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Anomalous large thermal conductivity has been observed numerically and experimentally in one
and two dimensional systems. All explicitly solvable microscopic models proposed to date did not
explain this phenomenon and there is an open debate about the role of conservation of momentum.
We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains
finite in dimension 3. We compute the finite-size thermal conductivity of a system of harmonic
oscillators perturbed by a non-linear stochastic dynamics conserving momentum and energy. In the
limit as the size N of the system goes to infinity, conductivity diverges like N in dimension 1 and
like ln N in dimension 2. Conductivity remains finite if d ≥ 3 or if a pinning (on site potential)
is present. This result clarifies the role of conservation of momentum in the anomalous thermal
conductivity.

PACS numbers: 44.10+i,05.60-k,63.10.+a
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When a small gradient of temperature ∇T is applied
to a material, we expect that, in the steady state, the
heat current satisfies Fourier’s law

< J >= −κ∇T

where κ is the conductivity of the material. So if the
system has length N and the left and right ends are in
contact with thermostats at temperature Tℓ and Tr re-
spectively, the current, in the steady state, should be
proportional to (Tℓ − Tr)/N .

There has been interest in the question of validity of
Fourier’s law for low dimensional systems (d ≤ 2), where
standard arguments based on linear response break down
(cf. [1] and [2] for a review on the subject). Anomalous
large conductivity is observed experimentally in carbon
nanotubes and numerically in Fermi-Pasta-Ulam (FPU)
systems without pinning (on-site potential), where nu-
merical evidence shows a conductivity diverging like Nα,
with α < 1 in one dimension, and like log N in dimen-
sion 2 (cf. [2] and references therein). Finite conductiv-
ity is observed numerically in all pinned cases, and it is
expected in all 3 dimensional cases, as long as some non-
linearity is present in the interaction [1, 2]. Consequently
it has been suggested that conservation of momentum is
an important ingredient for the anomalous conductivity
in low dimension [4].

In insulating crystals heat is transported by lattice vi-
brations, and since the pioneering work of Debye, systems
of coupled anharmonic oscillators have been used as mi-
croscopic models for heat conduction. Non-linearity is
extremely important, in fact in the linear case the aver-
age energy current < J > is independent of the length N
of the system, i.e. the conductivity κN diverges like N [5].
In fact in the harmonic crystal the normal modes of the

vibrations (phonons) do not interact and follows ballistic
motion. A finite asymptotic conductivity instead should
result eventually by the diffusive behavior of phonons due
to phonon-phonon interaction caused by anharmonicity.
A behavior κN ∼ Nα with 0 < α < 1 corresponds to a
superdiffusive behavior.

Since conductivity in non-linear systems is difficult to
compute or estimate analytically, it is natural to model
the nonlinearities by stochastic perturbations of the lin-
ear dynamics. In some sense these stochastic perturba-
tions simulate (qualitatively) the long time (chaotic) ef-
fect of the deterministic non-linear model.

We study in this letter a stochastic model where con-
ductivity can be explicitly computed, and diverges in di-
mension 1 and 2, while it remains finite in dimension 3.
So this is the only explicitely solvable model that has a
behavior qualitatively consistent with numerical simula-
tions.

We consider a system of harmonic (linear) coupled os-
cillators where the Hamiltonian dynamics are perturbed
by a random exchange of momentum between nearest
neighbor atoms. The random exchange of momentum
conserves total momentum and total energy. We con-
struct this noise with a diffusion on the surface of con-
stant kinetic energy and momentum. Because of the
conservation laws, this noise introduces a certain non-
linearity in the model.

We compute explicitly the conductivity κN of the fi-
nite closed system of linear size N , by using Green-Kubo
formula for the dynamics in the microcanonical ensem-
ble. We find that it has a finite explicit limit as N → ∞
in d ≥ 3 or in the pinned cases, while it diverges like N
in the unpinned 1-dimensional case, and like log N in the
unpinned 2-dimensional case.
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Most of the numerical simulations on FPU models con-
cern open systems with boundaries in contact with ther-
mal reservoirs. In low dimension, since conductivity di-
verges, the connection with the Green-Kubo formula for
the finite system is not always clear in the deterministic
cases. So for our model we compute also the thermal
conductivity of the open system in contact with thermal
reservoirs at different temperatures and we show that it
coincides with the Green-Kubo definition.

