along the line of sidi30],

which were discussed in previous sections.

- DS >
K(a’):J dDw(D)S(a,z(D)), (29
tessence models N-body simulation, at least at low redshift 0

[32]. Anyway, we are more interested, in this paper, in the

general trend rather than a completely accurate description c:)/ih\?;ﬁ;hf? Zta}lr;:ssfo;ttiz:a ?Sgg&rrg'sgg{] (.ﬁ?g th;’):gg;;g;
the transition between linear and nonlinear evolution. Figur P Y g

6 shows a comparison between quintessence models an§< melw(D), defined in Eq(16), accounts for the projection

; effects.
standardA CDM. The curves represent the ratios between a We expect that the ratio of the power spectra of the con-

quintessence nonline&;p at z=0 and theACDM one as- . . :
. : ergence field for models with a cosmological constant and
suming that the linear power spectra have the same normal- . : , . o
models with a quintessence field will exhibit roughly the

ization. As expected, the small-scale ratio tends toward the . : . .
QAy—3 S . Same properties as the ratio of the three-dimensional power
(9%/g7y) ~° asymptote. The shape of the curve in this region

. . spectra. However, the value of this ratio is expected to be
is described by the [3—(n+3)/(n+5)] power calculated affected by a corrective factor induced by the geometrical

above. Since the effect is proportional to the growth ratio tQ.q e which itself depends on the details of the cosmologi-

thﬁ pow;:r 3/3 Itis muct? smaller for eﬁeﬁtlved%ntezs(lancq:al model. In the following we present an evaluation of this
where t. e discrepancy between _|ts growth and.thmode rescaling factor along the line of reasoning of the previous
growth is smaller. We stress again therefore that the use Oféhbsection

constant equation of state cannot account for the amplitude || the small-angle limit, we have
of this effect as it is expected in realistic models. '

Note that the transition between the linear and nonlinear D 2 o
regimes depends on the ansatz used faorHowever, a very pK({y) = f SdDw(D)ZJ P3p(k,z(D))e' kP«
sharp transition, as encountered here, is not unnatural. It ac- 0 (2m)?
counts for the different times a given mode enters the non- (29

linear regime in different models. If one follows a given o

mode throughout its evolution, it will first obey the linear SO that the convergence power spectrum is simply

growth and evolve aa?g?(a). Then it enters the nonlinear

regime and grows aa®. The transition between these two P ()= fDS d_D D)2P,o (11D, 2(D)) (26)

regimes is very sharp. When models with a different growth ()= ZW( )"P3p 2D,

factor are compared, this rapid transition translates into a

sharp increase of the power spectrum ratio between the linearhere a possible redshift evolution of the shape of the power

and nonlinear regimes. spectrum is included. The kernelis a bell shaped window
Moreover, we note that this effect cannot be mistaken fothat reaches its maximum at.z=2z(DJ/2). To evaluate

a variation of(),. The latter has a much more dramatic effectroughly the rescaling factor we will approximate® by a

on the shape of the linear power spectrum through a changgmp|e Dirac functionwz(D)~w§ﬁ 8(D—D42) with W

of the shape of the transfer function. In this case, not only is= [PsdDw(D) and zes~0.4 (it depends on the cosmology

the linear growth rate changed but the position of the maxiye are consideringfor sources at redshift,. Now, the ratio

mum of the linear power SpeCtrum is also shifted. of the convergence power Spectrum is S|mp|y
In principle, large-scale galaxy surveys such as the 2dF or
the SDSS should be able to put constraints on the amplitude PO(I) Wgﬁ/DSQ 2 PSD(Z ”DSQ ’Zgﬁ)
and shape of the power spectrum. However, the possible ef- ; ~| = I T (27
fects of biasing mechanisms, which are extremely poorly un- P \Wei D] P3p(21/Dy ,zen)

083501-7



K. BENABED AND F. BERNARDEAU PHYSICAL REVIEW D64 083501

TABLE Il. Evaluation of the ratiocP?/P% in the linear domain,

from Eq. (29).

z=1 z=2 z=1000
wo=-0.8 0.94 0.95 1.06
Ratra-Peebles=2 0.86 0.88 1.20
SUGRAa=6 0.92 0.92 1.16
SUGRAa=11 0.91 0.91 1.18 .

