
HAL Id: hal-00009126
https://hal.science/hal-00009126

Preprint submitted on 28 Sep 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a nonlocal equation arising in population dynamics
Jérôme Coville, Louis Dupaigne

To cite this version:
Jérôme Coville, Louis Dupaigne. On a nonlocal equation arising in population dynamics. 2005.
�hal-00009126�

https://hal.science/hal-00009126
https://hal.archives-ouvertes.fr


On a nonlocal equation arising in population dynamics
Jerome Coville1 and Louis Dupaigne2

E-mails: coville@ann.jussieu.fr , dupaigne@math.cnrs.fr
1 Laboratoire Jacques-Louis Lions
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Abstract

We study a one-dimensional nonlocal variant of Fisher’s equation describing
the spatial spread of a mutant in a given population, and its generalization to the
so-called monostable nonlinearity. The dispersion of the genetic characters is as-
sumed to follow a nonlocal diffusion law modelled by a convolution operator. We
prove that as in the classical (local) problem, there exist travelling-wave solutions
of arbitrary speed beyond a critical value and also characterize the asymptotic be-
haviour of such solutions at infinity. Our proofs rely on an appropriate version of the
maximum principle, qualitative properties of solutions and approximation schemes
leading to singular limits.
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1 Introduction
In 1930, Fisher [10] suggested to model the spatial spread of a mutant in a given
population by the following reaction-diffusion equation :

ut −∆u = u(1− u), (1.1)

where u represents the gene fraction of the mutant. Dispersion of the genetic char-
acters is assumed to follow a diffusion law while the logistic term u(1−u) takes into
account the saturation of this dispersion process.

Since then, much attention has been drawn to reaction-diffusion equations, as
they have proved to give a robust and accurate description of a wide variety of
phenomena, ranging from combustion to bacterial growth, nerve propagation or
epidemiology. We point the interested reader to [9, 14, 12] and their many references.

In this work, we consider a variant of (1.1) where diffusion is modeled by a
convolution operator. Going back to the early work of Kolmogorov - Petrovskii-
Piskounov (see [13]), dispersion of the gene fraction at point y ∈ Rn should affect
the gene fraction at x ∈ Rn by a factor J(x, y)u(y)dy where J(x, ·) is a probability
density. Restricting to a one-dimensional setting and assuming that such a diffusion
process depends only on the distance between two niches of the population, we end
up with the equation

ut − (J ? u− u) = f(u), (1.2)

where J : R → R is a nonnegative even function of mass one. More precisely, we
assume in what follows that

J ∈ C1(R), J ≥ 0, J(x) = J(−x) and
∫

R
J = 1, (H1)

We make the additional technical assumption

∃λ > 0,
∫

R
J(x)eλxdx < +∞. (H2)

For example, (H2) is satisfied if J has compact support or if J(x) = 1
2λe

−λ|x| for
some λ > 0.

The nonlinearity f in (1.2) can be chosen more generally than in equation (1.1).
In the literature, three types of nonlinearities appear, according to the underlined
application: we always assume that f ∈ C1(R), f(0) = f(1) = 0, f ′(1) < 0 and

• we say that f is of bistable type if there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f(θ) = 0 and f > 0 in (θ, 1)

• f is of ignition type if there exists θ ∈ (0, 1) such that

f |[0,θ] ≡ 0, f |(θ,1) > 0 and f(1) = 0.

• f is of monostable type if
f > 0 in (0, 1)
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In the present article, we will focus on the monostable nonlinearity. Observe that
equation (1.1) falls in this case.

(1.1) can also be seen as a first order approximation of (1.2). Indeed if any given
niche of the species is assumed to interact mostly with close-by neighbours, the
diffusion term is of the form Jε(x) := 1

εJ(1
εx), where J is compactly supported and

ε > 0 is small. We then have

Jε ? u− u =
1
ε

∫
J(

1
ε
y)(u(x− y)− u(x)) dy =

∫
J(z)(u(x− εz)− u(x)) dz

= −ε
∫
J(z)u′(x)z dz + ε2

∫
z2J(z)u′′(x) dz + o(ε2) = cε2u′′(x) + o(ε2),

where we used the fact that J is even in the last equality.

We observe that equation (1.2) can be related to a class of problems studied in
[16, 17]. However, our approach differs in at least two ways : firstly, from the tech-
nical point of view, inverting the operator u → ut − (J ∗ u − u) in any reasonable
space yields no a priori regularity property on the solution u and the compactness
assumptions made in [17] no longer hold in our case.

Secondly, whereas the author favored discrete models over continuous ones to
describe the dynamics of certain populations, we remain interested in the latter. In
particular, we have in mind the following application to adaptative dynamics : in
[11], the authors study a probabilistic model describing the microscopic behavior
of the evolution of genetic traits in a population subject to mutation and selection.
Averaging over a large number of individuals in the initial state, they derive in the
limit a deterministic equation, a special case of which can be written as

∂tu = [J ∗ u− u] + (1−K ∗ u)u, (1.3)

where J(x) is a kernel taking into account mutation about trait x and K(x) is a
competition kernel, measuring the ”intensity” of the interaction between x and y.
Taking K(x) = δ, we recover equation (1.2) as a special case of (1.3).

The aim of this article is the study of so-called travelling-wave solutions of equa-
tion (1.2) i.e. solutions of the form

u(x, t) = U(x+ ct),

where c ∈ R is called the wave speed and U the wave profile, which is required to
solve the equation 

[J ? U − U ]− cU ′ + f(U) = 0 in R
U(−∞) = 0
U(+∞) = 1,

(1.4)

where U(±∞) denotes the limit of U(x) as x→ ±∞.
Such solutions are expected to give the asymptotic behavior in large time for

solutions of (1.2) with say compactly supported initial data : in the Fisher equation,
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this is equivalent to saying that the mutant propagates (after some time) at constant
speed and along the profile U . It is therefore of interest to prove existence of such
solutions.

The first results in this direction are due to Schumacher [15], who considered
the monostable nonlinearity, under the extra assumption that f(r) ≥ h0r −Kr1+α,
for some h0,K, α > 0 and all r ∈ [0, 1]. In this case, his results imply existence of
travelling waves with arbitrary speed c ≥ c∗, where c∗ is the smallest c ∈ R such
that ρc : R → R defined by

ρc(λ) = −λc+
∫
J(z)eλz dz − 1 + f ′(0),

vanishes for some λ ∈ R.
Furthermore if c > c∗ and under some extra assumptions on f , Schumacher

shows that the profileU of the associated travelling wave is unique up to translation.
Recently, Carr and Chmaj [3] completed the work of Schumacher. For the ”KPP”

nonlinearity (i.e. if f is monostable and f(r) ≤ f ′(0)r for all r ∈ [0, 1]) and if J has
compact support, they show that the above uniqueness result can be extended to
c = c∗.

Concerning the bistable nonlinearity, Bates-Fife-Ren-Wang [1] and Chen [4] showed
that there exists an increasing travelling wave U with speed c solving (1.4). Further-
more if V is another nondecreasing travelling wave with speed c′ then c = c′ and
V (x) = U(x+ τ) for some τ ∈ R.

Coville [5] then looked at the case of ignition nonlinearities and proved again
the existence and uniqueness (up to translation) of an increasing travelling wave
(U, c). Coville also obtained the existence of at least one travelling-wave solution in
the monostable case.

Our first theorem extends some of the afore-mentioned results of Schumacher to
the general monostable case:

Theorem 1.1.
Assume (H1) and (H2) hold and assume that f is of monostable type. Then there exists a
constant c∗ > 0 (called the minimal speed of the travelling wave) such that for all c ≥ c∗,
there exists an increasing solution U ∈ C1(R) of (1.4) while no nondecreasing travelling
wave of speed c < c∗ exists.

Our second result extends previous work of Coville [5] regarding the behavior
of the travelling front U near ±∞.

Proposition 1.1.
Assume (H1) and (H2) hold. Then given any travelling-wave solution (U, c) of (1.4) with
f monostable, the following assertions hold :

1. There exist positive constants A, B, M , λ0 and δ0 such that

Be−δ0y ≤ 1− U(y) ≤ Ae−λ0y for y ≥M.

2. If f ′(0) > 0 then there exists positive constants K, N and λ1 such that

U(y) ≤ Keλ1y for y ≤ −N.
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The first point is an easy consequence of a similar result when f is of bistable or
ignition type, proved in [5].