Other explicitly solvable models have been proposed
before as perturbation of the harmonic chain (in [6] and
[7] only the number of particles is conserved, in [14] only
energy and the number of particles). In all these cases
conductivity is always finite.

In order to compute the conductivity by the Green-
Kubo formula, we consider the dynamics of the closed
system of length N with periodic boundary conditions.
The Hamiltonian is given by

HN =
1

2

∑

x

[

p
2
x

+ qx · (νI − α∆)qx

]

.

The atoms are labeled by x ∈ T
d
N , the d-dimensional

discrete torus of length N . We denote with ∇ and ∆
respectively the discrete gradient and the discrete Lapla-
cian on T

d
N . {qx} are the displacements of the atoms

from their equilibrium positions. The parameter α > 0
is the strength of the interparticles springs, and ν ≥ 0 is
the strength of the pinning (on-site potential).

We consider a stochastic dynamics where the probabil-
ity density distribution on the phase space at time t, de-
noted by P (t,q,p), evolves following the Fokker-Planck
equation (cf. [9])

∂P

∂t
= (−A + γS)P = LP .

where A is the usual Hamiltonian vector field

A =
∑

x

{px · ∂qx
− [(νI − α∆)qx] · ∂px

}

while S is the generator of the stochastic perturbation
and γ > 0 is a positive parameter that regulates its
strength. The operator S acts only on the momentums
{px} and generates a diffusion on the surface of constant
kinetic energy and constant momentum. This is defined
as follows. For every nearest neighbor atoms x and z,
consider the d−1 dimensional surface of constant kinetic
energy and momentum

Se,p =
{

(px,pz) ∈ R
2d : p2

x
+ p

2
z

= 2e; px + pz = p
}

.

The following vector fields are tangent to Se,p

X i,j
x,z = (pj

z
− pj

x
)(∂pi

z

− ∂pi
x

) − (pi
z
− pi

x
)(∂pj

z

− ∂pj
x

).

so
∑d

i,j=1
(X i,j

x,z)
2 generates a diffusion on Se,p. In d ≥ 2

we define

S =
1

2(d − 1)

∑

x

d
∑

i,j,k

(

X i,j
x,x+ek

)2

where e1, . . . , ed is the canonical basis of Z
d. Observe

that this noise conserves the total momentum
∑

x
px and

energy HN , i.e.

S
∑

x

px = 0 , S HN = 0

In dimension 1, in order to conserve total momentum
and total kinetic energy, we have to consider a random
exchange of momentum between three consecutive atoms,
and we define S = 1

6

∑

x∈T
1
N

(Yx)2 where

Yx = (px−px+1)∂px−1
+(px+1−px−1)∂px

+(px−1−px)∂px+1

which is vector field tangent to the surface of constant
energy and momentum of the three particles involved.

These dynamics can also be written in terms of the
solutions of the stochastic differential equations

dpx = − (νI − ∆)qx dt + 2γ∆px dt +
√

γ dnx(t) (1)

where of course q̇x = px and nx(t) are defined by the
Ito’s stochastic integrals

nx(t) =
1

2
√

d − 1

∑

‖y−x‖=1

d
∑

i,j

∫ t

0

(

X i,j
x,ypx

)

(s) dwi,j
x,y(s)

Here wi,j
x,y(t) = wi,j

y,x(t) are independent standard Wiener
processes. In d = 1 the expression is similar with the
term 2γ∆px replaced by (γ/6)∆(4px + px+1 + px−1).