0.6 . : . .
1 10 100 1000 10000 100000

For a mode in the nonlinear region, a few percent error in the ¢

position of the mode is not significant, so that we can ignore g 7. RatiosPQ(1)/P(1) for a source plane at=1. Al
the difference betweeDq and D, in the last term of the models are normalized so that, are the same at 10scale and

equation. As a result, correspond to af),=0.3 flat ACDM model withag=1. The ob-
9 Q 10\ 2/ .0\ 3 servational window, in which measurements with an accuracy better
Pl ( Wext/Dg ) ( aeff> than 10% are foreseeable, correspondsatio200 to 10 00Qminute
- A to degree scajewvhere the most dramatic changes take place.

P \whiDi] \a aree scal s mer
g%(z=0) —3[1=(n+3)/(n+5)] model with A =0.7). Because of the projection effects given
W , (28 in Table 11, this is not equivalent to the normalized linear 3D
g7 (z=

power spectrum. Projection effects also slightly change the
shape of the projected linear power spectrum. The redshift of
éhe sources is simply assumed to be unity here. The differ-
“gnces in the shape of the power spectra are clearly visible

which, compared to Eq22), contains an extra geometrical
factor due to the projection effects. It evaluates to 0.8 to 0
depending on the model and position of the source plane. We d should be already within ob tional traint
expect therefore the conclusions reached in the previous segnd should be aiready within observational constraints.
tion to survive in weak lensing observations. We also give the effects of a ghange(b@, fqllowmg the
Similarly, for a mode in the linear region, we have same prescription for the norma[lzatlon. In this case, because
we normalized to theonvergencédinear power spectrum, the
Q Q IpQ\ 2/ 4Q\ 2/ 4Q(,QY A 2 change of(Q), also directly affects the normalization. Com-
P (We“/DS) (ae“) (LZQ“) g_(O)) _ pared to 3D0power spectra, it actually worsens the situation
g?(0) g*(zd) and make the distinction between quintessence models and
such models striking.

. . . The result of Fig. 7 gives us hope to strongly constrain the
Table Il gives the value of the expected ratio in the linear g-£9 b gy

. . o _““quintessence scenario using weak lensing surveys. The next
region. It is about 0.9. This indicates that the normal|zatlongener‘,mOn weak lensing surveys will made available wide

ratio (1;or thilllnegr 3D power Sp?ﬁt(rj‘%f';‘ agd tr?.at for the PrO°syrveys where a precise determination of the lensing effect
Jecg_eh wea gn5|n|g 'sp?ctruml Will ditter by td IS amount.f hwiII be possible for a range of scales large enough to map the
. esQe sAemlana ytical results give a good account o _t Sharp rise predicted here. For example, measurements of the
ratio P,S/P, for all angular scales. At large scale, it iS eak lensing effect amplitude at the 1° scale and the 1
roughly flat; its value is given in Table Il. Then, as we getgcgle with only a 10 % precision appear sufficient to test the
closer to the transition between the linear and nonlinear reggra quintessence hypothesis. It seems that the observa-
gimes, the ratio exhibits a slight drop. Indeed, from EXY)  {5na| requirements are much more modest than for direct

the ACDM model enters the nonlinear regime earlier, be-measyrements of the angular distances through SNia obser-
cause of the difference between thg. Hence, one expects  ations.

to have, for a few modes, |a£ that rises more quickly than
its quintessence counterpart. Then, when the quintessence
power spectrum also hits the nonlinear regime, the ratio will
exhibit a shape very similar to that of the three-dimensional In passing we note that weak lensing effects on CMB
power spectrum ratio, with the rescaling factor computednaps could also be used to test the quintessence hypothesis.
above. The amplitude of the effect is mainly given by the amplitude

In Fig. 7 we present the explicit computation of the non-of the fluctuations of, 0',2(, along the line of sighf51,52.
linear power spectra of the convergence field using the pren Table Il we show the amplitude of the lens effect on the
scription of Peacock and Dodds to compute the redshift evolast scattering surface at two different angular resolutions.
lution of the 3D power spectrum. Unlike in Fig. 6, here the The amplitude is mainly sensitive to the linear change of the
power spectra are not cluster normalized. In this case thgrowth rate integrated over the line of sight. It would prob-
power spectra are normalized so that the weak lensing amably not be a crucial test for the nature of the vacuum energy
plitudes match at 10scale when computed with the linear but it is potentially an important test to pass once the general
power spectrum and match the amplitude of the recent dezosmological parameters are determined. If the coming gen-
tections of weak lensing effecte.g., cg~1 for a ACDM eration of observations requires quintessence, observation of