Regarding Theorem 1.1, our proof is based on the study of two auxiliary prob-
lems and the construction of adequate super and subsolutions. We work in three
steps.

We start by showing existence and uniqueness of a solution for
Lu+ f(u) = −hr(x) in Ω

u(−r) = θ
u(+∞) = 1,

(1.5)

where given ε > 0, r ∈ R, c ∈ R and θ ∈ (0, 1),

Ω = (−r,+∞),

Lu = L(ε, r, c)u = εu′′ +
[∫ +∞
−r J(x− y)u(y)dy − u

]
− cu′,

hr(x) = θ
∫ −r
−∞ J(x− y)dy.

(1.6)

The existence is obtained via an iterative scheme using a comparison principle and
appropriate sub and supersolutions.

In the second step, with a standard limiting procedure, we prove Theorem 1.1
for the problem 

Mu+ f(u) = 0 in R
u(−∞) = 0
u(+∞) = 1,

(1.7)

where given ε > 0, c ∈ R,

Mu = M(ε, c)u = εu′′ + [J ∗ u− u]− cu′. (1.8)

We stress the fact that unlike (1.5), (1.7) does not have an (increasing and smooth)
solution u for arbitrary values of c ∈ R.

Finally, in the last step we send ε→ 0 and extract converging subsequences.
Though elementary in nature, the proofs require a number of lemmas which we

list and prove in the Appendix. We construct sub and supersolutions for (1.5) and
(1.7) in Section 2. After obtaining some useful a priori estimates in Section 3, we
prove existence and uniqueness of solutions of (1.5) in Section 4. In Section 5, we
show the existence of a speed c∗(ε) > 0 such that (1.7) admits a solution for every
c ≥ c∗(ε). We complete the proof of Theorem 1.1 in Section 6. Section 7 is devoted
to the proof of Proposition 1.1.

2 Existence of sub and supersolutions
We start with the construction of a supersolution of (1.7) for speeds c ≥ κ(ε) for
some κ(ε) > 0.
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Lemma 2.1.
Let ε ≥ 0. There exists a real number κ(ε) > 0 and an increasing function w̄ ∈ C2(R) such
that, given any c ≥ κ(ε) 

Mw̄ + f(w̄) ≤ 0 in R
w̄(−∞) = 0
w̄(+∞) = 1,

where M = M(ε, c) is defined by (1.8). Futhermore, w̄(0) = 1
2

Proof:
Fix positives constants N,λ, δ such that λ > δ and (H2) holds.
Let w̄ ∈ C2(R) be a positive increasing function satisfying

• w̄(x) = eλx for x ∈ (−∞,−N ],

• w̄(x) ≤ eλx on R,

• w̄(x) = 1− e−δx for x ∈ [N,+∞),

• w̄(0) = 1
2 .

Let x0 = e−λN and x1 = 1− e−δN . We have 0 < x0 < x1 < 1.
We now construct a positive function g defined on (0, 1) which satisfies g(w) ≥ f(w).
Since f is smooth near 0 and 1, we have for c large enough, say c ≥ κ0,

λ(c− λ)s ≥ f(s) for s ∈ [0, x0] (2.1)

and

δ(c− δ)(1− s) ≥ f(s) for s ∈ [x1, 1]. (2.2)

Therefore we can achieve g(s) ≥ f(s) for s in [0,1], with g defined by:

g(s) =


λ(κ0 − λ)s for 0 ≤ s ≤ x0

l(s) for x0 < s < x1

δ(κ0 − δ)(1− s) for x1 ≤ s ≤ 1
(2.3)

where l is any smooth positive function greater than f on [x0, x1] such that g is
of class C1.

According to (2.3), for x ≤ −N i.e. for w ≤ e−λN , we have

Mw̄ + g(w̄) = εw̄′′ + J ? w̄ − w̄ − cw̄′ + g(w̄)
= ελ2eλx + J ? w̄ − eλx − λc eλx + λ(κ0 − λ)eλx

≤ ελ2eλx + J ? eλx − eλx − λceλx + λ(κ0 − λ)eλx

≤ eλx[
∫

R
J(z)eλzdz − 1− λ(c− κ0)− λ2(1− ε)]

≤ 0
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for c large enough, say c ≥ κ1 =
R

R J(z)eλzdz−1+λκ0−λ2(1−ε)

λ .
Furthermore for w̄ ≥ 1− e−δN we have,

Mw̄ + g(w̄) = εw̄′′ + J ? w̄ − w̄ − cw̄′ + g(w̄)
= εδ2e−δx + J ? w̄ − (1− e−δx)− δc e−δx + δ(κ0 − δ)e−δx

≤ εδ2e−δx + 1− 1 + e−δx − δce−δx + δ(κ0 − δ)e−δx

≤ e−δx[1− δ(c− κ0)− δ2(1− ε)]
≤ 0

for c large enough, say c ≥ κ2 = 1+δκ0−δ2(1−ε)
δ . Thus by taking c ≥ sup{κ1, κ2}, we

achieve

g(w̄) ≥ f(w̄) and J ? w̄ − w̄ − cw̄′ + g(w̄) ≤ 0
for 0 ≤ w̄ ≤ e−λN and w̄ ≥ 1− e−δN .

For the remaining values of w̄, i.e. for x ∈ [−N,N ], w̄′ > 0 and we may increase
c further if necessary, to achieve

εw̄′′ + J ? w̄ − w̄ − cw̄′ + g(w̄) ≤ 0 in R. (2.4)

The result follows for
κ̄(ε) := sup{κ1, κ2, κ3},

where κ3 = supx∈[−N,N ]{
ε|w′′|+|J?w−w|+g(w)

w′ }.
�

Remark 2.1. κ(ε) is a nondecreasing function of ε.

Remark 2.2. Observe that given any r ∈ R, then for c ≥ κ(ε), w̄ is also a supersolution of
the following problem: 

Lw̄ + f(w̄) ≤ 0 in Ω
w̄(−r) = 0
w̄(+∞) = 1,

(2.5)

where L = L(ε, c, r) defined by (1.6).

Next, we construct super and subsolution of (1.5).

Remark 2.3. Let ε ≥ 0, r ∈ R, c ∈ R, θ ∈ (0, 1). Then the constant functions u = θ and
ū = 1 are respectively a sub- and a supersolution of problem (1.5), i.e.

Lu+ f(u) ≥ −hr(x) in Ω ( resp. Lū+ f(ū) ≥ −hr(x) in Ω)
u(−r) ≤ θ ( resp. ū(−r) ≤ θ)
u(+∞) ≤ 1, ( resp. ū(+∞) ≤ 1)

We now construct a subsolution of (1.5) satisfying stronger conditions on the
boundary of Ω.
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Lemma 2.2.
Let ε > 0, r ∈ R, θ ∈ (0, 1). There exists κ(ε) ∈ R and an increasing function w ∈ C2(R)
such that, given any c ≤ κ(ε),

Lw + f(w) ≥ −hr(x) in Ω
w(−r) = θ
w(+∞) = 1

Let fb be a smooth bistable function (e.g fb(0) = fb(1) = 0 and ∃θ ∈ (0, 1)
such that fb < 0 in (0, θ), fb(θ) = 0 and fb > 0 in (θ, 1)) such that fb ≤ f and∫ 1
0 fb(s) ds > 0. Let (ub, cb) denote the unique (up to translation) increasing solution

of (1.7) with fb instead of f . Such a solution exists, see [1] for details. Moreover
cb > 0. Using the translation invariance of (1.7), one can easily show that for any
c ≤ cb, uτ

b := ub(. + τ) is a subsolution of (1.5) for some τ ∈ R. Namely, choose τ
such that uτ

b (−r) = θ.
Since uτ

b is increasing we have

hr(x) = θ

∫ −r

−∞
J(x− y)dy ≥

∫ −r

−∞
J(x− y)uτ

b (y)dy.

A simple computation shows that

Luτ
b + hr(x) + f(uτ

b ) ≥ Luτ
b +

∫ −r

−∞
J(x− y)uτ

b (y) dy + fb(uτ
b ) = (uτ

b )
′(cb − c) in Ω

Hence for c ≤ cb,
Luτ

b + hr(x) + f(uτ
b ) ≥ (uτ

b )
′(cb − c) ≥ 0 in Ω

uτ
b (−r) = θ
uτ

b (+∞) = 1.

