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Anomalous large thermal conductivity has been observed numerically and experimentally in one
and two dimensional systems. All explicitly solvable microscopic models proposed to date did not
explain this phenomenon and there is an open debate about the role of conservation of momentum.
We introduce a model whose thermal conductivity diverges in dimension 1 and 2 if momentum is
conserved, while it remains finite in dimension d ≥ 3. We consider a system of harmonic oscillators
perturbed by a non-linear stochastic dynamics conserving momentum and energy. We compute
explicitly the time correlation function of the energy current CJ (t), and we find that it behaves, for

large time, like t
−d/2 in the unpinned cases, and like t

−d/2+1 when an on site harmonic potential
is present. Consequently thermal conductivity is finite if d ≥ 3 or if an on-site potential is present,
while it is infinite in the other cases. This result clarifies the role of conservation of momentum in
the anomalous thermal conductivity in low dimensions.

PACS numbers: 44.10+i,05.60-k,63.10.+a
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When a small gradient of temperature ∇T is applied
to a material, we expect that, in the steady state, the
heat current satisfies Fourier’s law

< J >= −κ∇T

where κ is the conductivity of the material. So if the
system has length N and the left and right ends are in
contact with thermostats at temperature Tℓ and Tr re-
spectively, the current, in the steady state, should be
proportional to (Tℓ − Tr)/N .

There has been interest in the question of validity of
Fourier’s law for low dimensional systems (d ≤ 2), where
standard arguments based on linear response break down
(cf. [1] and [2] for a review on the subject). Anomalous
large conductivity is observed experimentally in carbon
nanotubes and numerically in Fermi-Pasta-Ulam (FPU)
systems without pinning (on-site potential), where nu-
merical evidence shows a conductivity diverging like Nα,
with α < 1 in one dimension, and like logN in dimen-
sion 2 (cf. [2] and references therein). Finite conductiv-
ity is observed numerically in all pinned cases, and it is
expected in all 3 dimensional cases, as long as some non-
linearity is present in the interaction [1, 2]. Consequently
it has been suggested that conservation of momentum is
an important ingredient for the anomalous conductivity
in low dimension [4].

In insulating crystals heat is transported by lattice vi-
brations, and since the pioneering work of Debye, systems
of coupled anharmonic oscillators have been used as mi-
croscopic models for heat conduction. Non-linearity is
extremely important, in fact in the linear case the aver-
age energy current < J > is independent of the length N
of the system, i.e. the conductivity κN diverges likeN [5].

In fact in the harmonic crystal the normal modes of the
vibrations (phonons) do not interact and follow ballistic
motion. A finite asymptotic conductivity instead should
result eventually by the diffusive behavior of phonons due
to phonon-phonon interaction caused by anharmonicity.

Since conductivity in non-linear systems is difficult to
compute or estimate analytically, it is natural to model
the nonlinearities by stochastic perturbations of the lin-
ear dynamics. In some sense these stochastic perturba-
tions simulate (qualitatively) the long time (chaotic) ef-
fect of the deterministic non-linear model.

We study in this letter a stochastic model where con-
ductivity can be explicitly computed, and diverges in di-
mension 1 and 2 when momentum is conserved, while
it remains finite in dimension 3. So this is the only ex-
plicitely solvable model that has a behavior qualitatively
consistent with numerical simulations.

We consider a system of harmonic (linear) coupled os-
cillators where the Hamiltonian dynamics are perturbed
by a random exchange of momentum between nearest
neighbor atoms. The random exchange of momentum
conserves total momentum and total energy. We con-
struct this noise with a diffusion on the surface of con-
stant kinetic energy and momentum. Because of the
conservation laws, this noise introduces a certain non-
linearity in the model.

We compute explicitly the time correlation function at
equilibrium of the energy currents CJ (t) (cf. equation
(12)) and we find that, as t ∼ +∞, CJ(t) ∼ t−d/2 if
the system is unpinned, while CJ (t) ∼ t−d/2+1 if an on-
site potential is present. Conductivity, defined by Green-
Kubo formula, is then finite only in dimension d ≥ 3
or for the pinned system. This indicates a divergence
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of the conductivity of the finite system κN as N1/2 in
the unpinned 1-dimensional case, and as logN in the
unpinned 2 dimensional case.