PA) \wh/Dl) \al

C. Weak lensing on cosmic microwave background
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TABLE IlI. Ratios between the amplitudes of the lens effects onthe fluctuation. We found that, when expressed in terms of
the last scattering surface for different models and the standarthe square of the linear rate, it is not sensitive to the nature of

ACDM model (A=0.7) at two different angular resolutions. the dark energy. This ratio is actually not significantly sensi-
; tive to any of the cosmological parameters. In this respect
o, atz=1000 5' 10 our result extends previously known properties.
0=0.25 A=0.75 model 123 1.29 Weak lensing surveys appear to be the natural playgrognd
for such effects. They combine effects on the angular dis-
(1=0.4, A=0.6 model 0.68 0.73 .

o8 120 11 tances and on the growth rate of the fluctuations. We show
;Q_ P. bles=2 1'49 1'54 that the skewness of the convergence field, at large angular
atra-peebles = : : scale, is notably sensitive to the projection effects. It is to be
SUGRAa=6 1.29 132 noted, however, that a universe with a quintessence field
SUGRAa=11 133 1.36 does not resemble a universe with a cosmological constant

and larger matter densityas is the case for the behavior of

. the angular distancgdut rather one with a lower density
an excess of power in the lens effect as suggested by theﬁ‘érameter.

calculations will be an important consistency test. Moreover, the shape of the power spectrum of the conver-
gence field, which can be identified with a projected 3D mat-
V. CONCLUSION ter power spectrum, retains the properties found for the 3D

In this paper we have examined the growth of structure i onlinear spectrum. It appears clegr that CDM family models
r a flat universe can be distinguished from one another: a

quintessence models in both the linear and the second order” = 0. ch he sh f the li
regimes and present their more striking implications for the/a"1ation ofélq changes the shape of the linear power spec-

statistical properties of the low-redshift large-scale structurér#m’ wh(;rea_s the |r;]t'rohduct|ccj)n gf a qumte?sence field
of the universe. We paid particular attention to cases of reaichanges the time at which modes become nonlinear.

istic implementations of the quintessence field since they. The precision level of the current semianalytical predic-
lead to scenarios where the energy fraction in the quintesionS for the shape of the nonlinear spectrum does not permit

sence component can represent a significant fraction of thigs SO far to mall<el preiljsg predictions fr%ml\xvhlch the ﬂum-
total energy density over a long period. We found that thigtessence potential could be reconstructed. Moreover, the use

effect is responsible for important differences in the behavi0|of the prescription of Peacock and Dodds for models of quin-

of the linear growth rate of the fluctuations: For the same€SSence with a tracking solution should probably be vali-

values of(}, realistic quintessence models lead to a Iinealdated with spe_cmc numerical 5|mu|a_t|ons. o
growth rate that can be 20% or 30% lower than in models The calculations have been done in two specific models of

with a pure cosmological constant or with an effective quin-duintessence, the Ratra-Peebles model and the SUGRA

tessence componefwhere the vacuum has a constant equa-”lwd.eI develcl)ged "ﬁ.16]'f We thmk,dhcl)wiver, ttr?at our cog-
tion of state which matches the angular distance const)aintsc_us'ons would survive for any model where the energy den-

The consequences of this discrepancy have been exploré&y in the quintessence component can pe a significant frac-
at the level of the nonlinear power spectrum for which such!o" Of the total energy up to recombination.

@ﬁerences are gmphﬂed. For power .spectra with |0!ent|cal ACKNOWLEDGMENTS
linear normalizatior(at z=0), the variation of the amplitude
of the nonlinear power spectrum can be as large as 2. The authors are very thankful to J. Martin, A. Riazuelo,

We have also computed the second order growth rate d?h. Brax, and L. van Waerbeke for fruitful discussions.

[1] P. de Bernardiet al, Nature(London 404, 955 (2000. [14] P. G. Ferreira and M. Joyce, Phys. Rev58) 023503(1998.
[2] A. E. Langeet al, Phys. Rev. D63, 042001(2001). [15] Ph. Brax and J. Martin, Phys. Rev. @1, 103502(2000.

[3] P. M. Garnavichet al, Astrophys. J. Lett493 L53 (1998. [16] Ph. Brax and J. Martin, Phys. Lett. 868 40 (1999.