�

3 L2 estimates
In this Section, we obtainL2 estimates for solutions u of the two following problems:

εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u(x) → 1 x→ +∞,

(3.1)

and 
Lc

ru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)
u(r) = θ
u→ 1 x→ +∞,

where Lc
r and hr define as in the previous Section.
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3.1 L2 estimates for solution of (3.1)
We start by some L2 of solution u of (3.1). For this solutions we have:

Lemma 3.1.
Assume ε > 0 and let u be a smooth solution of (3.1) then

(i) u′, u′′ ∈ L2(R)

(ii) 1− u ∈ L2(R+).

Proof of Lemma 3.1:
Let u be a smooth increasing solution of (3.1). We start out by showing that u′

and u′′ vanish at infinity for solution. To this end we use a standard technique.We
only prove that u′′(x) → 0 as x → +∞. The proof in the other case is similar. Let
us define the following sequence of translate of u, (up)p∈N = (ū(.+ p))p∈N. Then for
each p, up is a uniformally bounded nondecreasing function and it satisfies

εu′′p + J ? up − up − cu′p + f(up) = 0 in Ω.

Using now local C2,α estimates, Helly’s Theorem and diagonal extraction, we de-
duce that there exist a subsequence still denoted up which converge pointwise to
some nondecreasing function ũ. Moreover up converge to ũ in C2,β

loc (Ω) topology.
Therefore ũ satisfies

εũ′′ + J ? ũ− ũ− cũ′ + f(ũ) = 0 in Ω. (3.2)

From the definition of up, up converge pointwise to 1, therefore by uniqueness of the
limit ũ ≡ 1. So from (3.2) we deduce that u′′p, u′p → 0 uniformaly on every compact
set. We can repeat this argument with any sequence (up)p∈N := (u(xp))p∈N with
xp →∞. Therefore u′′(x), u′(x) → 0 as x→ +∞.

We are now in position to prove (i).
We start by showing that f(u) ∈ L1(R). Integrating (3.1) over (−r, r) leads to:

ε(u′(r)− u′(−r)) +
∫ r

−r
(J ? u− u) dx− c(u(r)− u(−r)) = −

∫ +r

−r
f(u)

Assume for the moment that J ? u − u ∈ L1(R), then we can pass to the limit
r → +∞ in the above expression, so we get∫ +∞

−∞
(J ? u− u) dx− c = −

∫ +∞

−∞
f(u).

Therefore f(u) ∈ L1(R). Let now prove that J ? u− u ∈ L1(R),

Claim 3.1.
J ? u− u ∈ L1(R), moreover

‖J ? u− u‖L1 ≤
∫

R
J(z)|z|dz and

∫
R
(J ? u− u) = 0
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proof:
Clearly, ∫ r

−r
|(J ? u− u)| ≤

∫ r

−r

∫
R
J(x− y)|u(y)− u(x)|dy dx. (3.3)

Using the change of variable in y, z := y − x (3.3) becomes∫ r

−r
|(J ? u− u)| ≤

∫ r

−r

∫
R
J(z)|u(x+ z)− u(x)|dz dx. (3.4)

Since u ∈ C1(R),

|u(x+ z)− u(x)| = |z|
∫ 1

0
u′(x+ sz)ds.

Plug this equality in (3.4) to obtain:

∫ r

−r

∫
R
J(z)|u(x+ z)− u(x)|dydx =

∫ r

−r

∫
R
J(z)|z|

∫ 1

0
u′(x+ sz)ds dz dx (3.5)

Since all terms are positive, using Tonnelli’s Theorem, we can permute the order
of integration and obtain

∫ r

−r

∫
R
J(z)|z|

∫ 1

0
u′(x+ sz)ds dz dx =

∫
R J(z)|z|

∫ r
−r

∫ 1
0 u

′(x+ sz) ds dx dz

=
∫ 1
0

∫
R J(z)|z|[u(r + sz)− u(−r + sz)]dz ds

Hence we have,∫ r

−r
|
∫

R
J(x− y)(u(y)− u(x))dy|dx ≤

∫ 1

0

∫
R
J(z)|z|[u(r + sz)− u(−r + sz)]dz ds

Using now Lebesgue dominated convergence, we can pass to the limit in the above
expression to get

‖J ? u− u‖L1 ≤
∫

R
J(z)|z|dz (3.6)

Let us now compute
∫

R(J ? u− u) dx. Since J ? u− u ∈ L1(R), we have∫
R
(J ? u− u)dx =

∫
R2

J(x− y)(u(y)− u(x))dy dx.

Since J is symmetric one also have∫
R2

J(x−y)(u(y)−u(x))dy dx =
∫

R2

J(y−x)(u(y)−u(x))dy dx =
∫

R2

J(x−y)(u(x)−u(y))dy dx.
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Hence,

2
∫

R2

J(x− y)(u(y)− u(x))dy dx = 0.

�
Let us now prove that u′, u′′ ∈ L2.
Multiplying (3.1) by u and integrating over R yield

ε

∫
u′′u+

∫
(J ? u− u)u− c

∫
u′u = −

∫
f(u)u.

Integrating by parts the first term yields to

−ε
∫

(u′)2 +
∫

(J ? u− u)u− c

2
= −

∫
f(u)u.

Since u is bounded and f(u), J ? u− u ∈ L1, from the above expression we have
u′ ∈ L2.

We obtain u′′ ∈ L2 similarly. Indeed, multiplying (5.1) by u′′ and integrating
over R we get

ε

∫ (
u′′
)2 +

∫
(J ? u− u)u′′ − c

∫
u′u′′ =

∫
f(u)u′′.

Integration by parts and uniform bounds yield

ε

∫ (
u′′
)2 = −

∫
(J ? u− u)u′′ −

∫
f(u)u′′ (3.7)

=
∫ (

J ? u′ − u′
)
u′ +

∫
f ′(u)

(
u′
)2 (3.8)

≤ C0

∫
u′ + C1‖u′‖2

L2(R) (3.9)

where C0 and C1 are positive constants. This ends the proof of (i).
We can now show that 1 − u ∈ L2(R+). Again multiplying (5.1) by 1 − u and

integrating over R yields to

ε

∫ (
u′
)2 − ∫ (J ? u− u)u+ c/2 +

∫
f(u)(1− u) = 0.

Using now Claim 3.1 and choosing R so large that f(u) ≥ |f ′(1)|
2 (1 − u) on [R,∞),

we achieves

|f ′(1)|
2

∫ ∞

R
(1− u)2 ≤

∫ ∞

−∞
f(u)(1− u) ≤ C(‖u′‖2

L2(R) + 1) <∞, (3.10)

which ends the proof of (ii).
�

Remark 3.1. Note that these estimates trivialy extend to solution of a bistable problem.
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Finally, we obtain some useful L2 estimates on J ? u− u. Namely, we have

Lemma 3.2.
‖J ? u− u‖L2 ≤ C‖u′‖L2 .

proof:
Using the fundamental theorem of calculus, we have∫ +∞

−∞
J(x− y)u(y)dy − u(x) =

∫ +∞

−∞
J(x− y)(u(y)− u(x))dy

=
∫ +∞

−∞
J(z)z

(∫ 1

0
u′(x+ tz) dt

)
dz.

By standard estimation and the Cauchy-Schwartz inequality, it then follows that

|
∫ +∞

−∞
J(x− y)u(y)dy − u(x)|2 ≤

(∫ +∞

−∞
J(z)z

(∫ 1

0
u′(x+ tz) dt

)
dz

)2

≤ C

[∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz ·

∫ +∞

−∞
J(z)|z| dz

]
≤ C ′

[∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz

]

Hence, using Tonnelli’s Theorem and standard change of variables∫ +∞

−∞
|
∫ +∞

−∞
J(x− y)u(y)dy − u(x)|2 dx ≤ C ′

[∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz dx

]
≤ C ′′

∫ +∞

−∞
(u′)2(s) ds

�

Remark 3.2. This last estimates shows in particular that f(u) ∈ L2(R)

3.2 L2 estimates for solution of (3.11)
Next, we obtain some L2 estimates for solution u of the second problem (3.11)

Lc
ru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)

u(r) = θ
u→ 1 x→ +∞,

(3.11)

More precisely, we have

Lemma 3.3.
Assume ε > 0 and let u be a smooth solution of (3.11) then

12



(iii) u′, u′′ ∈ L2(Ω)

(iv) 1− u ∈ L2(R+ ∩ Ω).