Other explicitly solvable models have been proposed
before as perturbation of the harmonic chain (in [6] and
[7] only the number of particles is conserved, in [15] only
energy and the number of particles). In all these models
conductivity is always finite.

In order to compute the conductivity by the Green-
Kubo formula, we consider the dynamics of the closed
system of length N with periodic boundary conditions.
The Hamiltonian is given by

HN =
1

2

∑

x

[

p2
x + qx · (νI − α∆)qx

]

.

The atoms are labeled by x ∈ T
d
N , the d-dimensional

discrete torus of length N . We denote with ∇ and ∆
respectively the discrete gradient and the discrete Lapla-
cian on T

d
N . {qx} are the displacements of the atoms

from their equilibrium positions. The parameter α > 0
is the strength of the interparticles springs, and ν ≥ 0 is
the strength of the pinning (on-site potential).

We consider a stochastic dynamics where the probabil-
ity density distribution on the phase space at time t, de-
noted by P (t,q,p), evolves following the Fokker-Planck
equation (cf. [9])

∂P

∂t
= (−A+ γS)P = LP .

where A is the usual Hamiltonian vector field

A =
∑

x

{px · ∂qx
− [(νI − α∆)qx] · ∂px

}

while S is the generator of the stochastic perturbation
and γ > 0 is a positive parameter that regulates its
strength. The operator S acts only on the momentums
{px} and generates a diffusion on the surface of constant
kinetic energy and constant momentum. This is defined
as follows. For every nearest neighbor atoms x and z,
consider the d−1 dimensional surface of constant kinetic
energy and momentum

Se,p =
{

(px,pz) ∈ R
2d : p2

x + p2
z = 2e; px + pz = p

}

.

The following vector fields are tangent to Se,p

X i,j
x,z = (pjz − pjx)(∂pi

z

− ∂pi
x

) − (piz − pix)(∂pj
z

− ∂pj
x

).

so
∑d
i,j=1(X

i,j
x,z)

2 generates a diffusion on Se,p. In d ≥ 2
we define

S =
1

2(d− 1)

∑

x

d
∑

i,j,k

(

X i,j
x,x+ek

)2

where e1, . . . , ed is the canonical basis of Z
d. Observe

that this noise conserves the total momentum
∑

x px and

energy HN , i.e.

S
∑

x

px = 0 , S HN = 0

In dimension 1, in order to conserve total momentum
and total kinetic energy, we have to consider a random
exchange of momentum between three consecutive atoms,
and we define S = 1

6

∑

x∈T
1
N

(Yx)
2 where

Yx = (px−px+1)∂px−1
+(px+1−px−1)∂px

+(px−1−px)∂px+1

which is vector field tangent to the surface of constant
energy and momentum of the three particles involved.

These dynamics can also be written in terms of the
solutions of the stochastic differential equations

dpx = − (νI − ∆)qx dt+ 2γ∆px dt+
√
γ dnx(t) (1)

where of course q̇x = px and nx(t) are defined by the
Ito’s stochastic integrals

nx(t) =
1

2
√
d− 1

∑

‖y−x‖=1

d
∑

i,j

∫ t

0

(

X i,j
x,ypx

)

(s) dwi,jx,y(s)

Here wi,jx,y(t) = wi,jy,x(t) are independent standard Wiener
processes. In d = 1 the expression is similar with the
term 2γ∆px replaced by (γ/6)∆(4px + px+1 + px−1).