[4] S. Hananyet al, Astrophys. J. Lett545, L5 (2000_ [17] B. Ratra and P. J. E. Peebles, PhyS. ReG7D3406(1988.

[18] T. D. Saini, S. Raychaudhury, V. Sahni, and A. A. Starobinsky,
Phys. Rev. Lett85, 1162(2000.

[19] P. Astier, astro-ph/0008306.

[20] D. Huterer and M. S. Turner, astro-ph/0012510.

[5] A. Balbi et al,, Astrophys. J. Lett545 L1 (2000.
[6] S. Perlmutteret al,, Astrophys. J517, 565 (1999.
[7] S. Perlmutteret al, Nature(London 391, 51 (1998.

[8] A. G. Riesset al, Astron. J.116 1009(1998. [21] M. Zaldarriaga, D. N. Spergel, and U. Seljak, Astrophys. J.
[9] I. Waga and J. A. Frieman, Phys. Rev.6R2, 043521(2000. 488 1 (1997).
[10] S. Weinberg, Rev. Mod. Phy§1, 1 (1989. [22] G. Efstathiou and J. R. Bond, Mon. Not. R. Astron. S8@4,
[11] I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. L&%. 75 (1999.
896 (1999. [23] Ph. Brax, J. Martin, and A. Riazuelo, Phys. Rev6®) 103505
[12] M. Tegmark, astro-ph/0101354. (2000.
[13] P. J. Steinhardt, L. Wang, and |. Zlatev, Phys. Rev5®  [24] V. R. Eke, S. Cole, and C. S. Frenk, Mon. Not. R. Astron. Soc.
123504(1999. 282 263(1996.

083501-9



K. BENABED AND F. BERNARDEAU PHYSICAL REVIEW D64 083501

[25] J. R. Bondet al,, astro-ph/0011379. [40] A. J. S. Hamilton, A. Matthews, P. Kumar, and E. Lu, Astro-

[26] R. Maoli et al,, astro-ph/0011251. phys. J. Lett374, L1 (199)).

[27] L. van Waerbekeet al,, astro-ph/0101511. [41] J. C. Fabris and J. Martin, Phys. Rev.55, 5205(1997.

[28] J. Oukbir and A. Blanchard, Astron. Astrophyl7, 1 (1997.  [42] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett.

[29] B. Jain and U. Seljak, Astrophys. 484, 560(1997. 80, 1582(19989.

[30] F. Bernardeau, L. van Waerbeke, and Y. Mellier, Astron. As-[43] J. A. Peacock and S. J. Dodds, Mon. Not. R. Astron. 266,
trophys.322, 1 (1997). L19 (1996.

[31] L. Hui, Astrophys. J. Lett519, L9 (1999.

[32] C. Ma, R. R. Caldwell, P. Bode, and L. Wang, Astrophys. J.
Lett. 521, L1 (1999.

[33] P. Binetruy, Phys. Rev. B0, 063502(1999.

[34] P. J. E. PeeblesThe Large-Scale Structure of the Universe
(Princeton University Press, Princeton, NJ, 1980

[35] L. van Waerbeke, F. Bernardeau, and Y. Mellier, Astron. As-

[44] J. A. Peacock and S. J. Dodds, Mon. Not. R. Astron. 264,
1020(1994).

[45] L. van Waerbekest al, Astron. Astrophys358, 30 (2000.

[46] D. J. Bacon, A. R. Refregier, and R. S. Ellis, Mon. Not. R.
Astron. Soc.318 625 (2000.

[47] D. M. Wittman et al,, Nature(London 405, 143 (2000.

trophys.342 15 (1999. [48] N. Kgiser, G. Wil§on, and G. Lupp?no, astro-ph/0003338.
[36] F. R. Bouchet, R. Juszkiewicz, S. Colombi, and R. Pellat, As-[49] G. wilson, N. Kalser,_and G. Luppino, astro-ph/0102396.
trophys. J. Lett394, L5 (1992. [50] J. Rhodes, A. Refregier, and E. J. Groth, astro-ph/101213.
[37] F. Bernardeau, Astrophys. 392, 1 (1992. [51] F. Bernardeau, Astron. Astrophy324, 15 (1997.
[38] F. Bernardeau, Astrophys. 433, 1 (1994 [52] U. Seljak and M. Zaldarriaga, Phys. Rev. Le®#2, 2636
[39] E. Gaztaaga, and J. A. Lobo, Astrophys. 348 47 (2001). (1999.

083501-10