Proof:
We follow the lines of the proof of Lemma 3.1. As in the above proof, we first

show that u′, u′′ → 0 when x → +∞. Since the argumentation to obtain this be-
havior is essentially the same as in Lemma 3.1, so we omit it. Next show that
f(u) ∈ L1(Ω). Integrating (3.11) over (r,R) leads to:

ε(u′(R)−u′(r))+
∫ R

r

(∫ +∞

r
J(x− y)u(y) dy − u(x)

)
dx−c(u(R)−u(r)) = −

∫ R

r
(f(u)−hr(x))dx

We then obtain f(u) ∈ L1(Ω) by proving that
∫ +∞
r J(x− y)u(y) dy−u and hr(x) are

in L1(Ω) and passing to the limit R→ +∞ in the above expression. We claim that

Claim 3.2.∫ +∞
r J(x− y)u(y) dy − u and hr(x) are in L1(Ω) ∩ L2(Ω),

Proof:
Let start with hr(x). From the definition of hr(x) one have

hr(x) = θ

∫ r−x

−∞
J(z)dz = θj(x).

Since J ≥ 0 and satisfies (H3), a simple computation shows that

|j(x)| =
∫ r−x

−∞
J(z)dz ≤ eδ(r−x)

∫
R
J(z)e−δzdz ≤ Keδ(r−x) ∈ L2(Ω) ∩ L1(Ω) (3.12)

Now, let us prove that
∫ +∞
r J(x− y)u(y) dy − u ∈ L1(Ω).

Since u is smooth, using uniform bound and the fundamental theorem of calculus,
we have

|
∫ +∞

r
J(x− y)u(y)dy − u(x)| = |

∫ +∞

r
J(x− y)(u(y)− u(x))dy − u(x)

∫ r

−∞
J(x− y)dy|

≤ |
∫ +∞

r−x
J(z)(u(x+ z)− u(x))dz|+ u(x)

∫ r−x

−∞
J(z)dz

≤
∫ +∞

r−x
J(z)|z|

(∫ 1

0
u′(x+ tz) dt

)
dz + j(x),

Since j ∈ L1(Ω), we only need to prove that

Γ(x) =
∫ +∞

r−x
J(z)|z|

(∫ 1

0
u′(x+ tz) dt

)
dz ∈ L1(Ω).
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Integrating Γ over (r,R) yields to∫ R

r
Γ(x)dx =

∫ R

r

∫ +∞

r−x
J(z)|z|

∫ 1

0
u′(x+ tz)dtdzdx

=
∫ R

r

∫ +∞

0
J(z)|z|

∫ 1

0
u′(x+ tz)dtdzdx+

∫ R

r

∫ 0

r−x
J(z)|z|

∫ 1

0
u′(x+ tz)dtdzdx.

Using now Tonnelli’s Theorem, we end up with∫ R

r
Γ(x)dx =

∫ 1

0

∫ +∞

0
J(z)|z|

(∫ R

r
u′(x+ tz)dx

)
dzdt

+
∫ 1

0

∫ 0

r−R
J(z)|z|

(∫ R

r−z
u′(x+ tz)dx

)
dzdt.

Hence, we achieve∫ R

r
Γ(x)dx =

∫ 1

0

∫ +∞

0
J(z)|z|[u(R+ tz)− u(r + tz)]dzdt

+
∫ 1

0

∫ 0

r−R
J(z)|z|[u(R+ tz)− u(r + (t− 1)z)]dzdt

Using now uniform bounds on u, we end up with,∫ R

r
Γ(x)dx ≤ 4

∫ +∞

−∞
J(z)|z|dz,

which shows that Γ ∈ L1(Ω).

�
To obtain (iii) and (iv), we can now use the argumentation of the above subsec-

tion.
�

Finally, we obtain some useful L2 estimates on
∫ +∞
r J(x − y)u(y)dy − u. More

precisely we have,

Lemma 3.4.∫ +∞
r J(x− y)u(y)dy − u ∈ L2(Ω), moreover

‖
∫ +∞

r
J(x− y)u(y)dy − u‖L2(Ω) ≤ C(‖u′‖L2(Ω) + ‖j‖L2(Ω)).

Again, using the fundamental theorem of calculus, we have

∫ +∞

r
J(x− y)u(y)dy − u(x) =

∫ +∞

r−x
J(z)z

(∫ 1

0
u′(x+ tz) dt

)
dz − u(x)j(x).
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By standard estimation and the Cauchy-Schwartz inequality, it follows that

|
∫ +∞

r
J(x− y)u(y)dy − u(x)|2 ≤ 2

[(∫ +∞

r−x
J(z)z

(∫ 1

0
u′(x+ tz) dt

)
dz

)2

+ u2(x)j2(x)

]

≤ 2
[∫ +∞

r−x

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz ·

∫ +∞

r−x
J(z)|z| dz + u2j2

]
≤ C

[∫ +∞

r−x

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz + u2j2(x)

]
Define Γ1(x) :=

∫ +∞
r−x

∫ 1
0 J(z)|z|(u′)2(x+ tz)dt dy. We then have

|
∫ +∞

r
J(x− y)u(y)dy − u(x)|2 ≤ C

[
Γ1(x) + j2(x)

]
Since j ∈ L2(Ω), we only need to show that Γ1 is in L1(Ω) and satisfies

‖Γ1‖L1(Ω) ≤ C‖u′‖2
L2(Ω), (3.13)

We obtain (3.13) through a direct computation.
By definition of Γ1 and since all the integrands are positive, using Tonelli’s Theorem,
we have:∫ R

r
Γ1(x)dx =

∫ +∞

0
J(z)|z|

(∫ R

r

∫ 1

0
(u′)2(x+ tz)dtdx

)
dz

+
∫ 0

r−R
J(z)|z|

(∫ R

r−z

∫ 1

0
(u′)2(x+ tz)dtdx

)
dz

Using now standard changes of variables we get,∫ R

r
Γ1(x)dx =

∫ +∞

0
J(z)|z|

(∫ 1

0

∫ R+tz

r+tz
(u′)2(s)dsdt

)
dz

+
∫ 0

r−R
J(z)|z|

(∫ 1

0

∫ R+tz

r+(t−1)z
(u′)2(s)dsdt

)
dz

Since u′ ∈ L2(Ω) we then have∫ R

r
Γ1(x)dx ≤

∫ +∞

0
J(z)|z|

(∫ 1

0

∫ +∞

r
(u′)2(s)dsdt

)
dz

+
∫ 0

r−R
J(z)|z|

(∫ 1

0

∫ +∞

r
(u′)2(s)dsdt

)
dz

Hence we have∫ +∞

r
Γ1(x)dx ≤

(∫ +∞

−∞
J(z)|z|dz

)
‖u′‖2

L2(Ω),

which is the desired conclusion.
�
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4 Construction of a solution of (4.1)
In this section, we will show that for any fixed r < 0, c ∈ R, ε > 0 and for any
θ ∈ (0, 1) there exists an increasing solution ur of Problem (4.1) below. Moreover
this solution is unique.

Lc
ru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)

u(r) = θ
u→ 1 x→ +∞,

(4.1)

with Lc
ru defined by (??) and hr(x) by (??). For the uniqueness proof see [7]. The

existence of a solution is obtained via an iterative scheme using sub and super solu-
tions.

4.1 Preliminaries
Fix c,r < 0, ε > 0 and 1 > θ > 0. Let G be a smooth nondecreasing function such
that G(r) = θ, Lc

rG ∈ L2(Ω) and 1−G ∈ L2(Ω). Now for λ > 0 define

Tλ,r : C0(Ω) ∩ L2(Ω) → C0(Ω) ∩ L2(Ω)
v 7→ z,

where z is the unique solution of
Lc

rz − λz = F (v, x) in Ω
z(r) = 0
z(x) → 0 x→ +∞,

(4.2)

where F (v, x) = −f(v + G) − λv − Lc
rG − hr(x). Now, using Lemma A.1, to prove

that z is well-defined, it is enough to show that v ∈ L2(Ω) ∩ C0(Ω) =⇒ F (v, x) ∈
L2(Ω) ∩ C0(Ω).