Defining the energy of the atom x as

ex =
1

2
p2

x +
α

4

∑

y:|y−x|=1

(qy − qx)2 +
ν

2
q2
x ,

the energy conservation law can be read locally as

ex(t) − ex(0) =

d
∑

k=1

(Jx−ek,x(t) − Jx,x+ek
(t))

where Jx,x+ek
(t) is the total energy current between x

and x + ek up to time t. This can be written as

Jx,x+ek
(t) =

∫ t

0

jx,x+ek
(s) ds+Mx,x+ek

(t) . (2)

In the above Mx,x+ek
(t) is the Ito’s stochastic integral

defined by

Mx,x+ek
(t) =

√

γ

d− 1

d
∑

i,j

∫ t

0

(

X i,j
x,x+ek

ex

)

(s) dwi,jx,y(s)

The instantaneous energy currents jx,x+ek
satisfy the

equation

Lex =

d
∑

k=1

(jx−ek,x − jx,x+ek
)
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and can be written as

jx,x+ek
= jax,x+ek

+ γjsx,x+ek
. (3)

The first term in (3) is the Hamiltonian contribution to
the energy current

jax,x+ek
= −

α

2
(qx+ek

− qx) · (px+ek
+ px) (4)

while the noise contribution in d ≥ 2 is

γjsx,x+ek
= −γ∇ek

p2
x (5)

and in d = 1 is

γjsx,x+1 = −γ∇ϕ(px−1, px, px+1)

ϕ(px−1, px, px+1) =

1

6
[p2
x+1 + 4p2

x + p2
x−1+px+1px−1 − 2px+1px − 2pxpx−1]

Consider the dynamics of the closed system on T
d
N in

microcanonical equilibrium. This is usually defined as
the uniform measure on the energy surface defined by
H = Nde, for a given e > 0. Our dynamics conserve
also (

∑

px)2 + ν(
∑

qx)2. Notice that the dynamics is
invariant under the change of coordinates p′

x = px −
∑

y py and q′
x = qx − ∑

y qy. Consequently, without
any loss of generality, we can fix

∑

px = 0 and
∑

qx = 0
in the microcanonical measure.

Let us define Je1
=

∑

x jx,x+e1
=

∑

x j
a
x,x+e1

. We are
interested in the decay of the correlation function:

C1,1(t) = lim
N→∞

1

Nd
E(Je1

(t)Je1
(0)) (6)

where E is the expectation starting with the microcanoni-
cal distribution defined above. By explicit calculation we
can solve the equation

(λ− L)
−1

Je1
= −α

γ

∑

x,y

gλ,N(x − y)px · qy (7)

where gλ,N (x) is a function on T
N
d solution of the equa-

tion

2λ

γ
gλ,N(x) − 4∆gλ,N(x) = (δ(x + e1) − δ(x − e1)) (8)

for d ≥ 2, while in one dimension it solves

2λ

γ
gλ,N (x) − 1

3
∆ [4gλ,N(x) + gλ,N (x+ 1) + gλ,N (x− 1)]

= (δ(x+ 1) − δ(x − 1))

(9)

Consequently, for λ > 0, we can write the Laplace trans-
form of C1,1(t) as

∫ ∞

0

e−λtC1,1(t) dt = lim
N→∞

〈

ja0,e1
(λ− L)

−1
Je1

〉

N
(10)

where < · >N denotes the expectation with respect to
the microcanonical measure.

Substituting (7) in (10) and using equivalence of en-
sembles estimates (cf [8] for the details) we have

∫ ∞

0

e−λtC1,1(t) dt

=
α2e2

2dγ

∑

z

gλ(z) (Γ(0, z + e1)) − Γ(0, z− e1))
(11)

where Γ is the kernel of the operator (νI − α∆)−1 on
Z
d, while gλ is the solution of equations (8) in Z

d or (9)
in Z. We compute explicitly (11) and invert the Laplace
trasform obtaining

C1,1(t) =
e2

4π2d

∫

[0,1]d
(∂k1ω(k))2 e−tγψ(k) dk (12)

where ω(k) = (ν + 4α
∑d

j=1 sin2(πkj))1/2 is the disper-
sion relation of the system, and

ψ(k) =

{

8
∑d
j=1 sin2(πkj) if d ≥ 2 ,

4/3 sin2(πk)(1 + 2 cos2(πk)) if d = 1
(13)

Since around k = 0 we have ψ(k) ∼ k2 and
(∂k1ω(k))2 ∼ (αk1)2(ν + α2k2)−1, we have the following
asymptotic behavior

C1,1(t) ∼
t→∞

{

t−d/2 if ν = 0 ,

t−d/2−1 if ν > 0
(14)