Defining the energy of the atom x as

ex =
1

2
p

2
x

+
α

4

∑

y:|y−x|=1

(qy − qx)2 +
ν

2
q

2
x

,

the energy conservation law can be read locally as

ex(t) − ex(0) =

d
∑

k=1

(Jx−ek,x(t) − Jx,x+ek
(t))

where Jx,x+ek
(t) is the total energy current between x

and x + ek up to time t. This can be written as

Jx,x+ek
(t) =

∫ t

0

jx,x+ek
(s) ds + Mx,x+ek

(t) . (2)

In the above Mx,x+ek
(t) is the Ito’s stochastic integral

defined by

Mx,x+ek
(t) =

√

γ

d − 1

d
∑

i,j

∫ t

0

(

X i,j
x,x+ek

ex

)

(s) dwi,j
x,y(s)

The instantaneous energy currents jx,x+ek
satisfy the

equation

Lex =

d
∑

k=1

(jx−ek,x − jx,x+ek
)
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and can be written as

jx,x+ek
= ja

x,x+ek
+ γjs

x,x+ek
. (3)

The first term in (3) is the Hamiltonian contribution to
the energy current

ja
x,x+ek

= −α

2
(qx+ek

− qx) · (px+ek
+ px) (4)

while the noise contribution in d ≥ 2 is

γjs
x,x+ek

= −γ∇ek
p

2
x

(5)

and in d = 1 is

γjs
x,x+1 = −γ∇ϕ(px−1, px, px+1)

ϕ(px−1, px, px+1) =

1

6
[p2

x+1 + 4p2
x + p2

x−1+px+1px−1 − 2px+1px − 2pxpx−1]

We define conductivity using the microcanonical ver-
sion of the Green-Kubo formula. Consider the closed
system on T

d
N in the microcanonical measure. This is

usually defined as the uniform measure on the energy
surface defined by H = Nde, for a given e > 0. Our dy-
namics conserve also (

∑

px)2 + ν(
∑

qx)2. Notice that
the dynamics is invariant under the change of coordinates
p
′
x

= px −∑
y
py and q

′
x

= qx −∑
y
qy. Consequently,

without any lost of generality, we can fix
∑

px = 0 and
∑

qx = 0 in the microcanonical measure. The conduc-
tivity of the finite system in the direction e1 is defined
as

κ1,1
N = lim

t→∞

d

2e2t

∑

x

E (Jx,x+e1
(t)J0,e1

(t))

= lim
t→∞

d

2e2tNd
E





[

∑

x

Jx,x+e1
(t)

]2




(6)

where E is the expectation starting with the microcanon-
ical distribution defined above. We have used in (6)
the translation invariance property of the microcanon-
ical measure and of the dynamics. Notice that because
of the gradient form of js

x,x+e1
(cf (5)) and the periodic

boundary conditions, we have
∑

x
jx,x+e1

=
∑

x
ja
x,x+e1

.
By explicit calculation one can show (cf. [8] for the de-
tails) the decorrelation

lim
t→∞

E

([

∫ t

0

∑

x

ja
x,x+e1

][

∑

x

Mx,x+e1
(t)

])

= 0

and that the contribution to κ1,1
N due to the variances of

Mx,x+ek
is

lim
t→∞

d

2e2Ndt
E





[

∑

x

Mx,x+e1
(t)

]2


 = γ .

The contribution of ja
x,x+e1

is then

d

e2

∑

x

∫ ∞

0

E
(

ja
0,e1

(0)ja
x,x+e1

(t)
)

dt

= − d

e2

〈

ja
0,e1

(0)L−1

(

∑

x

ja
x,x+e1

)〉

N

(7)

where < · >N denotes the microcanonical expectation.
By explicitly calculation we can solve the equation

L−1

(

∑

x

ja
x,x+e1

)

=
α

γ

∑

x,y

gN (x − y)px · qy

where gN (x) is a function on T
N
d solution of the equation

4∆gN(x) = (δ(x − e1) − δ(x + e1)) (8)

for d ≥ 2, or

1

3
∆ [4gN(x) + gN(x + 1) + gN(x − 1)] = (δ(x−1)−δ(x+1))

(9)
for d = 1. Substituting in (7), and using equivalence of
ensembles estimates (cf [8] for the details) we have

κ1,1
N = γ +

α2

2γ

∑

x

(gN (x − e1) − gN(x + e1)) ΓN (0,x)

+oN

(10)

where ΓN is the kernel of the operator (νI − α∆)−1 on
T

N
d , and oN is bounded if d = 1 and ν = 0, of order

N−1 log N if d = 2 and ν = 0, and of order N−d/2 in
all other cases. A simple Fourier analysis shows that, if
ν = 0 (i.e. the unpinned case), (10) diverge like N in
dimension 1 and like log N in dimension 2. In all other
cases κ1,1

N converge to a finite limit κ1,1 given by

κ1,1 = γ +
α2

2γ

∑

z

g(z) (Γ(0, z + e1)) − Γ(0, z − e1))

where Γ is the kernel of the operator (νI −α∆)−1 on Z
d,

while g is the solution of equations (8) or (9) in Z
d. Ob-

serve that this expression diverges for γ → 0, as expected
since deterministic harmonic oscillators have infinite con-
ductivity [5].