From assumptions onG, to conclude that z solving (4.2) is well-defined, the only
things left to prove are f(v + G) ∈ L2(Ω) and hr ∈ L2(Ω). The latter comes easily
form the definition of hr and the exponential decay of J . Namely, we can bound hr

from above in the following way:

0 ≤ hr(x) = θ

∫ r−x

−∞
J(z)dz ≤ θeδ(r−x)

∫
R
J(z)e−δzdz ≤ Keδ(r−x) ∈ L2(Ω)

Let us show now that f(v +G) ∈ L2(Ω).
Given v ∈ L2(Ω) ∩ C0(Ω), since f(1) = 0 and 1−G ∈ L2(Ω),

|f(v +G)| ≤ ‖f ′‖∞|v +G− 1| ∈ L2(Ω) and lim
+∞

f(v +G) = 0,

so that f(v +G) ∈ L2(Ω) ∩ C0(Ω).
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4.2 Iteration procedure
We claim that there exists a sequence of functions {un}n∈N satisfying

u0 = G and for n ∈ N \ {0},
Lc

run+1 − λun+1 = −f(un)− λun − hr(x) in Ω
un+1(r) = θ
un+1(x) → 1 x→ +∞.

(4.3)

We proceed as follows. Using the substitution vn = un −G, (4.3) reduces to
Lrvn+1 − λvn+1 = F (vn, x) in Ω
vn+1(r) = 0
vn+1(x) → 0 x→ +∞,

(4.4)

where F (v, x) = −f(v +G) − λv − LrG − hr(x). Therefore we have vn+1 = Tλ,rvn.
Now, using the previous subsection and induction, to prove that vn is well-defined,
it is enough to show that v0 ∈ L2(Ω) ∩ C0(Ω) which is trivial since v0 = 0.

Remark 4.1. Notice that the behavior of the sequence (un)n∈N strongly depends on the
property of u0. Namely, from the maximum principle property and choosing λ so large that
−f − λ is nonincreasing, it follows easily by induction that if u0 is a supersolution, then
(un)n∈N is a decreasing sequence. Respectively, u0 is a subsolution, then (un)n∈N is in
increasing sequence.

4.3 Passing to the limit as n →∞
Assume that u0 is either a supersolution or a subsolution satisfying θ ≤ u0 ≤ 1.
Recall that the constants θ and 1 are respectively a subsolution and a supersolution
of (4.1).
It follows easily from induction and the Maximum Principle (Theorem A.2) that for
all n ∈ N \ {0},

θ ≤ un ≤ 1. (4.5)

Choosing λ > 0 so large that −f − λ is nonincreasing, we prove next by induction
that

x→ un(x) is a nondecreasing function. (4.6)

First define the following sequence of function:

ũn(x) :=
{
θ if x ∈ R \ Ω
un(x) if x ∈ Ω.

We will prove that (ũn)n are nondecreasing functions, which implies (4.6). Observe
that ũn+1 solves the following problem

Lc
rũn+1 − λũn+1 +

∫ r
−∞ J(x− y)ũn+1(y)dy = −(f + λ)(ũn(x)) in Ω

ũn+1(r) = θ
ũn+1 → 1 x→ +∞,

(4.7)
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which can be rewriten as
ũ′′n+1 − cũ′n+1 + J ? ũn+1 − ũn+1 − λũn+1 = −(f + λ)(ũn(x)) in Ω
ũn+1(r) = θ
ũn+1 → 1 x→ +∞.

(4.8)

For n = 0, we already know that ũ0 is nondecreasing. Fix now n ≥ 1 and assume
that ũn−1 is nondecreasing. Also given any positive τ , let w(x) = ũn(x + τ) −
ũn(x). It follows from Equation (4.8) and the assumption that ũn−1 and f + λ are
nondecreasing that

εw′′ + J ? w − cw′ − (1 + λ)w(x) ≤ 0 in Ω, (4.9)
w(x) ≥ 0 for x ∈ R \ Ω, (4.10)
w(∞) = 0, (4.11)

whence by the Maximum Principle w ≥ 0. In particular, ũn(x + τ) − ũn(x) ≥ 0
for any positive τ . This shows that ũn is nondecreasing. Using remark 4.1 and the
assumption on u0, the sequence (un)n∈N is monotone. Hence, using (4.5), (4.6) and
Helly’s lemma, it follows that {un} converges pointwise to a nondecreasing function
u satisfying

θ ≤ u ≤ 1.

By the dominated convergence theorem, we have for all x ∈ Ω∫ +∞

r
J(x− y)un(y)dy − un(x) →

∫ +∞

r
J(x− y)u(y)dy − u(x), as n→∞.

Rewriting (4.3) as

εu′′n+1−cu′n+1 = un+1−
∫ +∞

r
J(x−y)un+1(y)dy−λ(un−un+1)−f(un)−hr(x), (4.12)

observing that the right-hand side in the above equation is uniformly bounded and
using elliptic regularity, we conclude that {un} is bounded e.g. in C1,α(ω), where
α ∈ (0, 1) and ω is an arbitrary bounded open subset of Ω. Repeating the argument
implies that {un} is bounded in C2,α(ω). Hence u ∈ C2(Ω) and we can pass to the
limit in the equation to obtain that u satisfies

εu′′ − cu′ +
∫ +∞

r
J(x− y)u(y)dy − u+ f(u) + hr(x) = 0 in Ω. (4.13)

Observing that un(r) = θ and that un converges pointwise to u, we easily con-
clude that u(r) = θ. To complete the construction of the solution, we prove that
u(+∞) = 1. Indeed, since u is uniformly bounded and nondecreasing, u achieves
its limit at +∞. Using standard estimates we easily get from (4.13) that u satisfies
f(u(+∞)) = 0. Hence u(+∞) = 1. We have thus constructed an increasing solution
u of (4.1).

�
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Remark 4.2. We may find more easily the boundary condition, when u0 is a subsolution
rather than a supersolution . Indeed, in this case u0 ≤ u ≤ 1 hence u→ 1 since u0(x) → 1
as x→ +∞.

The construction of a nondecreasing solution of (4.1) is now reduce to find good
sub and supersolution u0 satisfying u0(r) = θ, Lru0 ∈ L2(Ω) and 1− u0 ∈ L2(Ω) for
fixed r < 0, θ ∈ (0, 1), ε > 0 and c ∈ R.

4.4 Construction of a solution of (4.1) for c ≤ cb

Assume that r < 0, θ ∈ (0, 1), ε > 0 are fixed and let c ≤ cb. Recall that translation of
ub and 1 are respectively a sub and a supersolution of equation (4.1) for any c ≤ cb
(see Section 2). From the translation invariance of the bistable problem, we may also
assume that ub(r) = θ. To conclude, it then remains to prove that Lc

rub ∈ L2(Ω) and
1− ub ∈ L2(Ω). Using Lemmas 3.1-3.2 and remark 3.1 yields to

u′′b , u
′
b, (J ? ub − ub) in L2(R) and 1− ub in L2(R+)

Hence

|Lc
rub| ≤ ε|u′′b |+ |cu′b|+ |

∫ +∞

−∞
J(x− y)ub(y) dy − ub| ∈ L2(Ω)

We can then applied the previous subsection with u0 = ub to obtain a nondecreasing
solution of (4.1) for c ≤ cb.

4.5 Construction of a solution for c > cb

To obtain solution for c > cb, we argue as follows. Assume as in the previous sub-
section that r < 0, θ ∈ (0, 1), ε > 0 are fixed and choose c > cb. Let us be the
smooth nondecreasing solution of (4.1) obtained with c = cb with the above argu-
mentation. Since c > cb and us is increasing, us will be a supersolution of (4.1) with
speed c. From construction, one have us ≥ θ and θ is a subsolution of (4.1). There-
fore to obtain a solution of (4.1), it is then sufficient to prove that Lc

rus ∈ L2(Ω) and
1−us ∈ L2(Ω). The latter is easily obtained using the L2 estimates (Lemmas 3.3-3.4)
obtained in the previous section.

�
The above analysis is independant of the choice of the parameters, since the

subsolution ub exists for any ε > 0, θ ∈ (0, 1), c ≤ cb and r < 0. Therefore, there
exists a nondecreasing solution of (4.1) for any ε > 0, θ ∈ (0, 1), c ≤ cb and r < 0.