By Green-Kubo formula, the conductivity in the direc-
tion e1 is given by

κ1,1 = lim
t→∞

1

2e2t
lim
N→∞

∑

x

E (Jx,x+e1
(t)J0,e1

(t)) (15)

By explicit calculation one can show (cf. [8] for the
details)

κ1,1 =
γ

d
+

1

2e2

∫ ∞

0

C1,1(t) dt

=
γ

d
+

1

8π2dγ

∫

[0,1]d

(∂k1ω(k))2

ψ(k)
dk

(16)

By (14), if d ≥ 3 or if ν > 0, the integral on the right
hand side of (16) is finite.

If ν = 0 and d ≤ 2, by (14) the time integral
in (16) diverge and conductivity is infinite. Following
references [2] (page 46), one can estimate the depen-
dence of the conductivity of the finite open system of
length N with thermic baths at the boundary imposing
a temperature gradient, by restricting the time integral
in (16) to times smaller than the ”transit time“ N/vs,
where vs is the sound velocity of the lattice defined as
vs = limk→0 ∂k1ω(k) = 1. This gives a finite size con-
ductivity κN diverging like N1/2 in dimension 1, and like
logN in dimension 2.
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Discussion. The exact results presented in this let-
ter concerning the stochastic model we introduced give
some indications about the role of conservation of mo-
mentum and of confinement (pinning) in heat conduction
for the nonlinear deterministic Hamiltonian case. In fact
the decay of the energy current correlations and conse-
quently the behavior of the conductivity that we proved
in our stochastic model are (qualitatively) the same as
those indicated by numerical simulation for the deter-
ministic non-linear FPU models. Furthermore a recent
paper [12] on the one dimensional unpinned purely quar-
tic FPU model suggest the same correlations decay as in
our stochastic model.

In the one-dimensional case we can give the following
euristic explanation of the effect of the noise in these
harmonic systems. In deterministic harmonic systems
the energy of each mode is conserved, in both pinned
or unpinned chain; so if modes are created by initial or
boundary conditions, they cannot interact and they move
ballistically. This causes ballistic transport and diverg-
ing conductivity, in both cases (cf. [5], [10]). The effect
of the energy-momentum conservative noise we have in-
troduced is to scatter modes randomly with rate propor-
tional to k2, for small wavenumber k. The velocity of the
k-mode is given by the gradient of the dispersion function
∇ω(k). In the unpinned chain ∇ω(k) ∼ 1 for small k,
so small wavenumber modes have little probability to be
scattered, and their movement results in a ballistic con-
tribution to energy transport, while modes with large k
scatter fast and consequently they diffuse. Properly av-
eraging over all modes one obtains a current proportional
to N−1/2, i.e. a conductivity diverging like N1/2. In the
pinned chain small wavenumber modes move very slowly
(∇ω(k) ∼ k), so there is a high probability they will be
scattered and then diffuse while they cross the system.
Consequently in this case conductivity is finite.

In [15] we considered the unpinned 1-dimensional har-
monic chain with noise that conserves only energy, and
prove that conductivity is finite in any dimension. In
this last case all modes are scattered with constant rate
(independent of k).

In non-linear FPU type of interaction, a behavior
κN ∼ Nα, with 0 < α < 1 is observed numerically.
But numerical simulations are not conclusive about the
value of α and there is an intense debate in the litera-
ture on this value (cf. [2]). As suggested recently by R.
Livi [11], there is probably not universal behavior of the

conductivity in one-dimensional systems (unlike the log-
arithmic behavior of the two-dimensional systems) and
the value of α may depend on the specific non-linearity
of the interaction. The non-linearity creates some scat-
tering of the longwave modes, which results in a breaking
of the ballistic transport, and in a superdiffusive behav-
ior of these modes. An extreme case is given by the 1-
dimensional coupled-rotors model, which is an example
of a non-linear chain that conserves momentum and has
finite conductivity [13]. In this example, rotobreathers
(isolated rotors with high kinetic energy that turn very
fast) scatter waves that try to pass through them (cf.
[14]).
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