Consider now the open case where the finite system is
in contact with 2 heat baths at different temperatures
Tℓ and Tr. We model these external thermal baths with
Langevin-type reservoirs at these given temperatures (cf.
[1, 2, 8]). If Tℓ = Tr = T the centered gaussian prod-
uct measure of variance T is the unique stationary state.
When Tℓ 6= Tr, this system has still a unique station-
ary measure, but it cannot be computed explicitely. Let
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us denote the expectation with respect to this stationary
measure with < · >ss,N . The conductivity of this finite
system can be defined as

κss
N =

N 〈jx,x+e1
〉ss,N

Tℓ − Tr
.

By using method similar to the one used in [14], one can

compute explicitly κss
N and show that

κss
N

κ1,1

N

→ 1 in all
cases.

Discussion. The exact results presented in this letter
concerning the stochastic model we introduced give some
indications about the role of conservation of momentum
and of confinement (pinning) in heat conduction for the
nonlinear deterministic Hamiltonian case. In fact the be-
havior of the conductivity that we proved in our stochas-
tic model is (qualitatively) the same as that indicated
by numerical simulation for the deterministic non-linear
FPU models, at least if d ≥ 2 or for pinned models.

In the one-dimensional unpinned model we have a di-
vergence like N . At first sight one can find this fact
surprising: in this case we have ballistic transport of en-
ergy as for the deterministic harmonic chain [5], while
noise dramatically changes the conductivity of the pinned
chain. We can explain this with the following argument.
In deterministic harmonic systems the energy of each
mode is conserved, in both pinned or unpinned chain;
so if modes are created by initial or boundary condi-
tions, they cannot be dissipated by the dynamics. This
causes ballistic transport and diverging conductivity, in
both cases (cf. [5], [10]). The effect of the energy-
momentum conservative noise we have introduced is to
scatter modes randomly with rate proportional to k2,
for small wavenumber k. The velocity of the k-mode is
given by the gradient of the dispersion function ∇ω(k).
In the unpinned chain ∇ω(k) ∼ 1 for small k, so small
wavenumber modes have little probability to be scat-
tered, and their movement results in a ballistic contri-
bution to energy transport. In the pinned chain small
wavenumber modes move very slowly (∇ω(k) ∼ k), so
they have high probability to be scattered and then dif-
fused while they cross the system.

In [14] we considered the unpinned 1-dimensional har-
monic chain with noise that conserves only energy, and
prove that conductivity is finite in any dimension. In
this last case all modes are scattered with constant rate
(independent of k).

In non-linear FPU type of interaction, a behavior
κN ∼ Nα, with 0 < α < 1 is observed numerically.
But numerical simulations are not conclusive about the
value of α and there is an intense debate in the litera-
ture on this value (cf. [2]). As suggested recently by R.

Livi [11], there is probably not universal behavior of the
conductivity in one-dimensional systems (unlike the log-
arithmic behavior of the two-dimensional systems) and
the value of α may depend on the specific non-linearity
of the interaction. We think that this is due to some
super-diffusive behavior of the longwave modes. It re-
mains to understand what causes this superdiffusive be-
havior in the non-linear case with respect to the ballis-
tic behavior that we have proved for the harmonic chain
with conservative noise. The non-linearity seems to cre-
ate some scattering of the longwave modes, which results
in a breaking of the ballistic transport, and in a superdif-
fusive behavior of these modes. An extreme case is given
by the 1-dimensional coupled-rotors model, which is an
example of a non-linear chain that conserves momentum
and has finite conductivity [12]. In this example, roto-
breathers (isolated rotors with high kinetic energy that
turn very fast) scatter waves that try to pass through
them (cf. [13]).
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