�
We can now turn our attention to the construction of a solution of (5.1), which

will be proved in the next section.
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5 Construction of solutions of (5.1) for all c ≥ c∗(ε)

In this section, we show that there exists c∗(ε) such that for each c ≥ c∗(ε) there
exists a positive increasing solution of the following problem

εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u(x) → 1 x→ +∞,

(5.1)

Namely we have the following

Theorem 5.1.
Let ε > 0, then there exists a positif real number c∗(ε) such that for all c ≥ c∗(ε) there exists
a positive smooth increasing solution uε of (5.1). Futhermore if c < c∗(ε), then problem
(5.1) has no increasing solution.

The proof of Theorem 5.1 will be broken down in two parts. In the first part,
Subsection 5.1, we construct a solution of Problem (5.1) for a specific value of the
speed c = κ, using solutions of approximate problems constructed in the previous
section and a standard limiting procedure. Then in the second part Subsection 5.2
we define the minimal speed c∗(ε) and construct solutions of (5.1) for speeds c ≥
c∗(ε).

5.1 Construction of one solution of (5.1) for c = κ

For the construction of the solution, we use the approximate problem below
Lru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)

u(r) = θ
u(x) → 1 x→ +∞,

(5.2)

From the previous section, for any real number r and any θ ∈ (0, 1) there exists a
unique solution of (5.2). For fixed r < 0, we claim that the solution of (5.2) satisfies
the following normalization.

Claim 5.1.
There exists θ0 ∈ (0, 1) such that the corresponding solution uθ0

r of (5.2) with θ = θ0
satisfies the normalization uθ0

r (0) = 1
2 .

Remark 5.1. This normalization has no meaning when r is no longer negative.

Proof of Claim 5.1
We start with the definition of the following set of acceptable values of θ.

Θ = {θ|uθ
r(0) >

1
2
}

Choosing any θ ≥ 1
2 and observing that uθ

r is increasing we have [12 , 1) ⊂ Θ. The
uniqueness of the solution uθ

r and standard a priori estimates imply that θ → uθ
r(0)

is a continuous over [0, 1]. By continuity, we can therefore conclude that
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• Either there exists a positive θ0 such that uθ0
r (0) = 1

2

• Or (0, 1) ⊂ Θ.

We show that the latter case can not occur which will prove the claim. For this,
we argue by contradiction. Suppose that (0, 1) ⊂ Θ. Let (θn)n∈N a sequence such
that θn → 0. Let (un)n∈N be the corresponding sequence of solution of (5.2) with
θ = θn. Using Helly’s Lemma and standard a priori estimates, we can extract a
subsequence, still denoted (un)n∈N which converges to a nondecreasing function
u. Since un(0) > 1

2 , u(0) ≥ 1
2 and u is thus a non-trivial function, satisfying the

following equation 
Lru+ f(u) = 0 for x ∈ (r,+∞)

u(r) = 0
u(x) → 1 x→ +∞.

(5.3)

Observe that the function w constructed in Section 2 is a subsolution of (5.3). One
can show that w > u, which provides a contradiction since 1

2 ≤ u(0) < w(0) = 1
2 .

See the appendix for details.
�

With the latter normalization, we are ready for the construction of a solution
of (5.1). Let (rn)n∈N = (−n)n∈N and (uθn

n )n∈N be the sequence of solutions of the
corresponding approximate problem (5.2) with r replaced by rn and θ = θn, where
(θn)n∈N is such that we have the normalization uθn

n (0) = 1
2 . Define (hn)n∈N by

hn(x) = θn

∫ rn

−∞
J(x− y)dy. (5.4)

From Claim 5.1 and the previous section such sequences are well defined. Clearly,
hn → 0 pointwise, as n→∞. Observe now that (uθn

n )n∈N is a uniformly bounded se-
quence of increasing functions, therefore using Helly’s lemma, there exists a subse-
quence which converges pointwise to a nondecreasing function u. Since ε > 0, using
local C2,α estimates, up to extraction, the subsequence converge in C2,α

loc . Therefore
u ∈ C2,α and satisfies

εu′′ + J ? u− u− cu′ + f(u) = 0 in R. (5.5)

From the normalization and the fact that f(1
2) 6= 0, u is not trivial. Since u is increas-

ing and bounded, u achieves its limits l± at ±∞. A standard argument implies that
f(l−) = 0 therefore l− = 0 since f is a nonnegative function and l− ≤ 1

2 . Similarly
l+ = 1. Therefore we have constructed a non trivial solution of (5.1).

Remark 5.2. Observe that the supersolution is only needed in the normalization process.
Therefore, the previous construction will holds with any other supersolution ψ of (5.1) such
that ψ(0) = 1

2 .

Let us now turn our attention to the second part of the proof.
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5.2 Definition of c∗(ε)

Define
c∗(ε) := inf{c > 0 : (5.1) admits an increasing solution} (5.6)

By the previous section, c∗(ε) is well defined. Obviously, from the definition of
c∗(ε), there is no increasing solution to (5.1) for speeds c < c∗(ε). Our goal in this
subsection is to provide a solution of (5.1) for all c ≥ c∗(ε).

First we observe that (5.1) has a solution for c = c∗(ε). Indeed, by definition of
c∗(ε), there exists a sequence of speeds cn converging to c∗(ε). The corresponding
solutions un of (5.1) are increasing (and uniformly bounded by 1) so that we may
apply Helly’s lemma and elliptic regularity as in the previous section to conclude
that un converges to an increasing solution of (5.1) for c = c∗(ε), which we denote
by uε. Boundary conditions for uε are obtained as in Subsection 5.1.

Fix now c > c∗(ε) and observe that w := uε is a smooth increasing supersolution
of (5.1) (with speed c). Assume for a moment that uε satisfies uε(0) = 1

2 , then by
Remark 5.2 the construction of Subsection 5.1 applies. Therefore we get a solution
of (5.1) for all c ≥ c∗(ε) which ends the proofs of Theorem 5.1.

6 Existence of a solution for ε = 0

In the previous section, we were able to prove that for every positive ε, the following
problem: 

εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(6.1)

admits a semi infinite interval of solution, i.e for c ≥ c∗(ε) there exists a positive
increasing solution of (6.1). We will see that the same holds true of the following
problem. 

J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(6.2)

The idea is to let ε → 0 in the equation and to extract a converging sequence of
solutions. The main problem is to control c∗(ε) when ε→ 0. We prove the following:

Lemma 6.1.
For every positive ε0, there exists ν0 > 0 such that c∗(ε) ≤ ν0 for all ε ∈ [0, ε0)

Proof:
According to Remark 2.1, κ(ε) is an nondecreasing function of ε, therefore κ(ε) ≤

κ(ε0). The conclusion easily follows from the definition of c∗(ε), i.e. c∗(ε) ≤ κ(ε).
�

We can now derive existence of solution for (6.2) for every speed c greater than
ν0. More precisely we have the following:
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Theorem 6.1.
There exists ν0 such that for every speed c greater than ν0, there exists a solution u with
speed c of the equation (6.2).

Proof:
According to the previous lemma, for ε small, say ε ≤ ε0, equation (6.1) has a

solution uε for every c greater than ν0 and ε ≤ ε0. Without loss of generality we
assume that for all ε, uε(0) = 1

2 . From standard a-priori estimates, uε is a bounded
smooth increasing function. Let ε→ 0 along a sequence. As in the previous section,
uniform a priori estimates and Helly’s theorem applied to uε, provide the existence
of a monotone increasing solution u of

J ? u− u− cu′ + f(u) = 0 in R. (6.3)

The solution cannot be trivial, according to the normalisation 1
2 = uε(0) → u(0).

Boundary conditions are obtained as in Section 5 .
�

We can define another minimal speed

c∗∗ = inf{c|∀c′ ≥ c (6.2) has a positive increasing solution of speed c′}. (6.4)

This minimal speed is well defined according to the previous theorem.

Remark 6.1. A quick computation, shows that

c∗∗ ≤ lim inf
ε→0

c∗(ε).

Nevertheless to complete the characterization of the set of solutions of (6.2), we
have to prove that there exists no travelling-wave solutions of speed c less than c∗∗.
In other words, if we defined :

c∗ = inf{c| (6.2) has a positive increasing solution of speed c}, (6.5)

we have to show that c∗ = c∗∗. Clearly we have c∗∗ ≥ c∗, the main problem
is to prove c∗∗ ≤ c∗. This will be done with the aid of the monotony of the speed
of truncated problems cθ(ε) and its continuous behavior at zero. More precisely,
consider equation (6.6) below

εu′′ + J ? u− u− cu′ + (fχθ)(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(6.6)

where ε ≥ 0, θ > 0 and let χθ be such that

• χθ ∈ C∞0 (R),

• 0 ≤ χθ ≤ 1,

• χθ(s) ≡ 0 for s ≤ θ and χθ(s) ≡ 1 for s ≥ 2θ.
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We have the following existence and uniqueness theorem

Theorem 6.2.
There exists a unique smooth increasing solution uθ with speed cθ(ε) to (6.6). Moreover the
speed cθ(ε) is positive and satisfies

cθ(ε) < c∗(ε) (6.7)
lim
θ→0

cθ(ε) = c∗(ε). (6.8)

A proof of Theorem 6.2 can be found in [5, 8], so we do not include it. A natural
corollary of this theorem is the continuity of the speed cθ(ε) with respect to ε and θ.
Namely, we have

Corollary 6.1.
Under the above assumptions, the following application

(0, 1)× [0, 1] → R+

(θ, ε) 7→ cθ(ε)

is continuous.

Suppose, for a moment that the continuity in θ and ε holds, then we can easily
conclude the proof of c∗ = c∗∗. Namely, suppose that c∗ < c∗∗. Then choose c such
that c∗ < c < c∗∗. Since cθ < c∗ for every positive θ, we have cθ < c∗ < c. Fix
θ > 0: since cθ(ε) is a continuous function of ε, one has on the one hand cθ(ε) < c for
ε small, say ε ∈ [0, ε0]. On the other hand, according to Remark 6.1, we may achieve,

cθ(ε) < c < c∗(ε)∀ε ∈ [0, ε0]. (6.9)

From this last inequality, and according to (6.8), for each ε ∈ (0, ε0] there exists
a positive θ(ε) ≤ θ such that c = cθ(ε)(ε). Let uθ(ε) be the normalized associated
solution.
Now we take a sequence θn which goes to 0. From the above construction for each
n there exists εn ≤ θn, and θ(εn) ≤ θn such that c = cθ(εn)(εn) and uθ(εn) is the
corresponding normalized solution. From our construction we have,

θ(εn) → 0.

Use now, as usual, uniform a priori estimates and Helly’s theorem to get a solution
ū of the following problem

J ? ū− ū− cū′ + f(ū) = 0 in R
ū(x) → 0 x→ −∞
ū(x) → 1 x→ +∞,

(6.10)

with c > c∗. So we get a non trivial solution of (6.2) for the speed c. Since c
is arbitrary, there exists a non trivial solution of (6.2) for any speed c > c∗, which
contradicts the definition of c∗∗.
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�
Now, let us turn our attention to the continuity of cθ(ε), which will complete the

proof.
Proof of Corollary 6.1

We know from Theorem 6.2 that for every ε ≥ 0 and θ > 0 there exists a unique
solution (uε

θ, c
ε
θ) to the following problem,
ε(uε

θ)
′′ + J ? uε

θ − uε
θ − c(uε

θ)
′ + fθ(uε

θ) = 0 in R
uε

θ → 0 x→ −∞
uε

θ → 1 x→ +∞,
(6.11)

Fix ε0 ≥ 0 and θ0 > 0, we will show that for any sequence (εn, θn) → (ε0, θ0),
we have cεn

θn
→ cε0θ0

. This will show the continuity of the speed. Let uεn
θn

be the
normalized associated solution, i.e uεn

θn
(0) = 1

2 . Since cθ(ε) > 0 and using (6.7), we
have cεn

θn
bounded as (εn, θn) → (ε0, θ0). We can extract a sequence of speeds, which

converges to some value γ. From the a priori estimates on uεn
θn

, there also exists
a subsequence which converges to a smooth function u solution of the following
problem with speed γ.

ε0u
′′ + J ? u− u− γu′ + fθ0(u) = 0 in R

u→ 0 x→ −∞
u→ 1 x→ +∞,

(6.12)

According to Theorem 6.2, the speed and the profile are unique. Therefore, γ =
cε0θ0

and u(x) = uε0
θ0

(x + τ). Since cεn
θn

is precompact and has a unique accumulation
point, the sequence cεn

θn
must converge to cε0θ0

. This ends the proof of the continuity
and by means the characterization of the minimal speed c∗.

�

7 Asymptotic behavior of solutions
In this section we establish the asymptotic behavior of the solution u near ±∞ pro-
vided J satisfies (H3). The behavior of the function near +∞ has been already
obtained in a previous work by one of the authors [5], therefore we only deal with
the behavior of u near −∞.

Remark 7.1. The behavior of u near ±∞ for bistable and ignition type nonlinearities was
also obtained in [5].

We use the same strategy as in [2] and start by proving the following lemma

Lemma 7.1. Assume that (H1) and (H3) hold. Also assume that f is of KPP-type i.e.
f ′(0) > 0. Let u be an increasing solution of problem (P). Then there exists ε > 0 such that∫ ∞

−∞
u(x)e−εx dx <∞.
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Proof
Let ζ ∈ C∞(R) be a nonnegative nondecreasing function such that ζ ≡ 0 in

(−∞,−2] and ζ ≡ 1 in [−1,∞). For N ∈ N, let ζN = ζ(x/N). Multiplying (P) by
e−εxζN and integrating over R, we get∫

(J ∗ u− u)(e−εxζN )−
∫
cu′(e−εxζN ) +

∫
f(u)(e−εxζN ) = 0 (7.1)

Since J is even,∫
(J ∗ u− u)(e−εxζN ) =

∫
(J ∗ (e−εxζN )− e−εxζN )u

=
∫
u(x)e−εx

(∫
J(y)eεyζN (x− y) dy − ζN (x)

)
dx

=
∫
u(x)e−εx

(∫
J(y)e−εyζN (x+ y) dy − ζN (x)

)
dx

≥
∫
u(x)e−εx

(∫ ∞

−R
J(y)e−εy dy ζN (x−R)− ζN (x)

)
dx,

(7.2)

where we used the monotone behaviour of ζN in the last inequality and whereR > 0
is chosen as follows : first pick 0 < α < f ′(0) and R > 0 so large that

f(u)(x) ≥ αu(x) for x ≤ −R. (7.3)

Next, one can increase R further if necessary so that
∫∞
−R J(y) dy > (1−α/2). By

continuity we obtain for some ε0 > 0 and all 0 < ε < ε0,∫ ∞

−R
J(y)e−εy dy ≥ (1− α/2)eεR. (7.4)

Collecting (7.2) and (7.4), we then obtain

∫
(J ∗ u− u)(e−εxζN ) ≥

∫
u(x)e−εx

(
(1− α/2)eεRζN (x−R)− ζN (x)

)
dx

≥ (1− α/2)
∫
u(x+R)e−εxζN (x) dx−

∫
u(x)e−εxζN (x) dx

≥ −α/2
∫
u(x)e−εxζN (x) dx, (7.5)

where we used the monotone behaviour of u in the last inequality.
We now estimate the second term in (7.1) :

∫
u′ζNe

−εx dx = ε

∫
uζNe

−εx −
∫
uζ ′ne

−εx dx

≤ ε

∫
uζNe

−εx . (7.6)

26



Finally using (7.3), the last term in (7.1) satisfies∫
f(u)ζNe−εx dx ≥ α

∫ −R

−∞
uζNe

−εx dx− C. (7.7)

By (7.1), (7.5), (7.6) and (7.7) we then obtain

(α/2− cε)
∫ −R

−∞
uζNe

−εx dx ≤ C.

Choosing ε < α/(2c) and letting N →∞ proves the lemma.
�

Using Lemma 7.1 it is now easy to see that u(x) ≤ Ceεx for all x ∈ R. Suppose
indeed this is not the case and let xn ∈ R be such that u(xn) > neεxn . Since 0 ≤
u ≤ 1, we may pick a subsequence xnk

such that xnk+1
< xnk

− 1. But since u is
nondecreasing,

∫
u(x)e−εx dx ≥

∑
k≥1

∫ xnk−1

xnk

u(x)e−εx dx

≥
∑
k≥1

nk

∫ xnk−1

xnk

eε(xnk
−x) dx

≥
∑
k≥1

nk/ε
(
1− e−ε

)
= ∞.

�

Acknowledgements. We are very thankfull to Henri Berestycki who has sup-
ported this work through the ”Dynamic of reactif fronts” semester organized at the
Institut Henri Poincare in september 2002. We also thank Adam Chmaj for point-
ing us Schumacher’s reference. We would also thank Augusto Ponce and Pascal
Autissier for useful discussion.

A Appendix
Here we prove some maximum principles and existence results for solutions of lin-
ear problems associated to the operator L defined by (1.6).

Theorem A.1. Strong Maximum Principle for L
Let ε ≥ 0, r > 0, c ∈ R and L defined by (1.6) on Ω = (−r,+∞).
Assume further that Int( supp J) ∩ Ω− 6= ∅, where Ω− = (−r, 0).

Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

Lu ≥ 0 in Ω (resp. Lu ≤ 0 in Ω). (A.1)

Then u may not achieve a positive maximum (resp. negative minimum) inside Ω without
being constant.
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Similarly we have

Theorem A.2. Strong Maximum Principle for L+ hr(x).
Let ε ≥ 0, r > 0, c ∈ R, θ ∈ (0, 1) and L, hr(x) defined by (1.6) on Ω = (−r,+∞).
Assume further that Int( supp J) ∩ Ω− 6= ∅, where Ω− = (−r, 0).

Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy
Lu ≥ −hr(x) in Ω (resp. Lu ≤ −hr(x) in Ω)
u(−r) = θ
u ≥ θ in Ω (resp. u ≤ θ in Ω).

(A.2)

Then u may not achieve a positive maximum (resp. negative minimum) inside Ω without
being constant.

Proof of Theorem A.1:
We argue by contradiction and assume that u is nonconstant and achieves a pos-

itive maximum at some point x0 ∈ Ω. Since
∫

R J(z)dz = 1 we can rewrite (1.6)
as

Lu = εu′′ +
∫ +∞

−r
J(x− y)[u(y)− u(x)]dy − cu′ − d(x)u, (A.3)

with d(x) =
∫ −r
−∞ J(x− y)dy.

At the point x0 of (positive) maximum, we have on the one hand

εu′′(x0) ≤ 0,
∫ +∞

−r
J(x0− y)[u(y)−u(x0)]dy ≤ 0 and − d(x0)u(x0) ≤ 0. (A.4)

On the other hand by (A.1),

εu′′(x0) +
∫ +∞

−r
J(x0 − y)[u(y)− u(x0)]dy − d̄(x0)u(x0) ≥ 0 (A.5)

Hence εu′′(x0) = d(x0)u(x0) = 0 and∫ ∞

−r
J(x0 − y)[u(y)− u(x0)] dy = 0. (A.6)

If J > 0 in R, we conclude directly that u(y) = u(x0) for all y ∈ Ω, contradicting our
original assumption.

In general, J is a continuous nonnegative even function with
◦

supp(J) ∩Ω− 6≡ ∅.
In particular, there exist constants 0 < a < b such that [−b,−a]∪ [a, b] ⊂ supp(J) and
[a, b] ⊂ Ω. We deduce from (A.6) that

u(y) = u(x0) for all y ∈ (x0 + [−b,−a] ∪ [a, b]) ∩ Ω

Let z = x0 + b and observe that u(z) = u(x0). We may thus argue as above and
conclude that u(y) = u(z) for all y ∈ (z + [−b,−a] ∪ [a, b]) ∩ Ω. In particular,

u(y) = u(x0) for all y ∈ (x0 + [0, b− a]) ∩ Ω.
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Repeating the argument with z = x0 + a, we obtain that u(y) = u(x0) for all
y ∈ (x0 + [−(b− a), 0]) ∩ Ω. Thus,

u(y) = u(x0) for all y ∈ (x0 + [−(b− a), b− a]) ∩ Ω.

Applying the above successively with x0+b−a and x0−(b−a) in place of x0, we
obtain that u(y) = u(x0) for all y ∈ x0+[−2(b−a), 2(b−a)]∩Ω. Working inductively,
we conclude that u ≡ u(x0) in Ω, which contradicts our original assumption.

�

Proof of Theorem A.2
Define

ũ(x) :=
{
u(x) in Ω
θ in R \ Ω

and observe that we can rewrite (A.2) as{
Mũ ≥ 0 in Ω
ũ(x) ≥ θ in Ω,

where Mũ = εũ′′ + [J ? ũ− ũ]− cũ′.
We argue by contradiction and assume that ũ achieves a positive maximum at

some point x0 ∈ Ω and is nonconstant. Since u(x) ≥ θ in Ω we have u(x0) > θ.
Working as in the proof of Theorem A.1 we obtain that u ≡ u(x0) on Ω̄, which is a
contradiction.

�

Remark A.1. Theorems A.2 and A.1 remain valid when replacing L by L − d0, where d0

is any positive constant.

Next, we provide an elementary lemma to construct solutions of Dirichlet prob-
lems associated to L.

Lemma A.1. Let d0 > 0, ε > 0, r > 0, c ∈ R and L defined by (1.6) on Ω = (−r,+∞).
Assume further that Int( supp J) ∩ Ω− 6= ∅, where Ω− = (−r, 0).

Given f ∈ C0(Ω) ∩ L2(Ω), there exists a unique solution u ∈ C2(Ω) ∩ L2(Ω) of
Lu− d0u = f in Ω
u(−r) = 0
u(+∞) = 0

(A.7)

Proof
Uniqueness follows from the maximum principle. Let X = H1

0 (Ω) and define
the bilinear form A(u, v) for u, v ∈ X by

A(u, v) = ε

∫
Ω
u′v′+

1
2

∫
Ω

∫
Ω
J(x−y)(u(y)−u(x))(v(y)−v(x))dydx−c

∫
Ω
u′v+

∫
Ω
d(x)uv,

29



where d(x) =
∫ −r
−∞ J(x− y)dy + d0. To solve (A.7), we just need to find u ∈ X such

that A(u, v) =
∫
Ω uv for all v ∈ X . We will show that A is coercive and continuous

in X . Existence will then be given by the Lax-Milgram Lemma. Clearly,

A(u, u) ≥ ε

∫
Ω
(u′)2 − c

∫
Ω
u′u+ d0

∫
Ω
u2 = ε

∫
Ω
(u′)2 + d0

∫
Ω
u2

Thus A is coercive in X . It remains to prove the continuity of A. Let φ and ψ be two
smooth functions with compact support in Ω.

|A(φ, ψ)| ≤ 1
2

∫
R

∫
R
J(x− y)|φ(y)− φ(x)||ψ(y)− ψ(x)|dydx

By the Fundamental Theorem of Calculus and the Cauchy-Schwartz inequality we
obtain:

|A(φ, ψ)| ≤
∫

R2

∫ 1

0

∫ 1

0
J(z)z2|φ′(x+ tz)||ψ′(x+ sz)|dz dx dt ds

≤
∫

R

∫
[0,1]2

J(z)z2

∫
R
|φ′(h)||ψ′(h+ (s− t)z)|dh ds dz dt

≤
∫

R

∫
[0,1]2

J(z)z2 dz dt ds‖φ′‖L2(R)‖ψ′‖L2(R)

≤(
∫

R
J(z)z2 dz)‖φ′‖L2(R)‖ψ′‖L2(R),

which shows the continuity of A.
�

References
[1] P. W. Bates, P. C. Fife, X. Ren, X. Wang Travelling Waves in a convolution model for

phase transition, Arch. Rational Mech. Anal. 138 (1997), 105–136.

[2] H. Berestycki, L. Nirenberg Travelling fronts in cylinder, Ann. Inst. Henri
Poincaré 9 (1992), 497–572.

[3] J. Carr, A. Chmaj Uniqueness of travelling waves for nonlocal monostable equations,
Preprint

[4] X. Chen Existence, Uniqueness and asymptotic Stability of Travelling Fronts in non-
local Evolution Equations, Adv. Differential. Equation 2 (1997), 125–160.

[5] J. Coville Travelling wave in non-local reaction diffusion equation with ignition non-
linearity, Preprint

[6] J. Coville On the uniqueness and monotonicity of solution of non-local reaction-
diffusion equation, Preprint
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